• Non ci sono risultati.

Electrical and topological drivers of the cascading failure dynamics in power transmission networks

N/A
N/A
Protected

Academic year: 2021

Condividi "Electrical and topological drivers of the cascading failure dynamics in power transmission networks"

Copied!
11
0
0

Testo completo

(1)

Electrical

and

topological

drivers

of

the

cascading

failure

dynamics

in

power

transmission

networks

Alberto

Azzolin

a

,

Leonardo

Dueñas-Osorio

b, ∗

,

Francesco

Cadini

d

,

Enrico

Zio

a, c

a Dipartimento di Energia - Politecnico di Milano, Piazza Leonardo Milano, Italy

b Department of Civil and Environmental Engineering, Rice University, 6100 Main Street, Houston TX 77005, United States

c Chair System Science and the Energy Challenge, Fondation Electricite ’ de France (EDF), Centrale Supélec, Université Paris-Saclay, Grande Voie des Vignes, 92290 Chatenay-Malabry, France d Dipartimento di Meccanica - Politecnico di Milano via La Masa 1 - 20156 Milano, Italy

abstract

Tosystematicallystudykeyfactorsaffectingcascadingfailuresinpowersystems,thispaperadvancesalgorithms forgenerating syntheticpowergrids with realistictopologicalandelectricalfeatures,whilecomputationally

quantifyinghowsuchfactorsinfluencesystemperformanceprobabilistically.Keyparametersaffectinglineout-agesandpowerlosses duringcascadingfailures includelineredundancy,load/generatorlayoutandre-dispatch strategies. Ourstudycombinesasynthetic powergrid generatorwithadirect current(DC) cascadingfailure simulator.Theimpactofeachofthefactorsandtheirinteractions unravelusefulinsightsforinterventionsaimed atreducingtheprobabilities oflargeblackoutsonexistingandfuturepower systems.Moreover,conclusions drawnfroma spectrumofdifferentpowergridtopologiesandelectrical configurationsoffer more generality thantypicallyattainedwhenstudyingspecifictestcases.Lineredundancyanddistributedgenerationappearas themost efficaciousparametersforreducingtheprobabilitiesoflargepowerlossesandmultiplelineoverloads, althoughtheeffectdecayswith networkdensity.Also, re-dispatchstrategiesarecriticalonthedistributionof thecascadingfailuresizeintermsoflinefailures. Theseandrelatedresultsprovidethebasisfor probabilistic analysesandfuturedesignofevolvingpowertransmissionsystemsunder uncertainty.

1. Introduction

Theimpactthatapowertransmissionsystem’stopologyand asso-ciatedelectricalfeatureshaveonoverallsystemreliabilityisstillnot wellunderstood,especiallywhentheirjointeffectisconsideredduring cascadingfailureevents.Andevenwhenconsideringafixednetwork topology,manydifferentelectricalconfigurationsandstatesare possi-ble,asplacementsofgenerationunitsordispatchstrategiesresultin differentpowersystemdynamicsandassociatedreliability considera-tions.

Powersystemreliabilityresearchencompasesthestudyofcascading failures,sincethesefailuredynamicshaveprovenseriousineconomic andsocialterms[1].Standardpracticeinthestudyofcascadingfailures istoapplypowerornetworkflowmodelstoalimitedsetoftestsystems tounderstandevolvingsystembehavior[2–7].Also,thereare topolog-icalstudiesforsimplifiedyetanalyticalexplorationsofsystem proper-ties,typicallybasedonsamplesofrandomlygeneratednetworkswhen theelectricaldataarenotavailable[8–11].However,theprobabilistic analysisofpowersystemssubjectedtocontingenciesisstilllimited,

of-∗Correspondingauthor.

E-mailaddress:leonardo.duenas-osorio@rice.edu(L.Dueñas-Osorio).

tenwithoutthejointeffectsoftopologicalandelectricalconfigurations (e.g.,layout,elementsiting,re-dispatch).Thus,conclusionsdrawnto dateunderprobabilisticmodels,whilevaluable,remainnoteasily gen-eralizable.Ourworkattemptstobridgethisgapbyapplyingacascading failuremodelbasedonanN-2contingencyanalysiswithDirectCurrent (DC) powerflowanalysesonasampleofsyntheticyetrealisticpower networksgeneratedtocapturesomeofthetopologicalaswellas elec-tricalandprobabilisticfeaturesofpowersystems[12].

WhilerelyingonDCpowerflowaddsrealismtothecascadingfailure model,italsorequiresthatthesyntheticnetworksbeadequate electri-cally.Hence,weextendthealgorithmbyWangetal.[12]toproduce syntheticpower gridssuitablefor DCpowerflowcomputations.The numberoffeaturescharacterizingpowergridsishigh,makingthe im-pactanalysisofallofthemprohibitive.Consequently,wegroupkey fea-turesofpowergridsintothreedifferentmacro-areasbasedonknown sensitivityanalyses[2,13]:theunderlyingtopology,theelectrical prop-ertiesof itscomponents,andthecontrolrulesgoverningthesystem. Thisgroupingisalsoconsistentwiththewayeachsyntheticpowergrid isgeneratedinourstudy,asthetopologyisconstructedfirst,thenthe

©2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ Published Journal Article available at: https://doi.org/10.1016/j.ress.2018.03.011

(2)

topologyisenrichedwiththeelectricalparameters(e.g.,impedances, powerdemandandsupplylevels,generationsiting,etc.),andfinally, thedispatch/controlrulesareembeddedintothecascadingfailure sim-ulator.

Atthetopologicallevel,thelineredundancyofthenetworkis cho-sen asinputvariable, sinceadding linesisthe baselineapproach for decreasingsystems’ congestionandhasastraightforwardinterpretation fromaninfrastructuralpointofview.Attheelectricallevel,the genera-tor/loadbuseslayoutisconsideredakeyinputthatwevaryinorderto comparevariousdegreesof centralization,fromclusteredtoamore dis-tributedsitingof loadsandgenerators.Theinterestinpower generationlayout liesintheevolutiontowardssmartgrids[1,14]. Finally,fromtheoperationalpointofview,weconsider two differentpowerre-dispatchstrategies.

Wecarryoutcomputationalexperimentsfromfullfactorialdesigns tostudytheeffect ofkeyinputparametersandoffergeneralinsights [15]. Theinputvariablesinvolvedarefullycrossedwitheach other, allowingustogatherdataoncascadingfailureeffects.Sincethis ap-proachrelies onacatalogueofpowergridsinsteadof aparticular one,theconclusionsdrawnhavemoregeneralappeal.

Asfor system performance, we studythe reliabilityof the power grid,understoodhereastheabilityofthenetworktodeliverpowerto customers(viaapowerlossmetric),whilethephysical infrastructure integrityispreserved(viacountsofoutagesacrosslines)[1]. The com-putationalexperimentsthatfollow,allowusstudyingpowerlossand lineoutagesprobabilistically,particularlyasthetopological,electrical andcontrolparametersofthesyntheticnetworksvary.Thisworkthus complementstwooftheapproachesthatdominateexistingliterature: onegeneralandoftenprobabilistic,butlimitedtotopologicalanalyses [16,17], andtheothercomprehensiveinitselectricalaspectsbut spe-cific to a system model[18,19]. We aimat a middlepoint, where we use DC power flows and also study a variety of system configurations and dispatch strategies, so as to gain generalizable insightsforfutureoperationmanagementandreliability-baseddesign ofevolving powernetworks.

Therestofthearticleisorganizedasfollows:Section2describesour globalstrategytostudyevolvinginfrastructure,particularlyvia compu-tationalexperiments.Section3describesthepowernetworkgeneration procedure andour updatestomake keysystem parameterstunable. Then,Section4describesourcascadingfailuremodel.Section5 pro-videssimulationresults,andSection6discussesoutputsanddraws in-sightsfornetworkoperation.Section7concludesthepaperandprovides ideasforfutureresearch.

2. Globalstrategyforstudyingevolvingpowersystems

Toexplorehowkeyinputsaffectcascadingfailuresinpowersystems, weperformafullfactorialexperimentaldesigntoelicitgeneral conclu-sions.Appropriatevariablesandmodelsforourexperimentaldesignsas discussednext.

2.1. Fullfactorialdesign

Throughoutourwork,wewilldealwithapowergridobjectdefined asfollows:

=(𝑉,𝐸,𝒁,𝑷𝑫,𝑷𝑮,𝑷𝑴𝑨𝑿,𝑪) (1) whereVisthesetofbuses,Eisthesetoflines,and𝐺=(𝑉,𝐸)isthe powergrid topology.VectorZcaptures theimpedancesof thelines, whilePD,PG,PMAXarethepowerdemand,supply,andmaximum supplyof thenodesinV, respectively.VectorCdenotesthecapacity ofthelines.Wedefinethesubset{Z,PD,PG,PMAX}astheelectrical propertiesofthepowergrid.

