• Non ci sono risultati.

Search for dark matter and large extra dimensions in pp collisions yielding a photon and missing transverse energy

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for dark matter and large extra dimensions in pp collisions yielding a photon and missing transverse energy"

Copied!
16
0
0

Testo completo

(1)

Search for Dark Matter and Large Extra Dimensions in

pp Collisions

Yielding a Photon and Missing Transverse Energy

S. Chatrchyan et al.* (CMS Collaboration)

(Received 4 April 2012; published 27 June 2012)

Results are presented from a search for new physics in the final state containing a photon () and missing transverse energy (6ET). The data correspond to an integrated luminosity of5:0 fb1collected in

pp collisions at ffiffiffisp ¼ 7 TeV by the CMS experiment. The observed event yield agrees with standard-model expectations for the þ 6ETevents. Using models for the production of dark-matter particles (),

we set 90% confidence level (C.L.) upper limits of 13.6–15.4 fb on  production in the þ 6ET state.

These provide the most sensitive upper limits for spin-dependent -nucleon scattering for  masses (M)

between 1 and 100 GeV. For spin-independent contributions, the present limits are extended to M<

3:5 GeV. For models with 3–6 large extra dimensions, our data exclude extra-dimensional Planck scales between 1.64 and 1.73 TeV at 95% C.L.

DOI:10.1103/PhysRevLett.108.261803 PACS numbers: 13.85.Rm, 11.25.Wx, 14.70.Kv, 14.80.Nb

Final states in pp collisions at the Large Hadron Collider (LHC), containing a photon () of large transverse momentum (pT) and missing transverse energy (6ET), are

used to investigate two proposals of physics beyond the standard model (SM). One involves a model for dark matter (DM), which is now accepted as the dominant nonbaryonic contribution to the matter density of the Universe [1]. Direct searches for a DM candidate () rely on detection through elastic -nucleon scattering. Indirect searches consist of observation of photons or neutrinos produced in  annihilations in astrophysical sources. At the LHC, DM can be produced in the reaction qq !  , where the photon is radiated by one of the incoming quarks. The final state is a high-pT photon and

6ET. Recent theoretical work [2–5] casts this process in

terms of a massive mediator in the s channel that couples to a  pair of Dirac particles. This process is contracted into an effective theory with a contact interaction scale, given by 2¼ ggqM2M, where MM is the mediator

mass and g and gq are its couplings to  and quarks,

respectively. The model provides a way to connect the t-channel -nucleon elastic scattering to the s-channel pair-production mechanism. The effective s-channel op-erator can be chosen to represent either a vector or axial-vector, spin-independent or spin-dependent interaction, respectively.

The þ 6ET final state also has sensitivity to models of

extra spatial dimensions. The Arkani-Hamed, Dimopoulos, and Dvali model (ADD) [6], in particular, provides a

possible solution to the hierarchy problem, viz., the disparity between two fundamental scales of nature: the electroweak unification scale (MEW  100 GeV) and the Planck scale (MPl 1019 GeV). In this framework, space-time is postulated to have n extra compact spatial dimensions with a characteristic scale R, leading to a modified Planck scale, MD, given by M2Pl MDnþ2Rn.

Assuming MD is of the same order as MEW, the observed

large value of MPl can be interpreted as being a conse-quence of the ‘‘large’’ size of R (relative to the Planck length MPl1) and the number of extra dimensions in the theory. The ADD model predicts the production of grav-itons that appear as Kaluza-Klein (KK) modes, where momenta in the extra dimensions appear as observable massive states, except for the zero mode of the KK exci-tation, which corresponds to the massless graviton in4 þ n dimensions. The process qq ! G, where the graviton G escapes detection, motivates the search for events with single high-pT isolated photons. While the individual qG

couplings are small, the number of expected KK graviton states is large enough to produce a measurable cross sec-tion, making it possible to discover large extra dimensions, or to set lower limits on MD as a function of n and upper

limits on the ADD cross section. The same physical phe-nomena can be accessed through the single-jet (monojet) production channel [7,8].

This search uses data collected with the Compact Muon Solenoid (CMS) detector [9]. The momenta of charged particles are measured using a silicon pixel and strip tracker that is immersed in a 3.8 T superconducting solenoid, and covers the pseudorapidity range jj < 2:5. The pseudora-pidity is ¼  ln½tanð=2Þ, where  is the polar angle measured relative to the counterclockwise-beam direction. The tracker is surrounded by a crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadron calo-rimeter (HCAL). Both measure particle energy depositions

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

and consist of a barrel assembly and two endcaps that provide coverage in the range ofjj < 3:0. A quartz-fiber and steel Cherenkov forward detector extends the calorimetric cover-age to jj < 5. Muons are measured in gas detectors em-bedded in the steel return yoke outside of the solenoid.

The primary background for the þ 6ET signal is the irreducible SM background from Z!   production. This and other SM backgrounds, including W, W! e,  þ jet, multijet (referred to as QCD), and diphoton events, as well as backgrounds from beam halo and cosmic-ray muons, are taken into account in the analysis.

Events are selected from a data sample corresponding to an integrated luminosity of5:0 fb1collected using a two-level trigger system, with Level-1 (L1) seeding high two-level triggers (HLT). The single-photon triggers comprising this search are not prescaled, and are fully efficient within the selected signal region of jj < 1:44 [10] and pT > 145 GeV. To optimize the analysis for single high-pT

photons accompanied by large 6ET, photon candidates are restricted to be in the central barrel region, where purity is highest. To distinguish photon candidates from jets, we apply additional calorimetric selections. The ratio of energy deposited in the HCAL to that in the ECAL within a cone ofR ¼ 0:15 is required to be less than 0.05, where R ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2 is defined relative to the photon

candidate and the azimuthal angle  is measured in the plane perpendicular to the beam axis. Photon candidates must also have a shower distribution in the ECAL consis-tent with that expected for a photon [10].

Isolation requirements on photon candidates impose upper limits on the energy deposited in the detector around the axis defined by the EM cluster position and the primary vertex [10]. In particular, the scalar sum of pT depositions in the ECAL within a hollow cone of0:06 < R < 0:40, excluding depositions within jj ¼ 0:04 of the cluster center, must be <4:2 GeV þ 0:006  pT; the sum of scalar pT depositions in the HCAL within a hollow cone of0:15 < R < 0:40 must be <2:2 GeV þ 0:0025  pT; and the scalar sum of track pT values in a hollow

cone of0:04 < R < 0:40, excluding depositions that are closer to the cluster center than jj ¼ 0:015, must be <2:0 GeV þ 0:001  pT (with pT in GeV units). The

vetoes defined by thejj cutoffs are needed to maintain high efficiency for photons that initiate EM showers within the tracker. The tracker isolation requirement is based on tracks that originate from the primary vertex.

Since the high luminosity of the LHC yields multiple pp interactions per bunch crossing, there are several recon-structed vertices per event. The primary vertex is defined as the vertex that corresponds to the largest sum of the squares of the associated track-pT values. However, to ensure that

photon candidates are isolated from charged particle tracks in events with multiple vertices, the tracker isolation re-quirement must be passed by all reconstructed vertices, or the event is rejected.

The6ETis defined by the magnitude of the vector sum of the transverse energies of all of the reconstructed objects in the event, and is computed using a particle-flow algorithm [11]. The candidate events are required to have 6ET> 130 GeV.

All events are required to have the energy deposited in the crystal containing the largest signal within the photon to be within3 ns of the time expected for particles from a collision. This requirement reduces instrumental back-ground arising from showers induced by bremsstrahlung from muons in the beam halo or in cosmic rays. Spurious signals embedded within EM showers that otherwise pass selection criteria are eliminated by requiring consistency among the energy deposition times for all crystals within an electromagnetic shower. Photon candidates are removed if they are likely to be electrons, as inferred from character-istic patterns of hits in the pixel detector, called ‘‘pixel seeds,’’ that are matched to the EM clusters [12]. In addi-tion, a veto applied to events that contain muon candidates, including those that do not emanate from the collision point, prevents bremsstrahlung from muons in cosmic rays and the beam halo from being reconstructed as prompt photons balanced by 6ET. Finally, events are vetoed if they contain significant hadronic activity, defined by (i) a track with pT> 20 GeV that is R > 0:04 away from the

pho-ton candidate, or (ii) a jet that is reconstructed with pT> 40 GeV using the anti-kT[13] particle-flow algorithm [11],

within jj < 3:0 and R > 0:5 of the axis of the photon. After applying all of the selection criteria, 73 candidate events are found.

