• Non ci sono risultati.

In situ generation of a family of substituted thioureas-Cadmium thiocyanate coordination polymers: a crystal engineering study for new topologies and properties.

N/A
N/A
Protected

Academic year: 2021

Condividi "In situ generation of a family of substituted thioureas-Cadmium thiocyanate coordination polymers: a crystal engineering study for new topologies and properties."

Copied!
2
0
0

Testo completo

(1)

In situ generation of a family of substituted

thioureas-Cadmium thiocyanate coordination polymers: a crystal

engineering study for new topologies and properties.

Emanuele Priola

1

, Elisabetta Bonometti

1

, Eliano Diana

1

 University of Turin, Via Pietro Giuria 7, 10125, Italy, 

e-mail: emanuele.priola@unito.it

Luminescent properties and interpretation of

transitions through TD-DFT

Computational model of the fragment Cd(tu)2(SCN)2(NCS)2 and simulated spectrum. We used a TD-B3LYP functional on optimized structure, with 631gd set base for light atoms and ecp lan el for Cadmium. The model predicts very accurately the high energy adsorption electronic transitions common for all the family. It is quite interesting that in this case the Cadmium orbitals seem to have a great importance in electronic structure of the solid, different from what is usually said for Cadmium coordination polymers.

FREQUENCY (NM)

ORBITALS INVOLVED AND SYMMETRY OF TRANSITION ASSIGNMENT 280 HOMO-3 -> LUMO+1 1A u

Ligand (SCN-) to Ligand (tu) (LL)

302 HOMO-3 -> LUMO / HOMO-1 ->LUMO

1A u

Ligand (SCN- and tu) to a mixed

state with the participation of s orbitals of Cadmium atom (LMCT)

313 HOMO-1 -> LUMO

1A u

Ligand (SCN-) to mixed state with

the participation of s orbitals of Cadmium atom (LMCT)

Introduction

The research in new materials through the rational design of weak  interaction in the solid state is  one  of  the  main  challenge  in  modern  solid  state  chemistry  and  material  science.  We  decided  to   develop the knowledge of the effects of weak interactions on coordination polymers  of cadmium  thiocyanate. This salt proved to be a good inorganic framework for coordination polymers [1], and  with the choise of appropriate ancillary ligands it is possible to obtain different rational topologies  and new materials with luminescence and NLO properties [2] . We decide to  analize the effects of  steric hindrance (more or less isotropic),  hydrogen bond, pi-pi stacking and presence of halogens  with the use of a very versatile family of organic ligands : N-substituted tioureas.  We obtained five  new  compounds  and  we  rationalize  in  this  framework  also  three  compounds  yet  reported  in  litterature:  [Cd(SCN)2(tu)2]n  (1)[3],  [Cd(SCN)2(tu)]n  (2),  [Cd(SCN)2(tu)2(H2O)]n  (3)[4],  [Cd(SCN)2(N-metiltu)2]n  (4),  [Cd(SCN)2(N-phenyltu)2]n  (5),  [Cd(SCN)2(N-2,6-difluorophenyltu)2]n  (6), [Cd(SCN)2(N, N’-diphenyltu)2(H2O)2]n (7)[5], [Cd(SCN)2(tu)2(EtOH)2]n (8), The synthesis has  been  conduced  with  an  heterogeneous  approach,  using  ammonium  and  acethate  as  counter-ions  that  are  lost  in  the  atmosphere to  obtain  pure  products.   We characterize these compounds with  single  crystal  X-ray  diffraction,  (raman  and  infrared)  vibrational  spectroscopy,  and  electronic  adsorption  and  emission  spectroscopy.  This  study  allows  also  to  rationalize  the  luminescent  properties  of  this  family  and  the  effects  of  structural  peculiarities,  both  in  inorganic  Cadmium  thiocyanate framework and in organic ancillary ligands, to the emission properties with the help of  computational models based on TD-DFT methods.   [1] Zhang, H., Wang, X., Zhang, X., Teo, B.K.,Coord. Chem. Rev., 1999,183,157-195 [2]g, H.u, H., Xiao, W., Zhang, K., Teo, B.K., Inorg. Chem., 1999, 38, 886-892;Zhang, L.P., Lu, W.J., Mak, Chem. Comm., 2003,  2830-2831; Jia, H.L., Jia, M.J., Li, G.H., Wang, Y.N., Yu, J.H., Xu, J.Q., Dalton Trans., 2013, 42, 6429-6439 [3]Nardelli, M., Braibanti, A., Fava, G., Gazz. Chim. Ital., 1957, 87, 1209-1231 [4]Mietlarek-Kropidlowska, A., Chojnacki, J., Acta Cryst.,2012, E68, m1051-m1052 [5]Zhu, H.G., Yang, G., Chen, X.M., Ng, S.W., Acta Cryst., 2000, C56, e430-431

Conclusions and Discussion

From the structural analysis of this family of compounds emerge the importance of

different interactions:

1) The choice of the solvent is essential to direct the synthesis, and from weak difference

in hydrogen bonding capability and polarity very different topology can be obtained

2) Strong hydrogen bonds from N-H of thioureas are the main driving force of the

crystallization, and the disposition of substituents and the bridging capabilities of tu

and SCN is strongly correlated to the maximization of these interactions, eigter with

thiocyanate or with intercalated solvent molecules ( This is also clear from the

optimized computational model)

3) The pi-pi stacking has a strong influence in presence of aromatic substituents,

especially with halide substituents that maximize the quadrupole of the ring.