OurgoalistodeterminewhichparametersaffectinginEq.(1)are bestatreducingcascadingfailures,soastotranslatefindingsintodesign

Table1

Planningmatrixofthefullfactorialexperimentwitheachrow representinga differentfactorandeachcolumna different level.

Factors/Levels 0 1 2

Lineredundancy 𝜁 =−1 𝜁 =0 𝜁 =1 Generatorslayout K=0 K=0.5 K=1 Re-dispatch R:=Proportional R:=OPA

guidelinesgeneralizabletoevolvingpowergrids.Inparticular,we con-siderfactorssuchas:lineredundancy𝜁,theloads/generatorslayoutK, andre-dispatchstrategies.Notethattopologyandelectricalfeaturesare afunctionofthesefactors,suchthatE(𝜁),PD(K),PG(K),andPMAX(K). Inparticular,𝜁 willvaryintherange[−1,1]interpolatingelectric networks generatedbytheRT-nestedSmallWorld(RT-nestedSW) al-gorithm[12],wherearealistictopology correspondsto𝜁 =0,an as-sociatedspanningtreeto,𝜁 =−1,andagreedytriangulation(ordense planarnetwork)to𝜁 =1.Inthisway,weareabletoproducepowergrid structureswithvaryinglevelsoflineredundancy.ParameterKwillvary in[0,1],andisusedtoproducepowergridswithincreased decentral-izedgeneratorlayoutasKincreases.

Inaddition,weanalyzetheimpactoncascadingfailuresof differ-entre-dispatchstrategies.Thetermre-dispatchreferstotheactionof changingthepowersupplyordemandatthepowergrid’snodesinreal time,sothatthetotalsupplyanddemandarebalanced.Wecomparetwo re-dispatchstrategiesinourexperiments.First,aproportionalstrategy wherepowersupplyanddemandatthenodeschangesproportionallyto theirinitialvalues,anddeemedasabaselinestrategy.Second,we con-sidertheOPAmodel[20],whichisasimplificationofhowanoperator mightinterveneinarealisticsystemwhenfacingcomplex contingen-cies.Itconsistsofanoptimizationroutinewhichminimizesthepower losses,subjecttoconstraintsinpowercarryinglimits.TheOPAmodel hasbeenusedinapplicationswithfastdynamicsandlongterm evolu-tionofpowertransmissionsystems[4].

Thecomputerexperimentsaresetasfollows:powergridswith dif-ferentvaluesof𝜁 andKaregeneratedwithourextendedRT-nestedSW algorithm,foralltheirpossiblecombinations.Foreachofthesepower grids,twoseparateN-2contingencyanalysesareperformed,employing oneofthetwore-dispatchstrategieseach.Thisprocedureistantamount toabalancedfullfactorialexperimentaldesign[15], whichunravels the single and joint effects of input factors. Table 1 shows the planningmatrixoftheexperiment.

2.2. Responsevariables

Wecomputethetotalpowernotserved𝑃(𝑙𝑖,𝑙𝑗)

𝑙𝑜𝑠𝑠 andthenumberof linefailuresfromcascades𝑁(𝑙𝑖,𝑙𝑗)

𝑓𝑎𝑖𝑙 ,followingN-2contingencyanalyses onpowergridsin,asassociatedtoapairoffailedlines(li,lj).Hence,  evolvesfromitsinitialequilibriumstate0intoanewstate(𝑙𝑖,𝑙𝑗) followingthedynamicswemodeltroughsubsequentAlgorithm4.1.This procedureisthenrepeatedwithreplacementforalldistinctpairsoflines belongingto.WethendefinethetotalN-2contingencyanalysis ef-fectsaspowerlossPtotandlinefailuresNtotasfollows:

𝑃𝑡𝑜𝑡()= ∑ ( 𝑙𝑖,𝑙𝑗)∈ 𝑃(𝑙𝑖,𝑙𝑗) 𝑙𝑜𝑠𝑠 (2) 𝑁𝑡𝑜𝑡()= ∑ ( 𝑙𝑖,𝑙𝑗)∈ 𝑁(𝑙𝑖,𝑙𝑗) 𝑓𝑎𝑖𝑙 . (3)

NotethatPtotandNtotarecomputedforeachpowergrid topologi-calandelectricalconfigurationaswellasre-dispatchstrategy.Knowing howtheseperformanceindicatorsvaryincorrespondencetodifferent

(3)

configurationsofinputfactorsallowsustounderstandtheirglobal im-pactoncascadingfailurevulnerabilityandassociatedprobabilitiesof occurrence.

3. Syntheticpowergridsforcomputationalexperiments

Thefollowingsubsectionsreviewtheproceduretogeneratenew net-worktopologiesinagreementwithrealpowergrids.Then,theauthors explaintheroleoflineredundancyandgeneratorlayoutfactors(𝜁,K), whichenablesensitivityanalyses.

3.1. Topologicalpropertiesofpowernetworks

Considerapowergridtopology𝐺=(𝑉,𝐸), with|𝑉| =𝑁 asthe num-berofgenerationsources,aggregateloadsatthesubstationleveland transmissionnodes,and|𝐸| =𝑚asthe numberoflinks or transmis-sionlines.Research hasshown thatcommonlyused syntheticgraph structuressuchassmallworld[21], scalefree[22]andrandom net-worksarenotabletocapturethetopologicalfeaturesofrealpowergrids [12,17,23]. Forexample,Wangetal.[12]foundthatpowergridshave differentconnectivityscalinglawsthanstandardsmallworldgraphs.In fact,theaveragenodaldegree⟨k⟩isconstantanddoesnotscalewith thenetworkdimension,aswouldbethecaseforthesmallworldmodel [21]. Meanwhile,Cotilla-Sanchezetal.[23]noticedthattheaverage pathlength⟨l⟩scalingpropertiesof realpowergridsarein between regulargridsandsmallworldnetworks.Overall,theseandother stud-iescallformodelsthatcapturesystemtopologyaswellasfunctionality consistentwithpracticalpowersystems[12,16,17].

3.2. TheRT-nestedsmallworldmodel

Wangetal.[12]postulatednestingseveralsmall-world(SW) sub-networksintoaregularlatticetoretainelectricalsystemfeatureswhile usingsimpletopologiesthatexhibitrealisticscalingproperties[16,17]. AnotherpowernetworkgeneratorwasusedinPurchalaetal.[24]to testDCpowerflowaccuracyinactivepowerconsiderations.Theyfound boundsforthelinesreactancesandresistanceratios,belowwhichthe DCpowerestimationhasunacceptablehigherrors.TheRT-nestedSW modelhasalsobeenrefinedbyHuetal.andGengeretal.[25,26]in ordertoproducesyntheticDCandACpowerflowtestcases.While syn-theticmodelscontinuedevelopment,weadoptthebasicRT-nestedSW perspectiveandexpandasneededtorealizeourexperimentaldesign. Themethod[12], andassociatedextensionsaresummarizedinTable2.

TheinputparametersnecessarytoinitializethealgorithminStep 1{d0, ⟨k⟩,N, andthenumberofsubnetworks},areestimatedfromthe IEEE118-nodesystem[27]asourreferencerealisticnetwork through-outthestudy.Hence,Steps1–4generate powernetworks𝐺=(𝑉,𝐸) withtopologicalpropertiesconsistentwithrealsystems.Then,inStep 5,linereactancesarerandomlygeneratedfromaspecifiedheavy-tailed distributionfittedtotherealpower gridthatonewishestouseasa reference.Inthiswork,aGammadistributionisfoundtofitwellthe impedances ofthe IEEE118-node system[12]. Foreach link of the networkwesampleanimpedancevalue.Then,thesampledvaluesare sortedbymagnitudeinascendingorderandgroupedinto:locallinks, rewirelinks, andlatticeconnection linksaccordingtocorresponding proportions.Linereactancesineachgrouparethenassignedrandomly tothecorrespondinggroupoflinksinthetopology.Wewilldenotewith

ZGthereactancesvectorassociatedtoaparticulartopologyG, wherethe component𝑍𝐺

𝑙 denotesthereactanceoflinelE.

WiththepreviousStepandStep7,weextendtheRT-nestedSW algo-rithmandassignelectricalproperties,PD,PG,PMAX,C—necessaryfor DCpowerflowcomputationsandcascadingfailureanalysisasdescribed later.Networksasdescribedconstitutethebaselinesystems correspond-ingtoalineredundancylevelof𝜁 =0(Table1).Notethatchangesin 𝜁 resultinchangestotheparametersd0,⟨k⟩ ofStep1.Weexplainnext

Table2

SummaryoftheRT-nestedSmallWorldmodel(RT-nestedSW)and ex-tensions.