Backgrounds that are out of time with the collisions are estimated from data by examining the transverse distribu-tion of energy in the EM cluster and the time of arrival of the signal in the crystal with the largest energy deposition. Templates for anomalous signals [14], cosmic-ray muons, and beam halo events are fitted to a candidate sample that has no timing requirement, which reveals that the only significant residual contribution to the in-time sample arises from halo muons, with an estimated 11:1  5:6 events.

Electrons misidentified as photons arise mainly from W ! e events. The matching of electron showers to pixel seeds has an efficiency of ¼ 0:9940  0:0025, as esti-mated with Monte Carlo (MC) simulated events and veri-fied with Z! ee events in data. Scaling a control sample of electron candidates by ð1  Þ= yields an estimated contribution of3:5  1:5 W ! e events in the candidate sample.

The contamination from jets misidentified as photons is estimated by using a control sample of EM-enriched QCD events to calculate the ratio of events that pass the signal photon criteria relative to those that pass looser photon criteria but fail an isolation requirement. Since the EM-enriched sample also includes the production of direct single photons, this additional contribution to the ratio is

(3)

estimated by fitting templates of energy-weighted shower widths from MC-simulated þ jets events to an indepen-dent QCD data sample, and used to subtract the þ jets contribution. This corrected ratio is applied to a subset of the EM-enriched jet events that passes loose photon identification and additional single-photon event selection criteria, providing a background contribution of11:2  2:8 jet events.

Backgrounds from Z!  , W ! ‘,  þ jet, and diphoton events are estimated from MC samples pro-cessed through the full GEANT4-based simulation of the CMS detector [15,16], trigger emulation and event recon-struction used for data. The W! ‘ samples are gen-erated with MADGRAPH5 [17], and the cross section is corrected to include next-to-leading order (NLO) effects through a K factor calculated withMCFM[18]. The Z!  ,  þ jet, and diphoton samples are obtained using the PYTHIA 6.424 generator [19] at leading order (LO) and CTEQ6L1 [20] parton distribution functions (PDF). The Z !   sample is also scaled up to reflect NLO con-tributions given in Ref. [21]. Good agreement between data and the rescaled MC prediction for the Z! ‘‘ channel has been obtained in previous CMS studies [22]. The uncertainty on Z!   and the other backgrounds takes into account several sources: theoretical uncertainties on the LO cross section and K factors; the uncertainty on the scale factor that models the data-MC difference in the efficiency; and systematic uncertainties on the photon-vertex assignment, modeling of pileup, and the accuracy of the energy calibration and resolution for photons, jets, and 6ET. The expected contribution from the Z!   process to the background is45:3  6:9 events. The com-bined expected background from W! ‘,  þ jet, and diphoton events is4:1  1:0.

The 73 observed events in data agree with the total expected background of 75:1  9:5 events. Distributions in photon pT for the selected candidate events and for those estimated from background are shown in Fig. 1. The spectra expected from ADD for MD ¼ 1 TeV and

n ¼ 3 are superimposed for comparison. Based on these results, exclusion limits are set for the DM and ADD models.

The limits on the cross sections are calculated by divid-ing the number of events in data less the predicted number of background events by the product A   L, where A is the geometric and kinematic acceptance of the selection criteria,  is the selection efficiency for signal, andL is the integrated luminosity. A  is factorized into A  MC, estimated from the MC events, multiplied by a scale factor (SF), to account for the difference in efficiency between the MC prediction and data.

The efficiency associated with the product A MCfor the signal cross section for both models is determined from MC samples. For the model of DM, the MC samples are produced using a software package from Ref. [3], requiring

pT> 125 GeV and jj < 1:5. The estimated value of

A  MC for M in the range 1–100 GeV is between

30.5%–31.0% for vector and 29.2%–31.4% for axial-vector couplings, respectively. The spectra for ADD MC events are generated using PYTHIA 8.145[23], requiring pT> 130 GeV, and scaled to NLO using a K factor from Ref. [24]. The factor A MC for ADD is in the range of 26.5%–28.5% in the parameter space spanned by n¼ 3–6 and MD¼ 1–3 GeV.

Systematic uncertainties that contribute to the A MC calculation are from the choice of PDF [20,25,26], the selection of the primary vertex for the photon, modeling of pileup, and the energy calibration and resolution for photons [10], jets [27], and 6ET [28]. The total systematic

uncertainty on A MC isþ4:8% and 4:9%.

As mentioned above, A MCis multiplied by a SF to account for the difference in efficiency between data and MC predictions. The calculated SF of 0:90  0:11 com-bines contributions from the trigger, photon reconstruction, consistency of cluster timing, and vetoes. The photon high level trigger is determined to be essentially 100% efficient for our selection criteria in data and in the MC simulation, but is assigned a 2% uncertainty due to small L1 trigger inefficiencies. Since the photon identification requirements have similar efficiencies for photons and electrons, the electron efficiency of0:960:02, as measured in Z ! ee decays is used as the SF. Corrections for photon recon-struction are described in Ref. [22]. The photon clusters in MC simulations always have consistent timing among individual crystals, and the SF in data is found to be 0:983  0:009 based on a sample of electron events. The track and jet-veto efficiency is studied in samples of W ! e data and MC, and confirmed with Z ! ee data. Since the efficiencies measured in these samples agree within their uncertainties, the SF is set to unity and assigned a systematic uncertainty of0:10. The SF for the

[GeV] T γ p 200 300 400 500 600 700 Events /GeV -4 10 -3 10 -2 10 -1 10 1 10 [GeV] T γ p = 7 TeV s CMS, -1 5.0 fb DATA Total uncertainty on Bkg γ ν ν → γ Z ν eW (QCD) γ MisID-γ +jets, W γ Beam Halo =1 TeV, n=3) D SM+ADD(M

FIG. 1 (color online). The photon pT distribution for the

candidate sample, compared with estimated contributions from SM backgrounds and a prediction from ADD for MD¼ 1 TeV

(4)

cosmic-ray muon veto is determined to be0:95  0:01 by comparing its efficiency in MC and data in a sample of Z ! ee events.

Upper limits are placed on the DM production cross sections, as a function of M, assuming vector and

axial-vector operators, summarized in Table I. These are converted into the corresponding lower limits on the cutoff scale , also listed in Table I. The  values are then translated into upper limits on the -nucleon cross sections, calculated within the effective theory framework. These are displayed in Fig. 2 as a function of M [2]. Superposed are the results from selected other experiments. Previously inaccessible  masses below  3:5 GeV are excluded for a -nucleon cross section greater than 3 fb at 90% C.L. For spin-dependent scat-tering, the upper limits surpass all previous constraints for the mass range of 1–100 GeV. The results presented are valid for mediator masses larger than the limits on , assuming unity for the couplings g and gq. The specific case of light mediators is discussed in Refs. [3,30]. The assumptions on  interactions made in calculating the limits vary with experiments. Further, in the case of direct and indirect searches, an astrophysical model must be assumed for the density and velocity distribution of DM.

A set of 95% C.L. upper limits are also placed on the ADD cross sections and translated into exclusions on the parameter space of the model. The upper limits are calcu-lated using aC:L:smethod [31], with uncertainties

parame-trized by log-normal distributions in the fit to data. The limits on MD, with and without K factors, are summarized

in Table I. Masses MD< 1:64 TeV are excluded at

95% C.L. for n¼ 3, assuming NLO cross sections. These limits, along with existing LO ADD limits from the Tevatron [32,33] and LEP [34], are shown in Fig. 3

as a function of MD, for n¼ 4 and n ¼ 6 extra dimensions. These results extend significantly the limits on the ADD model in the single-photon channel beyond previous measurements at the Tevatron and LEP experiments, and set limits of MD> 1:64–1:73 TeV for n ¼ 3–6 at 95% C.L.

In summary, the agreement between single-photon production in pp collisions at 7 TeV and standard-model expectations was used to derive significant upper limits on the vector and axial-vector contributions to the -nucleon scattering cross section. This search was complementary to searches for elastic -nucleon scattering or  annihila-tion. In addition, through greater sensitivity to the ADD model, the analysis attained the most stringent limits on an

TABLE I. (a) Observed (expected) 90% C.L. upper limits on the DM production cross section , and 90% C.L. lower limits on the cutoff scale for vector and axial-vector operators as a function of the DM mass M. (b) Expected and observed lower

limits on MDat 95% C.L., as a function of extra dimensions n,

with K factors (and without, i.e., K¼ 1).

(a) 90% C.L. Limits on DM model parameters.

