• Non ci sono risultati.

High-time resolution and size-segregated elemental composition in high-intensity pyrotechnic exposures

N/A
N/A
Protected

Academic year: 2021

Condividi "High-time resolution and size-segregated elemental composition in high-intensity pyrotechnic exposures"

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatSciVerseScienceDirect

Journal

of

Hazardous

Materials

jo u rn al h om epa g e : w w w . e l s e v i e r . c o m / l o c a t e / j h a z m a t

High-time

resolution

and

size-segregated

elemental

composition

in

high-intensity

pyrotechnic

exposures

Javier

Crespo

a,∗

,

Eduardo

Yubero

a

,

Jose

F.

Nicolás

a

,

Franco

Lucarelli

b

,

Silvia

Nava

b

,

Massimo

Chiari

b

,

Giulia

Calzolai

b

aLaboratoriodeContaminaciónAtmosférica(LCA),ÁreadeFísicaAplicada,UniversidadMiguelHernández,03202,Elche,Spain bDepartmentofPhysicsandAstronomyandINFN,UniversityofFlorence,SestoFiorentino,50019,Florence,Italy

h

i

g

h

l

i

g

h

t

s

 Streaker/Dekati/PIXEaresuitabletostudyhigh-intensityshort-livedfireworkevents.  Fireworksrelatedelementsshowed>80%elementalmassinthesubmicrometricregion.  Resuspendedsoildustisanimportantsourceofatmosphericparticlesintheseshows.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received30March2012

Receivedinrevisedform5September2012 Accepted9September2012

Available online 19 September 2012 Keywords: Pyrotechnicemissions Airpollution Metalairborne PIXE Aerosolsize-distribution

a

b

s

t

r

a

c

t

TypicaloffestivalsinEasternSpain,mascletàsarehigh-intensitypyrotechniceventswherethousands offirecrackersareburntinanintense,rapidepisodethatgeneratesshort-livedheavyaerosolclouds. Hightemporalresolutionandsizedistributioncharacterisationofaerosolcomponentswereperformed toevaluatetheeffectsofthebrief(<30min)andacuteexposureonthespectatorspresent.Veryhigh con-centrationsoffireworkspecificelements,especiallyinthefinefraction,werereachedduringmascletàs, withvaluesofabout500␮g/m3forKand300␮g/m3forCl.Sr,Al,Mg,Ba,Cu,Co,Zn,andPbconcentration

increasefactorsofmorethan100(1000forSrandBa)wereobservedinthefinefractionwithrespect tobackgroundlevels.Crustaloriginelements,likeCa,Fe,Si,Ti,alsoshowedanimportantconcentration rise(∼10timesabovebackgroundlevels)butthisisduetodustresuspensionbypyrotechnicexplosions. Thecrustalcomponentsaremainlyinthecoarsemode(>90%elementalmass),between2and3␮m. Mostfireworkrelatedmetalsareconcentratedinthesubmicrometricregion(>80%)withatrimodalsize distribution.Thismaybeinterestingtoepidemiologistsgiventhetoxiceffectsthatsuchfine,metal-rich particlescanhaveonhumanhealth.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Inthelastfewyearsseveralresearchstudieshavebeen pub-lished in literature reporting on urban airborne particles data related toworldwide popularpyrotechnic events, suchas New Year’sEve[1],nationalfestivities[2,3],sportingchampionship cel-ebrations [4],and light festivals [5,6]. Most of these published studieswerecarriedoutfrompre-eventtopost-eventpyrotechnic performancesinordertoevaluateurbanbackgroundairquality variationsusually withinanhourlyor dailytime resolution.As ageneralconclusion, fireworkdisplaysgiverisetolarge(upto hundredsof␮g/m3)buttransitory(uptohoursordays)increases

∗ Correspondingauthorat:LaboratoriodeContaminaciónAtmosférica(LCA),Área deFísicaAplicada,UniversidadMiguelHernández,AvenidadelaUniversidadS/N, 03202,Elche,Spain.Tel.:+34966658326;fax:+34966658397.

E-mailaddress:jcrespo@umh.es(J.Crespo).

ofurbanatmospheric particulatemattermeanlevels,especially metalliferousparticles(K,Mg,Ba,Cu,Sr,Al,Pb)[4].Forexample, intheIndianDiwalifestival,24h-averageconcentrationofPM10

increasedupto5.7timeswithrespecttoanormalday[7,8];during theLanternfestivalinChinatheriseofPM2.5wasover6timesthe

usualdailylevel[9];intheSummersolsticefeastinGirona(Spain) PM2.5dailylocalbackgrounddoubled,from13␮g/m3to25␮g/m3,

multiplyingbyafactorrangingfrom2to86theconcentrationsof metalsandmetalloidstypicallyemittedfromfireworks[10].

Duringfireworkdisplays,allsizerangesofatmospheric parti-clesrisebuttheincreaseisparticularlysignificantforfineparticles [4].Ascanbefoundincitedliterature,0.4–2.0␮msizebinisthe characteristicintervalrelatedtoatmosphericaerosoloriginating frompyrotechnicexhibitions[1,2,11].Thisintervalcorrespondsto breathableairborneparticlefractionandthereforeitisexpected, takingintoaccountthereportedhighlevelsofatmosphericmetal, metalloid and other pollutants, that substantial human health effects can be induced by fireworks. Consequently, numerous 0304-3894/$–seefrontmatter © 2012 Elsevier B.V. All rights reserved.

(2)

J.Crespoetal./JournalofHazardousMaterials241–242 (2012) 82–91 83

Fig.1. Locationmapandpictureofsamplingsite.Whitearrowsindicatenorthdirection.

papershavebeenpublisheddescribingthehazardousimpactthat bothlong-termandshort-termfireworkeventscanhaveonhuman health[12–16].

Mostofthestudieshavebeendesigned,asmentionedbefore, tomeasuredailyurbanbackgroundlevelsofairbornefine parti-clesbymeansofstandardPMsamplers,belonging,inmanycases, topublicmonitoringnetworks,normallyatconsiderabledistances (>1km)fromsiteswherefireworkdisplaysarelaunched[1,17,18]. Eventhoughitisverycommonthatpeopleattendingsuchanevent canbeengulfedbysmokeplumesarisingfrompyrotechnic dis-plays,theimpactofthebriefandacuteexposuretotheseplumeson spectatorsstandingclosetoanoutdoorshort-livedfireworkevent isscarcelyknown[19,20].

Thispaperisfocussedonaerosolsgeneratedbyhigh-intensity pyrotechnicevents,calledmascletàs.Theseeventstakeplace dur-ingannualfestivalsinnumerouscitiesintheSpanishsouth-eastern Mediterranean region (Valencian Region) (Fig. 1). Unlike usual fireworks,mascletàsareintended largelytostimulate the audi-torysystemandbodyvibrationthroughthestrongrhythmicnoise sequenceproducedbytheburningofatypeofbangerscalled mas-clets.Themascletisapowerfulsoundfirecrackerthatcanbeburst bothatgroundlevelandatlowaltitudelevel(1.5–2.0m).When itburns,aloudintensitydetonation,lighteffects andabundant smokegenerationareproducedasafunctionofitscomposition. Thousandsofmascletsarelinkedbyawickformingaline(traca)2m abovegroundlevel,inrectangularorcircularconnectedstructures, andaresuccessivelyburstathighspeed.Furthermore,during mas-cletàs,hundredsoffireworkshellsarealsoshotintotheairusing verticalcannons(mortarsorlaunchtubes).Theyproducepowerful explosionsat20–40mhighthatareusuallyaccompaniedbybursts ofwhitelightandcolours.

