• Non ci sono risultati.

Connecting spatial moments and momentum densities

N/A
N/A
Protected

Academic year: 2021

Condividi "Connecting spatial moments and momentum densities"

Copied!
9
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Connecting

spatial

moments

and

momentum

densities

M. Hoballah

a

,

,

M.B. Barbaro

b

,

R. Kunne

a

,

M. Lassaut

a

,

D. Marchand

a

,

G. Quéméner

c

,

E. Voutier

a

,

J. van de Wiele

a

aUniversitéParis-Saclay,CNRS/IN2P3,IJCLab,91405Orsay,France

bDipartimentodiFisica,UniversitádiTorinoandINFNSezionediTorino,10125Torino,Italy cNormandieUniv,ENSICAEN,UNICAEN,CNRS/IN2P3,LPCCaen,14000Caen,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received20March2020

Receivedinrevisedform28July2020 Accepted28July2020

Availableonline3August2020 Editor:W.Haxton

Theprecisionofexperimentaldataandanalysistechniquesisakeyfeatureofanydiscoveryattempt.A strikingexampleistheprotonradiuspuzzlewhere theaccuracyofthespectroscopyofmuonicatoms challengestraditionalelectronscatteringmeasurements.Thepresentworkproposesanovelmethodfor thedetermination ofspatialmomentsfromdensitiesexpressedinthemomentumspace.Thismethod providesadirectaccesstoeven,odd,andmoregenerallyanyreal,negativeandpositivemomentwith orderlargerthan−3.Asanillustration,theapplicationofthismethodtotheelectricformfactorofthe protonisdiscussedindetail.

©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

ThedeterminationoftheprotonchargeradiusrE fromthe

pro-tonelectricformfactormeasuredexperimentallythroughthe elas-ticscatteringofelectrons offprotonsisthe subjectofan intense scientific activity(see Ref. [1,2] forrecent reviews).According to thedefinition rE



6dGE

(

k 2

)

dk2





k2=0

,

(1)

the experimental method to determine rE in subatomic physics

consists in the evaluation of the derivative of the electric form factor of the proton GE

(

k2

)

at zero-momentum transfer.

Conse-quently,themethodstronglyreliesonthezero-momentum extrap-olationofthek2-dependencyoftheelectricformfactormeasured

inelasticleptonscatteringoffprotons.Theso-calledprotonradius puzzle [3], that originated fromthe disagreement between elec-tronscattering [4] andmuonicspectroscopy [5] measurements,has laid much critique on themethod suggestingthat the extrapola-tion procedure of experimental data to zero-momentum transfer suffersfromlimitedaccuracy. Thederivative methodis very sen-sitive tothe functional usedto perform theextrapolation andto theupperlimit ofthek2 momentumdomain consideredforthis

purpose [6].Thesignificantdifferencethatwas observedbetween

*

Correspondingauthor.

E-mailaddress:hoballah@ipno.in2p3.fr(M. Hoballah).

the proton charge radius obtained from electron elastic scatter-ing (0.879(8) fm [4]) and that obtained from the spectroscopy of muonic hydrogen (0.84184(67) fm [5]) implies such a small difference inthe electricformfactor valuesatvery low momen-tum transfers that it puts unbearableconstraints on the system-atics of lepton scattering experiments [7]. As a matter of fact, the precision of the highestquality electron scattering measure-ments (0.879(8) fm [4] and0.831(14) fm [8])onthatissueremains

10timesworsethanthatofmuonicatommeasurements [9,10]. Improvingtheprecisionoftheso-calledderivativemethodtosuch acompetitiveleveldoesnotappearreachablewithcurrent knowl-edge andtechnologies [11].While therecentPRadresult [8] and the recommended CODATA [12] and PDG [13] values of rE have

reduced the tension with muonic atom measurements, improv-ingtheprecisionofscatteringexperimentsremainsahighpriority in light ofthe numerous discussions about thesensitivity ofthe derivativemethod(seeRef. [14] fornewdevelopments).

Within a non-relativistic description of the internal structure of theproton (see Ref. [15] for a recentdiscussion of relativistic effects),Eq. (1) canberecoveredfromtheMacLaurinexpansionof theelectricformfactorexpressedastheFouriertransformofthe protonchargedensity

ρ

E(r

)

,

GE

(

k2

)

=



IR3 d3r eik·r

ρ

E

(

r

) ,

(2) namely https://doi.org/10.1016/j.physletb.2020.135669

0370-2693/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

GE

(

k2

)

=



j=0

(

1

)

j k 2 j

(

2 j

+

1

)

!



r 2 j



(3)

wherek istheEuclidiannormofk.Here



r2 j

 = (−

1

)

j

(

2 j

+

1

)

!

j

!

djG E

(

k2

)

d

(

k2

)

j







k2=0 (4) relatesthe electricformfactorto theeven moments



r2 j



ofthe chargedensity

ρ

E(r

)



r2 j

 ≡ (

r2 j

,

ρ

E

)

=



IR3

d3r r2 j

ρ

E

(

r

) .

(5)

Consequently,thenon-relativisticchargeradiusoftheprotonmay beexpressedas

rE

=





r2

 .

(6)

The discrepancies betweenthelatest scatteringmeasurements of the protonradius [4,8,16] clearly indicatethe experimental diffi-cultyinmeasuringthefirstderivativeoftheformfactor. Addition-ally,momentsofthe chargedensitybeyondthesecond orderare also ofinterest asthey carry complementary information onthe chargedistributioninsidetheproton.However,beyondthelimited precision oftheexperimental determination ofthe jth derivative

oftheformfactor,the derivativemethodaccesses onlyeven mo-mentsofthedensity.

Thepurposeofthecurrentworkistoproposeanewand intrin-sicallymoreaccurate methodforthedeterminationofthespatial moments of a density from momentum space experimental ob-servables,assumingthat onlytheFouriertransformofthe proba-bilitydensityfunctionisknown.Thismethodallowsaccesstoboth oddandeven,positiveandnegative, momentsofthedistribution anditovercomesthelimitationsofthederivativetechnique.Its ad-vantageliesinthemoreprecisedeterminationofspatialmoments throughintegralformsoftheFouriertransformofthedistribution. These are expected to be less dependent on point-to-point sys-tematicsandhencemoreprecise.The validityofthisapproachis demonstratedonthebasisofgenericdensities,anditsimportance intheexperimental determinationofphysicsquantitiesisfurther discussed.Themethodforagenericprobability distributionis de-scribedinSec. 2,presentingtwo differentregularizationschemes fortheFouriertransformyieldingthespatialmoments.The appli-cabilityofthemethodtoa specificphysicalproblemisdiscussed inSec.3.Thepossibleapplicationsofthemethodtoexperimental dataareoutlinedinSec.4,andconclusionsaredrawninSec.5.