4) Bulky substituents has a more pronounced effect on topology, reducing the

possibilities to have multiple hydrogen bonds and isolating the inorganic framework.

The anisotropy of steric hindrance has weaker effects on structure than bulk.

This family of compounds shows great luminescent properties, that from computational

modeling seem to be strongly influenced by the presence of Cadmium, differently from

what is usually reported in literature.

Cd(Ac)

2

+ 2 (NH

4

)(SCN)+ x tu

H

2

O

Ethanol

X=1

X=2

Effect of Solvent and hydrogen bonding on topology of

unsubstituted tiourea complexes

X=2

(1) (2)

(3)

Effect on the topology of coordination polymers of an asymmetric

N-substitution on tu

Cd(Ac)

2

+ 2 (NH

4

)(SCN)+ x N-Xtu

X=phenyl

X=2,4-difluorophenyl

X=metyl

X=2 X=2 X=2 (4) (5) (6)

Effect on the topology of coordination polymers of a bulkier

symmetric substitution on tu and effect of solvent interaction

Cd(Ac)

2

+ 2 (NH

4

)(SCN)+ x N,N’-X

2

tu (X=phenyl)

Ethanol

H

2

O

X=2 X=1 (8) (9)

(2)

Twinning: structural peculiarities and opportunities in

coordination polymers

Emanuele Priola

1

1

 University of Turin, Via Pietro Giuria 7, 10125, Italy, 

e-mail: emanuele.priola@unito.it

And considering the properties of twinned solids?

WHADHAWAN

TENSORIAL

CLASSIFICATION

OF TWINS

T-twins: No difference in

tensor properties

B-twins: twins differ in

at least one tensor

properties, and no

prototype structure can

be defined

Aizu twins: twins differ

in at least one tensor

properties, and a

prototype structure can

be defined

THESE TWINS CHANGE THE TENSOR

PROPERTIES, THESE ARE THE GOAL FOR AN

IMPROVEMENT IN MATERIAL SCIENCE!!

Introduction

A twin is an oriented association of individual crystals of the same chemical and crystallographic species. The individuals in a twin are  related by one or more geometrical laws (twin laws) expressed through the point symmetry of the twin versus the point symmetry of the  individual.  The  twin element (twin  center,  twin  axis,  twin  plane)  is  the  geometric  element  about  which  twin operations  (operations  relating  different  individuals)  are  performed.  These  definitions  allows  the  classifications  of  the  different  cases  in  the  framework  of    Friedel’  s  Reticular  theory  of  twinning,  extended  in  recent  years  by  Nespolo  and  others  [1].  A  different,  less    group  theory-based  classification, is based on tensor properties of crystals subject of this phenomenon[2]. However, the first classification is important from  an abstract definition of twins especially in the framework of polychromatic group theory [3], while the second is important for a more  applicative  study  on  this  phenomenon.  Tensor  properties  are  fundamental  for  solid  state  physics:  hyperpolarizability,  electrical  properties and mechanical properties  are influenced by structural phenomena that change the components in the different directions.   With a rational induction of twinning phenomenon, some peculiar properties in materials have been obtained, especially for metals, and  a more comprehensive  study in this directions can be significant. This abstract notions can be really important in the frameworks of the  research on coordination polymers for more than one reason. At first, a deep knowledge of the group theory based approach to twin  allows their recognition and classification when they are found in experimental work . This is essential, because often the unrecognition  of this phenomenon cause a poor resolution in structural determination, or wrong space group assignation, or even the impossibility to  resolve the structure. This is particularly  significant in the case of Coordination polymers: the presence of weak non strongly directed  interactions in certain specific directions  is a favorable condition for the manifestation of twinning. On the other hand, the possibility to  change the  properties of solids with a rationally conducted growth of twins is a desirable and intriguing aim. This poster presents some  of  the  instruments  that  the  theory  of  Geminography  give  us  for  a  better  interpretation  and  rationalization  of  this  phenomenon  with  possible developments.

[1]Grimmer, H., Nespolo, M., Z. Kristallogr., 2006, 221, 28-58 [2]Wadhawan, V.K., Acta Cryst., 1997, A53, 546-555

[3]Nespolo, M., Z. Kristallogr., 2004, 219, 57-71

D(L

T

)

=

holohedral vector point group descrybing the point

symmetry of L

T.

