• Non ci sono risultati.

Chemical modification of TiO 2 nanotube arrays for label-free optical biosensing applications

N/A
N/A
Protected

Academic year: 2021

Condividi "Chemical modification of TiO 2 nanotube arrays for label-free optical biosensing applications"

Copied!
6
0
0

Testo completo

(1)

Monica

Terracciano

a

,

Vardan

Galstyan

b,c

,

Ilaria

Rea

a

,

Maurizio

Casalino

a

,

Luca

De

Stefano

a,∗

,

Giorgio

Sbervegleri

b

aInstituteforMicroelectronicsandMicrosystems,NationalResearchCouncil,ViaP.Castellino111,80131,Naples,Italy bSensorLab,CNR-INOandDepartmentofInformationEngineering,UniversityofBrescia,ViaValotti9,25133Brescia,Italy cDepartmentofMolecularandTranslationalMedicine,UniversityofBrescia,VialeEuropa11,25123Brescia,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21March2017

Receivedinrevisedform27April2017 Accepted3May2017

Availableonline4May2017 Keywords:

TiO2nanotubessurfacefunctionalization ProteinA

Interferometry Photoluminescence Bio-sensing

a

b

s

t

r

a

c

t

Inthisstudy,wehavefabricatedTiO2nanotubearraysbythepotentiostaticanodicoxidationofTifoilsin

fluoride-containingelectrolyteandexploredthemasversatiledevicesforbiosensingapplications.TiO2

nanotubeshavebeenchemicallymodifiedinordertobindProteinAasaspecifictargetanalyteforthe opticalbiosensing.Theobtainedstructureshavebeencharacterizedbyscanningelectronmicroscopy, Fouriertransforminfraredspectroscopy,watercontactangle,fluorescencemicroscopy,spectroscopic reflectometryandphotoluminescence.InvestigationsshowthatthepreparedTiO2nanotubes,2.5␮m

longand75nmthick,canbeeasilyandefficientlybio-modified,andtheobtainedstructuresarestrongly photoluminescent,thussuitableforthelabel-freebiosensingapplicationsintherangeof␮M,duetotheir peculiaropticalproperties.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

A growing demand of fast, efficient, low-cost and portable devices for real-time detection of specific analyte has meant biosensingoneofthemostrapidlyexpandingresearchfield[1]. Theterm“biosensor”referstoanintegratedreceptor-transducer deviceableofprovidingselectiveanalyticalinformationbyusing biologicalrecognitionelement(i.e.,bioprobe).Thetransducer con-vertsthechangescausedbythereactionbetweenthebioprobeand thetargetintoananalyticalsignal,dependingonthetechnology used[2].Overthelasttwodecades,severaltypesof electrochemi-cal,opticalorelectricalbiosensorshavebeendeveloped,resulting validlabel-freeanalyticaltoolsforclinicaldiagnostics,biomedicine, environmentalmonitoring,veterinaryandfoodqualitycontroland otherareasinwhichfastandreliableanalysisareneeded[3]. Tita-niumdioxide(TiO2)isawidelystudiednon-toxicsemiconductor

andhasbeeninvestigatedaspotentialtransducermaterialfor sens-ingapplicationduetoitsuniquephysicochemicalproperties[4–7]. IthasbeenobservedthatthepropertiesofTiO2canbeenhanced

by thenanoscale architectural features [8]: Lu and co-workers

∗ Correspondingauthor.

E-mailaddresses:luca.destefano@cnr.it,luca.destefano@na.imm.cnr.it (L.DeStefano).

demonstratedthattheanataseTiO2nanosheetsshowhigher

pho-tocatalyticactivityforthedegradationoforganicmoleculesthan anataseTiO2 crystals[9].Theseresultsencouragedthematerial

scienceresearchtofocusmainlyonnanostructuredTiO2.Recently

itwasdemonstratedthattheTiO2nanotubearraysdirectlygrown

onmetallictitaniumfoilbymeansofelectrochemicalanodization arevery attractivefunctionalmaterialsinthedesignof biosen-sors for biomedical applicationsowing theirhigh surface area, largerefractive index(n=2.5),highorientation and uniformity, aswellasthegoodbiocompatibility,great aqueousand chemi-calstability[10,11].Herein,wefabricatedTiO2 nanotubes(NTs)

