• Non ci sono risultati.

Measurement of inclusive W and Z boson production cross sections in pp collisions at s =8TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of inclusive W and Z boson production cross sections in pp collisions at s =8TeV"

Copied!
17
0
0

Testo completo

(1)

Measurement of Inclusive W and Z Boson Production Cross Sections

in pp Collisions at

p

ffiffi

s

¼ 8 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 4 February 2014; published 14 May 2014)

A measurement of total and fiducial inclusiveW and Z boson production cross sections in pp collisions atpffiffiffis¼ 8 TeV is presented. Electron and muon final states are analyzed in a data sample collected with the CMS detector corresponding to an integrated luminosity of18.2  0.5 pb−1. The measured total inclusive cross sections times branching fractions areσðpp→WXÞ×BðW →lνÞ¼12.210.03ðstatÞ0.24ðsystÞ 0.32ðlumÞ nb and σðpp → ZXÞ×BðZ → lþlÞ ¼ 1.150.01ðstatÞ0.02ðsystÞ0.03ðlumÞ nb for the

dilepton mass in the range of 60—120 GeV. The measured values agree with next-to-next-to-leading-order QCD cross section calculations. Ratios of cross sections are reported with a precision of 2%. This is the first measurement of inclusiveW and Z boson production in proton-proton collisions atpffiffiffis¼ 8 TeV.

DOI:10.1103/PhysRevLett.112.191802 PACS numbers: 13.85.Qk, 14.70.Fm, 14.70.Hp

The production ofW and Z bosons is one of the most prominent examples of hard scattering processes at hadron colliders[1]. Theoretical predictions are available at next-to-next-to-leading order (NNLO) [2–6] in perturbative quantum chromodynamics (QCD). The calculations are limited by uncertainties in parton distribution functions (PDFs), missing higher-order QCD effects, and electro-weak (EW) radiative corrections, which are available at next-to-leading order (NLO)[7–10]. Precise measurements of inclusive cross sections provide tests of perturbative QCD and validate the theoretical predictions of higher-order corrections. Additionally, accurate measurements can be used to constrain PDFs.

InclusiveW and Z boson production cross sections and their ratios were previously measured by the ATLAS and CMS Collaborations at the Large Hadron Collider (LHC) in proton-proton collisions atpffiffiffis¼ 7 TeV[11–13]. This Letter describes the inclusive measurement atffiffiffi

s p

¼ 8 TeV, performed in the electron and muon decay channels, with the CMS detector. A data sample collected in 2012 corresponding to an integrated luminosity of 18.2  0.5 pb−1 is used.

The levels of instantaneous luminosity reached by the LHC in 2012 present challenges for the precise measure-ment of theW boson cross section because of the degraded missing transverse momentum resolution resulting from the large number of pp interactions per bunch crossing (pileup). A data sample with low pileup was collected in May 2012 by adjusting the beam separation during data taking. An average of 4 interactions per bunch crossing was

achieved, compared with the average of 21 during the rest of 2012. The measurements of the W and Z boson production cross sections are performed using this data sample.

The central feature of the CMS apparatus is a super-conducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are a silicon pixel and strip tracker, a crystal electromagnetic calorimeter (ECAL), and a brass or scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke of the magnet. CMS uses a right-handed coordinate system, with the origin at the nominal interaction point, thex axis pointing to the center of the LHC, they axis pointing upwards, perpendicular to the plane of the LHC ring, and the z axis along the counterclockwise-beam direction. The polar angle θ is measured from the positivez axis, and the azimuthal angle ϕ is measured in the x-y plane. The pseudorapidity η is defined byη ¼ − ln½tanðθ=2Þ. Details of the CMS detector and its performance can be found elsewhere[14].

LeptonicW boson decays are characterized by a prompt, energetic, and isolated charged lepton and a neutrino giving rise to significant missing transverse energyEmissT . Events used in the cross section measurement are not required to have a minimum reconstructed Emiss

T , but theEmissT distri-bution is used as a discriminant against background from multijet events. Z boson decays to leptons are selected by requiring two energetic and isolated leptons of the same flavor and opposite charge. The Z boson candidates are required to have a reconstructed dilepton mass of between 60 and 120 GeV . Samples of Z boson candidates satisfying looser lepton requirements are used to estimate efficiencies. Because of the high rate of collisions and the limited bandwidth for data processing, the data acquisition system must be selective in deciding which events are sufficiently interesting to be kept for analysis. Triggers make rapid * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

decisions by executing simplified muon and electron reconstruction algorithms. For this analysis, the events are collected when triggered by the presence of a muon with large transverse momentum pT > 15 GeV and jηj < 2.1 or an electron with large transverse energy ET > 22 GeV and jηj < 2.5, with loose isolation and identifica-tion requirements.

Electrons are identified as clusters of energy deposits in the ECAL matched to tracks measured with the silicon tracker [15–19]. The ECAL fiducial region is defined by jηj < 1.44 (barrel) or 1.57 < jηj < 2.5 (end cap), where η is the pseudorapidity of the energy cluster. The barrel-end cap transition region and the first ring of end cap trigger towers are excluded because they are partially obscured by cables and services exiting between the barrel and end caps. A cluster is considered to be within the acceptance of the ECAL if it is within the ECAL fiducial region and has transverse energyET > 25 GeV. Electrons are required to be isolated from other reconstructed particles in a cone of ΔR ¼ 0.3, where ΔR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiΔη2þ Δϕ2. Particle candidates are identified using a particle-flow algorithm [20,21]that provides a complete description of the event in terms of electrons, muons, photons, charged hadrons, and neutral hadrons. An electron candidate is selected if the sum of transverse momenta of particles in the cone is less than 15% of the candidate’s transverse energy.

Muons are reconstructed from seed tracks in the muon detector combined with silicon strip and pixel information using a global fit [22,23]. In the pT range of interest, the momentum resolution is driven by the inner tracking system. Muons with pT > 25 GeV and jηj < 2.1 are selected, which is consistent with the acceptance of the single muon trigger. A relative isolation variable is com-puted as discussed for electrons, but in a cone of radius ΔR ¼ 0.4 and with an isolation selection requirement of less than 12%.

The acceptance forW or Z boson events is the fraction of generated events for which the leptons satisfy the restric-tions onη and pT. The event selection criteria will select a subset of the accepted events, and the efficiency specifies the fraction of events selected. This accounts, for example, for the region of the ECAL from1.44 < jηj < 1.55. Other effects, such as crystal boundaries, are accounted for in the efficiency to reconstruct leptons. Using this acceptance definition, we are able to separate experimental from theoretical uncertainties in the measurement. The detector response is simulated using a detailed description of the CMS detector, based on the GEANT4 package [24]. Additional proton-proton interactions are taken into account using an admixture of simulated minimum bias events, and the same reconstruction code is applied for data and simulated events. Data to simulation ratios of efficien-cies are used as scale factors. No single event generator gives a reliable description of both EW and QCD effects. The acceptance is estimated using Monte Carlo simulation

based onPOWHEG[25–28]. The effects of nonperturbative QCD, higher-order QCD, and electroweak corrections on the estimated acceptance are investigated using specific simulation tools, from which uncertainties are derived

[7–10,29,30]. The uncertainty related to the PDFs is

estimated following closely the prescription of the PDF4LHC working group [31] to combine uncertainties related to the choice of the NLO PDF and the strong coupling constantαs.

The W boson candidate events are required to have an identified electron or muon. The W boson signal and background yields are obtained from theEmiss

T distributions using a binned maximum-likelihood fit. The missing transverse energy is calculated with the particle-flow algorithm by adding the transverse energy vectors of all identified particles. An accurate Emiss

T measurement is essential to distinguish the W signal from QCD multijet backgrounds. To account for shortcomings of the simu-lation in modeling the recoil against the W boson, a correction is derived from a Z boson sample. The recoil in these events is studied, in data as well as in simulation, and the differences are propagated to the W boson simulation as a function of thepT of the generated W or Z boson. Other background processes fromW → τν, Drell-Yan, diboson, and top-pair production also become sig-nificant at high Emiss

T , contributing about 6% of the total selected yield. The background contribution from cosmic rays in theW → μν channel is negligible. The EmissT model is fitted to the observed distribution as the sum of three contributions: the W signal, the QCD background, and other backgrounds. The QCD background is modeled by an analytic function, while the signal and EW backgrounds are modeled with simulation-based fitting functions[11]. The EW contributions are normalized to theW signal yield in the fit through the ratios of the theoretical cross sections. Figure1shows the Emiss

T distributions of the inclusive W boson samples and the results of the fit.

To extract the Z boson yield, the events in the dilepton mass window are counted. The yields contain a contribu-tion of 3% from γ-mediated processes, including inter-ference effects, as estimated withMCFM[32]. Background contamination is estimated from simulation to be about 0.4%. Figure2shows the dilepton mass distributions of the inclusive Z samples. The signal yields, the acceptances, and the efficiencies are summarized in the Supplemental Material[33].

The systematic uncertainties are summarized in Table I

for the electron and muon channels. The methods used to extract the systematic uncertainties for the acceptance, efficiency, and signal extraction follow closely the W and Z boson cross section measurements performed atffiffiffi

s p

¼ 7 TeV [11]. The leading experimental uncertainty comes from the measurement of the lepton reconstruction and identification efficiency. Other uncertainties come from the integrated luminosity of the data sample and

(3)

theoretical uncertainties, which are dominated by the PDF uncertainties.

The luminosity of the data sample is measured with an uncertainty of 2.6% by counting the number of clusters per event in the silicon pixel detector. The highly granular detector, consisting of∼60 million channels, guarantees an excellent linearity of the pixel detector response versus pileup. The method is calibrated by means of a procedure pioneered by van der Meer[40], consisting of beam scans along the vertical and horizontal directions. This van der Meer technique determines the luminosity at the percent

level from a measurement of the beam parameters[41]. The dominant contribution to the luminosity uncertainty orig-inates from the assumptions on the functional form of the beam shapes.