M[GeV] Vector Axial-Vector

 [fb]  [GeV]  [fb]  [GeV] 1 14.3 (14.7) 572 (568) 14.9 (15.4) 565 (561) 10 14.3 (14.7) 571 (567) 14.1 (14.5) 573 (569) 100 15.4 (15.3) 558 (558) 13.9 (14.3) 554 (550) 200 14.3 (14.7) 549 (545) 14.0 (14.5) 508 (504) 500 13.6 (14.0) 442 (439) 13.7 (14.1) 358 (356) 1000 14.1 (14.5) 246 (244) 13.9 (14.3) 172 (171)

(b) 95% C.L. Limits on ADD parameters.

n K factors Expected Observed

MD[TeV] MD[TeV]

3 1.5 1.70 (1.53) 1.73 (1.55)

4 1.4 1.65 (1.53) 1.67 (1.55)

5 1.3 1.63 (1.54) 1.64 (1.56)

6 1.2 1.62 (1.55) 1.64 (1.57)

FIG. 2 (color online). The 90% C.L. upper limits on the -nucleon cross section as a function of M for (a)

spin-independent and (b) spin-dependent scattering. Also shown are the limits from selected experiments [29,35–42].

(5)

effective extra-dimensional Planck scale obtained in the  þ 6ET production channel.

We thank R. Harnik, P. J. Fox, and J. Kopp for help in modeling dark-matter production. We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan);

MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

[1] R. Gaitskell,Annu. Rev. Nucl. Part. Sci. 54, 315 (2004). [2] Y. Bai, P. J. Fox, and R. Harnik,J. High Energy Phys. 12

(2010) 048.

[3] P. J. Fox, R. Harnik, J. Kopp, and Y. Tsai,Phys. Rev. D 85, 056011 (2012).

[4] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P. Tait, and H.-B. Yu.Phys. Lett. B 695, 185 (2011). [5] J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T. M. P.

Tait, and H.-B. Yu.Phys. Rev. D 82, (2010).

[6] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali, Phys. Lett. B 429, 263 (1998).

[7] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. Lett. 107, 201804 (2011).

[8] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 705, 294 (2011).

[9] CMS Collaboration,J. Phys. G 34, 995 (2007).

[10] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-EGM-10-006, 2011, http:// cdsweb.cern.ch/record/1324545?ln=en.

[11] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-PFT-10-002, 2010, http://cdsweb .cern.ch/record/1279341?ln=en.

[12] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-EGM-10-004, 2010, http:// cdsweb.cern.ch/record/1299116?ln=en.

[13] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[14] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-NOTE-2010-012, 2010, http://cdsweb .cern.ch/record/1278160?ln=en.

[15] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [16] J. Allison et al.,IEEE Trans. Nucl. Sci. 53, 270 (2006). [17] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T.

Stelzer,J. High Energy Phys. 6 (2011) 128.

[18] J. Campbell, R. Ellis, and C. Williams, MCFM v6.1: A Monte Carlo for FeMtobarn processes at Hadron Colliders,http://mcfm.fnal.gov/mcfm.pdf(2011). [19] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy

Phys. 5 (2006) 026.

[20] J. Pumplin, D. Stump, J. Huston, H. Lai, P. Nadolsky, and W. Tung,J. High Energy Phys. 07 (2002) 012.

[21] U. Baur and E. Berger,Phys. Rev. D 47, 4889 (1993). [22] S. Chatrchyan et al. (CMS Collaboration),Phys. Lett. B

701, 535 (2011).

[23] T. Sjo¨strand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).

[24] X. Gao, C. S. Li, J. Gao, and J. Wang,Phys. Rev. D 81, 036008 (2010).

[25] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, J. Feltesse, S. Forte, A. Glazov, J. Huston, R. McNulty, T. Sjo¨strand, and R. Thorne,arXiv:1101.0538.

Number of Extra Dimensions

3 4 5 6 Lower Limit on M D [ T eV ] 0.5 1 1.5 2 2.5 ) T E + γ CMS NLO ( ) T E + γ CMS LO ( ) T E + γ CDF LO ( ) T E + γ D0 LO ( ) T E + γ LEP ( -1 5.0 fb = 7 TeV s CMS, MD[TeV] 1 1.2 1.4 1.6 1.8 2 Cross section [fb] 1 10 102 95% CL Obs. Limit 95% CL Exp. Limit 68% CL Exp. Limit 95% CL Exp. Limit -1 5.0 fb = 7 TeV s CMS, n=4, Theory NLO n=4, Theory LO n=6, Theory NLO n=6, Theory LO (a) (b)

FIG. 3 (color online). (a) The 95% C.L. upper limits on the LO and NLO ADD cross sections as a function of MDfor n¼ 4 and

6. (b) Limits on MDas a function of n, compared to LO results

(6)

[26] A. Martin, W. Stirling, R. Thorne, and G. Watt,Eur. Phys. J. C 63, 189 (2009).

[27] CMS Collaboration,JINST 6, P11002 (2011). [28] CMS Collaboration,JINST 6, P09001 (2011).

[29] CDF Collaboration,Phys. Rev. Lett. 108, 211804 (2012). [30] I. Shoemaker and L. Vecchi,arXiv:1112.5457.

[31] K. Nakamura et al. (Particle Data Group),J. Phys. G 37, 075021 (2010).

[32] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 101, 181602 (2008).

[33] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 101, 011601 (2008).

[34] J. Abdallah et al. (DELPHI Collaboration),Eur. Phys. J. C 38, 395 (2005).

[35] E. Aprile et al. (XENON100 Collaboration), Phys. Rev. Lett. 107, 131302 (2011).

[36] Z. Ahmed et al. (CDMS Collaboration),Phys. Rev. Lett. 106, 131302 (2011).

[37] CDMS II Collaboration,Science 327, 1619 (2010). [38] C. E. Aalseth et al. (CoGeNT Collaboration),Phys. Rev.

Lett. 106, 131301 (2011).

[39] M. Felizardo, T. Morlat, A. C. Fernandes, T. A. Girard, J. G. Marques, A. R. Ramos, M. Auguste, D. Boyer, A. Cavaillou, C. Sudre, J. Poupeney, R. F. Payne, H. S. Miley, and J. Puibasset (SIMPLE Collaboration),Phys. Rev. Lett. 105, 211301 (2010). A more recent update can be found in

arXiv:1106.3014v3.

[40] E. Behnke et al., Phys. Rev. Lett. 106, 021303 (2011).

[41] R. Abbasi et al. (IceCube Collaboration),Phys. Rev. D 85, 042002 (2012).

[42] T. Tanaka et al.,Astrophys. J. 742, 78 (2011).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bN. Ho¨rmann,2J. Hrubec,2M. Jeitler,2 W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2

R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4K. Cerny,4T. Cornelis,4E. A. De Wolf,4

X. Janssen,4S. Luyckx,4T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4 H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5

J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6 T. Hreus,6A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6V. Adler,7K. Beernaert,7

A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7 A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7 S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8 L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8

K. Piotrzkowski,8N. Schul,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10

M. Correa Martins Junior,10D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11 W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11 D. Matos Figueiredo,11L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11 S. M. Silva Do Amaral,11L. Soares Jorge,11A. Sznajder,11T. S. Anjos,12,dC. A. Bernardes,12,dF. A. Dias,12,e T. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12

Sandra S. Padula,12V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13 V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14

P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15 J. Wang,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16 Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16S. Wang,16B. Zhu,16W. Zou,16 C. Avila,17B. Gomez Moreno,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,f

D. Polic,18I. Puljak,18,bZ. Antunovic,19M. Dzelalija,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20 J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21

P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,gS. Elgammal,23,hA. Ellithi Kamel,23,iS. Khalil,23,j M. A. Mahmoud,23,kA. Radi,23,jM. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24A. Tiko,24V. Azzolini,25

P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26 T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26K. Banzuzi,27 A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28 F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28 L. Millischer,28A. Nayak,28J. Rander,28A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29

(7)

L. Benhabib,29L. Bianchini,29M. Bluj,29,lC. Broutin,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29 L. Dobrzynski,29R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29C. Ochando,29 P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,mJ. Andrea,30D. Bloch,30

D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,mF. Drouhin,30,mC. Ferro,30 J.-C. Fontaine,30,mD. Gele´,30U. Goerlach,30P. Juillot,30M. Karim,30,mA.-C. Le Bihan,30P. Van Hove,30F. Fassi,31 D. Mercier,31S. Beauceron,32N. Beaupere,32O. Bondu,32G. Boudoul,32H. Brun,32J. Chasserat,32R. Chierici,32,b

D. Contardo,32P. Depasse,32H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32 M. Lethuillier,32L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32S. Viret,32 Z. Tsamalaidze,33G. Anagnostou,34S. Beranek,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34

R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34 D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,nM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35

M. Erdmann,35A. Gu¨th,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35T. Klimkovich,35D. Klingebiel,35 P. Kreuzer,35D. Lanske,35,aJ. Lingemann,35C. Magass,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35 P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35