This is the twin lattice, the lattice common to

all the individuals of the twin

D(L

ind

)

=

holohedral vector point group describing the point

symmetry of L

ind

, that is the lattice of the individual

D(H)

=

holohedral supergroup of H

H

= intersection group of the oriented vector point groups of

individuals of twin

K

=

chromatic point group called

twin point group, 

point group

that represent in the vector space the symmetry of the twin and

is a supergroup of H.

OBLIQUITY

:

lets indicate [u’,v’,w’] the direction

perpendicular to (hkl) and (h’,k’,l’) the plane perpendicular to

[uvw], where [uvw] and (hkl) are the lattice plane and the

lattice row that define the twin. The angle between [uvw] and

[u’v’w’] or (hkl) and (h’k’l’) is the obliquity.

cosω = (uh + vk + wl)/L(uvw)L*(hkl)

TWIN INDEX (molteplicity)

:

ratio of the volumes V

t

and V

of primitive cells for L

T and

L

ind.

NUMBER OF TWIN

INDIVIDUALS

Some little definitions…

ω

TWIN INDEX (n)

OBLIQUITY

(ω)

RELATIONS

AMONG

D(L

T

),

D(L

IND

), D(H)

AND H

Classification of crystal twins based on Friedel Lattice theory

n =1

n >1

ω =0

ω >0

ω =0

ω >0

1) D(L

T

)=D(L

ind

) D(H) K H

SYNGONIC MEROHEDRY

2) D(L

T

)=D(L

ind

) D(H) K H

METRIC MEROHEDRY

1) D(L

T

) D(L

ind

)

PSEUDOMEROHE DRY

1) D(L

T

) ≠ D(L

ind

)

RETICULAR MEROHEDRY

2) D(L

T

) = D(L

ind

)

RETICULAR POLYHOLOHEDRY

1) D(L

T

) ≠ D(L

ind

)

RETICULAR PSEUDOMEROHED RY

2) D(L

T

) = D(L

ind

)

RETICULAR PSEUDOPOLYHOL OHEDRY

THE MOST FREQUENT IN COORDINATION

POLYMERS !!

But what is the group K? A deeper classification on the basis of polichromatic

symmetry (to kroma = the color)

.

Chromatic symmetry operation (twin law), that generate one individual from the other.

Chromatic point group , supergroup of the

intersection group with a left coset decomposition generated with the

chromatic symmetry operation .

Point group symmetry of individuals

Chromatic symmetry operation : symmetry operations that

exchange the colors of the squares.

Each individual is a different colored series of squares and maintain only the symmetry elements that doesn’t change the color

Chromatic point group is the group that formed by the “sum” of the symmetries that maintains the colors and of those that change the color with a comma to

distinguish them

{1120} Brazil Twin of alfa Quartz, a twin for syngonic merohedry

THIS SHORT NOTATION COMPREHENDS ALL THE

INFORMATION ABOUT THE TWIN CONSIDERED

!!

CONCLUSIONS

In this contribution, we show a classification of the more frequent typologies of

twins for such a low symmetry compounds like Coordination polymers. Moreover,

we would like to suggest a greater use of the short notation of chromatic groups for

this phenomenon. This expansion of symmetry groups is not only thought for n=2

twins, like dichromatic Shubnikov groups [4], but is more general, and in its

systematic all the information about the overall symmetry of the twin can be

obtained. Moreover, we want to suggest a more systematic study on the rational

crystal growth of Bollmann and Aizu twins for their enormous possibility to

change the properties with a tensor nature, not only essential in the field of

coordination polymers, but for all the material science.

Riferimenti

Documenti correlati

Therefore, the aim of the present work was to investigate the effects of an early period of mild or severe quantitative feed restriction fol- lowed by refeeding energy and

diritti umani, H. 43 Commissione europea dei diritti umani, W.P. Regno Unito, cit., par.. o salute siano in pericolo) rispetto alla tutela del diritto alla vita del feto,

It was observed that after addition of the polymer association occurred reducing the adsorption of methylene blue at Soil 1, indicating that under these

In the regime of stimulated pair production (Chapter IV) below the MOPO threshold, the analysis was mainly devoted to the investigation of the effects of the feedback mechanism on

se nel passaggio dalla prima correlazione (licoride – ciro) alla secon- da (ciro – Foloe) si ha comunque uno sviluppo (lo chiameremo pertanto ‘chiasmo evolutivo’ o ‘chiasmo

Anche la certificazione delle competenze degli stu- denti con disabilità, al pari della valutazione, per essere uno stru- mento dinamico in grado di riconoscere i progressi

The background caused by soft protons (E < 100 keV) is a major issue in X-ray telescope, and so is for ATHENA. To avoid the focalization of protons by the optics onto the focal

Another study of adult twins aged 32 –43 years reported no sex differences in the genetic and environmental components, roughly half of the variance in gambling behavior (based