The theoretical predictions of cross sections and cross section ratios are computed at NNLO with the program FEWZ [42] and the MSTW2008 [43] set of PDFs. The uncertainties in these predictions, at the 68% confidence level (CL ), include contributions from the uncertainty of the strong coupling constant αs [44,45], the choice of heavy-quark masses (charm and bottom quarks) [46], as well as neglected higher-order corrections beyond NNLO,

Events / 2.0 GeV 2 4 6 8 10 3 10 × data ν e → W t EWK+t QCD = 8 TeV s , -1 L = 18.2 pb CMS [GeV] T E 0 20 40 60 80 100 χ -5 0 5 0 20 40 60 80 100 Events / 2.0 GeV 2 4 6 3 10 × data ν µ → W t EWK+t QCD = 8 TeV s , -1 L = 18.2 pb CMS [GeV] T E 0 20 40 60 80 100 χ -5 0 5

FIG. 1 (color online). The missing transverse energy distribu-tions forW boson candidate events in the electron (top) and muon (bottom) final states. The variableχ shown in the lower plot is defined asðNobs− NexpÞ=

ffiffiffiffiffiffiffiffiffi Nobs

p

, where Nobs is the number of

observed events and Nexp is the total of the fitted signal and

background yields. Events / 1.0 GeV 100 200 300 400 500 600 700 data ee → Z CMS = 8 TeV s , -1 L = 18.2 pb ) [GeV] -e + M(e 60 80 100 120 χ -5 0 5 60 80 100 120 Events / 1.0 GeV 0.2 0.4 0.6 0.8 1.0 3 10 × data µ µ → Z CMS = 8 TeV s , -1 L = 18.2 pb ) [GeV] -µ + µ M( 60 80 100 120 χ -5 0 5

FIG. 2 (color online). The dilepton mass distributions for Z boson candidate events in the electron (top) and muon (bottom) final states. The variableχ shown in the lower plot is defined as ðNobs− NexpÞ=pffiffiffiffiffiffiffiffiffiNobs, where Nobs is the number of observed

events andNexpis the total of the signal and background yields.

(4)

which are estimated by allowing the renormalization and factorization scales to vary. The NNLO predictions for the total cross sections times branching fractions are 7.12  0.20 nb for Wþ,5.06  0.13 nb for W, and1.13  0.04 nb for Z boson production. The Z boson cross section requires an invariant mass within the range 60—120 GeV, and it includes the effects of virtual photons.

The results in the electron and muon decay channels are compatible with a p value of 0.42. Assuming universality of lepton couplings toW and Z bosons, the channels are combined by calculating an average cross section value weighted by their statistical and systematic uncertainties, taking into account the correlated uncertainties. The two leptonic decay channels are combined by assuming fully correlated uncertainties for the acceptance and luminosity, but with other uncertainties assumed to be uncorrelated.

In measurements of the ratios of cross sections some systematic uncertainties cancel, most importantly the uncertainty in the luminosity. The uncertainties in the lepton reconstruction and identification are treated as uncorrelated, and the resulting experimental uncertainty in the ratio measurements can, therefore, be larger than that for individual cross section measurements. A summary of the measurements is given in TableII, including the results

obtained within the fiducial regions in pT and η. See Supplemental Material [33] for the total cross sections times branching fractions and ratios for the electron and muon decay channels.

The upper two plots in Fig. 3 show the measured and predictedW versus Z and WþversusW−cross sections for different PDF sets. The uncertainties in the theoretical predictions correspond to the PDF uncertainties only. This approach eliminates the need to propagate acceptance uncertainties originating from the PDFs and higher-order corrections into the measurement. The final measurement is compared with the predicted cross sections in the accep-tance region for three different PDFs with their respective uncertainty bands propagated through the prediction.

In summary, we have performed the first measurements of total and fiducial inclusiveW and Z production cross sections times branching fractions inpp collisions atpffiffiffis¼ 8 TeV using 18.2  0.5 pb−1 of low-pileup data recorded with the CMS detector. TheW and Z bosons are observed via their decays to electrons and muons. The measured total inclusive production cross sections times branching frac-tions are σðpp→WXÞ×BðW →lνÞ¼12.210.03ðstatÞ 0.24ðsystÞ0.32ðlumÞnb and, for the dilepton mass in the range of 60–120 GeV, σðpp → ZXÞ × BðZ → lþl−Þ ¼ 1.15  0.01ðstatÞ  0.02ðsystÞ  0.03ðlumÞ nb. In addition TABLE I. Systematic uncertainties in percent for the electron and muon channels;“…” means that the source either does not apply or is negligible.

WW Wþ=WZ W=Z

Sources e μ e μ e μ e μ e μ e μ

Lepton reconstruction and identification 2.8 1.0 2.5 0.9 2.5 1.0 3.8 1.2 2.8 1.1 3.8 1.5

Momentum scale and resolution 0.4 0.3 0.7 0.3 0.5 0.3 0.3 0.1 … … 0.5 0.3

Emiss

T scale and resolution 0.8 0.5 0.7 0.5 0.8 0.5 0.3 0.1 … … 0.8 0.5

Background subtraction/modeling 0.2 0.2 0.3 0.1 0.3 0.1 0.1 0.2 0.4 0.4 0.5 0.4

Total experimental 3.0 1.2 2.7 1.1 2.7 1.2 3.8 1.2 2.8 1.2 3.9 1.7

Theoretical uncertainty 2.1 2.0 2.6 2.5 2.7 2.2 1.5 1.4 2.6 1.9 2.0 2.5

Luminosity 2.6 2.6 2.6 2.6 2.6 2.6 … … 2.6 2.6 … …

Total 4.5 3.5 4.6 3.8 4.6 3.6 4.1 1.8 4.6 3.4 4.4 3.0

TABLE II. Summary of total and fiducialWþ,W−,W, and Z production cross sections times branching fractions, W to Z and Wþto W−ratios, and their theoretical predictions.

Channel σ × B [nb] (total) NNLO [nb] Quantity Ratio (total) NNLO

7.11  0.03ðstatÞ  0.14ðsystÞ  0.18ðlumÞ 7.12  0.20 R

=W− 1.39  0.01ðstatÞ  0.02ðsystÞ 1.41  0.01 W− 5.09  0.02ðstatÞ  0.11ðsystÞ  0.13ðlumÞ 5.06  0.13 R

W=Z 10.63  0.11ðstatÞ  0.25ðsystÞ 10.74  0.04

W 12.21  0.03ðstatÞ  0.24ðsystÞ  0.32ðlumÞ 12.18  0.32 Z 1.15  0.01ðstatÞ  0.02ðsystÞ  0.03ðlumÞ 1.13  0.04

Channel σ × B [nb] (fiducial) NNLO [nb] Quantity Ratio (fiducial) NNLO

3.16  0.01ðstatÞ  0.04ðsystÞ  0.08ðlumÞ 3.18  0.10 R

=W− 1.40  0.01ðstatÞ  0.02ðsystÞ 1.42  0.02 W− 2.26  0.01ðstatÞ  0.02ðsystÞ  0.06ðlumÞ 2.25  0.07 R

W=Z 13.26  0.15ðstatÞ  0.21ðsystÞ 13.49  0.28

W 5.42  0.02ðstatÞ  0.06ðsystÞ  0.14ðlumÞ 5.43  0.16 Z 0.41  0.01ðstatÞ  0.01ðsystÞ  0.01ðlumÞ 0.40  0.01

(5)

to the inclusive cross sections, we present ratios of cross sections measured with a precision of 2%. The measure-ments in the electron and muon channels are consistent and in agreement with NNLO calculations. Additional figures summarizing our measurements are available in the Supplemental Material [33].

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES,

FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

ll) [nb] → xBR(Z Z tot σ 1.10 1.15 1.20 ) [nb]νl → xBR(W W tot σ 11.0 11.2 11.4 11.6 11.8 12.0 12.2 12.4 12.6 12.8

FEWZ NNLO Prediction MSTW 2008 NLO NNPDF2.3 CTEQ(CT10) sys)Data(stat lumi) sys Data(stat 68% CL uncertainty CMS L=18.2 pb-1, s = 8 TeV ) [nb] ν l → -xBR(W -W tot σ 4.9 5.0 5.1 5.2 5.3 ) [nb]νl → + xBR(W + W tot σ 6.4 6.6 6.8 7.0 7.2 7.4

FEWZ NNLO Prediction MSTW 2008 NLO NNPDF2.3 CTEQ(CT10) sys)Data(stat lumi) sys Data(stat 68% CL uncertainty CMS L=18.2 pb-1, s = 8 TeV ll) [nb] → xBR(Z Z acc σ 0.39 0.40 0.41 0.42 ) [nb]νl → xBR(W W acc σ 4.8 4.9 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7

*FEWZ NNLO Prediction

acc* MSTW 2008 NLO NNPDF2.3 CTEQ(CT10) sys)Data(stat lumi) sys Data(stat 68% CL uncertainty CMS L=18.2 pb-1, s = 8 TeV ) [nb] ν l → -xBR(W -W acc σ 2.20 2.25 2.30 2.35 ) [nb]νl → + xBR(W + W acc σ 2.8 2.9 3.0 3.1 3.2 3.3

*FEWZ NNLO Prediction

acc* MSTW 2008 NLO NNPDF2.3 CTEQ(CT10) sys)Data(stat lumi) sys Data(stat 68% CL uncertainty CMS L=18.2 pb-1, s = 8 TeV

FIG. 3 (color online). Measured and predictedW versus Z boson (left column) and WþversusW−boson (right column) production cross sections times branching fractions. The ellipses illustrate the 68% CL coverage for total uncertainties (open) and excluding the luminosity uncertainty (filled). The top row shows the inclusive cross sections times branching fractions and the bottom row shows the results within the fiducial regions. The uncertainties in the theoretical predictions correspond to the PDF uncertainty components only and are evaluated for MSTW 2008 NLO[43], NNPDF 2.3[47], and CT10[48].

(6)

[1] S. D. Drell and T.-M. Yan, Phys. Rev. Lett. 25, 316 (1970).

[2] P. J. Rijken and W. L. van Neerven, Phys. Rev. D 51, 44 (1995).

[3] R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl. Phys. B359, 343 (1991).

[4] W. L. van Neerven and E. B. Zijlstra,Nucl. Phys. B382, 11 (1992).

[5] R. V. Harlander and W. B. Kilgore, Phys. Rev. Lett. 88, 201801 (2002).