M. Weber,35M. Bontenackels,36V. Cherepanov,36M. Davids,36G. Flu¨gge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Linn,36A. Nowack,36L. Perchalla,36 O. Pooth,36J. Rennefeld,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37,oA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37 F. Costanza,37D. Dammann,37G. Eckerlin,37D. Eckstein,37D. Fischer,37G. Flucke,37A. Geiser,37I. Glushkov,37

S. Habib,37J. Hauk,37H. Jung,37,bM. Kasemann,37P. Katsas,37C. Kleinwort,37H. Kluge,37A. Knutsson,37 M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37W. Lohmann,37,oB. Lutz,37R. Mankel,37I. Marfin,37

M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37 J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37M. Rosin,37

J. Salfeld-Nebgen,37R. Schmidt,37,oT. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37 C. Wissing,37C. Autermann,38V. Blobel,38S. Bobrovskyi,38J. Draeger,38H. Enderle,38J. Erfle,38U. Gebbert,38 M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38

J. Lange,38B. Mura,38F. Nowak,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38 E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38 C. Barth,39J. Berger,39T. Chwalek,39W. De Boer,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,bC. Hackstein,39

F. Hartmann,39M. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39U. Husemann,39I. Katkov,39,n J. R. Komaragiri,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39O. Oberst,39A. Oehler,39

J. Ott,39T. Peiffer,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39C. Saout,39 A. Scheurer,39F.-P. Schilling,39M. Schmanau,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39

R. Ulrich,39J. Wagner-Kuhr,39T. Weiler,39M. Zeise,39E. B. Ziebarth,39G. Daskalakis,40T. Geralis,40 S. Kesisoglou,40A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40 E. Ntomari,40L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42,b P. Kokkas,42N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43,bP. Hidas,43D. Horvath,43,p K. Krajczar,43,qB. Radics,43F. Sikler,43,bV. Veszpremi,43G. Vesztergombi,43,qN. Beni,44S. Czellar,44J. Molnar,44

J. Palinkas,44Z. Szillasi,44J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46 N. Dhingra,46R. Gupta,46M. Jindal,46M. Kaur,46J. M. Kohli,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46 A. Sharma,46J. Singh,46S. P. Singh,46S. Ahuja,47B. C. Choudhary,47A. Kumar,47A. Kumar,47S. Malhotra,47

M. Naimuddin,47K. Ranjan,47V. Sharma,47R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48 B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48S. Sarkar,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49

S. Kailas,49V. Kumar,49A. K. Mohanty,49,bL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,r A. Gurtu,50M. Maity,50,sG. Majumder,50K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50 N. Wickramage,50S. Banerjee,51S. Dugad,51H. Arfaei,52H. Bakhshiansohi,52,tS. M. Etesami,52,uA. Fahim,52,t

M. Hashemi,52H. Hesari,52A. Jafari,52,tM. Khakzad,52A. Mohammadi,52,vM. Mohammadi Najafabadi,52 S. Paktinat Mehdiabadi,52B. Safarzadeh,52,wM. Zeinali,52,uM. Abbrescia,53a,53bL. Barbone,53a,53b C. Calabria,53a,53b,bS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53cN. De Filippis,53a,53c,bM. De Palma,53a,53b

L. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53bG. Maggi,53a,53cM. Maggi,53aB. Marangelli,53a,53bS. My,53a,53c S. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53bG. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53a

(8)

G. Singh,53a,53bG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54aD. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54b L. Brigliadori,54a,54bP. Capiluppi,54a,54bA. Castro,54a,54bF. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54a F. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b,bP. Giacomelli,54aC. Grandi,54aL. Guiducci,54aS. Marcellini,54a

G. Masetti,54aM. Meneghelli,54a,54b,bA. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54a F. Primavera,54a,54bA. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55b

G. Cappello,55a,55bM. Chiorboli,55a,55bS. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55b G. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56a

S. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,bL. Benussi,57S. Bianco,57 S. Colafranceschi,57,xF. Fabbri,57D. Piccolo,57P. Fabbricatore,58R. Musenich,58A. Benaglia,59a,59b,b F. De Guio,59a,59bL. Di Matteo,59a,59b,bS. Fiorendi,59a,59bS. Gennai,59a,bA. Ghezzi,59a,59bS. Malvezzi,59a R. A. Manzoni,59a,59bA. Martelli,59a,59bA. Massironi,59a,59b,bD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59b

D. Pedrini,59aS. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60a C. A. Carrillo Montoya,60a,bN. Cavallo,60a,yA. De Cosa,60a,60bO. Dogangun,60a,60bF. Fabozzi,60a,y A. O. M. Iorio,60a,bL. Lista,60aS. Meola,60a,zM. Merola,60a,60bP. Paolucci,60aP. Azzi,61aN. Bacchetta,61a,b D. Bisello,61a,61bA. Branca,61a,bR. Carlin,61a,61bP. Checchia,61aT. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61b

A. Gozzelino,61aK. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61b

A. T. Meneguzzo,61a,61bM. Nespolo,61a,bL. Perrozzi,61aN. Pozzobon,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61b E. Torassa,61aM. Tosi,61a,61b,bS. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62b

C. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63b A. Lucaroni,63a,63b,bG. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63bA. Saha,63a A. Santocchia,63a,63bS. Taroni,63a,63b,bP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64c R. Castaldi,64aR. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,bL. Foa`,64a,64cA. Giassi,64aA. Kraan,64a F. Ligabue,64a,64cT. Lomtadze,64aL. Martini,64a,aaA. Messineo,64a,64bF. Palla,64aF. Palmonari,64aA. Rizzi,64a,64b

A. T. Serban,64a,bbP. Spagnolo,64aP. Squillacioti,64a,bR. Tenchini,64aG. Tonelli,64a,64b,bA. Venturi,64a,b P. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65b,bM. Diemoz,65aC. Fanelli,65a,65bM. Grassi,65a,b

E. Longo,65a,65bP. Meridiani,65a,bF. Micheli,65a,65bS. Nourbakhsh,65aG. Organtini,65a,65bF. Pandolfi,65a,65b R. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65bN. Amapane,66a,66bR. Arcidiacono,66a,66c S. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aC. Botta,66a,66bN. Cartiglia,66aR. Castello,66a,66bM. Costa,66a,66b

N. Demaria,66aA. Graziano,66a,66bC. Mariotti,66a,bS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66b M. Musich,66a,bM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66b M. Ruspa,66a,66cR. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aL. Visca,66a,66bS. Belforte,67a

F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,bD. Montanino,67a,67b,bA. Penzo,67a A. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69J. Chung,69D. H. Kim,69G. N. Kim,69 D. J. Kong,69H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70H. Y. Jo,71S. Choi,72 D. Gyun,72B. Hong,72M. Jo,72H. Kim,72T. J. Kim,72K. S. Lee,72D. H. Moon,72S. K. Park,72E. Seo,72M. Choi,73 S. Kang,73H. Kim,73J. H. Kim,73C. Park,73I. C. Park,73S. Park,73G. Ryu,73Y. Cho,74Y. Choi,74Y. K. Choi,74 J. Goh,74M. S. Kim,74E. Kwon,74B. Lee,74J. Lee,74S. Lee,74H. Seo,74I. Yu,74M. J. Bilinskas,75I. Grigelionis,75

M. Janulis,75A. Juodagalvis,75H. Castilla-Valdez,76E. De La Cruz-Burelo,76I. Heredia-de La Cruz,76 R. Lopez-Fernandez,76R. Magan˜a Villalba,76J. Martı´nez-Ortega,76A. Sa´nchez-Herna´ndez,76 L. M. Villasenor-Cendejas,76S. Carrillo Moreno,77F. Vazquez Valencia,77H. A. Salazar Ibarguen,78 E. Casimiro Linares,79A. Morelos Pineda,79M. A. Reyes-Santos,79D. Krofcheck,80A. J. Bell,81P. H. Butler,81

R. Doesburg,81S. Reucroft,81H. Silverwood,81M. Ahmad,82M. I. Asghar,82H. R. Hoorani,82S. Khalid,82 W. A. Khan,82T. Khurshid,82S. Qazi,82M. A. Shah,82M. Shoaib,82G. Brona,83K. Bunkowski,83M. Cwiok,83 W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83H. Bialkowska,84B. Boimska,84 T. Frueboes,84R. Gokieli,84M. Go´rski,84M. Kazana,84K. Nawrocki,84K. Romanowska-Rybinska,84M. Szleper,84