bymeansofelectrochemicalanodizationandinvestigatedthe pre-paredsamplesastheplatformforlabel-freeopticalmonitoringof biomolecules.TheuseofTiO2 NTinbiosensordevelopmentasa

transducersurface,requiredthecreationofcouplingpointsforthe immobilizationofbiomolecules(theso-calledbioconjugation pro-cess),preservingthespecificfunctionalitiesofbiologicalreceptors throughagoodcontroloftheirorientationandorganizationonthe inorganicsurface[12].Tothisaim,thesurfaceofnanostructured titaniawaschemicallymodified inorder tocovalently bindthe proteinAbyusingthewell-knownsilaneandsilanolchemistries

[13,14].ProteinAimmobilizationwasmonitoredby theoptical methodsbasedonthespectroscopicreflectometryandthe steady-statephotoluminescence.OurresultsshowthattheTiO2NTscanbe

http://dx.doi.org/10.1016/j.apsusc.2017.05.029 0169-4332/©2017ElsevierB.V.Allrightsreserved.

(2)

236 M.Terraccianoetal./AppliedSurfaceScience419(2017)235–240

Fig.1.SEMimagesoftheobtainedTiO2NTs:(A)and(B)surfacemorphologiesofthenanotubearrayswiththedifferentresolutions,(C)and(D)cross-sectionalviewofthe nanotubeswiththedifferentresolutions.

Fig.2. SchematicrepresentationoftheTiO2NTsfunctionalizationwithProteinA.

appliedasversatileplatformforsensingofbiochemicalmolecules basedontwodifferentopticalmethods.

2. Experimental

2.1. FabricationandfunctionalizationofTiO2nanotubes

TiO2NTswerefabricatedbymeansofelectrochemical

anodiza-tionperformedintheelectrochemicalcellwiththetwo-electrode system.Ptfoilwasusedasacounterelectrode.Themetallicfoils wereanodizedinNH4FandH2Ocontainingglycerol.The

anodiza-tionwascarriedoutbypotentiostaticmodeatroomtemperature. Afteranodizationthepreparedsampleswerewashedindistilled wateranddriedatroomtemperature.Then,as-preparedNTswere crystallizedintheanatasestructureusingthethermaltreatment regimensreportedinourpreviousstudy[15,16].Thesurfaceof TiO2NTswasfirstactivatedbyPiranhasolution(H2O2:H2SO41:4)

for30min,inordertocreateOHgroups.Then,thesampleswere extensivelywashedinmilli-Qwatertoremoveanyadsorbedacid onthesurface.Thestructuresweresilanizedbyimmersionin5% 3-aminopropyltriethoxysilane(APT)solutioninanhydroustoluene for30minatroomtemperature[13].Thepreparedsampleswere

rinsedintoluene threetimesfor2mintoremovesilaneexcess. Afterwards,thesilanewascuredontheheaterat100◦Cfor10min. Fluoresceinisothiocyanate(FITC)wasusedtoattachafluorescent labeltoProteinA(PrA,MW42kDa).ThelabelledProteinA(PrA*) andthenotlabelledproteinA(PrA)wereimmobilizedonthe sur-faceofTiO2NTarraysusingbis(sulfosuccinimidyl)suberate(BS3)

crosslinker[13].Theschemeofsamples’functionalizationprocess isreportedinFig.2.Theobtainedsampleswereincubatedwith 150␮lof1.6mMBS3inPBSsolution(0.1M;pH=7.4)at4Cfor4h.

N-hydroxysulfosuccinimide(NHS)esterreacts(throughSN2)with primaryaminesofsilanizedsurfaceformingstableaminebonds andreleasingaNHSgroup.Then,thefunctionalizedsampleswere incubatedovernight(ON)at4◦Cwith150␮lof2mg/mlPrAinPBS (0.1M;pH=7.4)buffer.NHSesterreactedwithprimaryaminesin thesidechainoflysineresiduesofPrAformingstableaminebonds andreleasinganotherNHSgroup.Thechemicalsandthesolvents usedfortheexperimentswerepurchasedfromSigma-Aldrich.