[6] C. Anastasiou, L. Dixon, K. Melnikov, and F. Petriello, Phys. Rev. D 69, 094008 (2004).

[7] C. M. Carloni Calame, G. Montagna, O. Nicrosini, and A. Vicini,J. High Energy Phys. 10 (2007) 109.

[8] C. M. Carloni Calame, G. Montagna, O. Nicrosini, and A. Vicini,J. High Energy Phys. 12 (2006) 016.

[9] C. M. Carloni Calame, G. Montagna, O. Nicrosini, and M. Treccani,J. High Energy Phys. 05 (2005) 019. [10] C. M. Carloni Calame, G. Montagna, O. Nicrosini, and

M. Treccani,Phys. Rev. D 69, 037301 (2004).

[11] CMS Collaboration,J. High Energy Phys. 10 (2011) 132. [12] CMS Collaboration,J. High Energy Phys. 08 (2011) 117. [13] G. Aad et al. (ATLAS Collaboration), Phys. Rev. D 85,

072004 (2012).

[14] CMS Collaboration,JINST 3, S08004 (2008).

[15] W. Adam, R. Frühwirth, A. Strandlie, and T. Todor, Technical Report CMS-NOTE-2005-001 (2005).

[16] CMS Collaboration,Eur. Phys. J. C 70, 1165 (2010). [17] CMS Collaboration,JINST 8, P09009 (2013).

[18] CMS Collaboration, Phys. Rev. Lett. 106, 082001 (2011).

[19] S. Baffioni, C. Charlot, F. Ferri, D. Futyan, P. Meridiani, I. Puljak, C. Rovelli, R. Salerno, and Y. Sirois, Eur. Phys. J. C 49, 1099 (2007).

[20] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-001 (2010); http://cdsweb .cern.ch/record/1247373.

[21] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-003 (2010); http://cdsweb .cern.ch/record/1279347.

[22] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-MUO-10-002 (2010); http:// cdsweb.cern.ch/record/1279140.

[23] CMS Collaboration,JINST 5, T03022 (2010).

[24] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[25] S. Alioli, P. Nason, C. Oleari, and E. Re, J. High Energy Phys. 07 (2008) 060.

[26] P. Nason,J. High Energy Phys. 11 (2004) 040.

[27] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[28] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 06 (2010) 043.

[29] C. Balázs and C.-P. Yuan,Phys. Rev. D 56, 5558 (1997). [30] E. Barberio, B. van Eijk, and Z. Wąs, Comput. Phys.

Commun. 66, 115 (1991).

[31] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, S. Forte, A. Glazov, J. Huston, R. McNulty, T. Sjöstrand, and R. Thorne,arXiv:1101.0538.

[32] J. M. Campbell and R. K. Ellis,Nucl. Phys. B, Proc. Suppl. 205–206, 10 (2010).

[33] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.112.191802 for addi-tional information on signal yields, acceptances, and effi-ciencies; cross sections times branching fractions and ratios for the electron and muon channels; and figures summa-rizing the results, which includes Refs. [34–39].

[34] C. Albajar et al. (UA1 Collaboration),Phys. Lett. B 198, 271 (1987).

[35] C. Albajar et al. (UA2 Collaboration),Phys. Lett. B 276, 365 (1992).

[36] F. Abe et al. (CDF Collaboration),Phys. Rev. Lett. 76, 3070 (1996).

[37] F. Abe et al. (CDF Collaboration),Phys. Rev. D 59, 052002 (1999).

[38] A. Abulencia et al. (CDF Collaboration),J. Phys. G 34, 2457 (2007).

[39] B. Abbott et al. (D0 Collaboration), Phys. Rev. D 61, 072001 (2000).

[40] S. van der Meer, Technical Report CERN-ISR-PO-68-31, ISR-PO-68-31 (1968); http://cdsweb.cern.ch/record/ 1482193.

[41] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-12-001 (2012).

[42] K. Melnikov and F. Petriello,Phys. Rev. Lett. 96, 231803 (2006).

[43] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt,Eur. Phys. J. C 63, 189 (2009).

[44] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys. J. C 64, 653 (2009).

[45] G. Watt,J. High Energy Phys. 09 (2011) 069.

[46] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys. J. C 70, 51 (2010).

[47] R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. Del Debbio, S. Forte, A. Guffanti, N. P. Hartland, J. I. Latorre, J. Rojo, and M. Ubiali,Nucl. Phys. B867, 244 (2013). [48] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky,

J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,bM. Friedl,2R. Frühwirth,2,bV. M. Ghete,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knünz,2

M. Krammer,2,b I. Krätschmer,2 D. Liko,2 I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 C. Rohringer,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,b V. Mossolov,3 N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4

(7)

A. Knutsson,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 A. Kalogeropoulos,5 J. Keaveney,5 M. Maes,5A. Olbrechts,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6 G. De Lentdecker,6L. Favart,6A. P. R. Gay,6T. Hreus,6A. Léonard,6P. E. Marage,6A. Mohammadi,6L. Perniè,6T. Reis,6 T. Seva,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6 J. Wang,6 V. Adler,7 K. Beernaert,7 L. Benucci,7A. Cimmino,7

S. Costantini,7 S. Dildick,7G. Garcia,7 B. Klein,7J. Lellouch,7 A. Marinov,7 J. Mccartin,7 A. A. Ocampo Rios,7 D. Ryckbosch,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8

C. Beluffi,8,dG. Bruno,8 R. Castello,8A. Caudron,8 L. Ceard,8 C. Delaere,8T. du Pree,8 D. Favart,8 L. Forthomme,8 A. Giammanco,8,eJ. Hollar,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 C. Nuttens,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8

A. Popov,8,fM. Selvaggi,8 J. M. Vizan Garcia,8N. Beliy,9 T. Caebergs,9 E. Daubie,9 G. H. Hammad,9 G. A. Alves,10 M. Correa Martins Junior,10T. Martins,10 M. E. Pol,10M. H. G. Souza,10W. L. Aldá Júnior,11W. Carvalho,11 J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11 H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11A. Santoro,11 L. Soares Jorge,11A. Sznajder,11 E. J. Tonelli Manganote,11,g A. Vilela Pereira,11 T. S. Anjos,12bC. A. Bernardes,12b F. A. Dias,12a,hT. R. Fernandez Perez Tomei,12a E. M. Gregores,12b C. Lagana,12a F. Marinho,12a P. G. Mercadante,12b S. F. Novaes,12aSandra S. Padula,12aV. Genchev,13,cP. Iaydjiev,13,cS. Piperov,13M. Rodozov,13G. Sultanov,13M. Vutova,13

A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15 G. M. Chen,15 H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15

M. Xu,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16 L. Zhang,16 W. Zou,16C. Avila,17C. A. Carrillo Montoya,17J. P. Gomez,17B. Gomez Moreno,17J. C. Sanabria,17 N. Godinovic,18D. Lelas,18R. Plestina,18,iD. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20

K. Kadija,20 J. Luetic,20D. Mekterovic,20S. Morovic,20L. Tikvica,20A. Attikis,21G. Mavromanolakis,21J. Mousa,21 C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Finger,22M. Finger Jr.,22A. A. Abdelalim,23,jY. Assran,23,k A. Ellithi Kamel,23,lM. A. Mahmoud,23,m A. Radi,23,n,o M. Kadastik,24M. Müntel,24M. Murumaa,24M. Raidal,24

L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28 F. Couderc,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28A. Rosowsky,28 M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,pP. Busson,29C. Charlot,29N. Daci,29 T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29R. Granier de Cassagnac,29M. Haguenauer,29P. Miné,29 C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29 A. Zabi,29J.-L. Agram,30,qJ. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,q F. Drouhin,30,qJ.-C. Fontaine,30,qD. Gelé,30U. Goerlach,30C. Goetzmann,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30 S. Gadrat,31S. Beauceron,32N. Beaupere,32 G. Boudoul,32 S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32 P. Depasse,32H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32L. Sgandurra,32V. Sordini,32Y. Tschudi,32M. Vander Donckt,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,r C. Autermann,34S. Beranek,34B. Calpas,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34K. Klein,34J. Merz,34

A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34 V. Zhukov,34,f M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35A. Güth,35

T. Hebbeker,35 C. Heidemann,35K. Hoepfner,35 D. Klingebiel,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35K. Padeken,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35

D. Teyssier,35S. Thüer,35M. Weber,35V. Cherepanov,36Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36J. Lingemann,36,c A. Nowack,36I. M. Nugent,36

L. Perchalla,36O. Pooth,36A. Stahl,36M. Aldaya Martin,37I. Asin,37N. Bartosik,37 J. Behr,37W. Behrenhoff,37 U. Behrens,37M. Bergholz,37,s A. Bethani,37K. Borras,37A. Burgmeier,37 A. Cakir,37 L. Calligaris,37A. Campbell,37

F. Costanza,37C. Diez Pardos,37T. Dorland,37G. Eckerlin,37D. Eckstein,37 G. Flucke,37A. Geiser,37 I. Glushkov,37 P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37H. Kluge,37 M. Krämer,37D. Krücker,37E. Kuznetsova,37W. Lange,37J. Leonard,37K. Lipka,37W. Lohmann,37,sB. Lutz,37R. Mankel,37

(8)

I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37 F. Nowak,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37 C. Riedl,37E. Ron,37M. Ö. Sahin,37J. Salfeld-Nebgen,37R. Schmidt,37,sT. Schoerner-Sadenius,37N. Sen,37M. Stein,37 R. Walsh,37C. Wissing,37V. Blobel,38H. Enderle,38J. Erfle,38U. Gebbert,38 M. Görner,38 M. Gosselink,38J. Haller,38

K. Heine,38R. S. Höing,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38R. Kogler,38J. Lange,38T. Peiffer,38 N. Pietsch,38D. Rathjens,38 C. Sander,38H. Schettler,38 P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schröder,38 T. Schum,38M. Seidel,38J. Sibille,38,tV. Sola,38H. Stadie,38G. Steinbrück,38J. Thomsen,38D. Troendle,38L. Vanelderen,38 C. Barth,39C. Baus,39J. Berger,39C. Böser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39 M. Guthoff,39,cC. Hackstein,39F. Hartmann,39,cT. Hauth,39,cM. Heinrich,39H. Held,39K. H. Hoffmann,39U. Husemann,39