Peopleattending theseeventsare directlyenvelopedbythe aerosolcloudswhichareproduced,soourmainobjectiveinthis paperistocharacterise,asbestaspossible,theairborneparticles originatedbysuchnear-groundlevel,short-term,highintensity outdoorfireworkepisodes.Forthispurpose,wecarriedoutastudy toconsidertheparticularcharacteristicsoftheseepisodes.Indoing so,we determined elemental composition during mascletàs by meansofhightimeresolutionanalysisandparticlesizesegregation samplers.

Animportant methodological difference exists betweenour studyand themajorityofthestudiesfoundintheliterature.In

thesestudiesthesamplingpointislocatedfarawayfromthe fire-workslaunchingzone.Asaconsequencethefireworkaerosolsare founddispersedanddilutedintheatmosphericairmass. Further-more,thelocalmeteorologicalconditionscanchangetheobtained ambientPMconcentrationsindependentlyofthetypeoffirework event.Inourcase,thesamplingpointislocatedveryclosetothe launchingzone,sotheemissionaerosol cloudismeasured. Itis importanttoremarkthatthisdifferentstrategyaffectsthe extrap-olationoftheresults.ItisnotthesametoconsideremissionPM concentrationsthaninmissionconcentrationwhenhuman expo-sitionarebeingcompared.Anestimationofthemetallicparticles doseinhaledbythepeopleassistingtothepyrotechniceventshas beencalculated.

2. Experimental

2.1. Samplingsite

Alicante (38◦2043N, 0◦2859W) is a medium-size city (∼350,000 inhabitants)inSESpain(Fig.1).The cityliesonthe shoresoftheMediterraneanSea,extendedfromnorthtosouthin aslopingterraintowardsthesea(4%),surroundedbyanumberof hillsandelevations.Alicantehasanarid,Mediterraneanclimate withmildtemperaturesallyearround(annualaverageof17.8◦C) andscarcerain(336mm/year)mostlyconcentratedintheautumn period.Themeandailytemperaturesvaryfrom19◦Cto30◦Cin summerandfrom7◦Cto17◦Cinwinter.Predominantwind direc-tionisfromthenorth-westinwinterandfromthesouth-eastin summer,withatypicalregimeofMediterraneanSeabreezesinthe lattercase.

Duringthe2007JunefestivalofAlicanteHoguerasdeSantJoan (SaintJohn’s Bonfires)thepopularsonorousand visualdisplays ofmascletàsoccurredin theafternoons(at2p.m.)from19thto 24th,withhighattendance.Differenttypesofexplosivedevices werestrategicallysituatednexttoandaroundadowntowncity square(∼10,000m2)(Fig.1)andignitedundercomputercontrol.

Thousandsofmascletsandfirecrackershells,terrestrial(75%)and aerial(25%),wereburntinahigh-intensity(125kggunpowder), short-time(∼8min)loudepisode(average∼80dBA).Inthefinal

minutenolessthan500powerfulbangersweredetonatedwith noise peaksupto 120dBA and withan earthquakeeffect. Asa

(3)

Fig.2. WhitesmokecloudtypicallygeneratedduringAlicanteFestivalMascletà.

consequence,thepeople(∼20,000)concentrated(50mfaraway)in thestreetsaroundmascletàsquareandonnumerousoverlooking balconiesfromthesurroundingapartmentsblockswereengulfed bydensewhiteaerosolclouds andgasses producedthroughout theevent(Fig.2).DespitethedailyafternoonMediterraneanSea breezesthatfavourcontaminantsdispersion,veryintenseshort pollutionspikeswereexpected.Thesepollutionspikesareof spe-cialconcerntoindividualsinattendancesincemassiveincreases ofsuspendedparticles(upto1500␮g/m3 1-hPM

2.5)havebeen

reportedinanurbanenvironmentalexposurestudyduringa fire-workepisode[19].

2.2. Samplingandanalysis

Toassessthechemicalenrichmentofaerosolcloudsthatengulf individualsinattendance,westudieda)thefineandcoarse par-ticlehourlyelementalcompositionandb)theparticleelemental sizedistributionofaerosolemittedonthe19thofJunemascletà display.Forthispurposeweinstalledthesamplerinstrumentson abalconysituatedataheightof15mfromgroundlevelandwithin 50mfromthepyrotechnicsiteundertheinfluenceoftheplume. Thesamplingswerecarriedoutatdifferenttemporalresolution dependingoninstrumentandsoughtresults.

2.2.1. Fineandcoarseparticleelementalcomposition:streaker Theaerosolwascollectedduringoneweek(June18–24)bya “streaker” sampler (P.I.X.E. InternationalCorporation) [21].This device is designed to separate the fine (<2.5␮m aerodynamic diameter)andthecoarse(2.5–10␮m)fractionsoftheaerosol.A paraffin-coated Kapton foilis used asan impaction surface for coarseparticlesandaNucleporefilterasafineparticlecollector. Thetwocollectingplatesarepairedonacartridgethatrotatesat aconstantspeedforaweek:acircularcontinuousdepositionof particulatematteratbothstagesisproduced.Therotationspeed duringsampling(1.2mm/h),thepumpingorificewidth(1.2mm) andthebeamsizenormallyusedforthesubsequentPIXE (Particle-InducedX-rayEmission)analysisaresuchthatanoverallresolution ofaboutone houris obtainedontheelementalcomposition of airparticulate[22,23].Howeveritmustbetakenintoaccountthat wehadtochangethe1.2mmnozzlewitha2mmonetoprevent

filtercloggingduringtheintensemascletàevent;therefore,since therotationspeedofthesamplercouldnot bechanged,alittle smoothingofthe1hconcentrationtimetrendsshouldbeexpected. PIXEanalyseswereperformedwith3MeV protons fromthe 3MV Tandetronaccelerator of theLABEC laboratoryofINFN in Florence,withtheexternalbeamset-upextensivelydescribed else-where[24,25].Thebeamscannedthestreakinstepscorresponding to1hofaerosolsampling;eachspotwasirradiatedforabout180s withabeamintensityrangingfrom20nAto30nA.PIXEspectra werefittedusingtheGUPIXsoftwarepackage[26]andelemental concentrationswereobtainedviaacalibrationcurvefromasetof thinmonoorbi-elementalstandardsofknownsurfacedensityby Micromatter[27].Theexperimentaluncertaintiesontheelemental concentrations(ng/m3)measuredbyPIXEaregivenbythesumof

independentuncertaintiesonthefluxmeasurement(about2–3%), oncertifiedstandardsampleconcentrations(5%)andonpeakareas. TheuncertaintyonpeakareasincludestheX-rayscounting statis-ticsandallthefittinguncertainties(backgroundsubtraction,peak overlaps,etc.).Thecountingstatisticsuncertaintymayvaryfrom fewpercentupto20–30%ormorewhenconcentrationsapproach minimumdetectionlimits(MDLs).

Detectionlimitswereabout10ng/m3forelementsfromNato

Vand1ng/m3(orbelow)forelementsfromCrtoPb.Thefollowing

elementsweredetected:Na,Mg,Al,Si,S,Cl,K,Ca,Ti,V,Cr,Mn,Fe, Co,Ni,Cu,Zn,As,Br,Rb,Sr,Ba,andPb.