2.2. Analysesofthesamples

The morphologiesof the obtainedNTs wereanalyzed using LEO 1525 scanning electron microscope (SEM) equipped with

(3)

Fig.3. FTIRspectraofTiO2NTsaftereachstepoffunctionalization:aindicatesTi–O–Tibond,bCHxstretchingvibration,cthebendingmodeofthefreeNH2andtheC N stretching,eC Ostretchingvibration,dtherockingCHxvibration,respectively.

Fig.4.WatercontactanglemeasurementsperformedonTiO2NTsbeforeandaftereachstepoffunctionalization.

fieldemissiongun.ThechemicalcompositionofTiO2NTsbefore

andaftersurfacemodificationwasinvestigatedbyFourier trans-forminfraredspectroscopy(FTIR)spectra.TheFouriertransform infrared spectra of all samples were obtained using a Nicolet Continu␮mXL(ThermoScientific)microscopeinthe wavenum-berregionof4000–650cm−1witharesolutionof2cm−1.Sessile

droptechniquewasusedforthewatercontactangle(WCA) mea-surementsontheFirstTenAngstromsFTA1000CClasscoupled withdropshape analysissoftware.TheWCAvaluesreportedin thisworkaretheaverageofatleastthreemeasurements.

ALeicaZ16APOfluorescencemicroscopeequippedwithaLeica cameraDFC320wasusedtoevaluatethebioconjugationofTiO2

(4)

238 M.Terraccianoetal./AppliedSurfaceScience419(2017)235–240

Fig.5.Fluorescencecharacterizationofthenegativecontrol(A)andTiO2NTs-APT-BS3(B)aftertheincubationwiththesolutionscontainingProteinA*.Scalebar,100␮m.

Fig.6.Reflectivityspectra(A)andcorrespondingFouriertransforms(B)ofTiO2NTsbefore(blueline),afterAPT+BS3(redline)andafterPrA(blackline).(Forinterpretation ofthereferencestocolourinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

NTswithPrA*.ThefilterusedfortheacquisitionwasI3consisting ofa450–490nmband-passexcitationfilter,a510nmdichromatic mirroranda515nmsuppressionfilter.ReflectivityspectraofTiO2

NTswereacquiredbeforeandafterthefunctionalizationsbya sim-pleexperimentalsetup:awhitelightwassentonPSithroughaY opticalfiber(Avantes).Thesamefiberwasusedtoguidetheoutput signaltoanopticalspectrumanalyser(AndoAQ6315A).The spec-trawereacquiredatnormalincidenceovertherangefrom800to 1600nmwitha resolutionof5nm.Reflectivityspectrareported intheworkaretheaverageofthreemeasurements.Steady-state photoluminescence (PL) spectrabeforeand after TiO2 NTs

sur-facefunctionalizationwereexcitedbyacontinuouswaveHe–Cd laserat325nm(KIMMONLaserSystem).PLwascollectedat nor-malincidencetothesurfaceofsamplesthroughafiber,dispersed inaspectrometer(PrincetonInstruments,SpectraPro300i),and detectedusingaPeltiercooledchargecoupleddevice(CCD)camera (PIXIS100F).Alongpassfilterwithanominalcut-onwavelengthof 350nmwasusedtoremovethelaserlineatmonochromatorinlet.

3. Resultsanddiscussion

Fig.1showstheSEMimagesofthepreparedTiO2NTs.The

sur-face(Fig.1(A)and(B))andthecross-sectional(Fig.1(C)and(D)) morphologicalanalysesofthesamplesshowthatwereobtained well-alignedandhighlyorderedTiO2 NTswiththeinner

diam-eter of 75nm and the length of 2.5␮m. In order to fabricate

biosensorsbasedonpreparedTiO2 NTs,thematerialwasfirstly

hydroxylatedbyPiranhasolution(Fig.2,I)Thus, increasingthe reactivity of TiO2 surface by the introduction of OH groups

andmakingit abletograftalkylsilanemoleculesof APT(Fig.2, II)[13].Alkylsilanestrategy generatedself-assembled monolay-erswithwell-definedpacking.TheformationofcovalentTi–O–Si bondsbetweenhydroxylgroupinducedonTiO2 NTssurfaceand

hydrolyzedorganosilanemolecules,improvesthesurfacestability andintroducescouplingpoints(–NH2groups)forthe