I. Katkov,39,fJ. R. Komaragiri,39A. Kornmayer,39,c P. Lobelle Pardo,39 D. Martschei,39S. Mueller,39Th. Müller,39 M. Niegel,39A. Nürnberg,39O. Oberst,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39S. Röcker,39F.-P. Schilling,39

G. Schott,39H. J. Simonis,39 F. M. Stober,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39 G. Anagnostou,40G. Daskalakis,40T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40

E. Ntomari,40L. Gouskos,41T. J. Mertzimekis,41 A. Panagiotou,41N. Saoulidou,41 E. Stiliaris,41 X. Aslanoglou,42 I. Evangelou,42G. Flouris,42 C. Foudas,42 P. Kokkas,42N. Manthos,42I. Papadopoulos,42E. Paradas,42G. Bencze,43 C. Hajdu,43P. Hidas,43D. Horvath,43,u B. Radics,43F. Sikler,43V. Veszpremi,43G. Vesztergombi,43,v A. J. Zsigmond,43 N. Beni,44 S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44 J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45 S. K. Swain,46,wS. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Kaur,47M. Z. Mehta,47M. Mittal,47N. Nishu,47 L. K. Saini,47A. Sharma,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 S. Malhotra,48M. Naimuddin,48K. Ranjan,48P. Saxena,48V. Sharma,48R. K. Shivpuri,48S. Banerjee,49S. Bhattacharya,49 K. Chatterjee,49S. Dutta,49B. Gomber,49Sa. Jain,49Sh. Jain,49R. Khurana,49A. Modak,49S. Mukherjee,49 D. Roy,49

S. Sarkar,49M. Sharan,49A. P. Singh,49 A. Abdulsalam,50D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50,c L. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51R. M. Chatterjee,51S. Ganguly,51S. Ghosh,51M. Guchait,51,xA. Gurtu,51,y

G. Kole,51S. Kumar,51M. Maity,51,z G. Majumder,51K. Mazumdar,51G. B. Mohanty,51B. Parida,51K. Sudhakar,51 N. Wickramage,51,aaS. Banerjee,52 S. Dugad,52 H. Arfaei,53,bb H. Bakhshiansohi,53S. M. Etesami,53,ccA. Fahim,53,bb H. Hesari,53A. Jafari,53 M. Khakzad,53M. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53,dd M. Zeinali,53M. Grunewald,54M. Abbrescia,55a,55bL. Barbone,55a,55bC. Calabria,55a,55bS. S. Chhibra,55a,55bA. Colaleo,55a

D. Creanza,55a,55c N. De Filippis,55a,55c,c M. De Palma,55a,55bL. Fiore,55a G. Iaselli,55a,55c G. Maggi,55a,55c M. Maggi,55a B. Marangelli,55a,55b S. My,55a,55cS. Nuzzo,55a,55b N. Pacifico,55aA. Pompili,55a,55b G. Pugliese,55a,55c G. Selvaggi,55a,55b L. Silvestris,55a G. Singh,55a,55b R. Venditti,55a,55bP. Verwilligen,55a G. Zito,55a G. Abbiendi,56a A. C. Benvenuti,56a

D. Bonacorsi,56a,56bS. Braibant-Giacomelli,56a,56bL. Brigliadori,56a,56b R. Campanini,56a,56bP. Capiluppi,56a,56b A. Castro,56a,56bF. R. Cavallo,56aM. Cuffiani,56a,56bG. M. Dallavalle,56aF. Fabbri,56aA. Fanfani,56a,56bD. Fasanella,56a,56b P. Giacomelli,56a C. Grandi,56a L. Guiducci,56a,56bS. Marcellini,56aG. Masetti,56a,c M. Meneghelli,56a,56b A. Montanari,56a F. L. Navarria,56a,56bF. Odorici,56aA. Perrotta,56aF. Primavera,56a,56bA. M. Rossi,56a,56bT. Rovelli,56a,56bG. P. Siroli,56a,56b N. Tosi,56a,56bR. Travaglini,56a,56bS. Albergo,57a,57bM. Chiorboli,57a,57bS. Costa,57a,57bF. Giordano,57a,57c,cR. Potenza,57a,57b A. Tricomi,57a,57b C. Tuve,57a,57bG. Barbagli,58a V. Ciulli,58a,58b C. Civinini,58a R. D’Alessandro,58a,58b E. Focardi,58a,58b S. Frosali,58a,58bE. Gallo,58aS. Gonzi,58a,58bV. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58a S. Paoletti,58a G. Sguazzoni,58a A. Tropiano,58a,58bL. Benussi,59S. Bianco,59F. Fabbri,59D. Piccolo,59P. Fabbricatore,60a R. Musenich,60a S. Tosi,60a,60b A. Benaglia,61aF. De Guio,61a,61b L. Di Matteo,61a,61bS. Fiorendi,61a,61bS. Gennai,61a A. Ghezzi,61a,61bP. Govoni,61a,61b

M. T. Lucchini,61a,61b,c S. Malvezzi,61a R. A. Manzoni,61a,61b,c A. Martelli,61a,61b,c A. Massironi,61a,61bD. Menasce,61a L. Moroni,61aM. Paganoni,61a,61bD. Pedrini,61aS. Ragazzi,61a,61bN. Redaelli,61aT. Tabarelli de Fatis,61a,61bS. Buontempo,62a

N. Cavallo,62a,62cA. De Cosa,62a,62bF. Fabozzi,62a,62c A. O. M. Iorio,62a,62b L. Lista,62a S. Meola,62a,62d,c M. Merola,62a P. Paolucci,62a,cP. Azzi,63aN. Bacchetta,63aM. Bellato,63aD. Bisello,63a,63bA. Branca,63a,63bR. Carlin,63a,63bP. Checchia,63a T. Dorigo,63aU. Dosselli,63a M. Galanti,63a,63b,cF. Gasparini,63a,63bU. Gasparini,63a,63bP. Giubilato,63a,63bA. Gozzelino,63a

K. Kanishchev,63a,63c S. Lacaprara,63a I. Lazzizzera,63a,63c M. Margoni,63a,63b A. T. Meneguzzo,63a,63b M. Nespolo,63a J. Pazzini,63a,63bN. Pozzobon,63a,63bP. Ronchese,63a,63bM. Sgaravatto,63aF. Simonetto,63a,63bE. Torassa,63a M. Tosi,63a,63b P. Zotto,63a,63bA. Zucchetta,63a,63b G. Zumerle,63a,63bM. Gabusi,64a,64b S. P. Ratti,64a,64bC. Riccardi,64a,64bP. Vitulo,64a,64b M. Biasini,65a,65b G. M. Bilei,65a L. Fanò,65a,65bP. Lariccia,65a,65bG. Mantovani,65a,65bM. Menichelli,65aA. Nappi,65a,65b,a

(9)

J. Bernardini,66aT. Boccali,66a G. Broccolo,66a,66c R. Castaldi,66aR. T. D’Agnolo,66a,66c,c R. Dell’Orso,66a F. Fiori,66a,66c L. Foà,66a,66cA. Giassi,66a A. Kraan,66a F. Ligabue,66a,66c T. Lomtadze,66a L. Martini,66a,ee A. Messineo,66a,66bF. Palla,66a

A. Rizzi,66a,66bA. T. Serban,66a P. Spagnolo,66a P. Squillacioti,66a R. Tenchini,66a G. Tonelli,66a,66b A. Venturi,66a P. G. Verdini,66aC. Vernieri,66a,66c L. Barone,67a,67bF. Cavallari,67a D. Del Re,67a,67b M. Diemoz,67a C. Fanelli,67a,67b

M. Grassi,67a,67b,cE. Longo,67a,67b F. Margaroli,67a,67b P. Meridiani,67a F. Micheli,67a,67b S. Nourbakhsh,67a,67b G. Organtini,67a,67b R. Paramatti,67aS. Rahatlou,67a,67bL. Soffi,67a,67bN. Amapane,68a,68b R. Arcidiacono,68a,68c S. Argiro,68a,68b M. Arneodo,68a,68c C. Biino,68a N. Cartiglia,68a S. Casasso,68a,68bM. Costa,68a,68b N. Demaria,68a C. Mariotti,68a S. Maselli,68a G. Mazza,68a E. Migliore,68a,68bV. Monaco,68a,68b M. Musich,68a M. M. Obertino,68a,68c N. Pastrone,68a M. Pelliccioni,68a,c A. Potenza,68a,68b A. Romero,68a,68bM. Ruspa,68a,68cR. Sacchi,68a,68bA. Solano,68a,68b

A. Staiano,68aU. Tamponi,68a S. Belforte,69a V. Candelise,69a,69bM. Casarsa,69a F. Cossutti,69a,c G. Della Ricca,69a,69b B. Gobbo,69a C. La Licata,69a,69bM. Marone,69a,69bD. Montanino,69a,69b A. Penzo,69a A. Schizzi,69a,69bA. Zanetti,69a T. Y. Kim,70S. K. Nam,70S. Chang,71 D. H. Kim,71G. N. Kim,71J. E. Kim,71D. J. Kong,71Y. D. Oh,71 H. Park,71 D. C. Son,71J. Y. Kim,72Zero J. Kim,72S. Song,72 S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73 T. J. Kim,73

K. S. Lee,73S. K. Park,73Y. Roh,73M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75 Y. K. Choi,75J. Goh,75 M. S. Kim,75E. Kwon,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75I. Grigelionis,76 A. Juodagalvis,76H. Castilla-Valdez,77E. De La Cruz-Burelo,77I. Heredia-de La Cruz,77,ff R. Lopez-Fernandez,77 J. Martínez-Ortega,77A. Sanchez-Hernandez,77L. M. Villasenor-Cendejas,77S. Carrillo Moreno,78F. Vazquez Valencia,78 H. A. Salazar Ibarguen,79E. Casimiro Linares,80A. Morelos Pineda,80M. A. Reyes-Santos,80D. Krofcheck,81A. J. Bell,82 P. H. Butler,82R. Doesburg,82S. Reucroft,82H. Silverwood,82M. Ahmad,83M. I. Asghar,83J. Butt,83 H. R. Hoorani,83 W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83M. Shoaib,83H. Bialkowska,84B. Boimska,84T. Frueboes,84 M. Górski,84M. Kazana,84 K. Nawrocki,84 K. Romanowska-Rybinska,84M. Szleper,84G. Wrochna,84P. Zalewski,84 G. Brona,85K. Bunkowski,85M. Cwiok,85W. Dominik,85K. Doroba,85A. Kalinowski,85M. Konecki,85J. Krolikowski,85