2.2.2. Particleelementalsizedistribution:Dekati

Particulatematter sampleswerecollectedfor both the19th Junemascletàperiod(∼50min)andduringanon-festivalday (nor-malsummerday,NSD),1stJuly(dailyaverage).Weusedacascade

smalldepositarealowpressureimpactor(SDI,Dekati®).The

sam-plerclassifies airborneparticles, from30nmto10␮m,into 12 size-fractionsmalldepositareastages,withcut-offaerodynamic diameters(␮m)of8.50,4.08,2.68,1.66,1.06,0.796,0.591,0.343, 0.231,0.153,0.086,and0.045.Theparticlesarecollectedon25mm Kaptonfoilswithaflowrateof11L/min.Inordertoreduceparticle bounce-offeffects,thefilmswerecoatedwithapiezon.

Impactor samples were chemically analysed by PIXE at the LABECLaboratory[28].Fieldblankcorrectionwasappliedtoallthe datasets.TherelativePIXEuncertainties(duetocountingstatistics

(4)

J.Crespoetal./JournalofHazardousMaterials241–242 (2012) 82–91 85

Table1

Elemental1-hconcentration(ng/m3)averagedforthewholefestivalweek(aver),during(mas)andout(bck)ofthemascletàseventsforthefineandcoarsefraction.The

fine/coarseratioduringandoutofthemascletàseventsisalsoreported.Theconcentrationduringmascletàshasbeencalculatedastheaverageofthepeakvaluesreached throughoutthesixepisodes.Thebackgroundconcentrationreferstothemeasurementscarriedoutattimesduringtheweekwhenneithermascletàspeaksnorotherfiesta eventstookplace.

Element Fine Coarse f/c

aver mas bck aver mas bck mas bck

Na 1020 1440 1250 2100 1400 3700 1.0 0.3 Mg 710 7060 130 380 2300 380 3.1 0.3 Al 1960 22500 80 1770 31800 190 0.7 0.4 Si 1890 3000 430 710 3690 460 0.8 0.9 S 8670 80900 1450 950 12500 400 6.5 3.6 Cl 18700 216000 120 42300 13300 3420 16.2 0.04 K 33600 384000 250 2380 43200 240 8.9 1.0 Ca 1560 6800 390 3310 22600 1630 0.3 0.2 Ti 57 610 <7a 47 430 19 1.4 V 36 190 22 26 54 11 3.4 2.0 Cr 16 150 7 9 31 8 4.9 0.9 Mn 23 65 5 9 45 4 1.4 1.1 Fe 250 850 106 360 1900 280 0.4 0.4 Co 105 1700 <1a 100 2000 5 0.8 Ni 8 18 7 2 8 2 2.3 3.9 Cu 120 2200 12 17 180 10 12.4 1.3 Zn 50 362 8 18 80 9 4.6 0.9 As 20 80 <1a 3 10 <2a 8.0 0.9 Br 9 36 5 3 9 3 3.9 1.8 Rb 22 63 3 5 19 2 3.4 1.4 Sr 410 5750 4 40 780 10 7.4 0.4 Ba 1600 7430 <20a 220 750 <40a 9.9 Pb 160 1270 8 12 100 5 12.8 1.7

aConcentrationsunderexperimentalMDLvalues.

andspectrumdeconvolution)typicallyrangedfromabout1–10%, asexplainedinpreviousparagraph.Theaerosolsamplingin gen-eralwasexpectedtointroduceanadditionalrelativeuncertainty ofabout10%[29].Thetwocontributionsweresquaresummedto givetheoveralluncertainties.

TherawelementalsizedistributiondataoftheindividualSDI sampleswereconvertedintosmoothdistributionsusingthe inver-sioncodeMICRON[30]andlognormalcurveswerethenfittedtothe latter,sothattheelementalmassconcentration,geometricmean aerodynamicdiameter(GMAD)andgeometricstandarddeviation (GSD)ofthedifferentcontributingmodeswereobtained.

2.3. Additionalmeasurements

Meteorological data (temperature, relative humidity, wind speed and direction) for the study period were obtainedfrom theenvironmentalmonitoringstationofAlicanteUniversity.The stationissituated3kmnorthofthemascletàsiteinaclearand well-ventilatedarea.Seabreezes,duringfestivalweek,blewmainly fromSE,between127◦and141◦.

3. Resultsanddiscussion

3.1. Elementalconcentrationwithone-hourtemporalresolution 24-hconcentrationresolutionisaperiodoftimemuchlonger thanthedurationofthedisplayssocorrespondingdatabasecoming fromdailysample analysisit isnotadequatetoassessthe fire-workoriginofdifferentelements,especiallythosethatcouldalso comefromsourcesotherthanfireworks(e.g.Cufromtraffic). Fur-thermore,theindividualexposureperiodofspectatorsattending short-termoutdoordisplaysismuchshorterthan24h.Forthese reasons,1-hresolutionsamplingismoresuitablebecauseitallows evaluatingwithoutanydoubtthefireworkoriginofthedifferent elementsanditmakespossibletoquantifytherealexposureof spectatorstoshort-livedfireworksplume.

The elemental hourly temporal evolution, both in the fine (<2.5␮m)andcoarse(2.5–10␮m)fraction,wascarriedoutusing theStreakerdevice.InTable1,theelemental1-hconcentration averagedduringandoutofthemascletàseventsandoverthewhole festivalweekforthefineandcoarsefractionaresummarised.The fine/coarseratioisalsoreported.Theconcentrationduring mascle-tàshasbeencalculatedastheaverageofthepeakvaluesreached throughoutthesixepisodes.Thebackgroundconcentrationrefers tothemeasurementscarriedoutalongtheweekinperiodswhen mascletàpeaksdidnot takeplaceandshouldrepresentthecity “normal”concentrations.Theconcentrationswefoundarehigher thanthosefoundinotherstudies[4,10,17]andformanyelements similartotheonesfoundbyKuhlteshtaetal.andSarkaretal.for Diwalifestival[6,18]andWangetal.forLanternFestival[5](our datawereaveragedinthesametimescalesusedinthecitedarticle). AscanbeobservedinTable1,duringthemascletàeventsthe massconcentrationsofmostof theanalysed elementsshowan extraordinaryincrease relative tobackground levels(especially forfinefraction).Potassiumandchlorineexhibitthehighest lev-els(384␮g/m3and216␮g/m3,respectively)andrelativeincreases

sincebackgroundconcentrationsaremultipliedbyafactorhigher than1500duringtheseevents.Theconcentrationsofother ele-mentsrelatedtopyrotechnicdisplays,likeSr,Al,Mg,Ba,Cu,Co, Zn,andPb,arealsoextremelyhighduringthemascletàs.Inthefine fraction,increasefactorswithrespecttobackgroundlevelsrange fromaround50forMgandZn,tomorethan1000forSrandBa.

InFig.3a–cweshowtheconcentrations(␮g/m3)of(a)K,Cl,

S(finefraction);(b)Al,Ba,Sr(finefraction);and(c)Ca(fineand coarsefraction)registeredduringthewholeHoguerasweek.Ascan beseenfromthefigures,thehightimeresolutionallowsustofollow therapidevolutionofthepollutantconcentrationduetothe short-timedailyevents.Allthereportedelementshadverysharppeaks onthetimeofmascletàsburning.Theyalsoshowedaquickdecrease aftertheeventsduetohighdispersioncapabilityoftheatmosphere favouredbyseabreezeandthermalconvectiveprocesses.Asimilar timepatternisalsopresentedbyMg,Si,Ti,V,Cr,Mn,Fe,Co,Cu,Zn, Br,Rb,Ba,andPb.Mostoftheseelementswerealreadyidentified

(5)

Fig.3.HourlytimetrendsoffineK,Cl,S(a);fineAl,Sr,Ba(b);fineandcoarseCa(c).ThelackofdataduringsomehoursonJune24thwasduetoapowerblack-out.

inliteratureastracersoffireworkemissions.However,itisclear thatthedifferentnatureofmascletàsrespecttostandardfireworks mayvaryenormouslytheratioofmetalsintheheterogeneousand denseaerosoltheyproduce.