G. Wrochna,84P. Zalewski,84N. Almeida,85P. Bargassa,85A. David,85P. Faccioli,85P. G. Ferreira Parracho,85 M. Gallinaro,85P. Musella,85J. Seixas,85J. Varela,85P. Vischia,85I. Belotelov,86P. Bunin,86I. Golutvin,86 I. Gorbunov,86V. Karjavin,86V. Konoplyanikov,86G. Kozlov,86A. Lanev,86A. Malakhov,86P. Moisenz,86 V. Palichik,86V. Perelygin,86M. Savina,86S. Shmatov,86V. Smirnov,86A. Volodko,86A. Zarubin,86S. Evstyukhin,87

V. Golovtsov,87Y. Ivanov,87V. Kim,87P. Levchenko,87V. Murzin,87V. Oreshkin,87I. Smirnov,87V. Sulimov,87 L. Uvarov,87S. Vavilov,87A. Vorobyev,87An. Vorobyev,87Yu. Andreev,88A. Dermenev,88S. Gninenko,88

(9)

N. Golubev,88M. Kirsanov,88N. Krasnikov,88V. Matveev,88A. Pashenkov,88D. Tlisov,88A. Toropin,88 V. Epshteyn,89M. Erofeeva,89V. Gavrilov,89M. Kossov,89,bN. Lychkovskaya,89V. Popov,89G. Safronov,89 S. Semenov,89V. Stolin,89E. Vlasov,89A. Zhokin,89A. Belyaev,90E. Boos,90V. Bunichev,90M. Dubinin,90,e L. Dudko,90A. Gribushin,90V. Klyukhin,90O. Kodolova,90I. Lokhtin,90A. Markina,90S. Obraztsov,90M. Perfilov,90

S. Petrushanko,90L. Sarycheva,90,aV. Savrin,90A. Snigirev,90V. Andreev,91M. Azarkin,91I. Dremin,91 M. Kirakosyan,91A. Leonidov,91G. Mesyats,91S. V. Rusakov,91A. Vinogradov,91I. Azhgirey,92I. Bayshev,92

S. Bitioukov,92V. Grishin,92,bV. Kachanov,92D. Konstantinov,92A. Korablev,92V. Krychkine,92V. Petrov,92 R. Ryutin,92A. Sobol,92L. Tourtchanovitch,92S. Troshin,92N. Tyurin,92A. Uzunian,92A. Volkov,92P. Adzic,93,cc M. Djordjevic,93M. Ekmedzic,93D. Krpic,93,ccJ. Milosevic,93M. Aguilar-Benitez,94J. Alcaraz Maestre,94P. Arce,94 C. Battilana,94E. Calvo,94M. Cerrada,94M. Chamizo Llatas,94N. Colino,94B. De La Cruz,94A. Delgado Peris,94

C. Diez Pardos,94D. Domı´nguez Va´zquez,94C. Fernandez Bedoya,94J. P. Ferna´ndez Ramos,94A. Ferrando,94 J. Flix,94M. C. Fouz,94P. Garcia-Abia,94O. Gonzalez Lopez,94S. Goy Lopez,94J. M. Hernandez,94M. I. Josa,94

G. Merino,94J. Puerta Pelayo,94I. Redondo,94L. Romero,94J. Santaolalla,94M. S. Soares,94C. Willmott,94 C. Albajar,95G. Codispoti,95J. F. de Troco´niz,95J. Cuevas,96J. Fernandez Menendez,96S. Folgueras,96 I. Gonzalez Caballero,96L. Lloret Iglesias,96J. Piedra Gomez,96,ddJ. M. Vizan Garcia,96J. A. Brochero Cifuentes,97

I. J. Cabrillo,97A. Calderon,97S. H. Chuang,97J. Duarte Campderros,97M. Felcini,97,eeM. Fernandez,97 G. Gomez,97J. Gonzalez Sanchez,97C. Jorda,97P. Lobelle Pardo,97A. Lopez Virto,97J. Marco,97R. Marco,97

C. Martinez Rivero,97F. Matorras,97F. J. Munoz Sanchez,97T. Rodrigo,97A. Y. Rodrı´guez-Marrero,97 A. Ruiz-Jimeno,97L. Scodellaro,97M. Sobron Sanudo,97I. Vila,97R. Vilar Cortabitarte,97D. Abbaneo,98 E. Auffray,98G. Auzinger,98P. Baillon,98A. H. Ball,98D. Barney,98C. Bernet,98,fG. Bianchi,98P. Bloch,98 A. Bocci,98A. Bonato,98H. Breuker,98T. Camporesi,98G. Cerminara,98T. Christiansen,98J. A. Coarasa Perez,98 D. D’Enterria,98A. De Roeck,98S. Di Guida,98M. Dobson,98N. Dupont-Sagorin,98A. Elliott-Peisert,98B. Frisch,98

W. Funk,98G. Georgiou,98M. Giffels,98D. Gigi,98K. Gill,98D. Giordano,98M. Giunta,98F. Glege,98 R. Gomez-Reino Garrido,98P. Govoni,98S. Gowdy,98R. Guida,98M. Hansen,98P. Harris,98C. Hartl,98J. Harvey,98

B. Hegner,98A. Hinzmann,98V. Innocente,98P. Janot,98K. Kaadze,98E. Karavakis,98K. Kousouris,98P. Lecoq,98 P. Lenzi,98C. Lourenc¸o,98T. Ma¨ki,98M. Malberti,98L. Malgeri,98M. Mannelli,98L. Masetti,98F. Meijers,98 S. Mersi,98E. Meschi,98R. Moser,98M. U. Mozer,98M. Mulders,98E. Nesvold,98M. Nguyen,98T. Orimoto,98 L. Orsini,98E. Palencia Cortezon,98E. Perez,98A. Petrilli,98A. Pfeiffer,98M. Pierini,98M. Pimia¨,98D. Piparo,98

G. Polese,98L. Quertenmont,98A. Racz,98W. Reece,98J. Rodrigues Antunes,98G. Rolandi,98,ff

T. Rommerskirchen,98C. Rovelli,98,ggM. Rovere,98H. Sakulin,98F. Santanastasio,98C. Scha¨fer,98C. Schwick,98 I. Segoni,98S. Sekmen,98A. Sharma,98P. Siegrist,98P. Silva,98M. Simon,98P. Sphicas,98,hhD. Spiga,98 M. Spiropulu,98,eM. Stoye,98A. Tsirou,98G. I. Veres,98,qJ. R. Vlimant,98H. K. Wo¨hri,98S. D. Worm,98,ii W. D. Zeuner,98W. Bertl,99K. Deiters,99W. Erdmann,99K. Gabathuler,99R. Horisberger,99Q. Ingram,99 H. C. Kaestli,99S. Ko¨nig,99D. Kotlinski,99U. Langenegger,99F. Meier,99D. Renker,99T. Rohe,99J. Sibille,99,jj

L. Ba¨ni,100P. Bortignon,100M. A. Buchmann,100B. Casal,100N. Chanon,100Z. Chen,100A. Deisher,100 G. Dissertori,100M. Dittmar,100M. Du¨nser,100J. Eugster,100K. Freudenreich,100C. Grab,100P. Lecomte,100 W. Lustermann,100A. C. Marini,100P. Martinez Ruiz del Arbol,100N. Mohr,100F. Moortgat,100C. Na¨geli,100,kk

P. Nef,100F. Nessi-Tedaldi,100L. Pape,100F. Pauss,100M. Peruzzi,100F. J. Ronga,100M. Rossini,100L. Sala,100 A. K. Sanchez,100A. Starodumov,100,llB. Stieger,100M. Takahashi,100L. Tauscher,100,aA. Thea,100 K. Theofilatos,100D. Treille,100C. Urscheler,100R. Wallny,100H. A. Weber,100L. Wehrli,100E. Aguilo,101

C. Amsler,101V. Chiochia,101S. De Visscher,101C. Favaro,101M. Ivova Rikova,101B. Millan Mejias,101 P. Otiougova,101P. Robmann,101H. Snoek,101S. Tupputi,101M. Verzetti,101Y. H. Chang,102K. H. Chen,102A. Go,102

C. M. Kuo,102S. W. Li,102W. Lin,102Z. K. Liu,102Y. J. Lu,102D. Mekterovic,102A. P. Singh,102R. Volpe,102 S. S. Yu,102P. Bartalini,103P. Chang,103Y. H. Chang,103Y. W. Chang,103Y. Chao,103K. F. Chen,103C. Dietz,103 U. Grundler,103W.-S. Hou,103Y. Hsiung,103K. Y. Kao,103Y. J. Lei,103R.-S. Lu,103D. Majumder,103E. Petrakou,103