M. Misiura,85W. Wolszczak,85N. Almeida,86P. Bargassa,86A. David,86P. Faccioli,86P. G. Ferreira Parracho,86 M. Gallinaro,86J. Rodrigues Antunes,86J. Seixas,86,cJ. Varela,86P. Vischia,86M. Gavrilenko,87I. Golutvin,87V. Karjavin,87 V. Konoplyanikov,87V. Korenkov,87G. Kozlov,87A. Lanev,87A. Malakhov,87V. Matveev,87P. Moisenz,87V. Palichik,87 V. Perelygin,87S. Shmatov,87S. Shulha,87N. Skatchkov,87V. Smirnov,87E. Tikhonenko,87A. Zarubin,87S. Evstyukhin,88

V. Golovtsov,88Y. Ivanov,88 V. Kim,88,ggP. Levchenko,88V. Murzin,88V. Oreshkin,88I. Smirnov,88V. Sulimov,88 L. Uvarov,88S. Vavilov,88A. Vorobyev,88An. Vorobyev,88Yu. Andreev,89A. Dermenev,89S. Gninenko,89N. Golubev,89 M. Kirsanov,89N. Krasnikov,89A. Pashenkov,89D. Tlisov,89A. Toropin,89V. Epshteyn,90M. Erofeeva,90V. Gavrilov,90 N. Lychkovskaya,90V. Popov,90 G. Safronov,90S. Semenov,90A. Spiridonov,90V. Stolin,90E. Vlasov,90A. Zhokin,90 V. Andreev,91M. Azarkin,91I. Dremin,91M. Kirakosyan,91A. Leonidov,91G. Mesyats,91S. V. Rusakov,91A. Vinogradov,91

A. Belyaev,92E. Boos,92M. Dubinin,92,h L. Dudko,92A. Ershov,92 A. Gribushin,92 V. Klyukhin,92 O. Kodolova,92 I. Lokhtin,92A. Markina,92S. Obraztsov,92S. Petrushanko,92V. Savrin,92A. Snigirev,92I. Azhgirey,93 I. Bayshev,93 S. Bitioukov,93V. Kachanov,93A. Kalinin,93D. Konstantinov,93V. Krychkine,93V. Petrov,93R. Ryutin,93 A. Sobol,93 L. Tourtchanovitch,93S. Troshin,93N. Tyurin,93A. Uzunian,93A. Volkov,93P. Adzic,94,hhM. Djordjevic,94M. Ekmedzic,94

D. Krpic,94,hh J. Milosevic,94 M. Aguilar-Benitez,95J. Alcaraz Maestre,95C. Battilana,95E. Calvo,95M. Cerrada,95 M. Chamizo Llatas,95,cN. Colino,95B. De La Cruz,95A. Delgado Peris,95D. Domínguez Vázquez,95 C. Fernandez Bedoya,95J. P. Fernández Ramos,95A. Ferrando,95J. Flix,95M. C. Fouz,95P. Garcia-Abia,95 O. Gonzalez Lopez,95S. Goy Lopez,95J. M. Hernandez,95M. I. Josa,95 G. Merino,95E. Navarro De Martino,95 J. Puerta Pelayo,95A. Quintario Olmeda,95I. Redondo,95L. Romero,95J. Santaolalla,95M. S. Soares,95C. Willmott,95 C. Albajar,96J. F. de Trocóniz,96H. Brun,97J. Cuevas,97J. Fernandez Menendez,97S. Folgueras,97I. Gonzalez Caballero,97 L. Lloret Iglesias,97J. Piedra Gomez,97J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98 J. Duarte Campderros,98M. Fernandez,98G. Gomez,98J. Gonzalez Sanchez,98A. Graziano,98C. Jorda,98A. Lopez Virto,98

J. Marco,98 R. Marco,98C. Martinez Rivero,98 F. Matorras,98F. J. Munoz Sanchez,98T. Rodrigo,98

A. Y. Rodríguez-Marrero,98A. Ruiz-Jimeno,98L. Scodellaro,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99E. Auffray,99 G. Auzinger,99M. Bachtis,99 P. Baillon,99A. H. Ball,99D. Barney,99J. Bendavid,99J. F. Benitez,99C. Bernet,99,i G. Bianchi,99P. Bloch,99A. Bocci,99A. Bonato,99O. Bondu,99C. Botta,99H. Breuker,99T. Camporesi,99G. Cerminara,99

T. Christiansen,99J. A. Coarasa Perez,99S. Colafranceschi,99,ii D. d’Enterria,99A. Dabrowski,99 A. De Roeck,99 S. De Visscher,99 S. Di Guida,99M. Dobson,99N. Dupont-Sagorin,99 A. Elliott-Peisert,99J. Eugster,99W. Funk,99

(10)

G. Georgiou,99M. Giffels,99D. Gigi,99K. Gill,99D. Giordano,99M. Girone,99 M. Giunta,99F. Glege,99 R. Gomez-Reino Garrido,99S. Gowdy,99R. Guida,99J. Hammer,99 M. Hansen,99P. Harris,99C. Hartl,99B. Hegner,99

A. Hinzmann,99V. Innocente,99P. Janot,99E. Karavakis,99K. Kousouris,99K. Krajczar,99P. Lecoq,99 Y.-J. Lee,99 C. Lourenço,99N. Magini,99M. Malberti,99L. Malgeri,99M. Mannelli,99L. Masetti,99F. Meijers,99S. Mersi,99E. Meschi,99

R. Moser,99M. Mulders,99P. Musella,99E. Nesvold,99L. Orsini,99E. Palencia Cortezon,99E. Perez,99L. Perrozzi,99 A. Petrilli,99A. Pfeiffer,99M. Pierini,99M. Pimiä,99D. Piparo,99G. Polese,99L. Quertenmont,99A. Racz,99W. Reece,99

G. Rolandi,99,jj C. Rovelli,99,kk M. Rovere,99H. Sakulin,99F. Santanastasio,99C. Schäfer,99C. Schwick,99I. Segoni,99 S. Sekmen,99A. Sharma,99P. Siegrist,99P. Silva,99M. Simon,99P. Sphicas,99,ll D. Spiga,99M. Stoye,99A. Tsirou,99 G. I. Veres,99,vJ. R. Vlimant,99H. K. Wöhri,99S. D. Worm,99,mmW. D. Zeuner,99W. Bertl,100K. Deiters,100W. Erdmann,100

K. Gabathuler,100 R. Horisberger,100 Q. Ingram,100 H. C. Kaestli,100S. König,100D. Kotlinski,100 U. Langenegger,100 D. Renker,100T. Rohe,100 F. Bachmair,101 L. Bäni,101 P. Bortignon,101 M. A. Buchmann,101B. Casal,101N. Chanon,101 A. Deisher,101 G. Dissertori,101 M. Dittmar,101M. Donegà,101 M. Dünser,101 P. Eller,101K. Freudenreich,101C. Grab,101 D. Hits,101P. Lecomte,101W. Lustermann,101A. C. Marini,101P. Martinez Ruiz del Arbol,101N. Mohr,101F. Moortgat,101

C. Nägeli,101,nnP. Nef,101 F. Nessi-Tedaldi,101F. Pandolfi,101 L. Pape,101F. Pauss,101M. Peruzzi,101F. J. Ronga,101 M. Rossini,101L. Sala,101A. K. Sanchez,101A. Starodumov,101,ooB. Stieger,101M. Takahashi,101L. Tauscher,101,aA. Thea,101 K. Theofilatos,101D. Treille,101C. Urscheler,101R. Wallny,101H. A. Weber,101C. Amsler,102,ppV. Chiochia,102C. Favaro,102 M. Ivova Rikova,102B. Kilminster,102B. Millan Mejias,102 P. Otiougova,102P. Robmann,102H. Snoek,102S. Taroni,102 S. Tupputi,102M. Verzetti,102M. Cardaci,103K. H. Chen,103C. Ferro,103C. M. Kuo,103S. W. Li,103W. Lin,103Y. J. Lu,103 R. Volpe,103S. S. Yu,103P. Bartalini,104P. Chang,104Y. H. Chang,104Y. W. Chang,104Y. Chao,104K. F. Chen,104C. Dietz,104 U. Grundler,104 W.-S. Hou,104 Y. Hsiung,104K. Y. Kao,104 Y. J. Lei,104R.-S. Lu,104 D. Majumder,104E. Petrakou,104

X. Shi,104 J. G. Shiu,104Y. M. Tzeng,104 M. Wang,104 B. Asavapibhop,105N. Suwonjandee,105A. Adiguzel,106 M. N. Bakirci,106,qqS. Cerci,106,rrC. Dozen,106I. Dumanoglu,106E. Eskut,106S. Girgis,106G. Gokbulut,106E. Gurpinar,106

I. Hos,106E. E. Kangal,106A. Kayis Topaksu,106G. Onengut,106,ssK. Ozdemir,106 S. Ozturk,106,qq A. Polatoz,106 K. Sogut,106,tt D. Sunar Cerci,106,rrB. Tali,106,rrH. Topakli,106,qq M. Vergili,106 I. V. Akin,107 T. Aliev,107 B. Bilin,107 S. Bilmis,107M. Deniz,107H. Gamsizkan,107A. M. Guler,107G. Karapinar,107,uuK. Ocalan,107A. Ozpineci,107M. Serin,107

R. Sever,107U. E. Surat,107M. Yalvac,107M. Zeyrek,107 E. Gülmez,108B. Isildak,108,vv M. Kaya,108,ww O. Kaya,108,ww S. Ozkorucuklu,108,xxN. Sonmez,108,yyH. Bahtiyar,109,zzE. Barlas,109K. Cankocak,109Y. O. Günaydin,109,aaaF. I. Vardarlı,109