2. Spatialmoments

Let f

(

r

)

be a fastly decreasing function in the 3-dimensional space. Without any loss of generality for the present discussion (seeAppendixA), f

(

r

)

f

(

r

)

isassumedtobeapureradial func-tionnormalizedtotheconstant

˜

f0



IR3

d3r f

(

r

)

=

4

π



dr r2f

(

r

)

= ˜

f0

.

(7)

ItsFouriertransform

˜

f

(

k

)

≡ ˜

f

(

k

)

=



IR3

d3r eik·rf

(

r

)

(8)

exists forany values ofk. When

˜

f

(

k

)

isintegrable over IR3,the

inverseFouriertransformexistsandisdefinedby

f

(

r

)

f

(

r

)

=

1

(

2

π

)

3



IR3

d3k eik·r

˜

f

(

k

) .

(9)

The moments

(

,

f

)

oftheoperatorr for thefunction f are

de-finedby [17]

(

,

f

)

=



IR3

d3r rλ f

(

r

) .

(10)

Replacing f

(

r

)

withtheinverseFouriertransformof

˜

f

(

k

)

(Eq. (9)) andswitchingtheintegrationorder,Eq. (10) becomes

(

,

f

)

=

1

(

2

π

)

3



IR3 d3k

˜

f

(

k

)



IR3 d3r eik·r

.

(11)

Theleft-handsideofEq. (11),themoment

(

,

f

)

,isafinite

quan-tity which represents a physics observable. However, the right-handsideofEq. (11) containstheintegral

(

k

)

(

k

)

=



IR3

d3r ei k·r

,

(12)

that can beinterpreted astheFouriertransformofthe tempered distribution . This integral does not exist in a strict sense for

λ

≥ −

1 but can still be treated as a distribution; the finiteness of theleft-hand side ensures thephysical representativityofthis expression as well as the convergenceof the 6-fold integral. For instance,Eq. (12) correspondstotheDirac

δ

-distributionfor

λ

=

0. Consideringarealpositivevaluet,thedefinitionof

(

k

)

provides theproperty

(

tk

)

=

1

+3

(

k

) ,

(13)

which issatisfiedonlyby

(

k

)

functionsproportional to1

/

+3

[17,18].Eq. (11) canthenbewrittenas

(

,

f

)

=

N

λ



0 dk



˜

f

(

k

)

+1



,

(14)

where

N

λisthenormalizationcoefficientdefinedfor

λ

=

0

,

2

,

4

...

as

N

λ

=

2λ+2

π

(

λ+23

)

(

λ2

)

(15)

in terms of the



function [19], with

λ

>

3. The integral in Eq. (14) is taken in the sense of distributions, i.e. the principal valueoftheintegraldefinedfromtheregularizationofthe diverg-ingintegrandatzero-momentum



˜

f

(

k

)

+1



1 +1

⎝ ˜

f

(

k

)

n



j=0

˜

f2 jk2 j

(16) with

˜

f2 j

=

1 j

!

dj

˜

f

(

k

)

d

(

k2

)

j







k=0

.

(17)

Here,n

+

1 isthenumberofcountertermsintheMacLaurin devel-opment of

˜

f

(

k

)

,wheren

= [λ/

2

]

istheintegerpartof

λ/

2 (with

λ

=

0

,

2

,

4

...

).Itisbecause

˜

f

(

k

)

originatesfromapureradial func-tionthatthisdevelopmentisanevenfunctionofk.

The right-hand side of Eq. (14) is a convergent quantity as a whole,i.e. divergencesthatmayappearinthenormalization coeffi-cientarecompensatedbytheintegral.Theintegralexistsforevery

(3)

Table 1

Countertermsexpansionofthemomentsoffirstorders.

m km−η+1 n n j=0˜f2 jk2 j −2 k−1−η 2 −1 k−η −1 – 0 k1−η 1 1 k2−η 0 ˜f 0 2 k3−η 0 ˜f 0 3 k4−η 1 ˜f0+ ˜f2k2 4 k5−η 1 ˜f0+ ˜f2k2 5 k6−η 2 ˜f0+ ˜f2k2+ ˜f 4k4 6 k7−η 2 ˜f0+ ˜f2k2+ ˜f 4k4 . . . . . . . . . . . .

λ

inthedomainn

< λ/

2

<

n

+

1 [17,18], whichensuresthe con-vergenceof theintegrand both whenk

0+ andwhen k

→ ∞

. While theintegrand divergesfor even

λ

, even moments still ac-cept a finite limit. Denoting for convenience

λ

=

m

η

with m

integer,themoments

(

rmη

,

f

)

write

(

rmη

,

f

)

=

Nm

η



0 dk

˜

f

(

k

)

n j=0

˜

f2 jk2 j kmη+1 (18)

wheren

=

[

(

m

1

)/

2] with0

<

η

<

1 for even valuesof m, and 0

η

<

1 foroddvaluesofm. Even(odd)momentsareobtained takingthelimit

η

0+(setting

η

=

0).Respectively,

(

rm

,

f

)

=

lim

η→0+

(

r

mη

,

f

)

m even (19)

(

rm

,

f

)

= (

rmη

,

f

)

|

η=0 m odd

.

(20)

ThecountertermsexpansionofEq. (18) isgiveninTable1forthe firstordermoments.

Theregularizationprocedureensurestheconvergenceofthe in-tegrand inEq. (18) over theintegration domain.For valuesof m

closetoevenintegers,thelogarithmicdivergenceoftheintegralis balancedbythevanishing

N

λ togiveafinitequantity.More

pre-cisely, considering

(

rmη

,

f

)

for even m

=

2p, the normalization

coefficient

N2p

η inthevicinityof

η

=

0+canbewrittenas

N2p

η

(−

1

)

p

(

2p

+

1

)

!