Pseudo-Code RT-nestedsmallworldmodelgeneration Step1 Selectthedesirednumberofsubnetworks,their

properties,andageographicaldistance thresholdd0.

Step2 Constructsubnetworksasfollows:foreachnode iselectlinksatrandom(theirnumberfollows aPoissondistributionwithmean⟨k⟩)from nodesjbelongingto𝑁(𝑖)

𝑑0={𝑗𝑑(|𝑗𝑖|)<𝑑0} (i,jaretheindicesofthenodesconsidered, andd(∙)isadistanceoperator).

Step3 RewirethesubnetworklinksusingaMarkov chainmodel.

Step4 Randomlyconnectthesubnetworkswitheach other,throughlatticeconnections. Step5 Assignthelines’ impedancesusingasuitable

probabilitydistributionmodel.

Step6 Assignpowerdemandandsupplytothenodesin thenetwork.(Extended)

Step7 Assignlinescapacities.(Extended)

howthelineredundancyofthesebaselinenetworksisvariedtoform topologieswithlevels𝜁 =−1and𝜁 =1.

3.3. Boundingmodels

The range in which baseline topologies are allowed to vary is boundedfrombelowandabovebytwolimitingcases:thepowergrid’s spanningtree (ST)which hasa minimumlevelof linestoguarantee connectivity,andthegreedytriangulation(GT)whichapproximatesthe maximumnumberoflinesinatwodimensionalplanarspace.

FromeachbaselinenetworkgeneratedwiththeRT-nestedSW algo-rithm,𝐺𝑖=(𝑉𝐺𝑖,𝐸𝐺𝑖)andassociatedimpedancevector𝒁𝐺𝑖,we con-structthe𝑆𝑇𝑖=(𝑉𝑆𝑇𝑖,𝐸𝑆𝑇𝑖)and𝐺𝑇𝑖=(𝑉𝐺𝑇𝑖,𝐸𝐺𝑇𝑖)networks.Notethat 𝑉𝑆𝑇𝑖=𝑉𝐺𝑖,while𝐸𝑆𝑇𝑖isthesubsetoflinesbelongingtoaspanningtree ofGi,withtheirrespectiveimpedances.Similarly,𝑉𝐺𝑇𝑖=𝑉𝐺𝑖and𝐸𝐺𝑇𝑖 isthesupersetoflinesbelongingtotheplanartriangulationofGi,where theimpedancesofthelinesbelongingto𝐸𝐺𝑇𝑖𝐸𝐺𝑖aregeneratedasin Section3.2.

Factor𝜁 variesin therange[−1,1]where0indicatesthebaseline topologyGandvaluesin−1≤𝜁 ≤0representthepercentageoflines belongingto𝐸𝐺𝐸𝑆𝑇uptoobtainingG.Meanwhile,valuesin0𝜁 ≤1 indicatethepercentageoflinesbelongingto𝐸𝐺𝑇𝐸𝐺whichareadded toGuptoformingaGT.Fig.1showstopologiesfor𝜁 =−1,0and1. 3.4. Sitingofloadsandgenerators

PowerdemandvectorPDandapowersupplyvectorPGacrossthe nodes’ setVG,helpdeterminethelayoutforgenerators/loadswithin thesyntheticpowergrids,whoseassignmentiscontrolledby parame-terKinTable1.Fromtheloadsperspective,weuseasvectorofpower demandPDasetconsistentwiththeIEEE118-nodesystem[27].We onlyretaintheoriginalcomponentsofthepowersupplyvectorPGand maximumpowersupplyvectorPMAXforthe15majorpower suppli-ers,astheIEEE-118systemhasgeneratorsoverrepresented(i.e., sev-eralserve asboundaryconditionstothelargersystemfromwhichit wasextracted).WecomplementedavailabledataintermsofPMAXfor theIEEE118system,withoptimalpowerflowtestcasedataincluded in Zimmerman et al. [28]. Hence, each component PGi,PMAXi,and 𝑃𝐷𝑖, 𝑖=1,2…𝑁 representsthepowersupplied,themaximumpower thatcouldbesupplied,andthepowerdemandedbybusi,respectively

(4)

Fig.1. Sampletopologieswithdifferentredundancylevelsforthesamenodesetlayout:(a)𝜁 =−1(𝑁=118,𝑚=117),(b)𝜁 =0(𝑁=118,𝑚=184),and(c)𝜁 = 1(𝑁=118,𝑚=369).

Fig.2. Samplenetworkswithdifferentgeneratorsetpositionsaccordingto:(a)𝐾=0,(b)𝐾=0.5,and(c)𝐾=1.Nodeswithblackfillaregenerators.

(ifiisaloadnode𝑃𝐺𝑖=𝑃𝑀𝐴𝑋𝑖=0).Therefore,syntheticpowergrids have15generatorbuses,93loadbusesand10transmissionbuses,to maintainrealisticproportions.Weusethefollowingprocedurewhich reliesonaspectralclusteringalgorithm[29]toassignthebuspositions ofthe15generators:

1. SelectextremesinthepowergridasextV(theextremesarethepair ofbusesmostdistantfromeachother),andathresholddistanced(K) (intendedasnumberoflinksasmostlineshavesimilarlength). 2. Buildthesubnetwork̃ =( ̃𝑉,𝐸̃)byremovingfrom allthebuses

thatareatadistancemorethandfromext,anddivideitin15bus communities ̃𝑉1,̃𝑉2,,̃𝑉15usingthespectralclusteringalgorithm. 3. Selectanodeatrandomforeachcommunity ̃𝑉𝑖,andassigntoita

powersupplyandmaximumpowersupplycomponent.

Thisprocedureforcesthegeneratorsandtheloadstobeclustered togetherdependingon:

𝑑=𝑑𝑚𝑖𝑛+𝐾(𝑑𝑚𝑎𝑥𝑑𝑚𝑖𝑛) (4) wheredministheminimumdistance(innumberoflinks)whereatleast 15busesareatadistancelessthandmin from ext,dmax is the diam-eter of thenetworkandK∈[0,1] isthe inputfactorin our experi-ment.Notethatinthissectionweareinterestedinmodelling differ-entload/generatorgeographiclayouts.Forthisreason,Eq.(4)usesthe numberoflinksasdistance,asthelinklengthdistributionis concen-tratedonasmallrangeof values[30],andthusadequatetocapture geographicpatterns;alternativessuchaselectricaldistances[31],are alsodesirablefordynamicanalyses,butnotnecessarilytoreproduce geographicallayoutpatternsasinFig.2.Thisfigurehasthree exam-plesofgeneratorpositioningfordifferentvalues ofK,so astoassist unravelingtheimpactsofgeneratorsitingoncascadingfailures.

InEq.(4)asKapproaches0,dapproachesdminandonlyafewnodes closetothenetworkextremesareavailabletobecomepowergenerators. Thisresultsinmostpowergeneratorsconcentratedinasmallportionof

thepowergrid,spatiallydistinctwithrespecttotherestofthegrid.As Kapproaches1moreandmorenodesbecomeavailableasgenerators, hencepowercanbesuppliedbybusesalloverthepowergrid,andthe spatialclusteringbetweengeneratorsandloadsblurs.Inparticular,the valuesofKconsideredforsensitivityanalysisare:0,0.5and1(Table1). Thisfactorallowusexploringtheeffectofspatiallydistributedversus centralizedpowergeneration,whichisofinterestfroma“smartgrid” perspective,especiallyasthemainlycentralizedpowergeneration struc-tureofexistinggridsevolvesintoonethatadmitsdecentralizationand distributedgeneration[1]. Asthepositionofpowergeneratingunits hasbeenfoundinPahwaetal.[13]toaffectthefrequencyandvoltage stabilityofpowergrids,italsodeterminesthepathsinDCpowerflows.

3.5. Linecapacityassignments

Toperformcascadingfailuresimulations,itisnecessarytoalsohave transmissionlines’ capacitydataconsistentwithfunctionalsystems.In realpowersystemlines,capacitiesbelongtoasetoffinitediscrete val-ues,whilepowergridsareusually𝑁−1compliant. Toproduce syn-theticpower networkswiththesefeatures, webuilda modelfor the linecapacityallocationthatdiffersfromaproportionalmodelusually foundintheliterature[13,32,5,33].Therefore,tosamplethecapacity Cloflinel,webaseourmodelonatruncatedexponentialdistribution, Eq.(5),withparameter𝜆 estimatedfromthepowerflow-to-capacity ra-tiodataofalargerealsystem(weusedaKolmogorov–Smirnovtestto confirmthattheexponentialmodelwasnotrejected).Specifically,we studiedthePolishgridavailableinZimmermanetal.[28]tosetour ex-ponentialmodel,asitisoneofthemostcompletepowertransmission networkdatasets(notethattheIEEE118 systemdoesnot offersuch

(5)

Algorithm4.1

Cascadingfailuresimulator(CFS).