M. Yücel,109 L. Levchuk,110 P. Sorokin,110J. J. Brooke,111E. Clement,111D. Cussans,111 H. Flacher,111R. Frazier,111 J. Goldstein,111 M. Grimes,111G. P. Heath,111H. F. Heath,111L. Kreczko,111S. Metson,111 D. M. Newbold,111,mm K. Nirunpong,111A. Poll,111S. Senkin,111V. J. Smith,111T. Williams,111L. Basso,112,bbbK. W. Bell,112A. Belyaev,112,bbb C. Brew,112R. M. Brown,112D. J. A. Cockerill,112J. A. Coughlan,112K. Harder,112S. Harper,112J. Jackson,112E. Olaiya,112

D. Petyt,112 B. C. Radburn-Smith,112 C. H. Shepherd-Themistocleous,112I. R. Tomalin,112 W. J. Womersley,112 R. Bainbridge,113O. Buchmuller,113D. Burton,113D. Colling,113N. Cripps,113M. Cutajar,113P. Dauncey,113G. Davies,113

M. Della Negra,113 W. Ferguson,113 J. Fulcher,113 D. Futyan,113A. Gilbert,113A. Guneratne Bryer,113 G. Hall,113 Z. Hatherell,113J. Hays,113G. Iles,113M. Jarvis,113G. Karapostoli,113M. Kenzie,113R. Lane,113R. Lucas,113,mmL. Lyons,113 A.-M. Magnan,113J. Marrouche,113 B. Mathias,113R. Nandi,113J. Nash,113 A. Nikitenko,113,oo J. Pela,113M. Pesaresi,113 K. Petridis,113M. Pioppi,113,cccD. M. Raymond,113 S. Rogerson,113 A. Rose,113C. Seez,113 P. Sharp,113,a A. Sparrow,113

A. Tapper,113M. Vazquez Acosta,113 T. Virdee,113S. Wakefield,113N. Wardle,113 T. Whyntie,113 M. Chadwick,114 J. E. Cole,114P. R. Hobson,114 A. Khan,114 P. Kyberd,114D. Leggat,114D. Leslie,114W. Martin,114 I. D. Reid,114

P. Symonds,114 L. Teodorescu,114M. Turner,114 J. Dittmann,115 K. Hatakeyama,115A. Kasmi,115H. Liu,115 T. Scarborough,115O. Charaf,116S. I. Cooper,116C. Henderson,116P. Rumerio,116A. Avetisyan,117T. Bose,117C. Fantasia,117

A. Heister,117 P. Lawson,117 D. Lazic,117J. Rohlf,117 D. Sperka,117J. St. John,117L. Sulak,117 J. Alimena,118 S. Bhattacharya,118G. Christopher,118D. Cutts,118Z. Demiragli,118 A. Ferapontov,118 A. Garabedian,118U. Heintz,118 S. Jabeen,118G. Kukartsev,118 E. Laird,118 G. Landsberg,118M. Luk,118M. Narain,118M. Segala,118T. Sinthuprasith,118 T. Speer,118R. Breedon,119G. Breto,119M. Calderon De La Barca Sanchez,119S. Chauhan,119M. Chertok,119J. Conway,119 R. Conway,119P. T. Cox,119R. Erbacher,119M. Gardner,119R. Houtz,119W. Ko,119A. Kopecky,119R. Lander,119O. Mall,119 T. Miceli,119R. Nelson,119 D. Pellett,119F. Ricci-Tam,119 B. Rutherford,119 M. Searle,119 S. Shalhout,119 J. Smith,119

M. Squires,119 M. Tripathi,119 S. Wilbur,119R. Yohay,119 V. Andreev,120D. Cline,120R. Cousins,120 S. Erhan,120 P. Everaerts,120C. Farrell,120 M. Felcini,120J. Hauser,120 M. Ignatenko,120 C. Jarvis,120G. Rakness,120 P. Schlein,120,a

(11)

E. Takasugi,120P. Traczyk,120V. Valuev,120 M. Weber,120J. Babb,121R. Clare,121M. E. Dinardo,121 J. Ellison,121 J. W. Gary,121 G. Hanson,121 H. Liu,121 O. R. Long,121 A. Luthra,121H. Nguyen,121S. Paramesvaran,121J. Sturdy,121 S. Sumowidagdo,121R. Wilken,121 S. Wimpenny,121W. Andrews,122J. G. Branson,122G. B. Cerati,122S. Cittolin,122 D. Evans,122 A. Holzner,122 R. Kelley,122 M. Lebourgeois,122J. Letts,122I. Macneill,122B. Mangano,122 S. Padhi,122 C. Palmer,122G. Petrucciani,122M. Pieri,122 M. Sani,122 V. Sharma,122S. Simon,122E. Sudano,122M. Tadel,122 Y. Tu,122 A. Vartak,122S. Wasserbaech,122,dddF. Würthwein,122A. Yagil,122J. Yoo,122D. Barge,123R. Bellan,123C. Campagnari,123 M. D’Alfonso,123T. Danielson,123K. Flowers,123P. Geffert,123C. George,123F. Golf,123J. Incandela,123 C. Justus,123 P. Kalavase,123D. Kovalskyi,123 V. Krutelyov,123 S. Lowette,123 R. Magaña Villalba,123N. Mccoll,123V. Pavlunin,123 J. Ribnik,123J. Richman,123R. Rossin,123D. Stuart,123W. To,123C. West,123A. Apresyan,124A. Bornheim,124J. Bunn,124 Y. Chen,124E. Di Marco,124J. Duarte,124D. Kcira,124Y. Ma,124A. Mott,124H. B. Newman,124C. Rogan,124M. Spiropulu,124

V. Timciuc,124J. Veverka,124 R. Wilkinson,124 S. Xie,124 Y. Yang,124R. Y. Zhu,124V. Azzolini,125A. Calamba,125 R. Carroll,125T. Ferguson,125Y. Iiyama,125D. W. Jang,125Y. F. Liu,125M. Paulini,125J. Russ,125H. Vogel,125I. Vorobiev,125 J. P. Cumalat,126B. R. Drell,126W. T. Ford,126A. Gaz,126E. Luiggi Lopez,126U. Nauenberg,126J. G. Smith,126K. Stenson,126

K. A. Ulmer,126S. R. Wagner,126J. Alexander,127A. Chatterjee,127N. Eggert,127 L. K. Gibbons,127 W. Hopkins,127 A. Khukhunaishvili,127 B. Kreis,127 N. Mirman,127G. Nicolas Kaufman,127J. R. Patterson,127 A. Ryd,127 E. Salvati,127 W. Sun,127W. D. Teo,127J. Thom,127J. Thompson,127J. Tucker,127Y. Weng,127L. Winstrom,127P. Wittich,127D. Winn,128

S. Abdullin,129M. Albrow,129J. Anderson,129 G. Apollinari,129 L. A. T. Bauerdick,129 A. Beretvas,129 J. Berryhill,129 P. C. Bhat,129K. Burkett,129 J. N. Butler,129 V. Chetluru,129H. W. K. Cheung,129 F. Chlebana,129S. Cihangir,129 V. D. Elvira,129I. Fisk,129J. Freeman,129Y. Gao,129E. Gottschalk,129L. Gray,129D. Green,129O. Gutsche,129D. Hare,129 R. M. Harris,129J. Hirschauer,129B. Hooberman,129S. Jindariani,129M. Johnson,129U. Joshi,129B. Klima,129S. Kunori,129

S. Kwan,129J. Linacre,129D. Lincoln,129 R. Lipton,129 J. Lykken,129 K. Maeshima,129 J. M. Marraffino,129 V. I. Martinez Outschoorn,129S. Maruyama,129D. Mason,129P. McBride,129K. Mishra,129S. Mrenna,129Y. Musienko,129,eee

C. Newman-Holmes,129V. O’Dell,129 O. Prokofyev,129N. Ratnikova,129E. Sexton-Kennedy,129S. Sharma,129 W. J. Spalding,129L. Spiegel,129L. Taylor,129S. Tkaczyk,129N. V. Tran,129L. Uplegger,129E. W. Vaandering,129R. Vidal,129 J. Whitmore,129W. Wu,129F. Yang,129J. C. Yun,129D. Acosta,130P. Avery,130D. Bourilkov,130M. Chen,130T. Cheng,130 S. Das,130M. De Gruttola,130G. P. Di Giovanni,130D. Dobur,130A. Drozdetskiy,130R. D. Field,130M. Fisher,130Y. Fu,130 I. K. Furic,130J. Hugon,130B. Kim,130J. Konigsberg,130A. Korytov,130A. Kropivnitskaya,130T. Kypreos,130J. F. Low,130 K. Matchev,130P. Milenovic,130,fffG. Mitselmakher,130L. Muniz,130R. Remington,130A. Rinkevicius,130N. Skhirtladze,130

M. Snowball,130J. Yelton,130 M. Zakaria,130 V. Gaultney,131S. Hewamanage,131L. M. Lebolo,131 S. Linn,131 P. Markowitz,131G. Martinez,131J. L. Rodriguez,131T. Adams,132A. Askew,132J. Bochenek,132J. Chen,132B. Diamond,132

S. V. Gleyzer,132 J. Haas,132 S. Hagopian,132 V. Hagopian,132 K. F. Johnson,132H. Prosper,132V. Veeraraghavan,132 M. Weinberg,132M. M. Baarmand,133B. Dorney,133M. Hohlmann,133H. Kalakhety,133F. Yumiceva,133M. R. Adams,134 L. Apanasevich,134V. E. Bazterra,134R. R. Betts,134I. Bucinskaite,134J. Callner,134R. Cavanaugh,134 O. Evdokimov,134 L. Gauthier,134C. E. Gerber,134D. J. Hofman,134S. Khalatyan,134P. Kurt,134F. Lacroix,134D. H. Moon,134C. O’Brien,134 C. Silkworth,134D. Strom,134P. Turner,134N. Varelas,134U. Akgun,135E. A. Albayrak,135B. Bilki,135,gggW. Clarida,135