η

.

(21)

IntroducinganintermediatemomentumQ ,theintegralofEq. (18) can be separated into a contribution dominated by the zero-momentum behaviour of the integrand and another depending on its infinite momentum behaviour. In the vicinity of zero-momentum, the integrand behaves as

˜

f2p/k1−η leading, after

k-integration,tothecontribution

˜

f2pQ η

/

η

.Atlargemomentum,the

k-dependence ofthe integrand ensures a finite IQ value for the

infinitemomentumintegral.Then,evenmomentscanberecastas

(

r2p

,

f

)

=

lim η→0+

(

1

)

p

(

2p

+

1

)

!

η



˜

f2p

η

Q η

+

I Q



= (−

1

)

p

(

2p

+

1

)

! ˜

f2p

.

(22)

For instance, we have

(

r0

,

f

)

= ˜

f

0,

(

r2

,

f

)

= −

6

˜

f2,

(

r4

,

f

)

=

120

˜

f4... as expected from the MacLaurin development of the

Fouriertransform

˜

f

(

k

)

.

Theregularization of theFourier transform

(

k

)

of the

tem-pereddistributionisnotunique.Forinstance,

(

k

)

canalsobe

givenasaweaklimitoftheconvergentintegral

(

k

)

=

lim →0+



IR3 d3r rλerei k·r

=

lim →0+

I

λ

(

k

,



)

(23)

where the term er ensures the convergence of the integral

I

λ

(

k

,



)

. Thisisa standard technique used,forexample,to

regu-larizetheFouriertransformoftheCoulombpotential [20,21].The integrationofEq. (23) isanalyticalandyieldsforany

λ

>

3 and

λ

= −

2

I

λ

(

k

,



)

=

4

π

(λ

+

2

)

sin [

+

2

)

Arctan

(

k

/



)

]

k

(

k2

+



2

)

λ2+1

(24) which accepts the limit

(

4

π

/

k

)

Arctan

(

k

/



)

at

λ

= −

2. The mo-mentsdefinedinEq. (11) canthenbewrittenas

(

,

f

)

=

2

π

(λ

+

2

)

×

(25) lim →0+ ∞



0 dk

˜

f

(

k

)

k sin [

+

2

)

Arctan

(

k

/



)

]

(

k2

+



2

)

λ/2+1

forany

λ

>

3 and

λ

= −

2 value.Forintegervaluesof

λ

,thesine functioninEq. (25) canbedevelopedintermsofak

/



polynomial, suchthatEq. (25) canberecastfor

λ

=

m as

(

rm

,

f

)

=

2

π

(

m

+

1

)

! ×

(26) lim →0+



m+2 ∞



0 dk

˜

f

(

k

)

k

(

k2

+



2

)

m+2

m

(

k

/



)

with

m

(

k

/



)

=

m



+2 j=0 sin



j

π

2



(

m

+

2

)

!

j!(m

+

2

j

)

!



k





j

.

(27)

TheformulationsofEq. (18) andEq. (25) allowustodetermine themomentsofagivenoperatordirectlyinthemomentumspace, forbothintegerandnon-integervaluesof

λ

.Foragiven

˜

f

(

k

)

func-tional form, the moments are numerically computed from these expressionsandcanalsobeobtainedanalyticallyforspecificcases. The generalization of Eq. (18) and Eq. (25) to a D-dimensional

charge densityare further presented inAppendix Doffering the possibility, for example, to address the relativistic nature of the nucleonstructure [15].

3. Applicabilityandbenefitoftheintegralmethod

The momentum integral determination of the moments out-lined in the previous section is a general approach that can be applied to any relevant physics quantity. Without any restriction on the applicability ofthe method,the specific caseof the elec-tromagnetic formfactors ofthe protonis considered hereafter.A typicalfunctionexampleistheradialdensity

fD

(

r

)

=

3

8

π

e

−r (28)

leadingtothewell-knowndipoleparameterization

˜

fD

(

k

)

=



IR3 d3r eik·rfD

(

r

)

=

4

(

k2

+

2

)

2 (29)

where

representsthedipolemassparameter.Themomentscan bedetermineddirectlyintheconfigurationspace,as

(

,

fD

)

=



IR3 d3r rλfD

(

r

)

=

(λ

+

3

)

2 1

λ

.

(30)

(4)

Fig. 1.λ-ordermomentsoftheprotonelectricformfactor,determinedfromthe in-tegralmethodforthedipole(2=16.1 fm−2

)andtheKelly’spolynomialratio [22] parameterizations(toppanel),andratiobetweenthetwoparameterizations (bot-tompanel).

(

rm

,

fD

)

=

2

(

m

+

2

)

π

1

m ˜lim0+Jm

(



˜

)

(31)

with



˜

=



/

,andfromEq. (26) withtheintegralvariablechange

z

=

k

/



Jm

(



˜

)

=

1

˜



m m



+2 j=0 sin



j

π

2



(

m

+

2

)

!

j!(m

+

2

j

)

!

×

(32) ∞



0 dz z j+1

(

1

+ ˜



2z2

)

2

(

1

+

z2

)

m+2

=

π

4 m

+

2

(

1

+ ˜



)

3

.

EvaluatingthelimitinEq. (31),themomentumintegralexpression ofthemomentsbecomes

(

rm

,

fD

)

=

2

(

m

+

2

)

π

m

π

(

m

+

2

)

4

=

(

m

+

3

)

2 1

m (33)

i.e. identical to the result of Eq. (30) obtained from the config-uration space integral. The same result is obtained for any real (integer and non-integer)

λ

value from the numerical evaluation of the integrals in Eq. (18) and Eq. (25). The method has been tested for different mathematical realizations of the radial func-tion f

(

r

)

andseveral

λ

: the exponential form ofEq. (28), anda Yukawa-likeform(seeAppendix B)corresponding tothe parame-terizationoftheprotonelectromagneticformfactorsintermsofa

k2-polynomialratio,theKelly’sparameterization [22].Ineachcase, thenumericalevaluationofEq. (18) and Eq. (25) provideswitha veryhighaccuracythesameresultsastheconfigurationspace in-tegrals.