Fig.3ashowsthetemporalpatternofK,ClandS concentra-tionsinthefinefraction.Levelsmeasuredinsidetheplumeinour studywereroughlyofthesameorderofmagnitudeasthosefound byDrewnicketal.andJolyetal.[1,19]andfarhigherthanthose foundbyDutcheretal.[11]whichreferstoindoorparticulate.These elementsoriginatefromgunpowdercombustion[11],stillthe prin-cipalcomponentofactualpyrotechnicdevices.Pyrotechnicprocess basicallyconsistsinanoxidation–reductionreactionbetweenan oxygensource(oxidant),typicallypotassiumnitrateorperchlorate, andsomereducingagents(fuel),classicallycharcoalandsulphur

butalsoothercomponentslikebinders,metalpowdersorsmoke generatingagentsaddedtotheaforementionedsubstancesinorder toreachthedesiredpyrotechnicperformances[11,31].

Dutcher et al.[11] reported thatgunpowder, typically com-posed of74.0% KNO3, 10.4%S, and 15.6% C bymass, showsan

ambientairK/Smassratioafterfireworks,practicallyequivalent thetheoreticallydeterminedvalue,2.76.Incontrast,themeasured ambientaverage K/Smass ratio foundin this study wasmuch higher,about5.0,notfarthatobtainedbyCroteauetal.(5.73)ina close-monitoredpyrotechnicevent[20].Furthermore,theambient K/Clmassratioobtained(between1.1and3.1alongmascletàweek) indicatesthatmascletàepisodesreleasedintotheatmospherelarge quantitiesofchlorinetogetherwithpotassiuminthefinefraction. Theseresultsseemrelatedtotheuseofpotassiumperchlorate,a

(6)

J.Crespoetal./JournalofHazardousMaterials241–242 (2012) 82–91 87

Table2

Geometricmeanaerodynamicdiameter(GMAD,␮m),associatedgeometricstandarddeviation(GSD,␮m)andrelativemodeconcentration(RMC)ofthedetectedmodesfor investigatedelementsoftheMascletàsamples.

Element Accumulationmode Intermediatemode Coarsemode

GMAD GSD RMC GMAD GSD RMC GMAD GSD RMC

Mg 0.22 1.87 0.62 0.85 1.84 0.31 3.356 1.53 0.08 Al 0.21 1.68 0.18 2.10 2.11 0.82 Si 0.14 1.88 0.13 2.13 2.27 0.87 S 0.19 1.50 0.41 0.67 1.62 0.49 2.978 1.53 0.10 Cl 0.19 1.47 0.44 0.61 1.53 0.53 2.378 1.26 0.03 K 0.19 1.51 0.44 0.65 1.60 0.50 2.75 1.45 0.07 Ca 0.16 1.72 0.05 2.49 2.13 0.95 Ti 2.32 2.17 1.00 V 0.34 2.75 1.00 Cr 0.50 3.35 1.00 Mn 0.32 2.63 0.69 2.15 2.43 0.31 Fe 0.284 1.40 0.14 1.13 1.46 0.42 3.39 1.41 0.44 Co 0.319 1.18 0.06 1.03 1.37 0.43 3.24 1.47 0.51 Cu 0.24 1.63 0.60 0.64 1.45 0.37 2.9 1.35 0.04 Zn 0.30 2.36 0.95 3.34 1.47 0.05 As 0.34 2.23 0.96 3.46 1.73 0.04 Rb 0.404 2.52 1.00 Sr 0.24 1.65 0.61 0.69 1.41 0.37 2.719 1.25 0.02 Ba 0.197 1.61 0.58 0.604 1.57 0.38 2.955 1.38 0.05

morepowerfuloxidiser,whenintensedaylightflashesand

pro-nouncednoiseeffectsarerequired,asoccurredinmascletàs[32].

So,KClO4appearstobeamajorsourceoftheKfoundinmascletà

PMfractions.Itiscommontheuseofanexcessofoxidisersinthe compositionofthefireworksmixtureinordertoassurea com-pletecombustion.Inthiscase,someofthepotassiumperchlorate couldremainwithoutreactingintoaerosolcloudafterthe explo-sions.Thatwouldimplyanadditionalharmfuleffectforthepeople attendingthemascletàsgiven thehightoxicity of ClO4− ionon

humans[33]

Moreover,takingintoaccounttheelevatedchlorine concentra-tionfoundduringtheeventsandtheurbanpollutionbackground ofAlicante,organicchloridesperhapsshouldalsobeformedafter mascletàsincreasingstillfurthertheharmfuleffects.

In addition, it wasfound that the K/S mass ratio is almost inversely proportional to K/Cl mass ratio, (Pearson correlation, R2=0.96)indicatingacompetitionforpotassiumbetweenSand

Clasa functionofavailability oftheseelementsresultingfrom chemicalcompositionofdailyemployedpyrotechnicdevices.

Inthecoarsefractiontheconcentrationsobtainedforthese ele-mentswerefarlowerthanthosefoundinfinefraction(average fine/coarseratiosduringmascletàwere8.9;16.2;6.5forK,Cland S,respectively).Sconcentrationsofcoarsefractionwerehigher thaninthefinefraction,withanaverageCl/Smassratioof1.2as comparedto2.6forthefinefraction.Ithastobenotedthatin back-groundconditions,Clwasmainlyinthecoarsefractionandshowed atimepatternverysimilartothatofNa,pointingtoacommon ori-ginwhichissea-saltaerosolsource.Furthermore,theaverageK/S ratiowas,inthiscase,closeto2.8,indicatingalowerinfluenceof mascletàgeneratedClinthecoarsefraction.Inaddition,aweak correlation(R2<0.4)betweenK/SandK/Clmassratioswasfound

whichalsosuggestsdifferentsourcesfortheseelements.

In Fig.3b thetemporal evolution of other elements related withcrackersand fireworksactivity,namelyAl,Sr,and Ba,are presented.Aluminiumisusedasacommonconstituentforfuel, aloneortogetherwithmagnesium(whichindeediscorrelatedto Alformascletàepisodes:R20.80)asthealloymagnalium(50:50

MgAl)toproduce sparksandflash effects[34].Duringmascletà periodstheconcentrationsofAlreachedvaluesinthefinefraction ofabout35␮g/m3and45␮g/m3 inthecoarseone,twoorderof

magnitudehigherthanbackgroundvalues(<0.2␮g/m3inallcases).

Bariumand strontium salts are used ascolour agents, impart-ingaredorgreencolour,respectively,tofireworkdisplays.They

arealsoimportant forstabilisingfireworksandbarium nitrates orchloratesasoxidisertoo[4,10].SrandBa,elementswithstill lower backgroundconcentrations (<10ng/m3), reached

concen-trationpeaksduringmascletàsupto16and10␮g/m3inthefine

fraction,respectively,andabout1.5␮g/m3inthecoarsefraction.

TheconcentrationofSrandBafoundin thegenerated mascletà plumeisnotconstantforeachfestivaldaybecause,asalready men-tioned,thecompositionofthereleasedparticulatematterdepends onspecifictypeofpyrotechnicdeviceused.Forexample,duringthe 23rdJunemascletà,therewereasmallcontributiontofinefraction fromSrandnegligiblefromBa,whileinthenextdaySrandBa concentrationsincreasedupto16and8␮g/m3,respectively.