immobiliza-tionofamino-terminatedbioprobes[17].ProteinA(PrA),derived fromStaphylococcusaureusbacteria,isapartofasmallcollection ofproteinsknowntospecificallybindtotheconstantdomainofa numberofantibodies.Thisproteinwasusedasspecificbio-receptor fortherealizationofTiO2NTsbiosensor.Moreover,sincePrAis

secretedbyanddisplayedonthecellmembraneofS.aureus,it isanimportantbiomarkerforthisbacterium.Therefore,itsrapid and specificdetection facilitatethepathogen identificationand initiationof proper treatment[18]. The protein wascovalently conjugatedtoamino-modifiedsurface(TiO2NTsA-APT)usingthe

crosslinkerBS3(Fig.2,IIIandIV).

ThechemicalmodificationofTiO2 NTswasanalysed byFTIR

spectroscopy (Fig. 3). FTIRspectrum of bare TiO2 NTsshowed

atypicalpeak oftitaniaat 948cm−1 [19].Afterthesilanization process,theTiO2 NTs-APTdisplayedcharacteristicbandsofAPT

correspondingtotheCHxstretchingat2960and1720cm−1[20,21],

(5)

akeyroleforthedevelopmentofbiosensorsaffectingsurface bio-functionalization,biomolecularinteractionandconsequenttarget recognition[24].ThevariationofsurfacewettabilityofTiO2 NTs

beforeandaftereachstepoffunctionalizationprocesseswas char-acterizedbymeasurementsofWCA,asshowninFig.4.TheTiO2

NTsarequasihydrophobic(Fig.4A),resultinginaWCAvalueof (86±3)◦.APT,withitsamino-terminalalkylchaininducesaweak decreaseoftheWCAto(80±1)◦ (Fig.4B).BS3,duetothe

intro-ductiononthesurfaceofhydrophilicN-hydroxysulfosuccinimide groups(NHS),decreasestheWCAdownto(41±6)◦,thusmaking thesamplesurfacemorehydrophilicthanbeforeandtherefore suit-ableforPrAbioconjugation(Fig.4C).ThebioconjugationofTiO2

NTsAdevicetoPrAwasconfirmedbyafurtherdecreaseofWCA valueto(35±2)◦duetothehydrophilicnatureoftheprotein.The biofunctionalizationofTiO2NTswiththePrAhasbeenmonitored

byspectroscopic reflectometry(Fig.5).To comparethe results, thesampleswerealsomonitoredbythefluorescencemicroscopy (Fig.6).

Theopticalthickness(OT)oftheobtainedTiO2NTsdevicewas

calculatedfromthereflectivityspectrumbyFFT,whichdisplayed apeakwhosepositionalongthex-axiscorrespondedtotwotimes theoptical thickness(2OT) of thelayer [25]. Normalincidence reflectivityspectraofTiO2 NTsbeforeandafterAPT+BS3

modi-fication(TiO2NTsA-APT-BS3)andafterthefunctionalizationwith

thePrA(TiO2NTsA-APT-BS3-PrA)areshowninFig.5togetherwith

thecorrespondingFFTs(Fig.5B).Sincethephysicalthicknessdof theTiO2 NTslayerwasfixed,theFFTpeakshiftofabout10nm

afterAPT+BS3and50nmafterPrAwasreallyduetoanincrease

oftheaveragerefractiveindex(n),i.e.morematterinthepores, whichwastheconfirmationofasuccessfulbio-functionalization

[17].In Fig.6 arereportedthe fluorescenceimagesofnegative control(Fig.6A)andTiO2NTsA-APT-BS3afterincubationwiththe

PrA*(Fig.6B).TheTiO2 NTs-APT-BS3-PrA*showedahighgreen

fluorescence,contrarytothedarknegativecontrol,confirmingthe bio-conjugationofthebiologicalmoleculetosurfacedevice.