K. Dilsiz,135F. Duru,135 S. Griffiths,135J.-P. Merlo,135H. Mermerkaya,135,hhhA. Mestvirishvili,135 A. Moeller,135 J. Nachtman,135C. R. Newsom,135 H. Ogul,135Y. Onel,135 F. Ozok,135,zz S. Sen,135 P. Tan,135 E. Tiras,135J. Wetzel,135 T. Yetkin,135,iiiK. Yi,135B. A. Barnett,136B. Blumenfeld,136S. Bolognesi,136D. Fehling,136G. Giurgiu,136A. V. Gritsan,136 G. Hu,136P. Maksimovic,136M. Swartz,136A. Whitbeck,136P. Baringer,137A. Bean,137G. Benelli,137 R. P. Kenny III,137 M. Murray,137D. Noonan,137S. Sanders,137R. Stringer,137J. S. Wood,137A. F. Barfuss,138I. Chakaberia,138A. Ivanov,138 S. Khalil,138M. Makouski,138Y. Maravin,138S. Shrestha,138I. Svintradze,138J. Gronberg,139D. Lange,139F. Rebassoo,139 D. Wright,139A. Baden,140B. Calvert,140S. C. Eno,140J. A. Gomez,140N. J. Hadley,140R. G. Kellogg,140T. Kolberg,140 Y. Lu,140M. Marionneau,140A. C. Mignerey,140K. Pedro,140A. Peterman,140A. Skuja,140J. Temple,140M. B. Tonjes,140

S. C. Tonwar,140 A. Apyan,141 G. Bauer,141 W. Busza,141E. Butz,141 I. A. Cali,141M. Chan,141V. Dutta,141 G. Gomez Ceballos,141 M. Goncharov,141 Y. Kim,141 M. Klute,141 Y. S. Lai,141 A. Levin,141 P. D. Luckey,141T. Ma,141

S. Nahn,141 C. Paus,141 D. Ralph,141 C. Roland,141G. Roland,141 G. S. F. Stephans,141F. Stöckli,141 K. Sumorok,141 K. Sung,141 D. Velicanu,141R. Wolf,141B. Wyslouch,141M. Yang,141Y. Yilmaz,141A. S. Yoon,141 M. Zanetti,141 V. Zhukova,141B. Dahmes,142A. De Benedetti,142G. Franzoni,142A. Gude,142J. Haupt,142S. C. Kao,142K. Klapoetke,142

Y. Kubota,142J. Mans,142 N. Pastika,142 R. Rusack,142M. Sasseville,142A. Singovsky,142N. Tambe,142 J. Turkewitz,142

(12)

L. M. Cremaldi,143R. Kroeger,143L. Perera,143R. Rahmat,143D. A. Sanders,143D. Summers,143E. Avdeeva,144K. Bloom,144 S. Bose,144 D. R. Claes,144A. Dominguez,144M. Eads,144R. Gonzalez Suarez,144J. Keller,144 I. Kravchenko,144

J. Lazo-Flores,144 S. Malik,144F. Meier,144G. R. Snow,144 J. Dolen,145 A. Godshalk,145 I. Iashvili,145S. Jain,145 A. Kharchilava,145A. Kumar,145S. Rappoccio,145Z. Wan,145G. Alverson,146E. Barberis,146D. Baumgartel,146 M. Chasco,146J. Haley,146D. Nash,146T. Orimoto,146D. Trocino,146D. Wood,146J. Zhang,146A. Anastassov,147 K. A. Hahn,147 A. Kubik,147 L. Lusito,147 N. Mucia,147 N. Odell,147B. Pollack,147A. Pozdnyakov,147 M. Schmitt,147 S. Stoynev,147M. Velasco,147S. Won,147D. Berry,148 A. Brinkerhoff,148 K. M. Chan,148M. Hildreth,148 C. Jessop,148 D. J. Karmgard,148J. Kolb,148K. Lannon,148W. Luo,148 S. Lynch,148N. Marinelli,148D. M. Morse,148T. Pearson,148 M. Planer,148R. Ruchti,148J. Slaunwhite,148N. Valls,148 M. Wayne,148M. Wolf,148 L. Antonelli,149B. Bylsma,149 L. S. Durkin,149C. Hill,149 R. Hughes,149 K. Kotov,149 T. Y. Ling,149 D. Puigh,149 M. Rodenburg,149 G. Smith,149 C. Vuosalo,149G. Williams,149B. L. Winer,149H. Wolfe,149E. Berry,150P. Elmer,150V. Halyo,150P. Hebda,150J. Hegeman,150 A. Hunt,150P. Jindal,150S. A. Koay,150 D. Lopes Pegna,150P. Lujan,150 D. Marlow,150 T. Medvedeva,150 M. Mooney,150 J. Olsen,150P. Piroué,150X. Quan,150A. Raval,150H. Saka,150D. Stickland,150C. Tully,150J. S. Werner,150S. C. Zenz,150 A. Zuranski,150E. Brownson,151A. Lopez,151H. Mendez,151 J. E. Ramirez Vargas,151 E. Alagoz,152D. Benedetti,152 G. Bolla,152D. Bortoletto,152M. De Mattia,152A. Everett,152Z. Hu,152M. Jones,152K. Jung,152O. Koybasi,152M. Kress,152

N. Leonardo,152V. Maroussov,152 P. Merkel,152 D. H. Miller,152 N. Neumeister,152 I. Shipsey,152D. Silvers,152 A. Svyatkovskiy,152M. Vidal Marono,152F. Wang,152L. Xu,152H. D. Yoo,152J. Zablocki,152Y. Zheng,152S. Guragain,153 N. Parashar,153A. Adair,154B. Akgun,154K. M. Ecklund,154F. J. M. Geurts,154W. Li,154B. P. Padley,154R. Redjimi,154

J. Roberts,154J. Zabel,154B. Betchart,155A. Bodek,155R. Covarelli,155 P. de Barbaro,155R. Demina,155 Y. Eshaq,155 T. Ferbel,155A. Garcia-Bellido,155 P. Goldenzweig,155 J. Han,155A. Harel,155 D. C. Miner,155 G. Petrillo,155 D. Vishnevskiy,155M. Zielinski,155A. Bhatti,156R. Ciesielski,156L. Demortier,156K. Goulianos,156G. Lungu,156S. Malik,156

C. Mesropian,156S. Arora,157 A. Barker,157 J. P. Chou,157C. Contreras-Campana,157 E. Contreras-Campana,157 D. Duggan,157D. Ferencek,157Y. Gershtein,157 R. Gray,157E. Halkiadakis,157 D. Hidas,157A. Lath,157 S. Panwalkar,157 M. Park,157R. Patel,157V. Rekovic,157J. Robles,157K. Rose,157 S. Salur,157S. Schnetzer,157C. Seitz,157S. Somalwar,157 R. Stone,157 S. Thomas,157 M. Walker,157G. Cerizza,158 M. Hollingsworth,158 S. Spanier,158Z. C. Yang,158 A. York,158

O. Bouhali,159,jjj R. Eusebi,159 W. Flanagan,159J. Gilmore,159T. Kamon,159,kkkV. Khotilovich,159R. Montalvo,159 I. Osipenkov,159Y. Pakhotin,159 A. Perloff,159 J. Roe,159 A. Safonov,159 T. Sakuma,159I. Suarez,159A. Tatarinov,159

D. Toback,159N. Akchurin,160J. Damgov,160C. Dragoiu,160 P. R. Dudero,160C. Jeong,160K. Kovitanggoon,160 S. W. Lee,160T. Libeiro,160 I. Volobouev,160E. Appelt,161 A. G. Delannoy,161 S. Greene,161 A. Gurrola,161W. Johns,161

C. Maguire,161Y. Mao,161A. Melo,161M. Sharma,161 P. Sheldon,161 B. Snook,161S. Tuo,161J. Velkovska,161 M. W. Arenton,162S. Boutle,162B. Cox,162B. Francis,162J. Goodell,162R. Hirosky,162A. Ledovskoy,162C. Lin,162C. Neu,162

J. Wood,162 S. Gollapinni,163 R. Harr,163 P. E. Karchin,163 C. Kottachchi Kankanamge Don,163P. Lamichhane,163 A. Sakharov,163M. Anderson,164D. A. Belknap,164L. Borrello,164D. Carlsmith,164M. Cepeda,164S. Dasu,164E. Friis,164 K. S. Grogg,164M. Grothe,164R. Hall-Wilton,164M. Herndon,164A. Hervé,164K. Kaadze,164P. Klabbers,164J. Klukas,164 A. Lanaro,164C. Lazaridis,164R. Loveless,164A. Mohapatra,164M. U. Mozer,164I. Ojalvo,164G. A. Pierro,164 I. Ross,164

A. Savin,164 W. H. Smith164 and J. Swanson164 (CMS Collaboration)

1

Yerevan Physics Institute, Yerevan, Armenia

2Institut für Hochenergiephysik der OeAW, Wien, Austria 3

National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5

Vrije Universiteit Brussel, Brussel, Belgium

6Université Libre de Bruxelles, Bruxelles, Belgium 7

Ghent University, Ghent, Belgium

8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9

Université de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11

Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, São Paulo, Brazil 12b

(13)

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14

University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China 16

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

17Universidad de Los Andes, Bogota, Colombia 18

Technical University of Split, Split, Croatia

19University of Split, Split, Croatia 20

Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22

Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25

Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27

Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France 29

Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg,

Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France

33

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 37

Deutsches Elektronen-Synchrotron, Hamburg, Germany

38University of Hamburg, Hamburg, Germany 39

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41

University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43

Wigner Research Centre for Physics, Budapest, Hungary

44Institute of Nuclear Research ATOMKI, Debrecen, Hungary 45

University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47

Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49

Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51

Tata Institute of Fundamental Research - EHEP, Mumbai, India

52Tata Institute of Fundamental Research - HECR, Mumbai, India 53

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54University College Dublin, Dublin, Ireland 55a

INFN Sezione di Bari, Bari, Italy

55bUniversità di Bari, Bari, Italy 55c

Politecnico di Bari, Bari, Italy

56aINFN Sezione di Bologna, Bologna, Italy 56b

Università di Bologna, Bologna, Italy

57aINFN Sezione di Catania, Catania, Italy 57b

Università di Catania, Catania, Italy

57cCSFNSM, Catania, Italy 58a

INFN Sezione di Firenze, Firenze, Italy

58bUniversità di Firenze, Firenze, Italy 59

INFN Laboratori Nazionali di Frascati, Frascati, Italy

60aINFN Sezione di Genova, Genova, Italy 60b

Università di Genova, Genova, Italy

(14)