Input:Powernetwork,initialfailuresli,ljE

1. 0=,computef 0vectorofpowerflowin0 2. 1=(𝑉,𝐸{𝑙

𝑖,𝑙𝑗},𝒁 ,𝑷 𝑫 ,𝑷 𝑮 ,𝑷 𝑴 𝑨 𝑿 ,𝑪 )

For:𝑟=1,2…Do

3. AdjustloadandgenerationR:={proportionalorOPA}strategy 4. Compute f rpowerflowvectorin𝑟

5. IdentifyOrasthesetoflinesoutagediniterationr

If|Or|1 6. Set𝑟+1=(𝑉,𝐸𝑟𝑂𝑟,𝒁 ,𝑷 𝑫 𝒓,𝑷 𝑮 𝒓,𝑷 𝑴 𝑨 𝑿 ,𝑪 ) Otherwise:END details): (𝐶𝑙|𝑓𝑙,𝑓𝑙𝑚𝑎𝑥,𝜁)𝜆||𝑓𝑙||𝑒𝜆|𝑓𝑙| 𝑐 𝑐2 ( 𝑒 𝜆|𝑓𝑙| 𝐶𝑚𝑎𝑥𝜁 𝑒𝑓𝜆|𝑓𝑙𝑚𝑎𝑥𝑙| )𝐼( 𝑓𝑚𝑎𝑥 𝑙 ,𝐶𝜁𝑚𝑎𝑥 ](𝑐) (5)

whereIistheindicatorfunction,𝜁 istheredundancylevelofthe net-worktowhichlinelbelongsto,𝐶𝑚𝑎𝑥

𝜁 isacapacitylimitdependentonthe lineredundancy,flisthepowerflowingthroughlwhentheDCpower flowiscomputedonthefullnetwork,and𝑓𝑚𝑎𝑥

𝑙 is: 𝑓𝑚𝑎𝑥 𝑙 =max(|||𝑓𝑙|,|𝑓𝑙1|,|𝑓𝑙2|,,|𝑓𝑙𝑚||| ) 𝑙𝐸 (6) with𝑓𝑖

𝑙asthepowerflowingthroughlinelwhenlineiisremovedfrom 𝐸,considering 𝑓𝑙

𝑙=0,and𝑚=|𝐸|. Notethatthesupport ofthe probabilitydensityfunction(pdf)inEq.(5),fordifferentvaluesoffland 𝑓𝑚𝑎𝑥

𝑙 ,coverscapacityvaluesthatarefiniteandguarantee𝑁−1 com-pliance. However,sincewewantour sampletobelongtoa discrete setofcapacities,wediscretizeEq.(5)amongequallyspacedquantiles: {̄𝐶1< ̄𝐶2<< ̄𝐶𝑛𝜁},wheren𝜁isdependentontheaveragenumberof linesofthenetworkswithredundancy𝜁:

𝑃(𝐶𝑙= ̄𝐶𝑖|𝑓𝑙,𝑓𝑙𝑚𝑎𝑥,𝜁 ) = 𝑒𝜆|𝑓̄𝐶𝑖𝑙| −𝑒𝜆|𝑓𝑙| ̄𝐶𝑖−1 𝑐2 ( 𝑒 𝜆|𝑓𝑙| 𝐶𝜁𝑚𝑎𝑥𝑒𝜆|𝑓𝑙| 𝑓𝑙𝑚𝑎𝑥 )𝐼( 𝑓𝑚𝑎𝑥 𝑙 ,𝐶𝜁𝑚𝑎𝑥 ]( ̄𝐶 𝑖). (7)

ThedistributioninEq.(7)reflectsdiscreteandfinitecapacitiesas seeninrealsystems.Ourlinepowerflow-capacityratiosaredistributed inasimilarwaytothePolishgridasareference,andareinitially𝑁−1 compliant.Thedemandingcomputationhereisfor𝑓𝑚𝑎𝑥

𝑙 ,asoneneedsto computethepowerflowforanetworkwithoneofitslinesremoved,for allofitslinesinallthegeneratednetworks.Afterapplyingconsecutively alltheproceduresjustdescribed,acompletesetofsyntheticDCpower grid modelsN isobtained whoseelements ∈ Naredefinedas in Eq.(1).

4. Cascadingfailuremodel

Inthefollowingsectionsweexplainthecascadingfailuremodel em-ployedtostudyallthepowergridconfigurationsinN.

4.1. Algorithmforcascadingfailureprocess

ThegeneralstepsareillustratedinAlgorithm4.1(Cascadingfailure simulator,CFS)basedonBienstock[2].Thealgorithmreceivesasinput apowergridobject,andtheindicesoftheinitialcoupleofline fail-ures(li,lj)tostudyN-2reliabilitycompliance.Then,Step1computes thepowerflowattheequilibriumstatebeforeinitialfailures.Step2 ap-pliestheinitialfailuretothepowergridbyremovingthetargetedlines. Then,eachiterationroftheForloopcorrespondstoafailureeventin thecascadesimulation[i.e.,whensomelinesbecomeoverloaded,with 𝑟=1correspondingtotheinitialfailureof(li,lj)].Iftheinitialfailure

doesnotleadtoacascade,thenCFS4.1stopsat𝑟=1.Step3is neces-saryinordertodealwithislandingwhenlinefailuresbreaktheoriginal networkGintomultipleconnectedcomponentswhichmighthavean imbalanceinpowersupplyordemand[34].Step3ishandledbyaDC re-dispatchlogicthatwillbeexplainedinSection4.2.Attheendofthe simulation,systemicmetrics𝑃(𝑙𝑖,𝑙𝑗)

𝑙𝑜𝑠𝑠 and𝑁

(𝑙𝑖,𝑙𝑗)

𝑓𝑎𝑖𝑙 arecomputed,andafter thealgorithmhasrunforallthecouplesoflinesofthenetwork,Ptotand NtotarecomputedasinEqs(2)and(3).

4.2. Re-dispatchlogic

During a cascading failure it is possible that an originally con-nected power network becomes separated in v subnetworks or is-lands: 𝐼𝑠𝑙1,𝐼𝑠𝑙2,,𝐼𝑠𝑙𝑣 [2].Each island,being asubsetof the orig-inal power grid , is defined consistentlywith Eq. (1) as follows: 𝐼𝑠𝑙𝑖=(𝑉𝐼𝑠𝑙𝑖,𝐸𝐼𝑠𝑙𝑖,𝒁𝐼𝑠𝑙𝑖,𝑷𝑫𝐼𝑠𝑙𝑖,𝑷𝑮𝐼𝑠𝑙𝑖,𝑷𝑴𝑨𝑿𝐼𝑠𝑙𝑖,𝑪𝐼𝑠𝑙𝑖)⊂ .In prin-ciple,islandsdonothavebalancedpowersupplyanddemand,thus re-quiringareadjustmentinvectorsPG,PDthroughanoperationcalled re-dispatch.Re-dispatchisnotapropertyofthepowergridstructureof Eq.(1),andhenceitisembeddedinStep3oftheCFSAlgorithm4.1. Wecouldhavechosenothercontrolactions;however,re-dispatchisstill oneofthemostcommonoperationalactionsusedtoreducecostsand counteractlineoverloads.Meanwhile,otheroperationssuchas trans-missionswitchingaremainlyappliedforplannedoutagemanagement andcostsreduction,buttheirimpactonreliabilityisonlystartingtobe understood[35].Hence,ateachiterationrofanoverloadingevent,the proportionalroutineadjustspowerin𝐼𝑠𝑙1,𝐼𝑠𝑙2,,𝐼𝑠𝑙𝑣asfollows: ∀𝑖𝑉𝐼𝑠𝑙𝑗 𝑃𝐺𝑟