Fig.1 showsthe variation ofthe momentsover a selected

λ

-rangefortwoparameterizations oftheelectricformfactorofthe protonandbothprescriptionsoftheintegralmethod:theprincipal value regularization of Eq. (18) denoted IM1, and the

exponen-tial regularization of Eq. (25) denoted IM2. Particularly, the two

differentnumericalevaluationsareshowntodeliver,asexpected, exactlythe same results(toppanel of Fig.1). Because ofa simi-larfunctionalform,thepolynomialratiomomentsdonotstrongly differfromthedipolemoments.Nevertheless,sizeabledifferences can be observed for negative

λ

’s and high moment orders (bot-tompanelofFig.1).Negativeordersare relevantforthestudy of thehigh-momentumdependenceoftheformfactor(i.e. thecentral partofthecorrespondingdensity),andareofinteresttoprobeits asymptotic behaviour, whereas the highpositive order moments probe the low-momentum behaviour of the formfactor (namely thedensityclosetothenucleon’ssurface).

4. Applicationtoexperimentaldata

Theintegral methoddescribedpreviously reliesonintegralsof Fouriertransformsi.e. formfactorsforthepresentdiscussion. Un-likethederivativemethod,theintegralmethodislesssensitiveto a very smallvariation oftheform factoratlow momentum,and a more stablebehaviour with respectto the functionalform can beexpected.However,theevaluationofmomentsviathismethod requiresanexperimentallydefinedasymptoticlimitwhichmaybe hardlyobtainedconsideringthemomentumcoverageofactual ex-perimentaldata.The momentumdependenceoftheintegrandsof Eq. (18) andEq. (25) provides thesolution to thisissue.The de-nominator oftheintegrandsscalesatlarge momentumlike+1,

meaningthattheintegralsaremostlikelytosaturateata momen-tumvaluewellbelowinfinity.

Truncated moments,definedfromEq. (18) andEq. (25) by re-placing theinfiniteintegralboundary bya cut-off Q , allowusto understandthesaturationbehaviourofthemoments.Considering forsakeofsimplicitythecaseofinteger

λ

=

m values,theycanbe writtenfromEq. (26)

(

rm

,

f

)

Q

=

2

π

(

m

+

1

)

!

→lim0+

Rm

(

Q

,



)

(34) with

Rm

(

Q

,



)

=



m+2 Q



0 dk

˜

f

(

k

)

k

m

(

k

/



)

(

k2

+



2

)

m+2

.

(35)

Theintegralisperformedbeforetakingthe



-limit,andobviously lim

Q→∞

(

r m

,

f

)

Q

= (r

m

,

f

) .

(36)

ForthetypicalexampleofthedipoleparameterizationofEq. (29), theintegralforevenandoddmomentscanbeexpressedas

R2p

(

Q

,



)

=



u2p

(

Q

,



)

+



v2p

(



)

Arctan



Q



+

w2p

(



)

Arctan



Q





(37)

R2p

+1

(

Q

,



)

=

u2p+1

(

Q

,



)

+

v2p+1

(



)

Arctan



Q



+



w2p+1

(



)

Arctan



Q





.

(38)

The functionsui’s, vi’s,and wi’s havefinitelimitswhen



0+,

aswellaswhen Q

→ ∞

forthe ui’s.Moreover,the vi’sandwi’s

are independent of Q .The structure ofEq. (37) and Eq. (38) ex-hibitsthree contributionswithdifferent Q -dependences: thefirst term (with ui’s) corresponds to a ratio of Q -polynomials and

vanishes as 1

/

Q at infinite cut-off; the second term (with vi’s)

varies as Arctan

(

Q

/)

and is related to the k0

= ±

i

complex

poleofthe

˜

fD

(

k

)

function;thelast term(with wi’s)saturatesas

Arctan

(

Q

/



)

and is associated to the k0

= ±

i



complex pole of

the function that samples

˜

fD

(

k

)

. The Q -convergence of the two

lasttermsisdeterminedbythesameasymptoticbehaviour

lim x→+∞Arctan

(

x

)

=

π

2

1 x

+

1 3x3

+

O



1 x5



.

(39)

The



factorinfrontofthesecontributions distinguishesthe sat-uration behaviour ofeven and odd moments. Particularly, in the limit



0+,theeventruncatedmomentswrite

(

r2p

,

fD

)

Q

= (

2p

+

1

)

!

w2p

(

0+

)

=

(

2p

+

2

)

!

2 1

(5)

andareindependentofQ ,whiletheoddtruncatedmoments

(

r2p+1

,

fD

)

Q

=

2

π

(

2p

+

2

)

! ×

(41)



u2p+1

(

Q

,

0+

)

+

v2p+1

(

0+

)

Arctan



Q



are still depending on the cut-off. Indeed, Eq. (37) can be seen asa different realizationof Eq. (22), similarly leading to the Q

-independenceofeven moments. The ui’s coefficientsbehave like

1

/

Q functionsat large cut-off, andconsequently vanish for infi-nite Q .Forexample,thefirstoddcoefficientswrite

u1

(

Q

,

0+

)

=

2

2

+

3Q2 2Q



2

+

Q2

 −−−−→

Q→∞ 0 (42) v1

(

0+

)

=

3 2

(43) u3

(

Q

,

0+

)

=

2

4

+

10

2Q2

+

15Q4 6

2Q3



2

+

Q2



−−−−→

Q→∞ 0 (44) v3

(

0+

)

=

5 2

3

.

(45)

Onlythevi’sremainintheinfiniteQ -limit,leadingtothe

expres-sionofEq. (33).SimilarfeaturesarederivedinAppendixCforthe Kelly’sparameterization.

TheQ -convergenceoftruncatedmomentsisshowninFig.2for selectedmomentorders, asdetermined forthetwo prescriptions of the integral method (IM1 and IM2) where the Q cut-off

re-placestheinfiniteboundaryoftheintegrals.The Q -independence

featureofeventruncatedmomentsisreproducedbyeach prescrip-tion(Fig.2(a)).Thisisageneralfeatureindependentofthespecific formfactor,asexpressedby Eq. (22).Inother words,theintegral methodforeven moments recovers formally thesame quantities asthederivativemethod.Intheidealworldofperfectexperiments, adjustingexperimental datawiththe samefunction over asmall orlarge k2-domain affects only the precision on the parameters

ofthefunction.In thecontextofthe limitedqualityofrealdata, the integral method provides the mathematical support required toconsiderthefull k2-unlimiteddomainofexisting data,leading thereforeto amore accurate determinationof themoments. The practicalconstraint isto obtainan appropriate description ofthe dataoveralargek2-domain.