Steady-statePLspectraofTiO2NTsbeforeandaftereach

func-tionalizationsteparereportedinFig.7.TiO2NTsshowedaPLpeak

atabout390nmcorrespondingto3.2eVwhich iswellmatched withthebandgapenergyofanataseTiO2[26,27].Thebroadvisible

emissionisduetorecombinationofoppositelycharge-carriersat defectenergylevels.Inthevisibleregionofspectrumiswellevident thatthePLemissionincreasedaftereachfunctionalizationstepof TiO2 NTsAsurface.Thisfeatureisduetotheextrafreeelectrons

suppliedbythemolecularcomplexes(i.e.APT,BS3,PrA),which

participatedtoexcitation-relaxationdynamicbetweenthesurface energylevels.Thisphenomenon wasless evidentincaseofthe peakat390nm,sincethislastwasduetotheradiativetransitions betweenconductionandvalencebandsthatwerenotaffectedby functionalizationtreatments.ItmustbementionedthatTiO2NT

arraysareexcellentphotocatalystforlightdegradationofmany substances[26],butinthepresentedcase,thechemical

passiva-Fig.7. PhotoluminescencespectrachangesofTiO2NTsaftereachstepof function-alization.

tionoftitaniananotubessurface,duetotheorganiclayersadded (APT±BS3),createdenoughdistancebetweenthebiologicalactive

molecule(PrA)andthephotocatalytictitaniasurfacesothatprotein degradationwasprevented.

4. Conclusions

Insummary,wefabricatedandinvestigatedthepropertiesof TiO2 NTs fortheir applicationin biosensor devices. In order to

developbiosensorbasedonTiO2NTarraystheobtaineddevices

were grafted byAPT alkylsilane compound, providing coupling points to immobilize the bioprobe, and then bioconjugated to PrAviaBS3 molecule.Thedevicebio-functionalizationwas

con-firmedqualitativelyandquantitativelybyseveralcomplementary techniques,suchasFTIRspectroscopy,WCAmeasurements, flu-orescencemicroscopy,and label–freeopticalmethods basedon spectroscopicreflectometryfollowedbyFFTandPLanalysis.PrA wascovalentlygraftedonTiO2 NTssurfacein therange of␮M

andmonitoredasalargevariationinthePLintensity(morethan 1000a.u)withacorrespondingincreaseoftheopticalthicknessof thesample(about50nm).Inalabel-freeopticalbiosensing experi-ment,aprimaryantibodyofPrAshouldbeimmobilizedandusedas thebio-probe,andtheopticalresponseinbindingtoPrAshouldbe monitored.Manyphotoelectrochemical(PEC)sensorsusingTiO2

nanotubesarrayhavebeenreportedinliterature[29–31],someof themshowingveryhighsensitivity.Evenifverysensitive,PEC sen-sorsoftenrequireextradecorationofnanotubes(bypolymersor metals)inordertogettheseperformances,andtheymustusea lightsourceandelectricalequipmentforsignaldetection.Inour case,theexperimentalresults,evenifrepresentedonlya proof-of-conceptfortheapplicationofTiO2nanotubearraysastransducer

materials,were fabricatedand modified bystandard and well-establishedprocedures,easilyreproducibleinotherlaboratories. Moreover,theexperimentalsetuprequiredonlyalightsource (pas-siveforreflectionmeasurementsoractiveforphotoluminescent ones)andsimplesignalelaboration,makingtheproposedsystem veryattractiveforthedevelopmentoflabel–freeopticalbiosensors thatcouldbeusedforawiderangeofapplications,frombiomedical diagnosticandenvironmentalmonitoringtofoodqualitycontrol.

References

[1]X.Zhang,Q.Guo,D.Cui,Recentadvancesinnanotechnologyappliedto biosensors,Sensors9(2009)1033–1053.

[2]J.J.Gooding,Biosensortechnologyfordetectingbiologicalwarfareagents: recentprogressandfuturetrends,Anal.Chim.Acta559(2006)137–151. [3]N.Golego,S.A.Studenikin,M.Cocivera,Sensorphotoresponseofthin-film

oxidesofzincandtitaniumtooxygengas,J.Electrochem.Soc.147(2000) 1592–1594.

(6)

240 M.Terraccianoetal./AppliedSurfaceScience419(2017)235–240 [4]L.Yang,S.Luo,Q.Cai,S.Yao,AreviewonTiO2nanotubearrays:fabrication,

properties,andsensingapplications,Sci.Bull.55(2010)331–338. [5]H.Cao,Y.Zhu,L.Tang,X.Yang,C.Li,Aglucosebiosensorbasedon

immobilizationofglucoseoxidaseinto3DmacroporousTiO2,Electroanalysis

20(2008)2223–2228.