𝑖=𝛼𝑖𝑃𝐺𝑟𝑖−1+𝛾𝑖, 𝑃𝐷𝑟𝑖=𝛽𝑖𝑃𝐷𝑖𝑟−1 (8)

where𝛼i,𝛽iand𝛾itakedifferentvaluesdependingonparticular situa-tions: 𝛼𝑖= 𝑃𝐷𝑟−1 𝑗 𝑃𝐺𝑟−1 𝑗 , 𝛾𝑖=0, 𝛽𝑖=1𝑖𝑓𝑃𝐺𝑟𝐼𝑠−1𝑙𝑗𝑃𝐷 𝑟−1 𝐼𝑠𝑙𝑗 (9) 𝛼𝑖=1, 𝛾𝑖= ( 𝑃𝑀𝐴𝑋𝑖𝑃𝐺𝑟𝑖−1 )( 𝑃𝐷𝑟−1 𝐼𝑠𝑙𝑗𝑃𝐺 𝑟−1 𝐼𝑠𝑙𝑗 ) 𝑃𝑀𝐴𝑋𝐼𝑠𝑙𝑗𝑃𝐺𝑟 −1 𝐼𝑠𝑙𝑗 , 𝛽𝑖=1𝑖𝑓𝑃𝑀𝐴𝑋𝐼𝑠𝑙𝑗𝑃𝐷𝐼𝑠𝑟−1𝑙 𝑗𝑃𝐺 𝑟−1 𝐼𝑠𝑙𝑗 (10) 𝛼𝑖=𝑃𝑀𝐴𝑋𝑖 𝑃𝐺𝑟−1 𝑖 , 𝛾𝑖=0𝛽𝑖= 𝑃𝑀𝐴𝑋𝑟−1 𝐼𝑠𝑙𝑗 𝑃𝐷𝑟−1 𝐼𝑠𝑙𝑗 𝑖𝑓𝑃𝐷𝑟−1 𝐼𝑠𝑙𝑗𝑃𝑀𝐴𝑋𝐼𝑠𝑙𝑗 (11) where𝑃𝐺𝑟−1 𝐼𝑠𝑙𝑗 = ∑ 𝑖𝑉𝐼𝑠𝑙𝑗𝑃𝐺 𝑟−1 𝑖 ,𝑃𝐷𝑟𝐼𝑠−1𝑙𝑗= ∑ 𝑖𝑉𝐼𝑠𝑙𝑗𝑃𝐷 𝑟−1

𝑖 arethetotalpower generatedanddemandedinislandjbeforetheoverloadingeventr.Also, 𝑃𝑀𝐴𝑋𝐼𝑠𝑙𝑗=

𝑖𝑉𝐼𝑠𝑙𝑗𝑃𝑀𝐴𝑋𝑖

isthetotalpowercapacityof theisland. Thisproportionallogicissimplebynottakingintoaccountthe capaci-tiesofthesurvivinglinesinthesystemandisclosetoa“no-redispatch simulation”,particularlyasitmaintainspowerbalanceinthenetwork withlimitedoptimizationsteps,interveningonlyincaseofislanding. Proportionalpowergenerationisstillfrequentlyusedinpracticeasin thecaseofgeneratordisconnections[34].Inthecaseoffastcascading failures,therecouldbeinsufficienttimetocarryoutmoresophisticated thanproportionalinterventions.Hence,theproportionallogicoffersa suitablebaselineforcomparisonwithdesiredoptimizationbased strate-gies.

Incontrast,theOPAmodelre-dispatchespowerbysolvingthe fol-lowinglinearprogramforeachisland𝐼𝑠𝑙1,𝐼𝑠𝑙2,,𝐼𝑠𝑙𝑣:

𝑗∈ {1,2,,𝑣}solve: min Δ𝑝𝑔,Δ𝑝𝑑𝑖𝑉𝐼𝑠𝑙𝑗 Δ𝑝𝑔𝑖+100 ∑ 𝑖𝑉𝐼𝑠𝑙𝑗 Δ𝑝𝑑𝑖 (12) Subjectto: ∀𝑖𝑉𝐼𝑠𝑙𝑗 ∶ −𝑃𝐺𝑟−1 𝑖 ≤Δ𝑝𝑔𝑖𝑃𝑀𝐴𝑋𝑖 (13)

(6)

P loss P( F D C-1 los s ) N fail N ( F D C-1 fa il )

Fig.3. Probabilisticresponsevariablesasafunctionoftopologyvariationsgovernedby𝜁:(a)log-logplotofthetaildistributionsofPloss,and(b)semi-logplotfor thetaildistributionofNfail.

𝑖𝑉𝐼𝑠𝑙𝑗 0Δ𝑝𝑑𝑖𝑃𝐷𝑟−1 𝑖 (14) ∑ 𝑖𝑉𝐼𝑠𝑙𝑗𝑝𝑔𝑖−Δ𝑝𝑑𝑖)= ∑ 𝑖𝑉𝐼𝑠𝑙𝑗 (𝑃𝐺𝑟−1 𝑖𝑃𝐷𝑖𝑟−1) (15) ∀𝑙𝐸𝐼𝑠𝑙𝑗∶ −𝐶𝑙𝑓𝑙+𝜀𝑙𝐶𝑙𝑩𝑙⋅(𝚫𝒑𝒈𝚫𝒑𝒅)≤𝐶𝑙𝑓𝑙+𝜀𝑙𝐶𝑙 (16) whereBl·isthelthrowofthesusceptancematrixBofthenetwork.The objectivefunctioninEq.(12)allowstore-dispatchpowergiving prior-itytogeneratorsbypenalizingpowerdemandmodifications,asavoided wheneverpossibleinpractice.ConstraintsinEq.(13)makesurethatthe powersuppliedbyeachgeneratorisalwaysbelowitsmaximum capac-ity,whileconstraintsinEq.(14)boundthepowerdemandedfromeach loadtoitsinitialvalue(whenthegridisinequilibrium).Constraintsin Eq.(15)ensurethatineachisland,supplyanddemandarebalanced, andconstraintsinEq.(16)forcethere-dispatchactiontorespectthe survivinglines’ capacities.Sinceinrealsituationsthethermalratingof transmissionlinesisneverknownexactlyanddependsonexternal con-ditionsaswellasintrinsicpropertiesofthematerialandshapeofthe conductors,asmallerrornoiseɛlClisintroducedinthenominalcapacity valueCl.ɛl israndomlysampledfromauniformdistributionbetween −0.01and0.01everytimetheoptimizationisperformed. After solv-ingthelinearprogram,thepowersupply/demandofeachbusinIsljis adjusted:

𝑃𝐷𝑟

𝑖=𝑃𝐷𝑟𝑖−1−Δ𝑝𝑑𝑖∀𝑖∈𝑉𝐼𝑠𝑙𝑗 (17)

𝑃𝐺𝑟

𝑖=𝑃𝐺𝑟𝑖−1+Δ𝑝𝑔𝑖𝑖𝑉𝐼𝑠𝑙𝑗 (18)

TheOPAmodelisa simplificationof howapowergrid operator mightinterveneinre-dispatchingpower.Ithasbeenusedtosolve opti-mizationproblemsrelatedtothepreventionofblackouts[36],aswell astostudythevulnerabilityofinterdependentsystems[37].

5. Computationalexperimentsandresults

5.1. Impactoftopologyoncascadefailurevulnerability

Fig.3showsthelog-logandsemi-logplotsofthetaildistributionof responsevariablesPlossandNfailfortheoriginalsyntheticpowergrids andthetwoboundingtopologiesderivedinSection3.3,representing variouslineredundancyfactors𝜁.

Asexpected, thecomplementary cumulativedistributionfunction (ccdf) for baseline networks (𝜁 =0) is halfway vulnerable between powerdeliveryinterruptionsinthetreenetwork(𝜁 =−1)andthegreedy triangulation(𝜁 =1)[Fig.3(a)].For𝜁 =−1,thepowergridsshowhigh probabilities of power losses, as the probability of Ploss>102MW is above50%.Sincepowerlossesdependonislandingandbus disconnec-tionsinourmodel,suchstrategiesareatoddswhen𝜁 =−1asonly min-imalsetsoflinesnecessarytoensureconnectivityarepresent.Hence, eachlinefailureissufficienttosplitthegridsintomultipleconnected componentsand,dependingonthepositionofgenerators,causepower losses.When𝜁 =0and𝜁 =1,topologiesarelesssensitivetolinefailure givenmorealternativepathstosatisfydemands,andinmostcasesfew failuresdonotaltersystem-levelfunctionalpathways.Infact,the prob-abilityofhavingPloss>102MWafteradoublecontingencyis approxi-mately1%for𝜁 =0,andbelow0.01%for𝜁 =1.However,notethat thetailoftheccdffor𝜁 =0stillreachesvaluescomparabletotheworst scenariosinthetreenetworks,signalingundesirableconfigurations al-thoughatamuchlowerfrequency.Nosuchconfigurationispresentin thegreedytriangulationgiventheshorttail.Themaximumpowerlosses forthethreedifferentnetworkgroupsare:3,879MWfor𝜁 =−1,3,098 MWfor𝜁 =0and598MWfor𝜁 =1onatotalinitialpowerproduction of4,377MW.