Fig. 2(b) shows the Q -convergence of selected odd moment, comparing the integral method prescriptions. The different regu-larizations of the

(

k

)

integral lead to different saturation

be-haviours. While the principal value regularization (IM1) asks for

large Q -values,the exponentialregularization (IM2) rapidly

satu-rates about6 fm−1, i.e. ina momentum region well covered by protonelectromagneticformfactorsdata [23].

Fig.2(c)shows the Q -convergenceof selected moments with negative non-integer orders. For such orders, there are no coun-terterms for the principal value regularization (Table 1), andthe effectoftheexponentialregularizationterminEq. (23) isstrongly suppressedsincetheintegrandconvergesatinfinity(for

3

< λ

<

1).Indeed,thereisnoneedofregularizationfornegativeorders andall prescriptions of the integral method should be identical. Thisisverified onFig. 2where thenumericalevaluationof each prescriptionis shown to provide the same result:IM1

=

IM2 for

3

< λ

<

0.

It is the essential benefit of the integral method to allow us todetermineoddandrealpositive andnegative spatial moments directlyfromexperimentaldatainthemomentumspace.

We define the saturation momentum QSat. for each moment

orderasthesquaredmomentum transferat whichthetruncated

Fig. 2. Convergenceoftruncatedmomentsofthe protonelectric formfactorfor selectedorderswithinthedipoleparameterization:(a)positiveeven,(b)positive odd,and(c)negativenon-integer.IM1andIM2denotetheprincipalvalueandthe exponentialregularizations,respectively.

momentissome

α

-fractionofthetruemomentvalueobtainedin thelimit Q

→ ∞

(Eq. (36)),thatis

QSat

.

=

(

,

f

)

QSat.

(6)

Fig. 3. Saturationmomentumofthe principalvalue(IM1)andexponential(IM2) regularizationsoftheintegralmethod,forthedipole(solidline)andKelly [22] (cir-cleand dashedline)parameterizationsoftheelectric formfactoroftheproton: (a)98%saturationofpositivemomentswithintheIM1prescription,(b)99.5% sat-urationofpositivemomentswithintheIM2prescription,and(c)98%saturationof negativemoments.Thelatterisindependentoftheintegralmethodprescription.

The variation of the saturation momentum as a function of the momentorderisshownonFig.3forbothprescriptionsofthe inte-gralmethodandtwo parameterizationsoftheelectricformfactor

of theproton.The 98% saturation(

α

=

0

.

98) of IM1 (Fig. 3(a)) is

comparedtothe99.5%saturationofIM2(Fig.3(b)),withrespectto

positive moments. Theprincipal value regularization appearsless performant than the exponential regularization. The differences betweentheintegrandsofeachprescriptionisresponsibleforthis behaviour.Atamaximumsquaredmomentumtransferof2 GeV2, theIM2prescriptionpermitsthedeterminationofanypositive

mo-ments,whiletheIM1 prescriptionisofverylimitedsuccess,even

whenconsideringalessdemandingsaturationandthefull exten-sionofthek2-domainofexistingdataupto

10 GeV2.Noticeably,

thesaturationmomentumappearsweaklydependentontheform factormodel(Fig.3(a)and(b)).

Negative moments are more difficult to obtain very accu-rately butcan still be determined with a few percents precision (Fig. 3(c)). The sensitivity to the form factor parameterization is particularlyremarkable.AsnotedpreviouslyinSec.3,negative mo-mentsaresensitivetothehigh-momentumbehaviouroftheform factorwhichisonlypartlycoveredbyactualdata.Here,the differ-enceofinterestbetweentheparameterizationsisthesignchange of GE

(

k2

)

predicted atk02

=

14

.

7 GeV2 in Kelly’s. This results in

a maximum ratiovalue atk2 such that Rλ

k0

>

1, andprovides a saturation momentum QSat.

<

k0 ( QSat.

>

k0) when Rkλ0

<

2

α

(Rλ

k0

>

2

α

).Thesetwo regimesareresponsibleforthe disconti-nuityoccurring about

λ

= −

2

.

4 inFig.3(c).Notethatthemoment ordercorrespondingtothediscontinuityisnotaconstantbut de-pendsonthe

α

saturationlevel.Negativemomentsclearlymagnify the impactofthechangeofthesignoftheformfactor, andmay beusedtodiscriminatedifferentformfactormodels.

Acloserlookattheformfactorparameterizationsexplains fur-therFig.3behaviours.Thek2-dependencesoftheelectricform fac-toroftheprotonwithintheKellyandthedipoleparameterizations are comparedinFig.4fortwodifferentdipole masses.Up tothe momentumsaturationof2 GeV2,thedifferencesbetweenthe

pa-rameterizationsaresmall(

10%atmost),whichleadstothevery similarsaturationmomentumbehaviourobservedformomentsof positive orders (Fig. 3). More precisely, the Kelly’s moments dif-ferfromthedipoleones(Fig.1)butbothkindsconvergesimilarly towards the asymptotic limit. Differences only show up for the lowest ordermoments (Fig.3(b))whichsucceedtocatch changes inthek2-dependencesabove

1 GeV2.Intheregionbetweenthe

saturation momentum andthezero-crossing momentum,the pa-rameterizationsstronglydifferinmagnitudesandk2-dependences

(Fig. 4). This leads to the very different saturation momentum trends observed inthe momentregion

2

.

4

< λ

0 in Fig. 3(c). Whenthemomentorderislargeenough(

3

< λ

<

2

.

4)to sam-plethehigh-k2 regionoftheformfactorwherethe parameteriza-tionshaveidenticalk2-dependences(Fig.4),thebehavioursofthe

saturationmomentumbecomesimilar(Fig.3(c)).

These features remainmodel-dependent inthe sense that the high-momentum behaviour of the form factors is deduced from predicted scaling laws [24] which, because ofthe limited exper-imental knowledge, arenot confirmed byexisting data.However, the momentum range spannedby actual data, especially for the proton, is large enough to sufficiently constrain any physical or phenomenologicalparameterization.Thereforeamomentum satu-rationquasi-independentofthefunctionalrealizationoftheproton form factor can be determined for positive moments. Major dif-ferences attached to the high-momentum region are specifically showingupfornegativemoments.