Similarpatterns,withpeakseverydayat2p.m.,areshownby Mg(maximumconcentrationsforthefineandthecoarsefraction, respectively,10and4␮g/m3),V(0.4and0.06␮g/m3),Mn(0.1and

0.07␮g/m3),Cu(7and0.3␮g/m3),Zn(0.7and0.1␮g/m3),Br(0.1

and0.01␮g/m3), Rb(0.08and0.02␮g/m3).Afewelementsare

presentonlyinsomemascletàevents:Cr(maximum concentra-tionsfor thefineandthecoarsefraction,respectively,0.16 and 0.05␮g/m3),As(0.17and0.01␮g/m3),Pb(5and0.2g/m3),and

Co(1.8and6␮g/m3).

Itisshouldbestressedthattheaveragemassconcentrationof allthereportedelements(exceptS,ClandK)inthefinefraction duringmascletàwasabout17␮g/m3 andreachedvaluesashigh

as34␮g/m3,tobecomparedtoavalueof0.03␮g/m3duringthe

backgroundperiod.InFig.3c,thetemporalevolutionofCa con-centrationsinbothfractions,fineandcoarse,isshown.Ahigher increaseinthecoarsefractionthaninthefineoneduringtheevents isevident.Thistemporalpatternisverysimilarformostofthe ele-mentsofcrustaloriginlikeFe,Si,Ti,etc.Thefine/coarseratios(see Table1)forSiwere0.8and0.9respectivelyformascletàand back-groundperiod,forCa0.2and0.3,forFe0.4andforTi0.4(Tiwas belowmdlinnormaldaysinthefinefraction),whileformostof theotherelementsincreasesofatleastafactor2(uptomorethan 10)inthemascletàrespecttothebackgroundperiod.Insharp con-trasttowhatseenfortheelementsreportedinFig.3aandb,the ratiobetweentheconcentrationofthese4crustalelementsduring themascletàandduringthebackgroundperiodwasnearly con-stant(forTithedifferenceisduetotwodayswhentherewassome contributionbyfireworks,seebelow).Finally,theenrichment fac-tors(EF),calculatedusingSiasreferenceelementandthecrustal compositiongivenbyMasonandMoore[35],arecloseto1,both duringthemascletàandthebackgroundperiod,exceptCawitha

(7)

Fig.4.Mass-sizedistributionforMascletàand“Normalsummerday”fortypicalgunpowderbulkelements(K,S),forapyrotechnicoriginelement(Cu)andforacrustal originelement(Ca).Thehistogramgivestherawsizedistribution,theinverteddistributionisindicatedbythesquaresymbols,andthesmoothdashedlinesrepresentthe lognormalfits.

higherEF,butitisknownthatAlicantesoilisCaenriched[36,37]. Forexample,EFwere:Al1.2,Ca21,Ti2.1,Fe2.8Sr13.2during normalperiod;duringmascletàweobtainAl28,Ca31,Ti5.9,Fe 2.4,Sr126.Soitisevidentthedifferencebetweenelementslike Fe,CaorTi(withtheproblemdiscussedabove)andotherelements producedalsobyfireworkslikeAlorSr.Therefore,the concentra-tionincreaseseemsnottobeduetothecombustionproductsbutto theresuspensionofcrustaloriginmaterialdepositedontheground

wheretheexplosionstakeplace.Aconfirmofthishypothesiscould comefromfurtherstudiesontheofU/Raratioinisolatedparticles byAMSasreportedbySteinhauserandMusilek[38].

Anestimateoftheresuspendedsoildustconcentrationduring mascletàscanbecalculatedconsideringthecrustalelementsas oxides[39].SincewehavediscussedabovethatAl,KandSrare producedbyfireworks(indeedtheyshowedhighenrichment fac-tors),onlythenaturalfractionofAl,KandSr(theirconcentration

(8)

J.Crespoetal./JournalofHazardousMaterials241–242 (2012) 82–91 89 dividedbytheirenrichmentfactor)wasincludedinthecrustal

mat-tercalculation.Thesumofthefineandcoarseresuspendedsoil dustconcentrationvariedfrom44␮g/m3to130␮g/m3,whilethe

backgroundconcentrationisnormallylessthan10␮g/m3.

3.2. Elementalmass-sizedistribution

Inordertomeasuretheaerosolelementalmass-size distribu-tionsduringmascletàandtocomparethemwiththoseona“normal summerday”(NSD),12-stagesDekaticascadeimpactorwasused. ThefollowingPIXEanalysisprovidedrawconcentration-sizedata (massperstageandperm3)fortheelementsMg,AI,Si,S,Cl,K,Ca,

Ti,V,Cr,Mn,Fe,Co,Cu,Zn,As,Br,Sr,BaandPb.Fromtheobtained resultsweobservesignificantchangesbothinconcentrationsas wellasinmodaldistributionsofinvestigatedelements.

Toobtainmorequantitativeresults, therawsizedistribution datawereconvertedintosmoothsizedistributionsbymeansof theinversioncodeMICRON[40]torevealthemodalstructureof theaerosolmoreaccuratelythanwouldbethecaseifusingthe discretedistributionsonly.Lognormalcurveswerethenfittedto theinvertedsmoothdistributions,sothattheelementalmass con-centration,geometricmeanaerodynamicdiameter(GMAD)and geometricstandarddeviation(GSD)ofthedifferentcontributing modeswereobtained.FortheMascletàsamples,theseparameters forthefireworkrelatedelementsarereportedinTable2.

Fig.4showstherawdata,theMICRONinversionsandthe log-normalfitsforK,S,CuandCabothinthemascletàandintheNSD samples.ItcanbeclearlyseenfromFig.4thatmodemass concen-trationsincreasedingeneralthroughoutmascletàs,dependingon elementandmode.ForK,S,andCudifferenttypesofdistribution profiles,onmascletàsandonNSD,werealsoobtained.

Onmascletàthedistributionfortypicalgunpowderbulk ele-ments, K, S (Fig. 4), is trimodal, with a coarse mode (with GMAD2.4–3␮m,GSD1.3–1.5␮mandRMC<10%),andtwo sep-aratesubmicrometer-sizedsubmodes,onewithGMAD0.19␮m, GSD∼1.5␮m and RMC∼40% and the intermediate one with GMAD∼0.65␮m, GSD∼1.6␮m and RMC∼50%. Therefore, all theseelementspresentedhigherconcentrationsinthe submicrom-etersizebins.Correlationcoefficientsbetweendifferentpairsof these elementsfor each diameter bin have been calculated to quantifythe correspondencesamong theirelemental mass-size distributions.ThedeterminationcoefficientsR2betweenKandCl

andbetweenKandSduringmascletàswere0.98and0.99, respec-tively.Agoodcorrelationwasobservedforallthesizebins,with moreClassociatedtoKinthesubmicrometerfractionandmoreS relatedtoKinthecoarseone.

ForNSD,completelydifferentmass-sizedistributionpatternfor Kwasfound.Itshowedrelativehighconcentrationsinthecoarse modebutwithfarlowerintensitywithrespecttomascletàevent. Sulphurpresented adifferentbehaviour,ascanbealsoseen in Fig.4.ThedistributionprofilesbothonNSDandduringmascletàs weretrimodal,withanequivalentGMADinallcases.Asimilar con-centrationincreaseofabouttwoordersofmagnitudeisproduced approximatelyinallsizesbins.