TheroleoflineredundancyisdifferentwithrespecttoNtot,where Fig.3(b)showsthatthe𝜁 =0topologieshavehigherprobabilitiesof additionallinefailuresaftertheinitialdoublelinecontingency.Thisis becauselineoverloadsaffectlinesbelongingtoalternativepaths,and sincein𝜁 =−1configurationsonlyonepathexistsbetweeneachcouple ofbuses,nooverloadduetopowerflowre-distributionispossible.In contrast,the𝜁 =0 and𝜁 =1topologiescanbesubjecttolinefailures whenthepowerflowisre-directed.ThetaildistributionofNfailishigher for𝜁 =0than𝜁 =1showingthatNfailisnon-linearandnon-monotonic withrespectto𝜁.The𝜁 =1networkshaveamuchhighernumberof alternativepaths thanthe𝜁 =0 configurations, thusthepowerflow re-directed bytheinitiallinefailuresisdispersedamongalargerset ofpossiblealternativeroutes.Specificresultsshowthatthemaximum numberofconsecutiveoverloadsforthethreedifferentstructuresis4 for𝜁 =−1,28for𝜁 =0and15for𝜁 =1.

5.2. Impactofgeneratorspositions

Regardingtheelectricalstructure,thereisimpactfromdifferent po-sitionsofgeneratorbusesviatheKfactor(spanningfromacentralized

(7)

P( F D C-1 los s ) K = 0 K = 0.5 K = 1 N fail N ( F D C-1 fa il ) K = 0 K = 0.5 K = 1

Fig.4. ProbabilisticresponsevariablesasafunctionofsitingfactorK:(a)log-logplotofthetaildistributionsofPloss,and(b)semilogplotforthetaildistribution ofNtot.

P to

t

Nto

t

Fig.5.Multivariatechartofthegroupaverageof(a)Ptot,and(b)Ntotwithrespectto𝜁 andK.

powersupplylayouttoadistributedone).Fig.4showsthelog-logplot oftheempiricaltaildistributionsforPlossandsemi-logofthesame quan-tityforNfail forthedifferentlevelsoffactorK—hereweconsidereda totalof360cases.

Fig.4(a)and(b)showthattheprobabilityofbothhighpowerlosses andadditionallinefailuresdecreasesasKincreases(i.e.,aswemove fromacentralizedstructuretoadistributedone).Infact,centralized powergenerationstructureshaveimportanttielineswhichconnectthe powersupplyagglomerateswiththepowerdemandsites.Failingthese tielinescausemorewidespreadpowerinterruptionsasreflectedinthe highervaluesofexpectedPloss.Incontrast,thedistributedgeneration cases(𝐾=1)aremorerobustsincethesupplyanddemandbusesare spreadthroughthenetworkandnot separablebyafewlinefailures. Thesegeneralconsiderationsdonotapplyequallytoeverytopological type,asonecanseefromthemultivariatechartforthe𝜁 × Kgroups inFig.5.Asexpected,𝜁 =−1networksaregreatlyinfluenced bythe sitingofgenerators.Infact,incentralizedgeneratorconfigurationsthe numberoftielinesisminimalforthistypeofnetwork.Eventheinitial doublecontingency,insomeconfigurations,candisconnectentirelythe supplynodesfromthedemandnodes.Theothernetworktopologiesare notsosensitive,thankstotheirN-1compliantdesign,asevenwhenall

generatorsareclusteredtogether,thereisenoughredundancyinthetie linestopreventthecompletepowersupply/demanddisconnection(see Fig.2forclusteringexamples).

ThelayoutofloadandgeneratorsseemtoaffectthelineoutagesNtot inallconfigurations,especiallythe𝜁 =0case.For𝜁 =−1thedistributed generatorsslightlyincreasethequantityoflineoutagesinthenetworks Ntot—anoppositetrendwithrespectto𝜁 ={0, 1}.Overall,onenotices thattheroleof𝜁,atlowtomediumlevelsthatcapturemostrealistic systems,iscriticalwithrespecttoKindeterminingthebehaviorofboth powerlossesandlinefailures.

5.3. Impactofre-dispatchpolicy

Inadditiontothetopologicalstructureandelectricalfeaturesofa powergrid,there-dispatchofpowergenerationisoneofthemost fre-quentlyusedcontrolactionstakenbyoperatorstodecreaseoperational costs andincrease reliability(thus essential in thecase of islanding [34]).Whencontingenciesstrike,re-dispatchisalsoappliedasa mit-igationactiontoavoidadditionalcascadefailures;however,insome realfast-evolvingcases,wrongre-dispatchcanactuallyworsenthe sit-uation[38]. Fig.6shows thelog-logplotof thetaildistributionfor

(8)

Fig.6. Probabilisticresponsevariablesasafunctionofre-dispatchstrategy:(a)log-logplotofthetaildistributionsofPloss,and(b)semi-logplotforthetail

distributionofNtot.

Fig.7. Multivariatechartforidentifyinginteractionsbetween(a)re-dispatchandtopology,and(b)re-dispatchandgeneratorsitingK.

Plossandthesemi-logplotofthetaildistributionforNfail,acrosscases whichsharethesamere-dispatchprocedure.Inparticular,weconsider aproportionalprocedureandtheOPAmodel.Theimpactofthemore sophisticatedOPAcontrolstrategyinpreventingoverloadsisclearin Fig.6(b).Infact,differentfromtheproportionalmodelwhichtriesto accommodatethedemandinagreedyway,theOPAmodelsacrifices powerdemandinordertopreventlinefailureswheneverthelinear pro-gram(12)–(18)isfeasible,thuspreventingcascadingfailurestospread. RegardingPloss,OPAseemstosucceedinreducingpowerlossesinthe mostextremescenarios,butdoesnothavesignificantimpactonsmall andmediumpoweroutagesasevidencedinFig.6(a).Thisisbecause theOPApolicyfocusesonoptimizingpowerlossesundertheconstraint ofnoadditionaloverloads(Eq.(16)),thusavoidingextendedcascades whichrepresentstheextremescenarioswherelargeamountsofpower arelost.

Fig.7showsthemultivariatechartforNtot,comparingthemean ef-fectofthecombinationsofthere-dispatchfactorwithtopologyand gen-eratorposition.TheOPAre-dispatchsuccessfullypreventslinefailures inalldifferenttopologiesandalsowithrespecttoallgenerator config-urationsinK.Overall,thebestimprovementisobtainedinthe interme-diatelineredundancylevel𝜁 =0whichwasidentifiedasmore vulner-abletolineoverloads(andtheclosesttoredundancylevelsinpractice).

Meanwhile,Ptotoffersnodiscernibleinteractionpattern,mainlybecause asnotedinFig.6,themaineffectofthere-dispatchfactoronPtotisitself weak,influencingtheoutcomesofonlyrarescenarios.

6. Insightsforpowergriddesignandoperation

Thisworkshowsthatlineredundancyandgenerator/loadlayout fac-torshaveasignificantimpactontherobustnessofpowergridstopower lossandcascadinglinefailures.Fromthelineredundancyperspective, aminimumamountofredundanttransmissionlinesisclearlynecessary toavoidpowerinterruptionseverytimealinefails.AsshowninFig.3, iftopologiesaredenserthanthe𝜁 =−1case(approachingthe𝜁 =0 lay-out),powerlossesdecrease,althoughitisstillpossibletooverloadlines due topowerflowre-distribution,andleadtowidespread blackouts. Atanextreme,ifaconsiderablenumberofredundantlinesareadded (approachingthe𝜁 =1layout),itbecomespossibletodoboth: signif-icantlydecreasetheoverloadfrequencyofthetransmissionlinesand avoidlargeblackouts.Inpractice,however,buildingnewtransmission istooexpensivetopursuea𝜁 =1 powergrid.Therefore,weidentifya baselinecombinationofthetopologicalfactorsofredundancyand gen-eratorlayoutwhich,whilebeingattainableinpractice,stillachievea goodlevelofprotectiontocascadingfailures.Tothisend,weperform

(9)

Fig.8. Confidenceintervalsofthegroupmeanof(a)Ptotand(b)Ntotfordifferentlineredundancyvalues.

Pto

t

Nto

t

Fig.9. Confidenceintervalsofthegroupmeansof(a)Ptotand(b)Ntotfordifferentlineredundancyvaluesandgeneratorlayouts.

additionalsimulationswithpowernetworkswithintermediate redun-dancylevels,in-between𝜁 ={−1,0, 1}.Sincethedesignofthecontrol strategycanbecarriedoutindependentlyfromthechoicesof𝜁 andK, weperformsimulationswiththeproportionalre-dispatchonly.Inthis wayweobtainlowerboundsonthepowernetworkrobustnessthatcan thenbefurtherimprovedbyapplyingamoresophisticatedcontrol strat-egy,suchasOPA(Figs.6and7).Fig.8(a)and(b)showtheconfidence intervalsforthemeanofPtotandNtotaswevarytheredundancylevel ofthebaselinecase(0onthex-axis)toward−1or1withproportional re-dispatch.