[6]S.Wu,Z.Weng,X.Liu,K.W.K.Yeung,P.Chu,FunctionalizedTiO2based

nanomaterialsforbiomedicalapplications,Adv.Funct.Mater.24(2014) 5464–5481.

[7]V.Galstyan,E.Comini,G.Faglia,G.Sberveglieri,TiO2Nanotubes:recent

advancesinsynthesisandgassensingproperties,Sensors13(2013) 14813–14838.

[8]X.G.Han,Q.Kuang,M.S.Jin,Z.X.Xie,L.S.Zheng,Synthesisoftitania nanosheetswithahighpercentageofexposed(001)facetsandrelated photocatalyticproperties,JAm.Chem.Soc.131(2009)3152–3153. [9]H.G.Yang,C.H.Sun,S.Z.Qiao,J.Zou,G.Liu,S.C.Smith,G.Q.Lu,AnataseTiO2

singlecrystalswithalargepercentageofreactivefacets,Nature453(2008) 638–641.

[10]K.S.Mun,S.D.Alvarez,W.Y.Choi,M.J.Sailor,Astable,label-freeoptical interferometricbiosensorbasedonTiO2nanotubearray,ACSNano4(2010)

2070–2076.

[11]R.Wang,C.Ruan,D.Kanayeva,K.Lassiter,Y.Li,TiO2nanowirebundle microelectrodebasedimpedanceimmunosensorforrapidandsensitive detectionofListeriamonocytogenes,NanoLett.8(2008)2625–2631. [12]N.K.Chaki,K.Vijayamohanan,Self-assembledmonolayersasatunable

platformforbiosensorapplications,Biosens.Bioelectron.17(2002)1–12. [13]M.Terracciano,I.Rea,J.Politi,L.DeStefano,Opticalcharacterizationof

aminosilane-modifiedsilicondioxidesurfaceforbiosensing,JEOS:RP8(2013) 2573.

[14]L.DeStefano,G.Oliviero,J.Amato,N.Borbone,G.Piccialli,I.Rea,Aminosilane functionalizationsofmesoporousoxidizedsiliconforoligonucleotide synthesisanddetection,J.R.Soc.Interface83(2013)20130160. [15]V.Galstyan,E.Comini,C.Baratto,A.Ponzoni,M.Ferroni,N.Poli,G.

Sberveglieri,Largesurfaceareabiphasetitaniaforchemicalsensing,Sens. ActuatorBChem.209(2015)1091–1096.

[16]V.Galstyan,E.Comini,G.Faglia,A.Vomiero,L.Borgese,E.Bontempi,G. Sberveglieri,Fabricationandinvestigationofgassensingpropertiesof Nb-dopedTiO2nanotubulararrays,Nanotechnology23(2012),http://dx.doi. org/10.1088/0957-4484/23/23/235706.

[17]M.Terracciano,L.DeStefano,N.Borbone,J.Politi,G.Oliviero,F.Nici,I.Rea, Solidphasesynthesisofathrombinbindingaptameronmacroporoussilica forlabelfreeopticalquantificationofthrombin,RSCAdv.6(2016) 86762–86769.

[18]K.Urmann,P.Reich,J.G.Walter,D.Beckmann,E.Segal,T.Scheper,Rapidand label-freedetectionofproteinabyaptamer-tetheredporoussilicon nanostructures,J.Biotechnol.(2017),http://dx.doi.org/10.1016/j.jbiotec.2017. 01.005.

[19]X.Sheng,D.Xie,C.Wang,X.Zhang,L.Zhong,Synthesisandcharacterization ofcore/shelltitaniumdioxidenanoparticle/polyacrylatenanocomposite colloidalmicrospheres,ColloidPolym.Sci.294(2016)463–469.

[20]G.Socrates,InfraredandRamanCharacteristicGroupFrequencies/tablesand Charts,Wiley,Chichester,2001.

[21]E.T.Vandenberg,L.Bertilsson,B.Liedberg,K.Uvdal,R.Erlandsson,H.Elwing,I. Lundström,Structureof3-aminopropyltriethoxysilaneonsiliconoxide,J. ColloidInterfaceSci.147(1991)103–118.