X. Shi,103J. G. Shiu,103Y. M. Tzeng,103M. Wang,103A. Adiguzel,104M. N. Bakirci,104,mmS. Cerci,104,nn C. Dozen,104I. Dumanoglu,104E. Eskut,104S. Girgis,104G. Gokbulut,104I. Hos,104E. E. Kangal,104G. Karapinar,104

A. Kayis Topaksu,104G. Onengut,104K. Ozdemir,104S. Ozturk,104,ooA. Polatoz,104K. Sogut,104,pp D. Sunar Cerci,104,nnB. Tali,104,nnH. Topakli,104,mmL. N. Vergili,104M. Vergili,104I. V. Akin,105T. Aliev,105 B. Bilin,105S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105

(10)

B. Isildak,106M. Kaya,106,qqO. Kaya,106,qqS. Ozkorucuklu,106,rrN. Sonmez,106,ssK. Cankocak,107L. Levchuk,108 F. Bostock,109J. J. Brooke,109E. Clement,109D. Cussans,109H. Flacher,109R. Frazier,109J. Goldstein,109 M. Grimes,109G. P. Heath,109H. F. Heath,109L. Kreczko,109S. Metson,109D. M. Newbold,109,iiK. Nirunpong,109

A. Poll,109S. Senkin,109V. J. Smith,109T. Williams,109L. Basso,110,ttK. W. Bell,110A. Belyaev,110,ttC. Brew,110 R. M. Brown,110D. J. A. Cockerill,110J. A. Coughlan,110K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110

E. Olaiya,110D. Petyt,110B. C. Radburn-Smith,110C. H. Shepherd-Themistocleous,110I. R. Tomalin,110 W. J. Womersley,110R. Bainbridge,111G. Ball,111R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111

M. Cutajar,111P. Dauncey,111G. Davies,111M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111 A. Gilbert,111A. Guneratne Bryer,111G. Hall,111Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111 G. Karapostoli,111L. Lyons,111A.-M. Magnan,111J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111

A. Nikitenko,111,llA. Papageorgiou,111J. Pela,111,bM. Pesaresi,111K. Petridis,111M. Pioppi,111,uu D. M. Raymond,111S. Rogerson,111N. Rompotis,111A. Rose,111M. J. Ryan,111C. Seez,111P. Sharp,111,a A. Sparrow,111A. Tapper,111M. Vazquez Acosta,111T. Virdee,111S. Wakefield,111N. Wardle,111T. Whyntie,111 M. Barrett,112M. Chadwick,112J. E. Cole,112P. R. Hobson,112A. Khan,112P. Kyberd,112D. Leggat,112D. Leslie,112

W. Martin,112I. D. Reid,112P. Symonds,112L. Teodorescu,112M. Turner,112K. Hatakeyama,113H. Liu,113 T. Scarborough,113C. Henderson,114P. Rumerio,114A. Avetisyan,115T. Bose,115C. Fantasia,115A. Heister,115 J. St. John,115P. Lawson,115D. Lazic,115J. Rohlf,115D. Sperka,115L. Sulak,115J. Alimena,116S. Bhattacharya,116

D. Cutts,116A. Ferapontov,116U. Heintz,116S. Jabeen,116G. Kukartsev,116G. Landsberg,116M. Luk,116 M. Narain,116D. Nguyen,116M. Segala,116T. Sinthuprasith,116T. Speer,116K. V. Tsang,116R. Breedon,117 G. Breto,117M. Calderon De La Barca Sanchez,117S. Chauhan,117M. Chertok,117J. Conway,117R. Conway,117

P. T. Cox,117J. Dolen,117R. Erbacher,117M. Gardner,117R. Houtz,117W. Ko,117A. Kopecky,117R. Lander,117 O. Mall,117T. Miceli,117R. Nelson,117D. Pellett,117B. Rutherford,117M. Searle,117J. Smith,117M. Squires,117

M. Tripathi,117R. Vasquez Sierra,117V. Andreev,118D. Cline,118R. Cousins,118J. Duris,118S. Erhan,118 P. Everaerts,118C. Farrell,118J. Hauser,118M. Ignatenko,118C. Plager,118G. Rakness,118P. Schlein,118,aJ. Tucker,118

V. Valuev,118M. Weber,118J. Babb,119R. Clare,119M. E. Dinardo,119J. Ellison,119J. W. Gary,119F. Giordano,119 G. Hanson,119G. Y. Jeng,119,vvH. Liu,119O. R. Long,119A. Luthra,119H. Nguyen,119S. Paramesvaran,119 J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119W. Andrews,120J. G. Branson,120G. B. Cerati,120

S. Cittolin,120D. Evans,120F. Golf,120A. Holzner,120R. Kelley,120M. Lebourgeois,120J. Letts,120I. Macneill,120 B. Mangano,120J. Muelmenstaedt,120S. Padhi,120C. Palmer,120G. Petrucciani,120M. Pieri,120R. Ranieri,120 M. Sani,120V. Sharma,120S. Simon,120E. Sudano,120M. Tadel,120Y. Tu,120A. Vartak,120S. Wasserbaech,120,ww

F. Wu¨rthwein,120A. Yagil,120J. Yoo,120D. Barge,121R. Bellan,121C. Campagnari,121M. D’Alfonso,121 T. Danielson,121K. Flowers,121P. Geffert,121J. Incandela,121C. Justus,121P. Kalavase,121S. A. Koay,121 D. Kovalskyi,121,bV. Krutelyov,121S. Lowette,121N. Mccoll,121V. Pavlunin,121F. Rebassoo,121J. Ribnik,121 J. Richman,121R. Rossin,121D. Stuart,121W. To,121C. West,121A. Apresyan,122A. Bornheim,122Y. Chen,122 E. Di Marco,122J. Duarte,122M. Gataullin,122Y. Ma,122A. Mott,122H. B. Newman,122C. Rogan,122V. Timciuc,122 P. Traczyk,122J. Veverka,122R. Wilkinson,122Y. Yang,122R. Y. Zhu,122B. Akgun,123R. Carroll,123T. Ferguson,123 Y. Iiyama,123D. W. Jang,123Y. F. Liu,123M. Paulini,123H. Vogel,123I. Vorobiev,123J. P. Cumalat,124B. R. Drell,124 C. J. Edelmaier,124W. T. Ford,124A. Gaz,124B. Heyburn,124E. Luiggi Lopez,124J. G. Smith,124K. Stenson,124 K. A. Ulmer,124S. R. Wagner,124L. Agostino,125J. Alexander,125A. Chatterjee,125N. Eggert,125L. K. Gibbons,125

B. Heltsley,125W. Hopkins,125A. Khukhunaishvili,125B. Kreis,125N. Mirman,125G. Nicolas Kaufman,125 J. R. Patterson,125A. Ryd,125E. Salvati,125W. Sun,125W. D. Teo,125J. Thom,125J. Thompson,125J. Vaughan,125

Y. Weng,125L. Winstrom,125P. Wittich,125D. Winn,126S. Abdullin,127M. Albrow,127J. Anderson,127 L. A. T. Bauerdick,127A. Beretvas,127J. Berryhill,127P. C. Bhat,127I. Bloch,127K. Burkett,127J. N. Butler,127 V. Chetluru,127H. W. K. Cheung,127F. Chlebana,127V. D. Elvira,127I. Fisk,127J. Freeman,127Y. Gao,127D. Green,127

O. Gutsche,127A. Hahn,127J. Hanlon,127R. M. Harris,127J. Hirschauer,127B. Hooberman,127S. Jindariani,127 M. Johnson,127U. Joshi,127B. Kilminster,127B. Klima,127S. Kunori,127S. Kwan,127D. Lincoln,127R. Lipton,127 L. Lueking,127J. Lykken,127K. Maeshima,127J. M. Marraffino,127S. Maruyama,127D. Mason,127P. McBride,127

K. Mishra,127S. Mrenna,127Y. Musienko,127,xxC. Newman-Holmes,127V. O’Dell,127O. Prokofyev,127 E. Sexton-Kennedy,127S. Sharma,127W. J. Spalding,127L. Spiegel,127P. Tan,127L. Taylor,127S. Tkaczyk,127

N. V. Tran,127L. Uplegger,127E. W. Vaandering,127R. Vidal,127J. Whitmore,127W. Wu,127F. Yang,127 F. Yumiceva,127J. C. Yun,127D. Acosta,128P. Avery,128D. Bourilkov,128M. Chen,128S. Das,128M. De Gruttola,128

(11)

G. P. Di Giovanni,128D. Dobur,128A. Drozdetskiy,128R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128 J. Gartner,128J. Hugon,128B. Kim,128J. Konigsberg,128A. Korytov,128A. Kropivnitskaya,128T. Kypreos,128