Fig.8(a)showsthataddinglinesalwayshelpssavingpowerlosses asPtotismonotonicallydecreasing.ThebehaviorofNtotismore com-plexandnotmonotonicasalsoevidencedinFig.3.Havingonlyafew redundantlinesabovetheSTconfigurationleadstohighlyvulnerable topologies,whilecontinuingtoaddmorelinesafterthepeak,slowly improvesthesituation(Fig.8(b)).Also,after25%ofthelineswhich separateGTfromGareaddedtothelatter,significantimprovementis achieved,butbeyondthatpointimprovementismarginal.Hence, build-ingnewtransmissionlineswouldnotbethemosteconomicandtime efficientstrategytoreducethepowergridriskofcascadingfailuresfor densertopologies,someasuresrelyingoncontrolstrategiesand/or dis-tributedgeneratorsshouldalsobeincluded.

Consideringthelayout of loadsandgeneratorswe show they af-fectmainlyNtot.Onaverage,moredistributedconfigurationsrenderless

powerlossandnoticeablysmallercascadingfailures.Themagnitudeof theimprovementsdependsontheredundancylevelofthenetwork.In particular,thelowerthenumberofredundantlinesinthegridbeforee becoming trees,themoresensitivetheresponsetogeneratorlayout. Fig.9showstheconfidenceintervalsforthemeanofPtotandNtotaswe varytheredundancylevelofthebaselinetopologyforthethree differ-entgeneratorslayouts.LookingattheconfidencebandsinFigs.8(b)and 9(b),wenoticehowforNtottheintervalsarewiderforsparsetopologies andclusteredgeneratorslayouts.

Theseresultssuggestthatdispersingpowergeneratingunitsacross thepowergridhelpstoavoidlineoverloadswheneverthenumberof redundantlinesisnotsufficient.Thistypeofinterventionishappening ad-hocviasmartgridtechnologiesanddistributedgeneration(DG) to-day.Mostlikely,combinationsoftransmissionlinebuildupandDG, which requirenovelcontrols,offera foreseeablesolutiontomanage powerlossesandcascadesinevolvingpowersystems.

Regardingre-dispatch,wefindithasadeterminantroleinavoiding theoverloadofadditionaltransmissionlinesafterinitialcontingencies materialize.Moreover,correctivere-dispatchactionsinteractina syn-ergisticwaywiththepowergridtopologies,bringingweaker configu-rationsatapproximatelythesamelevelofthestrongerones.Inpower gridsvulnerabletooverload,theoptimizedOPAmodelcouldgenerally avoidlargescalecascadesandassociatedblackouts,relativetosimpler proportionalstrategies.

(10)

7. Summaryandconclusions

Thisstudydevelopsnewstrategiestoevaluatecascadingfailure dy-namicsthroughabroadsetofrealisticpowergridtopologiesoperated withdifferentpowerre-dispatchstrategies.Cascadingfailuresare sen-sitivetotheinitialpowergridtopology,supply/demandstates,andthe controlactionsappliedwhilecascadesevolve.Mostexistingworkis spe-cifictocasestudysystemswithsettopology,andthusconclusionsare typicallynotgeneralizable.Theapproachtakeninthisworkisinstead toexplorekeytopological,electricalandcontrolinputsacrossrealistic powergridsinordertofindparametersettingstosafeguardgridsfrom cascadingfailures.Thequantitativeresultsdrawnfromthisexploration aretranslatedintohigh-levelguidelinesforreliability-basedpowergrid designthataregeneralizable,sincetheglobal-to-localcomputational strategyemployedhereisprobabilisticandaccommodatesanensemble oftopologicalandelectricalsystemconfigurations.

Resultsshowthatforreducingtheprobabilityoflargepowerlosses, improvements atthestructure/layout levels arenecessary,including strategiesthatincreaselineredundancy,decentralizegenerators,oruse combinationsofthem(atlevelsnottoo distantfromrealisticsystem configurations).Meanwhile,ifmajorrisksderivefromtoofrequent over-loads,itisbettertoinspectthecontrolpoliciescurrentlyemployedin thesystemandassessifitisnecessarytoimproveoroptimizethem. Inparticular,powerre-dispatchshowsthatlineoverloadcontainment throughoptimizedloadsheddingandpowergenerationre-scheduling iseffectiveinpreventthepropagationoffailuresinallthepowergrid configurationsconsidered.

Overallresultsshowthatthebestpracticalsolutiontotheproblemof minimizingtheprobabilityofpowerlossesandmultiplelineoverloads istohaveatopologyslightlymoreredundantthantheaveragelevel forrealisticsystems0<𝜁 <0.25,coupledwithdistributedgenerators layoutK>0.50.Inadditiontothistopologicalsolution,anoptimized re-dispatchstrategywouldbringevengreaterbenefitsbycurtailingthefew cascadingfailuresthatstillcanbreacharobustpowernetworkdesign. Also,increasedlineredundancyandgeneratordecentralizationlevels reducethevariabilityofperformancemeasures,suchasthenumberof linesoverloaded,furtheringthemanageabilityofcomplexpower sys-tems.

Futureresearchincludesextendingthecomputationalexperiments presentedinthisworkbyconsideringACpowerflow[34]andother formsofcontrolactionssuchasthosethatmodifythetopologyofthe grid[35]. Moreover,insteadofconsideringsingleordouble contingen-cies,theinitialfailureeventscouldbegeneratedwithhazard-consistent simulationapproaches,soastorepresentriskduetoextremeeventsand quantifytheassociateduncertaintyinthecascadingdynamicsofpower gridsystems.Andriskanalysesthatexploitthehierarchicalstructureof networksalsoofferuntappedopportunitiesforpowersystems[39].

Notationlist:

Factors

𝜁: lineredundancyfactor K: generatorlayoutfactor R: re-dispatchfactor

Sets

N: setofpowergridobjects

E: setofarcsofthegraphrepresentingthepowergridtopology V: setofverticesofthegraphrepresentingthepowergrid

topol-ogy

Objects:

: powergridobject

0: powergridobjectatinitialstate

𝑟: powergridconfigurationaftertherthlinefailureevent

Powergridelectricalparameters:

Z: vectorcontainingtheimpedancesofthearcs

PD: vectorcontainingthepowerdemandsforbusesinthepower grid

PDi: powerdemandforbusi

PG: vectorcontainingthepowersuppliesforbusesinthepower grid

PGi: powersupplyforbusi

PMAX: vectorcontainingthepowersupplieslimitsforbusesinthe powergrid

PMAXi: powersupplylimitforbusi

C: vectorcontainingthecapacitiesforthearcsinthepowergrid

Powerflowandcapacityallocationparametersandvariables:

l: lineofthepowergriddefinedasanarcwithimpedanceand capacity(e,Z,C)

fl: powerflowingthroughlinel 𝑓𝑖

𝑙: powerflowingthroughlinelwhenonlylineiisfailed 𝑓𝑚𝑎𝑥

𝑙 ∶ maximumpowerflowingthroughlobtainedfrom𝑁−1 con-tigencyanalysis

fr: powerflowvectorassociatedwith𝑟

̄𝐶𝑖: ithsmallercapacityvaluethatcanbesampledfromthe ca-pacitydistribution

𝐶𝑚𝑎𝑥

𝜁 ∶ maximumcapacity valueallowedfor agivenvalueofline redundancy𝜁

Re-dispatchparametersandvariables:

𝛼i: coefficientforproportionalpowergeneratoradjustmentfor busi(proportionalre-dispatch)

𝛾i: constantcoefficientforpowergeneratoradjustmentforbusi (proportionalre-dispatch)

𝛽i: coefficientforproportionalpowerdemandadjustmentforbus i(proportionalre-dispatch)

𝚫pg: powergenerationadjustmentvector(OPAre-dispatch)

𝚫pd: powerdemandadjustmentvector(OPAre-dispatch) Δpgi: powergenerationadjustmentforbusi(OPAre-dispatch) Δpdi: powerdemandadjustmentforbusi(OPAre-dispatch)

B: susceptancematrix

ɛl: noiseinthecapacitynominalvalueforlinel

Responsemeasures:

𝑃(𝑙𝑖,𝑙𝑗)

𝑙𝑜𝑠𝑠 ∶ amountofpowernotsuppliedatthefinalstatewhenli,ljare selectedasinitialfailures

𝑁(𝑙𝑖,𝑙𝑗)

𝑓𝑎𝑖𝑙 : amountoflinesfailedatthefinalstatewhenli,ljareselected asinitialfailures

Ptot: totalpowerlossacrossN-2contingencies Ntot: totalcascadinglinesacrossN-2contingencies

Acknowledgments

Theauthorswouldliketoacknowledgethesupportofthisresearchby thePolitecnicodiMilano,RiceUniversity,theU.S.NationalScience Foundation (GrantsCMMI-1436844andCMMI-1541033),theU.S. DepartmentofDefense throughitsArmyResearch Office(Grant W911NF- 13-1-0340),andtheDataAnalysisandVisualization Cyberinfrastructure fundedbyNSF undergrantOCI-0959097.