Mostoftheotherfireworkrelatedelements(Mg,Cr,Cu(Fig.4), Zn,AsSr,Pb,Rb,Ba),arecharacterisedbyatrimodalsize distri-bution,withtheaccumulationmode(GMAD∼0.2–0.3␮m)asthe dominantonewithRMCbetween50%and100%.Forsomeofthose elements(Mg,Cu(Fig.4),Zn,Pb,andBa)alsotheintermediatemode (GMAD∼0.6–0.8␮m)isimportant(RMC30–50%).Infact,Ba,Sr,Cu andPb,specificindicatorsofpyrotechnicevents,raisedtheir accu-mulationmodeconcentrationsfrom<10ng/m3upto1␮g/m3(Pb,

Cu)and10␮g/m3(Ba,Sr).Ithastobenotedthesharpdifferenceof

thepatternofNSDSr,whoselowconcentrationlevelsarelimited exclusivelytothecoarsemode. Otherelementsshowedsimilar behaviourbutwitharelativelowerconcentrationingeneraland

particularlyinthecoarsemode.AnthropogeniccompoundslikeV, Zn,Ni,Asarefoundinthisgroupwithlevelsabovethatofnormal anthropogenicsourcesapproximatelyintwoordersofmagnitude. Mgshowsasimilarpattern,butwitharelativelower concentra-tioningeneralandparticularlyinthecoarsemode.Anexceptionis constitutedbyCo,whosemassisconcentratedintwomodeswith GSD∼1and3.2␮m.

InFig.4themassdistributionforatypicalcrustalelement,Ca, is shown.During mascletàscrustalelements(Ca, Mg, Si,Mn, Ti andFe)showtwomainmodes:withGMADof2–3␮m(containing morethan90%oftheelementalmass)andwithGMADofabout 0.14–0.3␮m (containing the remaining elemental mass, lower than10%).TypicalGSDsofthemodeswere∼2and1.3–1.8␮m, respectively.Theirsizedistributionpatternsremainquitesimilar onNSD,butwitharemarkableconcentrationdecrease.Thisfact, togetherwiththestrongcorrelationbetweenthetypicalcrustal elementsdistributions(i.e.,Si,Ca,Ti,andFeresultedincorrelation coefficientsabove0.9)andtheenrichmentfactors[35]forallthe sizebinscloseto1(similartothevalues derivedforthewhole coarsesizefractionin thestreakersamples) hint toa common mainsourcefortheseelements.Theincreaseintheconcentrationis probablyduetoresuspensionofsoilmaterial,consequenceof mas-sivegroundexplosionsthroughoutthepyrotechnicevent,already notedfromthestreakerdata.

SomedifferencesforsomecrustalelementslikeAl,Mgwere observed.Wehaveseenintheprevioussectionthattheyalso orig-inatedfromfireworks;togetherwithacoarsemodesimilartothe onepresentin NSD,a strongaccumulationmode(maximumat about0.3␮m)waspresent,duetothepyrotechnicevent.

4. Conclusions

Thispapershowsanexperimentalproceduretostudythetime evolutionandsizedistributionofaerosolelementsemittedintothe atmospherebyhigh-intensitypyrotechnicevents.Theprocedure wascarriedoutduringtheMascletàs,dailyeventstypicaloffestivals ineasternSpain.Thecouplingof1-hresolutionsamplingfollowed byPIXEanalysisofmascletàcollectedaerosolshaveproventobe apowerfulmethodologytomonitorthetemporaltrendofaerosol elementalconcentration,bothinthefineandthecoarsefraction. Mascletàscombustiongeneratesheavyaerosolcloudswhich con-tainacomplexmixtureofdifferentmetalsandothercomponents. Extremelyhighconcentrationsinthefinefractionwithvaluesof about384␮g/m3forKand216␮g/m3forClwerereachedduring

mascletàs.Increase factors ofmore than 1500relating to back-groundlevelswerefoundforthesefireworkspecificelements.

OtherelementsrelatedtopyrotechnicdisplayslikeAl,Mg,Cu, Co,Zn, andPbalsopresenteda largerise,withincreasefactors above100,mainlyinthefinefractionincomparisontotheirnormal values.IntheparticularcaseofSrandBa,factorsupto∼1000were observed.Theconcentrationsfoundingeneratedmascletàplumes werenotconstantduetovariabilityofgunpowdercompositionand pyrotechnicdevicesusedtoattainspecificfireworkeffects.

Afewelementswerepresentonlyinsomemascletàevents:Cr, As,PbandCo.Itistobenotedthatthesemetalsaredangerous elementsbecauseoftheirtoxicity,especiallyAsandPb [41,42], andtheiruseinpyrotechnicdevicesareforbiddenbylawinthe EuropeanUnion.Nevertheless,asstatedinthebibliography[3], pyrotechnicmaterialscanbeimportedfromcountrieswithmore permissivelegislationresultinginsporadicatmospherictoxic dis-chargeasweobservedinourstudy.Inourcase,insomemascletàs, AsandPbreachedconcentrationsofupto0.17and5␮g/m3

respec-tively,twoandthreeordersofmagnitudeabovebackgroundlevels. Suchvery highconcentrations inashorttime ina placewhere thousandsofpeoplearegatheredmaybeofconcern,particularly

(9)

forpeoplewhosufferfromchronicrespiratoryhealthproblems, cardiovasculardisease,etc.

Ambientconcentrationincreasewasalsoobservedformostof theelementsof crustal origin,likeCa, Fe,Si, Ti.This isdue to theresuspension,producedbypyrotechnicdeviceexplosions,of materialalreadydepositedontheground.Suchanimportant con-tributionoftheresuspendedsoildust(∼10timesabovebackground levels)hastobetakenintoaccountasasourceofparticulatematter inthesetypesofevents.

We also compared the aerosol elemental size distribution relatedtomascletàeventswiththecorrespondingelementalsize distributionofa normal summerday(NSD).While asexpected thecrustalcomponentsaremainlyinthecoarsemodewithtwo mainmodes,allthefireworkrelatedelements(exceptCo)aremore concentratedinthesubmicrometricregion(>80%elementalmass) withatrimodalsizedistributionformascletàevents.This infor-mationmaybeusefultoepidemiologistsgiventheharmfuleffects ofmetallicparticlesonhumanhealth[43–46].Withregardstoa NSD,fireworkassociatedelementsweregenerallyevidentin rel-ativehighconcentrationsinthecoarsemodebutwithfarlower intensity.Thesizedistributionpatternsremainedquitesimilarfor crustalelementsbutwitharemarkableconcentrationdecreasethat confirmsmascletàresuspensionprocesses.

Apreliminaryapproach toquantifytheelementalmassdose receivedbyindividualsduetosmokeplumeduringmascletàswas attempted.ThecalculationwasmadeforPb.Thiselementwas cho-senasitisoneofthemetalswhichappearingreatestconcentration duringmascletàs(despiteitsprohibitioninpyrotechnicuse). More-over,giventhatitisoneofthemetalswhoseharmfuleffectshave beenmoststudiedduringrecentdecades[43,44],theresultofthe calculationcanbecomparedwithbibliographicdata.

Dosecanbecalculatedas:DPb=CPbmas×IR×ED×DF

where CPbmas=mascletà fine fraction Pb concentration (␮gPbairm−3); IR=human inhalation rate (airm3min−1);

ED=exposure duration (minmascletà−1); DF=deposition factor (asafractionofPbmassinhaled)[47].