J. F. Low,128K. Matchev,128P. Milenovic,128,yyG. Mitselmakher,128L. Muniz,128R. Remington,128 A. Rinkevicius,128P. Sellers,128N. Skhirtladze,128M. Snowball,128J. Yelton,128M. Zakaria,128V. Gaultney,129

L. M. Lebolo,129S. Linn,129P. Markowitz,129G. Martinez,129J. L. Rodriguez,129T. Adams,130A. Askew,130 J. Bochenek,130J. Chen,130B. Diamond,130S. V. Gleyzer,130J. Haas,130S. Hagopian,130V. Hagopian,130 M. Jenkins,130K. F. Johnson,130H. Prosper,130V. Veeraraghavan,130M. Weinberg,130M. M. Baarmand,131

B. Dorney,131M. Hohlmann,131H. Kalakhety,131I. Vodopiyanov,131M. R. Adams,132I. M. Anghel,132 L. Apanasevich,132Y. Bai,132V. E. Bazterra,132R. R. Betts,132J. Callner,132R. Cavanaugh,132C. Dragoiu,132

O. Evdokimov,132E. J. Garcia-Solis,132L. Gauthier,132C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132 F. Lacroix,132M. Malek,132C. O’Brien,132C. Silkworth,132D. Strom,132N. Varelas,132U. Akgun,133 E. A. Albayrak,133B. Bilki,133,zzK. Chung,133W. Clarida,133F. Duru,133S. Griffiths,133C. K. Lae,133J.-P. Merlo,133

H. Mermerkaya,133,aaaA. Mestvirishvili,133A. Moeller,133J. Nachtman,133C. R. Newsom,133E. Norbeck,133 J. Olson,133Y. Onel,133F. Ozok,133S. Sen,133E. Tiras,133J. Wetzel,133T. Yetkin,133K. Yi,133B. A. Barnett,134

B. Blumenfeld,134S. Bolognesi,134D. Fehling,134G. Giurgiu,134A. V. Gritsan,134Z. J. Guo,134G. Hu,134 P. Maksimovic,134S. Rappoccio,134M. Swartz,134A. Whitbeck,134P. Baringer,135A. Bean,135G. Benelli,135

O. Grachov,135R. P. Kenny Iii,135M. Murray,135D. Noonan,135V. Radicci,135S. Sanders,135R. Stringer,135 G. Tinti,135J. S. Wood,135V. Zhukova,135A. F. Barfuss,136T. Bolton,136I. Chakaberia,136A. Ivanov,136S. Khalil,136

M. Makouski,136Y. Maravin,136S. Shrestha,136I. Svintradze,136J. Gronberg,137D. Lange,137D. Wright,137 A. Baden,138M. Boutemeur,138B. Calvert,138S. C. Eno,138J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138

M. Kirn,138T. Kolberg,138Y. Lu,138M. Marionneau,138A. C. Mignerey,138A. Peterman,138K. Rossato,138 A. Skuja,138J. Temple,138M. B. Tonjes,138S. C. Tonwar,138E. Twedt,138G. Bauer,139J. Bendavid,139W. Busza,139

E. Butz,139I. A. Cali,139M. Chan,139V. Dutta,139G. Gomez Ceballos,139M. Goncharov,139K. A. Hahn,139 Y. Kim,139M. Klute,139Y.-J. Lee,139W. Li,139P. D. Luckey,139T. Ma,139S. Nahn,139C. Paus,139D. Ralph,139

C. Roland,139G. Roland,139M. Rudolph,139G. S. F. Stephans,139F. Sto¨ckli,139K. Sumorok,139K. Sung,139 D. Velicanu,139E. A. Wenger,139R. Wolf,139B. Wyslouch,139S. Xie,139M. Yang,139Y. Yilmaz,139A. S. Yoon,139

M. Zanetti,139S. I. Cooper,140P. Cushman,140B. Dahmes,140A. De Benedetti,140G. Franzoni,140A. Gude,140 J. Haupt,140S. C. Kao,140K. Klapoetke,140Y. Kubota,140J. Mans,140N. Pastika,140R. Rusack,140M. Sasseville,140

A. Singovsky,140N. Tambe,140J. Turkewitz,140L. M. Cremaldi,141R. Kroeger,141L. Perera,141R. Rahmat,141 D. A. Sanders,141E. Avdeeva,142K. Bloom,142S. Bose,142J. Butt,142D. R. Claes,142A. Dominguez,142M. Eads,142

P. Jindal,142J. Keller,142I. Kravchenko,142J. Lazo-Flores,142H. Malbouisson,142S. Malik,142G. R. Snow,142 U. Baur,143A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143A. Kumar,143S. P. Shipkowski,143

K. Smith,143G. Alverson,144E. Barberis,144D. Baumgartel,144M. Chasco,144J. Haley,144D. Trocino,144 D. Wood,144J. Zhang,144A. Anastassov,145A. Kubik,145N. Mucia,145N. Odell,145R. A. Ofierzynski,145 B. Pollack,145A. Pozdnyakov,145M. Schmitt,145S. Stoynev,145M. Velasco,145S. Won,145L. Antonelli,146 D. Berry,146A. Brinkerhoff,146M. Hildreth,146C. Jessop,146D. J. Karmgard,146J. Kolb,146K. Lannon,146W. Luo,146

S. Lynch,146N. Marinelli,146D. M. Morse,146T. Pearson,146R. Ruchti,146J. Slaunwhite,146N. Valls,146 J. Warchol,146M. Wayne,146M. Wolf,146J. Ziegler,146B. Bylsma,147L. S. Durkin,147C. Hill,147R. Hughes,147

P. Killewald,147K. Kotov,147T. Y. Ling,147D. Puigh,147M. Rodenburg,147C. Vuosalo,147G. Williams,147 B. L. Winer,147N. Adam,148E. Berry,148P. Elmer,148D. Gerbaudo,148V. Halyo,148P. Hebda,148J. Hegeman,148 A. Hunt,148E. Laird,148D. Lopes Pegna,148P. Lujan,148D. Marlow,148T. Medvedeva,148M. Mooney,148J. Olsen,148

P. Piroue´,148X. Quan,148A. Raval,148H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148A. Zuranski,148 J. G. Acosta,149X. T. Huang,149A. Lopez,149H. Mendez,149S. Oliveros,149J. E. Ramirez Vargas,149 A. Zatserklyaniy,149E. Alagoz,150V. E. Barnes,150D. Benedetti,150G. Bolla,150D. Bortoletto,150M. De Mattia,150

A. Everett,150Z. Hu,150M. Jones,150O. Koybasi,150M. Kress,150A. T. Laasanen,150N. Leonardo,150 V. Maroussov,150P. Merkel,150D. H. Miller,150N. Neumeister,150I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150

M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150S. Guragain,151N. Parashar,151A. Adair,152 C. Boulahouache,152V. Cuplov,152K. M. Ecklund,152F. J. M. Geurts,152B. P. Padley,152R. Redjimi,152J. Roberts,152 J. Zabel,152B. Betchart,153A. Bodek,153Y. S. Chung,153R. Covarelli,153P. de Barbaro,153R. Demina,153Y. Eshaq,153 A. Garcia-Bellido,153P. Goldenzweig,153Y. Gotra,153J. Han,153A. Harel,153S. Korjenevski,153D. C. Miner,153 D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154L. Demortier,154K. Goulianos,154G. Lungu,154

(12)

S. Malik,154C. Mesropian,154S. Arora,155A. Barker,155J. P. Chou,155C. Contreras-Campana,155 E. Contreras-Campana,155D. Duggan,155D. Ferencek,155Y. Gershtein,155R. Gray,155E. Halkiadakis,155 D. Hidas,155D. Hits,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155V. Rekovic,155A. Richards,155 J. Robles,155K. Rose,155S. Salur,155S. Schnetzer,155C. Seitz,155S. Somalwar,155R. Stone,155S. Thomas,155

G. Cerizza,156M. Hollingsworth,156S. Spanier,156Z. C. Yang,156A. York,156R. Eusebi,157W. Flanagan,157 J. Gilmore,157T. Kamon,157,bbbV. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157A. Perloff,157 J. Roe,157A. Safonov,157T. Sakuma,157S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157N. Akchurin,158

J. Damgov,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158T. Libeiro,158Y. Roh,158 I. Volobouev,158E. Appelt,159D. Engh,159C. Florez,159S. Greene,159A. Gurrola,159W. Johns,159P. Kurt,159 C. Maguire,159A. Melo,159P. Sheldon,159B. Snook,159S. Tuo,159J. Velkovska,159M. W. Arenton,160M. Balazs,160