References

[1] U.S. Department of Energy the SMART GRID. Communication 2010;99:48. [2] Bienstock D. Optimal control of cascading power grid failures. In: Proceedings of the

IEEE conference on decision and control; 2011. p. 2166–73.

[3] Zio E, Sansavini G. Component criticality in failure cascade processes of network systems. Risk Anal 2011;31(8):1196–210.

[4] Mei S, Ni Y, Wang G, Wu S. A study of self-organized criticality of power system under cascading failures based on AC-OPF with voltage stability margin. IEEE Trans Power Syst 2008;23(4):1719–26.

[5] A Carreras B, Lynch VE, Dobson I, Newman DE. Critical points and transitions in an electric power transmission model for cascading failure blackouts. Chaos 2002;12(4):985–94.

[6] Haarla L, Pulkkinen U, Koskinen M, Jyrinsalo J. A method for analysing the reliability of a transmission grid. Reliab Eng Syst Saf 2008;93(February (2)):277–87.

(11)

[7] Hernandez-Fajardo I, Dueñas-Osorio L. Probabilistic study of cascading failures in complex interdependent lifeline systems. Reliab Eng Syst Saf 2013;111(March):260–72.

[8] Motter AE, Lai YC. Cascade-based attacks on complex networks. Phys Rev E - Stat Nonlinear Soft Matter Phys 2002;66(6):2–5.

[9] Crucitti P, Latora V, Marchiori M. Model for cascading failures in complex networks. Phys Rev E - Stat Nonlinear Soft Matter Phys 2004;69(4):045104 Pt 2. [10] Pu C-L, Pei W-J, Michaelson A. Robustness analysis of network controllability.

Phys- ica A 2012;391(18):4420–5.

[11] Buldyrev SV, Parshani R, Paul G, Stanley HE, Havlin S. Catastrophic cascade of fail- ures in interdependent networks. Nature 2010;464(April (7291)):1025. [12] Wang Z, Scaglione A, Thomas RJ. Generating statistically correct random

topologies for testing smart grid communication and control networks. IEEE Trans Smart Grid 2010;1(1):28–39.

[13] Pahwa S, Scoglio C, Scala A. Abruptness of cascade failures in power grids. Sci Rep 2014;4:3694.

[14] Kargarian A, et al. Toward distributed/decentralized DC optimal power flow imple- mentation in future electric power systems. IEEE Trans Smart Grid 2017(99) 1–1.

[15] Montgomery DC. Des Anal Exp 2012;2.

[16] Hines P, Cotilla-Sanchez E, Blumsack S. Do topological models provide good infor- mation about electricity infrastructure vulnerability? Chaos 2010;20(3):1–5. [17] Pagani GA, Aiello M. The Power Grid as a complex network: A survey. Physica

A 2013;392(11):2688–700.

[18] Fang Y, Sansavini G. Optimizing power system investments and resilience against attacks. Reliab Eng Syst Saf 2017;159(March (Supplement C)):161–73. [19] Bier VM, Gratz ER, Haphuriwat NJ, Magua W, Wierzbicki KR. Methodology for

iden- tifying near-optimal interdiction strategies for a power transmission system. Reliab Eng Syst Saf 2007;92(September (9)):1155–61.

[20] Dobson I, Carreras BA, Lynch VE, Newman DE. An initial model for complex dynam- ics in electric power system blackouts. In: Proceedings of the 34th annual hawaii international conference on system sciences; 2001. p. 710–18.

[21] Watts DJ, Watts DJ, Strogatz SH, Strogatz SH. Collective dynamics of ‘small-world’ networks. Nature 1998;393(6684):440–2.

[22] Albert R, Barabasi AL. Statistical mechanics of complex networks. Rev Modern Phys 2002;74(1):47–97.

[23] Cotilla-Sanchez E, Hines PDH, Barrows C, Blumsack S. Comparing the topological and electrical structure of the North American electric power infrastructure. IEEE Syst J 2012;6(4):616–26.

[24] Purchala K, Meeus L, Van Dommelen D, Belmans R. Usefulness of DC power flow for active power flow analysis. Power Eng Soc General Meeting 2005:454–9.

[25] Hu J, Sankar L, Mir DJ. Cluster-And-connect: A more realistic model for the elec- tric power network topology. In: 2015 IEEE international conference on smart grid communications, SmartGridComm 2015; 2016. p. 85–90.

[26] Gegner KM, Birchfield AB, Xu T, Shetye KS, Overbye TJ. A methodology for the cre- ation of geographically realistic synthetic power flow models. In: 2016 IEEE power and energy conference at illinois (PECI); 2016. p. 1–6. [27]“Power system test archive, UWEE.” [Online]. Available:

https://www.ee.washington.edu/research/pstca/.

[28] Zimmerman RD, Murillo Sá nchez CE, Thomas RJ. MATPOWER: Steady-state opera- tions, planning, and analysis tools for power systems research and education. Power Syst IEEE Trans 2011;26(1):12–19.

[29] Hespanha P. An efficient MATLAB algorithm for graph partitioning technical report graph partitioning. October 2004:1–8.

[30] Li J, Dueñas-Osorio L, Chen C, Berryhill B, Yazdani A. Characterizing the topologi- cal and controllability features of U.S. power transmission networks. Physica A Jul. 2016;453:84–98.

[31] Cetinay H, Kuipers FA, Mieghem PV. A topological investigation of power flow. IEEE Syst J 2017(99):1–9.

[32] Zio E, Piccinelli R. Randomized flow model and centrality measure for electrical power transmission network analysis. Reliab Eng Syst Saf 2010;95(4):379–85.

[33] Dueñas-Osorio L, Vemuru SM. Cascading failures in complex infrastructure systems. Struct Saf 2009;31(2):157–67.

[34] Allen J Wood BFW. Power generation operation and control. 2nd Ed. WILEY-INTER- SCIENCE; 1996.

[35] Zhang C, Wang J. Optimal transmission switching considering probabilistic reliabil- ity. IEEE Trans Power Syst 2014;29(2):974–5.

[36] Bienstock D, Mattia S. Using mixed-integer programming to solve power grid black- out problems. Discrete Optim 2007;4(1):115–41.

[37] Ouyang M HL, Mao Z, Yu M, Qi F. A methodological approach to analyze vulnera- bility of interdependent infrastructure. Simul Modell Pract Theory 2009;17(5):12.

[38] Andersson G, et al. Causes of the 2003 major grid blackouts in North America Eu- rope, and recommended means to improve system dynamic performance. IEEE Trans Power Syst 2005;20(4):1922–8.

[39] Gómez C, Sanchez-Silva M, Dueñas-Osorio L, Rosowsky D. Hierarchical infrastruc- ture network representation methods for risk-based decision-making. Structure and Infrastructure Engineering 2013;9(3):260–74.

Riferimenti

Documenti correlati

The conference provided a platform to discuss power system planning and management, electric machines, electric vehicles, batteries, high voltage engineering, renewable energy

The result is called singular value decomposition where the outer products are constructed from the left and right singular vectors while the linear combination coefficients of

This book contains the proceedings of the 8th WSEAS International Conference on POWER SYSTEMS (PS 2008) which was held in Santander, Cantabria, Spain, September 23-25, 2008..

YI Liu, UNITED KINGDOM Jiang Liu, UNITED STATES Shi-jer Lou, TAIWAN, CHINA Shyue-Kung Lu, TAIWAN, CHINA Mingfeng Lu, TAIWAN, CHINA Addouche Mahmoud, FRANCE Sunilkumar Manvi,

In this paper, we have been able to reduce the computing time of analysis of circuits, and analyze circuits if the circuit topology is large and the circuit is composed of

The new book of the Catalan sociologist Manuel Castells takes up again, after several years, some of the issues he tackled in some of his most famous works: the internet,

In the last example it is shown how are the estimation algorithm performances in the reactive power compensation for a grid constrained: we added upper and lower bounds to the

Integration of storage batteries into electric power systems with wind and solar power plants also increases reliability level and stabilizes of regime indexes.. Herewith