5. Conclusions

The present work proposes a new method to determine the spatial moments of densities expressedin themomentum space,

i.e. formfactors.The methodprovidesa directaccesstoreal mo-ments, bothpositive andnegative, foranyformfactorfunctional.

(7)

Fig. 4. Kellyparameterizationoftheelectricformfactoroftheprotonnormalized bythedipoleparameterizationfordifferentdipolemasses:themassusedinthe presentwork (solidline),andthehistoricalparameterizationmass(dashedline). Thesaturationmomentumat2 GeV2 (verticaldottedline)andthezero-crossing momentum(verticaldash-dottedline)arealsoshown.

Particularly, it represents the only opportunity to access spatial momentswhen the Fouriertransformof a parameterization can-notbeperformed.Inaddition,unlikethederivativemethodwhich isrestrictedtoevenmoments,theso-calledintegralmethodgives accessto anymoment order, especially odd moments and more generallyanyrealmomentwith

λ

>

3.Furthermore,itprovides theformal supporttotake intoaccount thefull rangeofexisting datafor thedetermination of evenmoments, allowing us to im-provetheiraccuracyascomparedtothederivativemethod.

The integral method involves the regularization of integrals treatedasdistributions.Tworegularizationschemeswerestudied: the first one based on the principal value regularization, similar tothetechniqueusedtodetermineZemachmoments [25,26];the secondone involvinganexponentialregularization, similartothe techniqueusedtoregularizetheFouriertransformoftheCoulomb potential [20]. Thesetechniqueshavebeentestedwithrespectto thedipoleandKellyparameterizationsoftheelectromagneticform factorof the proton. The exponential regularization provides the most performant approach allowing us to determine accurately positive moments considering a squaredsaturation four momen-tumtransfer of2 GeV2. Negativemoments requirelarger satura-tionmomentabutremain quiteaccessible withreducedaccuracy (afewpercents)intheprotoncase.

Theintegralmethodisnotspecificoftheproton,andcanalso beappliedtotheneutronandnucleielectromagneticformfactors. Theseapplicationswillbepresentedelsewhere.

Declarationofcompetinginterest

Theauthorsdeclarethattheyhavenoknowncompeting finan-cialinterestsorpersonalrelationshipsthatcouldhaveappearedto influencetheworkreportedinthispaper.

Acknowledgements

ThisworkwassupportedbytheLabExPhysiquedes2Infiniset desOrigines(ANR-10-LABX-0038) intheframework



Investisse-ments d’Avenir



(ANR-11-IDEX-01), the French Ile-de-France re-gion within the SESAME framework, the INFN under the Project IniziativaSpecificaMANYBODY, andTheUniversityofTurinunder theProject BARM-RILO-19.Thisprojecthasreceivedfundingfrom theEuropeanUnions’sHorizon2020researchandinnovation pro-grammeundergrantagreementNo.824093.

Appendix A. Partialwavesexpansionofradialmoments

Thisappendixdemonstratesthatonlythesphericalcomponents oftheform factor f

(

r

)

contribute tothe radialmoments defined inEq. (10).

Consideranyrealnumber

λ

andanyfunction f

(

r

)

ofthe three-dimensional variable r, and further assume that the integral de-finedas

=



IR3

f

(

r

)

rλd3r (A.1)

is finite. Any function f

(

r

)

can be expandedin partial waves as follows f

(

r

)

=



=0



m=−

β

m

(

r

)

Y m

(

ˆ

r

)

(A.2) with

β

m

(

r

)

=



f

(

r

)

Y m

(

ˆ

r

)

r

,

(A.3) suchthat

=



=0



m=−



β

m

(

r

)

r2+λY m

(

r

ˆ

)

rdr

.

(A.4) Using



Y m

(

ˆ

r

)

r

=

4

π

δ

0

δ

m0 (A.5) weobtain

=



=0



m=− [Iλ] m

=

[Iλ]00 (A.6) where [Iλ]00

=



0

β

00

(

r

)

r2+λdr

.

(A.7)

Therefore,vanishesforany

=

0,i.e. onlythepartialwave

=

0 contributestotheintegral.Consequently,anypureradialfunction or any function whose partial wave expansion have a spherical (

=

0) term lead to a non-vanishing . Moreover, the Fourier

transformofthissphericalpartwillbeinducedonlybythe j0(kr

)

sphericalBesselfunction.

Appendix B. Momentsofapolynomialratioformfactor

Thisappendixdiscussesthedeterminationintheconfiguration space ofthe moments ofa function having Fouriertransform in momentum space expressed as a polynomial ratio. These results serve thecomparisonwiththe moments obtainedinSec. 3from themomentumintegralmethod.

Considering the polynomial ratio function

˜

fK(k

)

expressed in momentumspaceas

˜

fK

(

k

)

≡ ˜

fK

(

k

)

=

1

+

a1k2

1

+

b1k2

+

b2k4

+

b3k6

,

(B.1)

itsinverseFouriertransformwrites

fK

(

r

)

fK

(

r

)

=

1 2

π

2 1 r



0 dk k

˜

fK

(

k

)

sin

(

kr

) .

(B.2)

(8)

Table B.2

CoefficientsofthepartialfractionexpansionforKelly’sparameterization [22].Note theunitchangeofthepolynomialcoefficientsascomparedtoKelly’spolynomial: a1≡ (¯h/2M)2a1,b1≡ (¯h/2M)2b1,b2≡ (¯h/2M)4b2,b3≡ (¯h/2M)6b3,whereM isthe protonmass. i GEp GMp/μp ki(fm−1) Ai(fm−2) ki(fm−1) Ai(fm−2) e m e m e m e m 1 0 3.02 5.12 0 0 3.18 6.38 0 2 4.41 6.43 −2.56 0.97 0 13.86 1.72 0 3 −4.41 6.43 −2.56 −0.97 0 7.62 −8.10 0

˜

fK(k

)

is assumedto representa regular physics quantity,for in-stancetheelectromagnetic formfactors ofthenucleon [22],such that the denominator never vanishes for realk and the function acceptsonly complexpoles. The product k

˜

fK(k

)

can then be ex-pandedinpartialfractionsas

k

˜

fK

(

k

)

=

3



i=1



Ai k

ki

+

Ai k

ki



(B.3)

wheretheki’s(with



m

[

ki

]

>

0)arethepolesof

˜

f

(

k

)

,and Ai

= −

i 2b3

(

1

+

a1k2i

)

ki



m

[

ki

]





3 j( =i)=1

(

ki

kj

)(

ki

kj

) ,

(B.4)

are the residues of thefunction k

˜

fK(k

)

at k

=

ki.The numerical

valuesofthe Ai’s andki’s corresponding tothe parameterization

ofRef. [22] for theelectricandmagneticproton formfactorsare listedinTableB.2.Afterintegration,theradialfunctionwrites

fK

(

r

)

=

1 2

π

1 r 3



i=1 e−m[ki]r

×

(B.5)





e

[

Ai

]

cos





e

[

ki

]

r



− 

m

[

Ai

]

sin





e

[

ki

]

r



.