[22]N.M.Martucci,I.Rea,I.Ruggiero,M.Terracciano,L.DeStefano,N.Migliaccio, A.Lamberti,Anewstrategyforlabel-freedetectionoflymphomacancercells, Biomed.Opt.Express6(2015)1353–1362.

[23]M.Terracciano,M.A.Shahbazi,A.Correia,I.Rea,A.Lamberti,L.DeStefano, H.A.Santos,Surfacebioengineeringofdiatomitebasednanovectorsfor efficientintracellularuptakeanddrugdelivery,Nanoscale47(2015)20063. [24]K.L.Mittal,ContactAngleWettabilityandAdhesion,CRCPress,2006. [25]I.Rea,L.Sansone,M.Terracciano,L.DeStefano,P.Dardano,M.Giordano,M.

Casalino,Photoluminescenceofgrapheneoxideinfiltratedintomesoporous silicon,JPhys.Chem.C118(2014)27301–27307.

[26]F.Sannino,P.Pernice,C.Imparato,A.Aronne,G.D’Errico,L.Minieri,D.Pirozzi, HybridTiO2–acetylacetonateamorphousgel-derivedmaterialwithstably

adsorbedsuperoxideradicalactiveinoxidativedegradationoforganic pollutants,RSCAdv.5(2015)93831–93839.

[27]A.Aronne,M.Fantauzzi,C.Imparato,D.Atzei,L.DeStefano,G.D’Errico,F. Sannino,I.Rea,D.Pirozzi,B.Elsener,P.Pernice,A.Rossi,Electronicproperties ofTiO2-basedmaterialscharacterizedbyhighTi3+self-dopingandlow

recombinationrateofelectron-holepairs,RSCAdv.7(2017)2373.

[29]W.W.Zhao,Z.Y.Ma,D.Y.Yan,J.J.Xu,H.Y.Chen,Insituenzymaticascorbicacid productionaselectrondonorforCdSquantumdotsequippedTiO2

nanotubes:ageneralandefficientapproachfornewphotoelectrochemical immunoassay,Anal.Chem.84(24)(2012)10518–10521.

[30]B.Lu,M.Liu,H.Shi,X.Huang,G.Zhao,Anovelphotoelectrochemicalsensor forbisphenolAwithhighsensitivityandselectivitybasedonsurface molecularlyimprintedpolypyrrolemodifiedTiO2nanotubes,Electroanalysis

25(3)(2013)771–779.

[31]C.Ye,M.Q.Wang,Z.F.Gao,Y.Zhang,J.L.Lei,H.Q.Luo,N.B.Li,Ligating dopamineassignaltriggerontothesubstrateviametal-catalyst-freeclick chemistryfor‘signal-on’photoelectrochemicalsensingofultralowmicroRNA levels,Anal.Chem.88(23)(2016)11444–11449.

Riferimenti

Documenti correlati

In contrast, the reuse of existing assertions in an RTL-to-TLM bottom-up design flow has not been analyzed yet, except by using transactors to create a mixed simulation between the

Nelle valli ossolane, e in particolare in valle Formazza, l’allevamento di bovini da latte per la produzione casearia è ancora diffuso e la quasi totalità delle aziende di

Hiatal hernia, reflux symptoms, body size, and risk of esophageal and gastric adenocarcinoma.. Risk of gastrointestinal malignancies and mechanisms

The approach illustrated above is also linked to the possible recovery of pre-modern seismic preven techniques, but only if their efficiency has been previously demon- strated (Fig.

Questo vuol dire che la teoria deve essere in grado di identificare le razze e le loro relazioni; di interessarsene qualsiasi sia la diversità delle relazioni che esistono fra le

Courses addressed to in-service teachers were designed to support critical media analysis, while pre-service training scenarios also involved production activities, often

The spatial distribution of the [Fe xviii] features observed is shown in Figure 2 (left panel), where the main structure is identified as the CS (solid line) and the

Contestualmente la rivoluzione zappiana produsse forti echi oltre che sugli studi aziendali anche sulla prassi professionale (Canziani, 1987, pp. Non vi è dubbio che l’evoluzione