S. Boutle,160B. Cox,160B. Francis,160J. Goodell,160R. Hirosky,160A. Ledovskoy,160C. Lin,160C. Neu,160 J. Wood,160R. Yohay,160S. Gollapinni,161R. Harr,161P. E. Karchin,161C. Kottachchi Kankanamge Don,161 P. Lamichhane,161A. Sakharov,161M. Anderson,162M. Bachtis,162D. Belknap,162L. Borrello,162D. Carlsmith,162 M. Cepeda,162S. Dasu,162L. Gray,162K. S. Grogg,162M. Grothe,162R. Hall-Wilton,162M. Herndon,162A. Herve´,162

P. Klabbers,162J. Klukas,162A. Lanaro,162C. Lazaridis,162J. Leonard,162R. Loveless,162A. Mohapatra,162 I. Ojalvo,162G. A. Pierro,162I. Ross,162A. Savin,162W. H. Smith,162and J. Swanson162

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3

National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27

Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg,

Universite´ de Haute-Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

(13)

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45

University of Debrecen, Debrecen, Hungary

46Panjab University, Chandigarh, India 47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56b

Universita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58INFN Sezione di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67b

Universita` di Trieste, Trieste, Italy

68Kangwon National University, Chunchon, Korea 69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Konkuk University, Seoul, Korea

72Korea University, Seoul, Korea 73University of Seoul, Seoul, Korea 74Sungkyunkwan University, Suwon, Korea

75Vilnius University, Vilnius, Lithuania 76

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

77Universidad Iberoamericana, Mexico City, Mexico 78Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 79Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

(14)

81University of Canterbury, Christchurch, New Zealand

82National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

84Soltan Institute for Nuclear Studies, Warsaw, Poland

85Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 86Joint Institute for Nuclear Research, Dubna, Russia

87Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 88Institute for Nuclear Research, Moscow, Russia

89

Institute for Theoretical and Experimental Physics, Moscow, Russia

90Moscow State University, Moscow, Russia 91P.N. Lebedev Physical Institute, Moscow, Russia

92State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 93University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

94Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 95Universidad Auto´noma de Madrid, Madrid, Spain

96Universidad de Oviedo, Oviedo, Spain

97Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 98CERN, European Organization for Nuclear Research, Geneva, Switzerland

99Paul Scherrer Institut, Villigen, Switzerland

100Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 101Universita¨t Zu¨rich, Zurich, Switzerland

102National Central University, Chung-Li, Taiwan 103National Taiwan University (NTU), Taipei, Taiwan

104Cukurova University, Adana, Turkey 105

Middle East Technical University, Physics Department, Ankara, Turkey

106Bogazici University, Istanbul, Turkey 107Istanbul Technical University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109University of Bristol, Bristol, United Kingdom

110Rutherford Appleton Laboratory, Didcot, United Kingdom 111Imperial College, London, United Kingdom 112Brunel University, Uxbridge, United Kingdom

113Baylor University, Waco, Texas, USA

114The University of Alabama, Tuscaloosa, Alabama, USA 115Boston University, Boston, Massachusetts, USA 116Brown University, Providence, Rhode Island, USA 117University of California, Davis, Davis, California, USA 118University of California, Los Angeles, Los Angeles, California, USA

119University of California, Riverside, Riverside, California, USA 120University of California, San Diego, La Jolla, California, USA 121University of California, Santa Barbara, Santa Barbara, California, USA

122California Institute of Technology, Pasadena, California, USA 123Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 124University of Colorado at Boulder, Boulder, Colorado, USA

125Cornell University, Ithaca, New York, USA 126Fairfield University, Fairfield, Connecticut, USA 127Fermi National Accelerator Laboratory, Batavia, Illionois, USA

128

University of Florida, Gainesville, Florida, USA

129Florida International University, Miami, Florida, USA 130Florida State University, Tallahassee, Florida, USA 131Florida Institute of Technology, Melbourne, Florida, USA 132University of Illinois at Chicago (UIC), Chicago, Illinois, USA

133The University of Iowa, Iowa City, Iowa, USA 134Johns Hopkins University, Baltimore, Maryland, USA

135The University of Kansas, Lawrence, Kansas, USA 136Kansas State University, Manhattan, Kansas, USA 137

Lawrence Livermore National Laboratory, Livermore, California, USA

138University of Maryland, College Park, Maryland, USA 139Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

140University of Minnesota, Minneapolis, Minnesota, USA 141University of Mississippi, University, Mississippi, USA

(15)

142University of Nebraska-Lincoln, Lincoln, Nebraska, USA 143State University of New York at Buffalo, Buffalo, New York, USA

144Northeastern University, Boston, Massachusetts, USA 145Northwestern University, Evanston, Illinois, USA 146University of Notre Dame, Notre Dame, Indiana, USA

147The Ohio State University, Columbus, Ohio, USA 148Princeton University, Princeton, New Jersey, USA 149University of Puerto Rico, Mayaguez, Puerto Rico

150

Purdue University, West Lafayette, Indiana, USA

151Purdue University Calumet, Hammond, Indiana, USA 152Rice University, Houston, Texas, USA 153University of Rochester, Rochester, New York, USA 154The Rockefeller University, New York, New York, USA

155Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 156University of Tennessee, Knoxville, Tennessee, USA

157Texas A&M University, College Station, Texas, USA 158Texas Tech University, Lubbock, Texas, USA 159Vanderbilt University, Nashville, Tennessee, USA 160University of Virginia, Charlottesville, Virginia, USA

161Wayne State University, Detroit, Michigan, USA 162University of Wisconsin, Madison, Wisconsin, USA

aDeceased. b

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, California, USA.

fAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. gAlso at Suez Canal University, Suez, Egypt.

hAlso at Zewail City of Science and Technology, Zewail, Egypt. iAlso at Cairo University, Cairo, Egypt.

jAlso at British University, Cairo, Egypt. kAlso at Fayoum University, El-Fayoum, Egypt.

lAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland. mAlso at Universite´ de Haute-Alsace, Mulhouse, France.

nAlso at Moscow State University, Moscow, Russia.

oAlso at Brandenburg University of Technology, Cottbus, Germany. pAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. q

Also at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

rAlso at Tata Institute of Fundamental Research-HECR, Mumbai, India. sAlso at University of Visva-Bharati, Santiniketan, India.

tAlso at Sharif University of Technology, Tehran, Iran. uAlso at Isfahan University of Technology, Isfahan, Iran. vAlso at Shiraz University, Shiraz, Iran.

wAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran. xAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

yAlso at Universita` della Basilicata, Potenza, Italy.

zAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. aaAlso at Universita` degli studi di Siena, Siena, Italy.

bbAlso at University of Bucharest, Bucuresti-Magurele, Romania. ccAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. ddAlso at University of Florida, Gainesville, USA.

eeAlso at University of California, Los Angeles, Los Angeles, California, USA. ff

Also at Scuola Normale e Sezione dell’ INFN, Pisa, Italy,

ggAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy. hhAlso at University of Athens, Athens, Greece.

(16)

jjAlso at The University of Kansas, Lawrence, Kansas, USA. kkAlso at Paul Scherrer Institut, Villigen, Switzerland.

llAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. mmAlso at Gaziosmanpasa University, Tokat, Turkey.

nnAlso at Adiyaman University, Adiyaman, Turkey. ooAlso at The University of Iowa, Iowa City, Iowa, USA. ppAlso at Mersin University, Mersin, Turkey.

qqAlso at Kafkas University, Kars, Turkey.

rrAlso at Suleyman Demirel University, Isparta, Turkey. ssAlso at Ege University, Izmir, Turkey.

ttAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. uuAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

vvAlso at University of Sydney, Sydney, Australia. wwAlso at Utah Valley University, Orem, Utah, USA.

xx

Also at Institute for Nuclear Research, Moscow, Russia.

yyAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. zzAlso at Argonne National Laboratory, Argonne, Illinois, USA.

aaaAlso at Erzincan University, Erzincan, Turkey.

Riferimenti

Documenti correlati

Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design.. A review of computational optimisation methods applied

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Nella ricerca etnografica sono state coinvolte alcune delle ospiti e beneficiarie 29 che hanno deciso di partecipare alla ricerca, le volon- tarie 30 e gli operatori, pur prendendo

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

Nicola Barbuti, ha curato sia la progettazione e realizzazione del tracciato in open data utilizzato per indicizzare e pubblicare on line una selezione di volumi a stampa

La prima si lega all’analisi dei bisogni formativi degli insegnanti della rete scolastica partecipante (bisogni espressi e manifestati sia in fase di primo con- tatto con

Significant results are reported also with respect to the perceived maternal care received by subjects during infancy and reported through self-report questionnaires

RNA-seq of AML-amp cases identi fied 12,468 and 58,032 raw chimeric transcripts by CS and FM, respectively, among which 38 and 429 involved 8q24-ampli fied genes (Supplementary