Theabsenceofoddpowersofk inthedenominatorof

˜

fK(k

)

leads totherelationships 3



i=1



e

[A

i

] =

3



i=1



e

[k

i

] =

0 (B.6)

which ensurea finite value of fK

(

r

)

atr

=

0.The moments,

de-terminedfromtheconfigurationspaceintegral ofEq. (10),canbe expressedas

(

,

fK

)

=

2

(λ

+

2

)

×

(B.7) 3



i=1



e

[

Ai

]

cos

ki

)

− 

m

[

Ai

]

sin

ki

)

|

ki

|

λ+2 with

λ

>

2 and

θ

ki

= (λ +

2

)

Arctan





e

[

ki

]



m

[

ki

]



.

(B.8)

Appendix C. Truncatedmomentsofapolynomialratioform factor

Analytical expressions fortruncated integer moments are de-rived hereafter for the polynomial ratio parameterization of the Fouriertransform

˜

fK

(

k

)

of Eq. (B.1), within the exponential

reg-ularizationapproachofEq. (23).

Following thediscussion ofSec.4,truncatedinteger moments aredefinedforthecut-off Q byEq. (34) andEq. (35).Theintegral isperformedbeforetakingthe



-limitandtakesthegenericform

R2p

(

Q

,



)

=



u2p

(

Q

,



)

+



3



i=1 iv2p

(



)

Arctan



Q

|

ki

|



+

w2p

(



)

Arctan



Q





(C.1)

R2p

+1

(

Q

,



)

=

u2p+1

(

Q

,



)

+

3



i=1 iv2p+1

(



)

Arctan



Q

|

ki

|



+



w2p+1

(



)

Arctan



Q





,

(C.2)

foreven andoddtruncatedmoments.Similarly tothe dipole pa-rameterization, the uj’s, ivj’s, and wj’s coefficientsaccept finite

limits when



0. The uj’s are the only coefficientsdepending

onthecut-off,andthey vanishforinfinite Q .Thefull expression ofthesefunctionsistoocumbersometobereportedhere,butgets simplifiedwhen



tendstozero.

The



-dependencein Eq. (C.1) and Eq. (C.2) distinguishes the

Q -saturation behaviour. Inthe



0+ limit, the eventruncated momentsbecome

(

r2p

,

fK

)

= (

2p

+

1

)

!

w2p

(

0+

)

(C.3)

independentofQ ,whiletheoddtruncatedmomentswrite

(

r2p+1

,

fK

)

=

2

π

(

2p

+

2

)

! ×

(C.4)



u2p+1

(

Q

,

0+

)

+

3



i=1 iv2p+1

(

0+

)

Arctan



Q

|

ki

|



stilldependingonthecut-off.Forinstance,thefirstevenmoments canbeexpressedas

(

r0

,

fK

)

=

1 (C.5)

(

r2

,

fK

)

=

3

! (

b1

a1

)

(C.6)

(

r4

,

fK

)

=

5

!



b21

a1b1

b2



(C.7) andtherecurrencerelation

(

r2p

,

fK

)

= (

2p

+

1

)

! ×

(C.8)



b1

(

r2p−2

,

fK

)

(

2p

1

)

!

b2

(

r2p−4

,

fK

)

(

2p

3

)

!

+

b3

(

r2p−6

,

fK

)

(

2p

5

)

!



,

with p

>

2, provides all the higher orders. The integrals corre-spondingtothefirstoddmomentswrite

R1

(

Q

,

0+

)

=

1 Q

2i A1 k3 1 Arctan



Q

|

k1

|



(C.9)

2iA2 k3 2 Arctan



Q

|

k2

|



2i A3 k3 3 Arctan



Q

|

k3

|



R3

(

Q

,

0+

)

=

b1

a1 Q

1 3Q3 (C.10)

+

2iA1 k51Arctan



Q

|k

1

|



+

2i A2 k52Arctan



Q

|k

2

|



+

2iA3 k53Arctan



Q

|k

3

|



R5

(

Q

,

0+

)

=

b 2 1

a1b1

b2 Q

b1

a1 3Q3

+

1 5Q5 (C.11)

(9)

2iA1 k7 1 Arctan



Q

|

k1

|



2i A2 k7 2 Arctan



Q

|

k2

|



2iA3 k7 3 Arctan



Q

|

k3

|



.

Thespecific structure of

˜

fK

(

k

)

as aratio ofpolynomials ofeven

powerofk with nopoleson therealk-axis,leads eitherto pure imaginarypoles or to relationship between Ai’sand ki’s. For

in-stance,inaddition tothe generalpropertiesofEq. (B.6) wehave fortheprotonelectricformfactor(TableB.2)

|

k2

| = |

k3

| ⇒ |

A2

| = |

A3

|

(C.12)

k2

= −

k3

A2

=

A3 (C.13)

suchthat

R2p

+1(Q

,

0+

)

arepurerealquantities.Inthelimit Q

,Eq. (C.9)-(C.11) provide

(

r1

,

fK

)

= −

2i 2

!



A1 k31

+

A2 k32

+

A3 k33



(C.14)

(

r3

,

fK

)

=

2i 4

!



A1 k51

+

A2 k52

+

A3 k53



(C.15)

(

r5

,

fK

)

= −

2i 6

!



A1 k7 1

+

A2 k7 2

+

A3 k7 3



,

(C.16) andgenerally

(

r2p+1

,

fK

)

= (−

1

)

p+12i

(

2p

+

2

)

!

