Fertility-related pensions and fertility disincentives
Luciano Fanti Luca Gori
University of Pisa University of Pisa
Abstract
Since recent studies have argued that a pro-natalist effect could be obtained by introducing fertility-related pension systems for contrasting, especially in European countries, the plague of below-replacement fertility and the resulting problem of financing the widespread pay-as-you-go (PAYG) pension benefits, we built up an overlapping generations (OLG) general equilibrium model with endogenous fertility, to investigate whether and how a fertility-related pension reform increases population growth. We show that if the capital’s share in production is high enough, such a reform, in contrast with the suggestions of the preceding literature, always reduces the long-run fertility rate.
Citation: Fanti, Luciano and Luca Gori, (2008) "Fertility-related pensions and fertility disincentives." Economics Bulletin, Vol.
10, No. 8 pp. 1-7
Submitted: January 12, 2008. Accepted: June 9, 2008.
!"# $ %$ !"# & '(()* " +,,-* +,,-* % +,,- +,,. / 0 1 2 '(3( 4 5 '((+ '((. 5 5 '((. & '(() 6 +,,7 " +,,- % +,,- +,,. 8 +,,-9 6 +,,7 : ; < %$ !"# ' % & '(() 6 +,,7 < " +,,- % +,,- +,,. 1 0 + 6 +,,7 % +,,. 8 0 1 = = 7 > %$ !"# 0 0 !"# %$ !"# 8 1 > + 7 < % -% 6 +,,7 < '> < 0 ? '((7 !"# ; % % +,,. @A < B @A 0 0 B -. +8 ; 7" 5 5 '((. 4 " / < 4 5 '((. C % ', * D & E 3 -, * D 1 ., 0 1 % +,,. +( @ 6 B
1 > F < > t C t t n τ β = 2' < < 0 > β τt >0 < 4 0 ' " C
(
)
[
1− −1+ −1]
⋅ = t t t t w n n p θ ω ω 2+ < < 1 0<θ < 1 0≤ω ≤ 1 1 ω =0 !"# * 1 = ω %$ !"# & '(()* " +,,-* % +,,. -/; + ω 1 1−ω % % +,,. 7- ω 4 n n t N C G 0 < " t t c1, c2,t+1 nt 8 '((H 9 F 0 G 0 t w < 8 ; < e>0 0 β∈( )
0,e = = G st 1 + t r % 1 + t p > t C {ctc t nt}Ut(
c t,c t ,nt) ( )
ln c t ln( )
c t ln( )
nt max 1,,2,+1, 1, 2,+1 = 1, +χ 2,+1 +φ ! F(
)
t(
)
t t t t s w e n c1, + = 1−θ −τ − −β ?'(
t)
t t[
(
)
t t]
t r s w n n c2,+1 = 1+ +1 +θ +1⋅ 1−ω +ω ?+ 1 0<χ < F 0<φ <1 -8> C 1 , 1 1 , 2 1 1 + + ⋅ = + t t t r c c χ %9?' + − − ⋅ = + + 1 1 , 1 1 1 t t t t r w e c n β ωθ φ %9?+ /; %9?' ; 0 /; %9?+ ; /< 2' 2+ %9?' %9?+ ?' ?+ C
(
)
(
)(
)
[
(
)
]
1 1 1 1 1 1 + + + + + − + − + + − = t t t t r w e w n θ φ ω χ β φ β φ χ θ φ '(
) (
) (
)
(
)(
)
[
(
)
]
1 1 1 1 1 1 1 1 1 + + + + + + + − + − + + + + − − − = t t t t t t r w e r w e w s θ φ ω χ φβ β φ χ θ φ ω χ β χ θ + 4(