61aINFN Sezione di Milano-Bicocca, Milano, Italy 61b

Università di Milano-Bicocca, Milano, Italy

62aINFN Sezione di Napoli, Napoli, Italy 62b

Università di Napoli’Federico II’, Napoli, Italy

62cUniversità della Basilicata (Potenza), Napoli, Italy 62d

Università G. Marconi (Roma), Napoli, Italy

63aINFN Sezione di Padova, Padova, Italy 63b

Università di Padova, Padova, Italy

63cUniversità di Trento (Trento), Padova, Italy 64a

INFN Sezione di Pavia, Pavia, Italy

64bUniversità di Pavia, Pavia, Italy 65a

INFN Sezione di Perugia, Perugia, Italy

65bUniversità di Perugia, Perugia, Italy 66a

INFN Sezione di Pisa, Pisa, Italy

66bUniversità di Pisa, Pisa, Italy 66c

Scuola Normale Superiore di Pisa, Pisa, Italy

67aINFN Sezione di Roma, Roma, Italy 67b

Università di Roma, Roma, Italy

68aINFN Sezione di Torino, Torino, Italy 68b

Università di Torino, Torino, Italy

68cUniversità del Piemonte Orientale (Novara), Torino, Italy 69a

INFN Sezione di Trieste, Trieste, Italy

69bUniversità di Trieste, Trieste, Italy 70

Kangwon National University, Chunchon, Korea

71Kyungpook National University, Daegu, Korea 72

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

73

Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75

Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania 77

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

78Universidad Iberoamericana, Mexico City, Mexico 79

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

80Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico 81

University of Auckland, Auckland, New Zealand

82University of Canterbury, Christchurch, New Zealand 83

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan

84National Centre for Nuclear Research, Swierk, Poland 85

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

86Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal 87

Joint Institute for Nuclear Research, Dubna, Russia

88Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 89

Institute for Nuclear Research, Moscow, Russia

90Institute for Theoretical and Experimental Physics, Moscow, Russia 91

P.N. Lebedev Physical Institute, Moscow, Russia

92Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 93

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia

94University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia 95

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

96Universidad Autónoma de Madrid, Madrid, Spain 97

Universidad de Oviedo, Oviedo, Spain

98Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 99

CERN, European Organization for Nuclear Research, Geneva, Switzerland

100Paul Scherrer Institut, Villigen, Switzerland 101

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

102Universität Zürich, Zurich, Switzerland 103

National Central University, Chung-Li, Taiwan

104National Taiwan University (NTU), Taipei, Taiwan 105

(15)

106Cukurova University, Adana, Turkey 107

Middle East Technical University, Physics Department, Ankara, Turkey

108Bogazici University, Istanbul, Turkey 109

Istanbul Technical University, Istanbul, Turkey

110National Scientific Center, Kharkov Institute of Physics and Technology,

Kharkov, Ukraine

111University of Bristol, Bristol, United Kingdom 112

Rutherford Appleton Laboratory, Didcot, United Kingdom

113Imperial College, London, United Kingdom 114

Brunel University, Uxbridge, United Kingdom

115Baylor University, Waco, USA 116

The University of Alabama, Tuscaloosa, USA

117Boston University, Boston, USA 118

Brown University, Providence, USA

119University of California, Davis, Davis, USA 120

University of California, Los Angeles, USA

121University of California, Riverside, Riverside, USA 122

University of California, San Diego, La Jolla, USA

123University of California, Santa Barbara, Santa Barbara, USA 124

California Institute of Technology, Pasadena, USA

125Carnegie Mellon University, Pittsburgh, USA 126

University of Colorado at Boulder, Boulder, USA

127Cornell University, Ithaca, USA 128

Fairfield University, Fairfield, USA

129Fermi National Accelerator Laboratory, Batavia, USA 130

University of Florida, Gainesville, USA

131Florida International University, Miami, USA 132

Florida State University, Tallahassee, USA

133Florida Institute of Technology, Melbourne, USA 134

University of Illinois at Chicago (UIC), Chicago, USA

135The University of Iowa, Iowa City, USA 136

Johns Hopkins University, Baltimore, USA

137The University of Kansas, Lawrence, USA 138

Kansas State University, Manhattan, USA

139Lawrence Livermore National Laboratory, Livermore, USA 140

University of Maryland, College Park, USA

141Massachusetts Institute of Technology, Cambridge, USA 142

University of Minnesota, Minneapolis, USA

143University of Mississippi, Oxford, USA 144

University of Nebraska-Lincoln, Lincoln, USA

145State University of New York at Buffalo, Buffalo, USA 146

Northeastern University, Boston, USA

147Northwestern University, Evanston, USA 148

University of Notre Dame, Notre Dame, USA

149The Ohio State University, Columbus, USA 150

Princeton University, Princeton, USA

151University of Puerto Rico, Mayaguez, USA 152

Purdue University, West Lafayette, USA

153Purdue University Calumet, Hammond, USA 154

Rice University, Houston, USA

155University of Rochester, Rochester, USA 156

The Rockefeller University, New York, USA

157Rutgers, The State University of New Jersey, Piscataway, USA 158

University of Tennessee, Knoxville, USA

159Texas A&M University, College Station, USA 160

Texas Tech University, Lubbock, USA

161Vanderbilt University, Nashville, USA 162

University of Virginia, Charlottesville, USA

163Wayne State University, Detroit, USA 164

University of Wisconsin, Madison, USA

(16)

aDeceased. b

Also at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. d

Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

e

Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. g

Also at Universidade Estadual de Campinas, Campinas, Brazil.

hAlso at California Institute of Technology, Pasadena, USA. i

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France.

jAlso at Zewail City of Science and Technology, Zewail, Egypt. k

Also at Suez Canal University, Suez, Egypt.

lAlso at Cairo University, Cairo, Egypt. m

Also at Fayoum University, El-Fayoum, Egypt.

nAlso at British University in Egypt, Cairo, Egypt. o

Present address: Ain Shams University, Cairo, Egypt.

pAlso at National Centre for Nuclear Research, Swierk, Poland. q

Also at Université de Haute Alsace, Mulhouse, France.

rAlso at Joint Institute for Nuclear Research, Dubna, Russia. s

Also at Brandenburg University of Technology, Cottbus, Germany.

tAlso at The University of Kansas, Lawrence, USA. u

Also at Institute of Nuclear Research ATOMKI, Debrecen, Hungary.

vAlso at Eötvös Loránd University, Budapest, Hungary. w

Also at Tata Institute of Fundamental Research—EHEP, Mumbai, India.

xAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India. y

Present address: King Abdulaziz University, Jeddah, Saudi Arabia.

zAlso at University of Visva-Bharati, Santiniketan, India. aa

Also at University of Ruhuna, Matara, Sri Lanka.

bbAlso at Sharif University of Technology, Tehran, Iran. cc

Also at Isfahan University of Technology, Isfahan, Iran.

ddAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ee

Also at Università degli Studi di Siena, Siena, Italy.

ffAlso at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico. gg

Also at St. Petersburg State Polytechnical University, St. Petersburg, Russia.

hhAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia. ii

Also at Facoltà Ingegneria, Università di Roma, Roma, Italy.

jjAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy. kk

Also at INFN Sezione di Roma, Roma, Italy.

llAlso at University of Athens, Athens, Greece. mm

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

nnAlso at Paul Scherrer Institut, Villigen, Switzerland. oo

Also at Institute for Theoretical and Experimental Physics, Moscow, Russia.

ppAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. qq

Also at Gaziosmanpasa University, Tokat, Turkey.

rrAlso at Adiyaman University, Adiyaman, Turkey. ss

Also at Cag University, Mersin, Turkey.

ttAlso at Mersin University, Mersin, Turkey. uu

Also at Izmir Institute of Technology, Izmir, Turkey.

vvAlso at Ozyegin University, Istanbul, Turkey. ww

Also at Kafkas University, Kars, Turkey.

xxAlso at Suleyman Demirel University, Isparta, Turkey. yy

Also at Ege University, Izmir, Turkey.

zzAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey. aaa

Also at Kahramanmaras Sütcü Imam University, Kahramanmaras, Turkey.

bbbAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. ccc

Also at INFN Sezione di Perugia, Università di Perugia, Perugia, Italy.

dddAlso at Utah Valley University, Orem, USA. eee

Also at Institute for Nuclear Research, Moscow, Russia.

Figura

FIG. 1 (color online). The missing transverse energy distribu- distribu-tions for W boson candidate events in the electron (top) and muon (bottom) final states
TABLE II. Summary of total and fiducial W þ , W − , W, and Z production cross sections times branching fractions, W to Z and W þ to W − ratios, and their theoretical predictions.

Riferimenti

Documenti correlati

Taking also into account the different species of fatty acids (short and long chain, saturated and unsaturated) no in- fluence of the starter cultures, even if of indigenous ori-

increases [12–13], it is also interesting to investigate this aspect at different paces (slow and fast). In line with previous work in Tai Chi [6] and gymnastics [5], the hypotheses

Intestinal dysbiosis: mediating a link between gallbladder disease, obesity, nonalcoholic fatty liver disease, and ischemic heart disease (IHD).. Dysbiosis (an imbalance) of

ABSTRACT: The purpose of this work was the assembly of multicomponent nano-bioconjugates based on mesoporous silica nanoparticles (MSNs), proteins (bovine serum albumin, BSA,

We present the multi-leader multi-follower equilibrium model under uncertainty, assuming an exogenous uncertainty affecting the aggregator, and some existence results for the

Our results showed that the “pizza marinara TSG” had polyphenols concentration, lycopene level, antioxidant activity, and bioaccessibility of phenolic compounds and

FSRQs (red circles in Figure 9 ) mostly cluster in the soft spectral index region, while BL Lacs (blue circles) primarily occupy the hard spectral index region, confirming the

- to della ricerca PRIN “Adaptive Design e Innovazioni Tecnologiche per la Rige- nerazione Resiliente dei Distretti Urbani in Regime di Cambiamento Climatico” con l’obiettivo