3



i=1 Ai k2pi +3

.

(C.17)

Appendix D.D-dimensionalgeneralizationoftheintegral method

Thegeneralizationoftheprincipalvalueregularizationmethod IM1 to a D-dimensional spacemanifests mainlyin thechangeof

thenormalizationcoefficient

N

λ(Eq. (15)).InD dimensions,

N

λ;D

writes

N

λ;D

=

2λ+1





λ+2D







λ2







D2



(D.1) andEq. (18) canbegeneralizedas

(

,

fD

)

=

N

λ;D



0 dk

 ˜

fD

(

k

)

n j=0

˜

f2 j;Dk2 j +1



(D.2)

where

˜

fD is the D-dimensional Fourier transform of the

D-dimensionalchargedensity fD

˜

fD

(

k

)

=



IRD dDr eik·rfD

(

r

)

(D.3) with

˜

f2 j;D

=

1 j

!

djf

˜

D

(

k

)

d

(

k2

)

j







k=0

.

(D.4)

Theweak limitregularizationmethodIM2,asdefinedinEq. (23),

canbegeneralizedtoa D-dimensionalspaceas

(

,

fD

)

=

1

(

2

π

)

D



IRD dDk

˜

f

(

k

)

;D

(

k

)

(D.5) where ;D

(

k

)

=

lim →0+

I

λ;D

(

k

,



)

(D.6) with

I

λ;D

(

k

,



)

=



IRD dDr rλerei k·r

.

(D.7)

ForD

2,thisintegralcanbeexpressedas

I

λ;D

(

k

,



)

=

D

π

D/2

(

k2

+



2

)

(D+λ)/2

 (

D

+ λ)





D2

+

1



(D.8)

×

2F1



D

+ λ

2

,

λ

+

1 2

;

D 2

;

k2 k2

+



2



where 2F1 isthe hypergeometricfunction [27]. Forinstance,this

expression can be used for the case D

=

2 of relevance for the relativisticapproachofthenucleonstructureproposedinRef. [15]. ForthecaseD

=

3,Eq. (24) isrecovered.

References

[1]C.E.Carlson,Prog.Part.Nucl.Phys.82(2015)59. [2]R.J.Hill,EPJWebConf.137(2017)01023. [3]J.C.Bernauer,R.Pohl,Sci.Am.310(2014)32.

[4]A1Collaboration,J.C.Bernauer,etal.,Phys.Rev.Lett.105(2010)242001. [5]CREMACollaboration,R.Pohl,etal.,Nature466(2010)213.

[6]G.Lee,J.R.Arrington,R.J.Hill,Phys.Rev.D92(2015)013013. [7]I.Sick,D.Trautmann,Phys.Rev.C95(2017)012501. [8]PRadCollaboration,W.Xiong,etal.,Nature575(2019)147. [9]CREMACollaboration,A.Antognini,etal.,Science339(2013)417. [10]CREMACollaboration,R.Pohl,etal.,Science353(2016)669. [11]M.Hoballah,etal.,Eur.Phys.J.A55(2019)112.

[12]https://physics.nist.gov/cgi-bin/cuu/Value?rp.

[13]ParticleDataGroup,P.A.Zyla,etal.,Prog.Theor.Exp.Phys.(2020)083C01,in press.

[14]ScottK.Barcus,DouglasW.Higinbotham,RandallE.McClellan,Phys.Rev.C102 (2020)015205.

[15]G.A.Miller,Phys.Rev.C99(2019)035202.

[16]M.Mihoviloviˇc,etal.,Phys.Lett.B771(2017)194,arXiv:1905.11182,2019. [17]I.M.Guelfand,G.E.Chilov,LesDistributions,Dunod,Paris,1962.

[18]L.Schwartz,MéthodesMathématiquesPourlesSciencesPhysiques,Hermann, Paris,1965.

[19]A.Erdélyi,W.Magnus,F.Oberhettinger,F.G. Tricomi,HigherTranscendental Functions(Vol.I),McGraw-HillInc.,NewYork,1953.

[20]L.Fetter,J.D.Walecka,QuantumTheoryofMany-ParticlesSystems, McGraw-HillInc.,NewYork,1980.

[21]A.Altland,J.vonDelft,MathematicsforPhysicists,CambridgeUniversityPress, Cambridge,2019.

[22]J.J.Kelly,Phys.Rev.C70(2004)068202.

[23]V.Punjabi,C.F.Perdrisat,M.K.Jones,E.J.Brash,C.E.Carlson,Eur.Phys.J.A51 (2015)79.

[24]S.J.Brodsky,G.R.Farrar,Phys.Rev.Lett.31(1973)1153. [25]A.C.Zemach,Phys.Rev.104(1956)1771.

[26]M.O.Distler,J.C.Bernauer,T.Walcher,Phys.Lett.B696(2011)4.

[27]M.Abramowitz,I.A.Stegun,HandbookofMathematicalFunctions,Dover Pub-lications,NewYork,1972.

Riferimenti

Documenti correlati

Differences in risk factors for the onset of albuminuria and decrease in glomerular filtration rate in people with type 2 diabetes mellitus: implications for the pathogenesis of

persona solo in base alla sua malafama preterita, presumendo un suo comportamento malvagio anche nel presente. Come si vede, non è più la fama del fatto a muovere il processo, ma

SCN4A mutation as modifying factor of Myotonic Dystrophy Type 2 phenotype... Authors’ affiliations: a Department of Biomedical Sciences for Health, IRCCS Policlinico San

Carlesi, Segretario Generale di Enoteca Italiana &#34;In Paesi come la Cina, non basta presentarsi alle fiere di settore e proporre agli importatori il

The National Authority for Citizenship within the Ministry of Justice is the Romanian state agency that controls the process from filing the application for naturalisation to

The control regions are chosen to be kinematically close to the corresponding signal region, to minimize the systematic un- certainty associated with extrapolating the background

centrale è il concetto di storia; esso è esaminato da più punti di vista: in primo luogo il giovane studioso tedesco considera il significato ‘della storia’ alla luce della

We saw above that, in order to capture the non-perturbative physics of the 4d N = 2 model corresponding to the direct sum of an ADE 2d minimal model and the W1 = epZ + e−Z one or