Since the mascletà episode lasted approximately 8min, we assumed that CPbmas, at least (as a minimum), was equal to finefractionPb1-hconcentration,i.e.∼1.3␮gPbairm−3(Table1). Althoughnaturalbreathingpatternshavevariableinhalationrates, weusedtheaveragebreathingpatterninadultsatrest,typically 8.5×10−3airm3min−1[47].Moreover,therewereseveralfactors,

likethelengthoftimepeoplespentatthemascletàsiteorthe dis-tancetolaunchingsite,thatcausedvariationinEDofspectators. Itcouldbeestimatedminimum8minmascletà−1.Inaddition,as statedbyKinandHu[47],inhealthyadultsDFvariedfrom0.12 to0.25andfrom0.26to0.68foraerosolparticleswith1␮mand 3␮mindiameter,respectively,dependingonthebreathing pat-ternapplied.Weusedthelowest1␮mDFvalue(0.12)toobtain a minimumPb dose, DPb∼= 10ngPbindividual−1mascletá−1.It is

importanttostressthat thisresultis onlyanestimation ofthe actualdoseintermsofmassofPbintheaerosolfinefraction(1␮m) depositedintheairwayperpersonandmascletà.Calculationscan beappliedtoothermetallicelementsanalysedin the pyrotech-nicaerosol.Additionalharmfuleffectswouldbeexpectedifoverall metallicelementaldoseisconsidered.Thenumberofpeoplethat aretypicallyexposedtothesehighmetallicPMconcentrationlevels duringthemascletàscanbeestimatedbytakingintoaccountthe characteristicsofthesquarefromwherethefireworksarelaunched andthepositionofthepeoplearoundit.Thedirectionofthebreeze waslargelyfromtheSEsector(120–140◦).Undertheseconditions, thepyrotechnicplumeimpactsononlyathirdofthetotalsurfaceof thesquare(∼0.3×10−2km2).Ifweassumethatthereare3

spec-tatorspersquaremetre,anaverageof9000spectatorswouldbe

directlyaffectedbytheimpactoftheaerosolplumeduringeach mascletà.Thiswouldrepresent2–3%oftheentireAlicante popula-tion,althoughitshouldbenotedthattensofthousandsoftourists visitthecityduringLasHoguerasdeSanJuan.

Acknowledgements

WethanktheAirQualitySurveillanceNetworkoftheValencian CommunityRegionalGovernmentforsupplyingdata,andP. Nord-stromandG.Escribanofortheirassistanceinthiswork.Weare deeplyindebtedtoDr.WillyMaenhautforhiskindcollaboration fortheuseofthecodeMICRON.

This study was partially funded by the Spanish Ministry ofEnvironment undertheresearchprogramConsolider-Ingenio 2010: GRACCIE Project, CSD2007-00067, by the Spanish Min-istryof ScienceandInnovation,I+D+iProgram: PASSEProject, CGL2009-08036,bytheItalian MinistryofEducation,University andResearch,underthePRIN2008grant,andbyINFNunderthe NUMENproject.

References

[1] F.Drewnick,S.S.Hings,J.Curtius,G.Eerdekens,J.Williams,Measurementof fineparticulateandgas-phasespeciesduringtheNewYear’sfireworks2005 inMainz,Germany,Atmos.Environ.40(2006)4316–4327.

[2]D.Y.Liu, D. Rutherford, M.Kinsey,K.A.Prather, Real-timemonitoringof pyrotechnicallyderivedaerosolparticlesinthetroposphere,Anal.Chem.69 (1997)1808–1814.

[3]T.Moreno,X.Querol,A.Alastuey,M.C.Minguillon,J.Pey,S.Rodriguez,J.V. Miro,C.Felis,W.Gibbons,Recreationalatmosphericpollutionepisodes: inhal-ablemetalliferousparticlesfromfireworkdisplays,Atmos.Environ.41(2007) 913–922.

[4]R.Vecchi,V.Bernardoni,D.Cricchio,A.D’Alessandro,P.Fermo,F.Lucarelli,S. Nava,A.Piazzalunga,G.Valli,Theimpactoffireworksonairborneparticles, Atmos.Environ.42(2008)1121–1132.

[5] Y.Wang,G.Zhuang,C.Xu,Z.An,Theairpollutioncausedbytheburning offireworksduringthelanternfestivalinBeijing,Atmos.Environ.41(2007) 417–431.

[6] U.C.Kulshrestha,T.N.Rao,S.Azhaguvel,M.J.Kulshrestha,Emissionsand accu-mulationofmetalsintheatmosphereduetocrackersandsparklesduring DiwalifestivalinIndia,Atmos.Environ.38(2004)4421–4425.

[7]S.C.Barman,R.Singh,M.P.S.Negi,S.K.Bhargava,AmbientairqualityofLucknow city(India)duringuseoffireworksonDiwalifestival,Environ.Monit.Assess. 137(2008)495–504.

[8]K.Ravindra,S.Mor,C.P.Kaushik,Short-termvariationinairqualityassociated withfireworkevents:acasestudy,J.Environ.Monit.5(2003)260–264. [9] X.Wang,X.Bi,G.Sheng,J.Fu,HospitalindoorPM10/PM2.5andassociatedtrace

elementsinHuangzhou,China,Sci.TotalEnviron.366(2006)124–135. [10]T.Moreno,X.Querol,A.Alastuey,F.Amato,J.Pey,M.Pandolfi,N.Kuenzli,L.

Bouso,M.Rivera,W.Gibbons,Effectoffireworkseventsonurbanbackground tracemetalaerosolconcentrations:isthecocktailworththeshow?J.Hazard. Mater.183(2010)945–949.

[11]D.D.Dutcher,K.D.Perry,T.A.Cahill,S.A.Copeland,Effectsofindoorpyrotechnic displaysontheairqualityinthehoustonastrodome,J.AirWasteManage.Assoc. 49(1999)156–160.

[12]K.Hirai,Y.Yamazaki,K.Okada,S.Furuta,K.Kubo,Acuteeosinophilic pneumo-niaassociatedwithsmokefromfireworks,InternalMed.39(2000)401–403. [13]R.MerrillSmith,V.D.Dinh,Changesinforcedexpiratoryflowduetoair

pollu-tionfromfireworks.Preliminaryreport,Environ.Res.9(1975)321–331. [14]W.Bach,L.Dickinson,B.Weiner,G.Costello,Someadversehealtheffectsdue

toairpollutionfromfireworks,HawaiiMed.J.31(1972)459–465.

[15]K.J.Godri,D.C.Green,G.W.Fuller,M.Dall’Osto,D.C.Beddows,F.J.Kelly,R.M. Harrison,I.S.Mudway,Particulateoxidativeburdenassociatedwithfirework activity,Environ.Sci.Technol.44(21)(2010)8295–8301.

[16]J.M.Becker,S.Iskandrian,J.Conkling,Fatalandnearfatalasthmainchildren exposedtofireworks,Ann.Allergy.Asthma.Immunol.85(2000)512–513. [17]R.Camilleri,A.J.Vella,EffectoffireworksonambientairqualityinMalta,Atmos.

Environ.44(2010)4521–4527.

[18]S.Sarkar,P.S.Khillare,D.S.Jyethi,A.Hasan,M.Parween,Chemicalspeciation ofrespirablesuspendedparticulatematterduringamajorfireworkfestivalin India,J.Hazard.Mater.184(2010)321–330.

[19]A.Joly,A.Smargiassi,T.Kosatsky,M.Fournier,E.Dabek-Zlotorzynska,V.Celo, D.Mathieu,R.Servranckx,R.D’amours,A.Malo,J.Brook,Characterization ofparticulateexposureduringfireworksdisplays,Atmos.Environ.44(2010) 4325–4329.