)
1 1 1 1 + + + ⋅ + − ≡ t t w r e φ ω χ β χ θ > /; ' + t n st 0<θ <θ1 % /; ' ; ω " > ? G Yt =AKtαLt1−α . t Y Kt t t N L = t A>0( )
0,1 ∈ α 1 G kt :=Kt /Nt yt :=Yt/Nt α t t Ak y = " 0 < C 1 1 − =α α− t t Ak r 7(
α)
α t t Ak w = 1− -2' 2+ 0 Nt+1 =ntNt 0 0 < ; ntkt+1 =st 0 1 + t ; t D ' + ; C(
)
1 1 1 1 + + + + + − − = t t t r w e k θ φ φ ω χ β φχ . . " <3 /< 7 -0 C
( )
ω αφ θχ(
(
αβ)(
)
χαω φ)
+ − + − = 1 * e k H 8 < ? %$ !"# = = I > ; 9J /< /; ' 7 - H C( )
(
) (
)
[
(
)(
)
]
(
)
(
)(
)
(
)(
)
[
χ φ β φβ]
θ(
α)(
[
χω φ)
β]
α φ ω χ α θ αφ χ β α φ ω χ α θ φ α θ α ω α − + + − + + − + + + − + − ⋅ + − + − − = e e e A n 1 1 1 1 1 1 1 * ) > /; ) C ω ! α <α2 > C( )
( )(
)
[
]
(
)
[
α θ α]
{
α[
(
χ φ)(
β)
φβ]
θ(
α)(
[
φ)
β]
}
φ α χθ α α ωω ω = ⋅ + − ⋅ −+ + ⋅ −−Η ++Η+ +Η− + − ∂ ∂ = e e n n 1 1 1 1 1 0 1 2 2 3 * 0 * 3(
1)(
)
(
1)
0 1 ≡ + − − + − > Η χ θ e β φe θ Η2 ≡(
1+χ)(
e−β)
−θ[
2(
e−β)
+φe]
(
)
0 3 ≡ − > Η θ e β >( )
0 0 * = ∂ ∂ = ω ωω n C 0 3 2 2 1 +Η +Η = Η − α α ( 0 4 1 3 2 2 + Η Η > Η ≡ ∆ G 1 2 Η < 0 2 4 1 3 1 2 2 2 1 Η < Η Η + Η − Η ≡ α 0 2 4 1 3 1 2 2 2 2 Η > Η Η + Η + Η ≡ α /; ( H α1 <0 >( )
( )
< > ∂ ∂ < > ∂ ∂ = = 2 0 * 2 0 * 0 0 α α ωω α α ωω ω ω iff n iff n H 4 1 2 < α > 1 3 1 2 2 2 +4Η Η <2Η −Η Η 2Η1−Η2 >0 > 1 3(
1 2)
2 2 2 +4ΗΗ < 2Η −Η Η Η3 <Η1 −Η2 " Η1 2 Η Η3 ; φe>0 > α2! ' 1 0 1 > C < < 0 ω < " " < ! ' > ' 8 0 C A=10 30 . 0 = χ G J ? < +,,+ ., φ =0.40 ) e=1 < 7. β =0.85 < 30 . 0 = θ > α2 =0.3065 " 1 33 . 0 = α > ' 3 / ω *
( )
ω n 0 1.3490 20 . 0 1.3470 40 . 0 1.3442 60 . 0 1.3409 80 . 0 1.3371 1 1.3330 ; < 8 %$ !"# < C F 0 !"# 1 +,,7 0 %$ !"# 1 )" 0 +,,-33 . 0 = φ φ =0.50 < 40 . 0 = φ 3> < 1 < α ≅0.50 %$ !"#5 K'L " ? ! < +,,- @9 !"# B # $ 7 ,' 7. H+ K+L 2 2 '(3( @> B # $ ' - +3. 7,' K7L ? " '((7 @ C % 0 B # $ ! ( - 4 .,. .'3 K-L G J ? < G ! +,,+ " ! % &! ! ? D ! K.L G ! " '(H. @4 B " ' % .. . G ''+H ''., KHL % $ M +,,- @" IB ?/ 8 0 ! ''.) K)L % $ M +,,. @! B ( # 73 ' % +3 -3 K3L 9 G 4 8 '((H @> B " ' % 3H 7 7)- 73) K(L 6 2 > J J F +,,7 @ C ! B # $ 3) + % +77 +.' K',L ? +,,7 @ B D ? 2 0 0 ! G / CNN 0 NO K''L & '(() @ B # $ ', 7 " 77. 7.H K'+L 4 & 5 '((+ @! B # $ -3 + +7( +.3 K'7L 4 & 5 '((. @ B )* $ -) ' '3+ '(-K'-L : 8 +,,- @> B # $ 33 ) 3 '77. '7.) K'.L 0 : +,,- @? B # ''- -() .-) .H3 K'HL 0 : +,,- @/ B # $ ') 7 " -77 -.7 K')L 5 5 '((. @> B + # H+ + 9 --, -.,