[20] G.Croteau,R.Dills,M.Beaudreau,M.Davis,Emissionfactorsandexposures fromground-levelpyrotechnics,Atmos.Environ.44(2010)3295–3303. [21]P.I.X.E.InternationalCorporationWebsite:http://pixeintl.com/Streaker.asp

(10)

J.Crespoetal./JournalofHazardousMaterials241–242 (2012) 82–91 91 [22]A.D’Alessandro,F.Lucarelli,P.A.Mandò,G.Marcazzan,S.Nava,P.Prati,G.Valli,

R.Vecchi,A.Zucchiatti,Hourlyelementalcompositionandsources identifica-tionofthefineandcoarsePM10particulatematterinfourItaliantowns,J. AerosolSci.34(2003)243–259.

[23]M.Chiari,P.DelCarmine,I.GarciaOrellana,F.Lucarelli,S.Nava,L.Paperetti, Hourlyelementalcompositionandsourceidentificationoffineandcoarse PM10inanItalianurbanareastressedbymanyindustrialactivities,Nucl. Instrum.MethodsPhys.Res.Sect.B249(2006)584–587.

[24]G.Calzolai,M.Chiari,I.García-Orellana,F.Lucarelli,A.Migliori,S.Nava,F. Tac-cetti,ThenewexternalbeamfacilityforenvironmentalstudiesattheTandetron acceleratorofLABEC,Nucl.Instrum.MethodsPhys.Res.Sect.B249(2006) 928–931.

[25]G.Calzolai,M.Chiari,F.Lucarelli,S.Nava,S.Portarena,Protoninduced␥-ray emissionyieldsfortheanalysisoflightelementsinaerosolsamplesinan externalbeamset-up,Nucl.Instrum.MethodsPhys.Res.Sect.B268(2010) 1540–1545.

[26]J.L.Campbell,N.I.Boyd,N.Grassi,P.Bonnick,J.A.Maxwell,TheGuelphPIXE softwarepackageIV,Nucl.Instrum.MethodsPhys.Res.Sect.B268(2010) 3356–3363.

[27] Micromatter(AAPS),http://www.micromatter.com/xrf.php

[28] V.Bernardoni,E.Cuccia,G.Calzolai,M.Chiari,F.Lucarelli,D.Massabò,S.Nava, P.Prati,G.Valli,R.Vecchi,ED-XRFset-upforsize-segregatedaerosolsamples analysis,X-RaySpectrom.40(2011)79–87.

[29]I.Salma,R.Ocskay,N.Raes,W.Maenhaut,Finestructureofmasssize distribu-tionsinanurbanenvironment,Atmos.Environ.39(2005)5363–5374. [30]W.Maenhaut,R.Hillamo,T.Makela,J.L.Jaffrezo,M.H.Bergin,C.I.Davidson,

AnewcascadeimpactorforaerosolsamplingwithsubsequentPIXEanalysis, Nucl.Instrum.MethodsPhys.Res.Sect.B109/110(1996)482–487. [31]G. Steinhauser, T. Klapötke,“Green” pyrotechnics:a chemists’ challenge,

Angew.Chem.Int.Ed.47(2008)3330–3347.

[32]M.S.Russell,TheChemistryofFireworks,TheRoyalSocietyofChemistry, Cambridge,2000.

[33]R.Wilkin,D.Fine,N.Burnett,Perchloratebehaviorinamunicipallakefollowing fireworksdisplays,Environ.Sci.Technol.41(2007)3966–3971.

[34]R.Lancaster,R.Butler,J.Lancaster,T.Shimizu,T.Smith,Fireworks:Principles andPractice,ChemicalPublishingCompany,NewYork,1998.

[35]B.Mason,C.B.Moore,PrinciplesofGeochemistry,fourthed.,JohnWiley,New York,1982.

[36]N.Galindo,E.Yubero,J.Nicolás,J.Crespo,C.Pastor,A.Carratalá,M. Santa-catalina,Water-solubleionsmeasuredinfineparticulatematternexttocement works,Atmos.Environ.45(2011)2043–2049.

[37]J.Nicolás,M.Chiari,J.Crespo,N.Galindo,F.Lucarelli,S.Nava,E.Yubero, Assess-mentofpotentialsourceregionsofPM2.5componentsatasouthwestern Mediterraneansite,Tellus63B(2011)96–106.

[38]G.Steinhauser,A.Musilek,Dopyrotechnicscontainradium?Environ.Res.Lett. 4(2009)034006.

[39]F.Lucarelli,S.Nava,G.Calzolai,M.Chiari,R.Udisti,F.Marino,IsPIXEstillauseful techniquefortheanalysisofatmosphericaerosols?TheLABECexperience, X-RaySpectrom.40(2011)162–167.

[40] J.K.Wolfenbarger,J.H.Seinfeld,Inversionofaerosolsizedistributiondata,J. AerosolSci.21(1990)227–247.

[41] C.Abernathy,Y.Liu,D.Longfellow,H.Aposhian,B.Beck,B.Fowler,R.Goyer,R. Menzer,T.Rossman,C.Thompson,M.Waalkes,Arsenic:healtheffects, mech-anismsofactions,andresearchissues,Environ.HealthPerspect.107(1999) 593–597.

[42] D.Juberg,C.Kleiman,S.Kwon,PositionpaperoftheAmericanCouncilon Sci-enceandHealth:LeadandHumanHealth,Ecotoxicol.Environ.Saf.38(1997) 162–180.

[43]M.Kampa,E.Castanas,Humanhealtheffectsofairpollution,Environ.Pollut. 151(2008)362–367.

[44]L. Järup,Hazardsofheavy metalcontamination,Br.Med.Bull.68(2003) 167–182.

[45]F.Schaumann,P.J.A.Borm,A.Herbrich,J.Knoch,M.Pitz,R.P.F.Schins,B.Luettig, J.M.Hohlfeld,J.Heinrich,N.Krug,Metal-richambientparticles(PM2.5)cause airwayinflammationinhealthysubjects,Am.J.Respir.Crit.CareMed.170 (2004)898–903.

[46]A. Rohr, R. Wyzga, Attributing health effects to individual particu-latematterconstituents,Atmos.Environ.(2012),http://dx.doi.org/10.1016/ j.atmosenv.2012.07.036.

[47]C.Kim,S.Hu,Totalrespiratorytractdepositionoffinemicrometer-sized par-ticlesinhealthyadults:empiricalequationsforsexandbreathingpattern,J. Appl.Physiol.101(2006)401–412.

Riferimenti

Documenti correlati

Table VIII: Intuitive thinking, reasoning and the effect on narrow framing This table shows marginal values of probit estimates of the effect of accessibility to pre-existing risks

- limited communication of water between lagoons and the sea - unsustainable use of lagoons, resources (Illegal fishing and hunting) - low environmental awareness or coastal

In all PM fractions, two main clusters can be notice and could be divided in two groups of elements: (a) originating from resuspension of crustal materials and deposited

One of the main advantages of the study of the IGM with quasar absorption spectra is the large portion of space and time that can be directly probed: with Voigt profile fitting of

One observes initially that, since G = PGL(6, 2) acts transitively on the lines of PG(5, 2), every such spread is equivalent to one with spine µ and, since PGL(4, 2) is transitive

Moreover, the Monge–Amp`ere equations, written under the form of first order systems of PDE’s, can be reduced to linear form by means of invertible point transformations suggested

While the pilot is performing the manoeuvres at the specific conditions, that has been requested in advance by the engineer, the FTE fill in a certain flight test form

A BSTRACT : In terms of efficiency, managing the effects of overpublising (the sheer volume of new papers published each week) has become seriously challenging for science