• Non ci sono risultati.

Search for displaced supersymmetry in events with an electron and a muon with large impact parameters

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for displaced supersymmetry in events with an electron and a muon with large impact parameters"

Copied!
15
0
0

Testo completo

(1)

Search for Displaced Supersymmetry in Events with an Electron and a Muon

with Large Impact Parameters

V. Khachatryan et al.* (CMS Collaboration)

(Received 16 September 2014; published 13 February 2015)

A search for new long-lived particles decaying to leptons is presented using proton-proton collisions produced by the LHC at ffiffiffisp ¼ 8 TeV. Data used for the analysis were collected by the CMS detector and correspond to an integrated luminosity of 19.7 fb−1. Events are selected with an electron and muon with opposite charges that both have transverse impact parameter values between 0.02 and 2 cm. The search has been designed to be sensitive to a wide range of models with nonprompt e-μ final states. Limits are set on the “displaced supersymmetry” model, with pair production of top squarks decaying into an e-μ final state via R-parity-violating interactions. The results are the most restrictive to date on this model, with the most stringent limit being obtained for a top squark lifetime corresponding to cτ ¼ 2 cm, excluding masses below 790 GeV at 95% confidence level.

DOI:10.1103/PhysRevLett.114.061801 PACS numbers: 13.85.Rm, 12.60.Jv, 14.80.Ly

Although the standard model (SM) has been successful at describing the known elementary particles and their interactions, it is considered to be a low-energy effective theory. Numerous experiments have conducted searches aimed at discovering extensions to the SM. These searches have generally assumed short particle lifetimes resulting in prompt decay signatures. However, since many models of physics beyond the standard model (BSM) predict particles with significant lifetimes [1–8], there have been some dedicated analyses that attempt to identify particles whose production vertices were displaced from the interaction region [9–11]. Recent results from experiments at the CERN LHC that constrain conventional BSM models have considerably increased the motivation to search for long-lived BSM particles [12].

The CMS and ATLAS Collaborations have searched for decays of long-lived BSM particles, covering a range of decay lengths. These include searches for heavy stable charged particles [13–17], searches using disappearing track signatures[18], and searches focusing on short decay lengths [19–25]. The search described in this Letter is distinct from these analyses in that it does not make any assumptions about the event topology beyond the require-ment that the event contain an isolated electron and isolated muon with large impact parameters and opposite charges. It does not require, or exclude, hadronic activity or missing transverse energy (ET). It does not require, or exclude, that the reconstructed displaced tracks form a vertex. It does not require that the displaced tracks are collimated. In this way,

the analysis has sensitivity to a wide variety of still viable BSM scenarios that produce only pairs of displaced leptons with opposite charges.

This broad applicability notwithstanding, we interpret the search results in the context of a representative model termed “displaced supersymmetry”[1]. This model intro-duces large sparticle lifetimes via small R-parity-violating (RPV) couplings [2]. Consequently, the resultant decay products can be measurably displaced in the transverse plane relative to the proton beams. We consider the case in which the lightest supersymmetric particle is the top squark (~t), which is produced in pairs and then decays through an RPV vertex, ~t → bl, where l is any charged lepton. The search does have sensitivity to leptonic tau decays, although the acceptance is suppressed by the small branch-ing fraction of taus to leptons and by the soft pT spectrum of these leptons. The production mechanism is given entirely by the QCD of massive color triplet scalars and depends only on the stop mass and not on any other supersymmetric parameters. For simplicity we assume lepton universality in the top squark decay vertex. We conduct a search for an electron and a muon produced from different top squarks in the final state, with both of the leptons having large impact parameters. We restrict the search to include only tracks with impact parameter less than 2 cm, for which the CMS triggering and reconstruction algorithms have previously been optimized.

The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter. Within the magnet volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter, each composed of a barrel and two end cap sections. Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke outside the solenoid. Extensive forward *Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

calorimetry complements the coverage provided by the barrel and end cap detectors. A more detailed description of the CMS detector, together with a definition of the coordinate system used and the relevant kinematic varia-bles, can be found in Ref.[26].

The analysis uses data from proton-proton collisions recorded at pffiffiffis¼ 8 TeV, which correspond to an inte-grated luminosity of ð19.7 # 0.5Þ fb−1. Events were recor-ded with a trigger that requires a muon with pT > 22 GeV and a cluster in the ECAL with transverse energy ET > 22 GeV. No additional isolation requirements were applied to either object. The trigger efficiency for signal events passing the full selection is∼95% and does not vary significantly with top squark mass or lifetime.

Events selected by the trigger are required to satisfy preselection criteria requiring a well-reconstructed electron and muon [27,28]. Electron candidates are reconstructed by combining information from deposits in the ECAL matched to tracks built by the Gaussian sum filter algorithm

[28,29]. Muon candidates are built by separately

construct-ing a track from the muon path through the trackconstruct-ing volume and one from its path through the muon systems, and then performing a global fit between the two [27]. Jets are constructed using the implementation of the anti-kT clustering algorithm available inFASTJET[30] with a size parameter of 0.5[31] and are required to have transverse momentum pT > 10 GeV. We require both leptons to have pT > 25 GeV and jηj < 2.5, where η is the pseudorapidity, and to pass the standard isolation requirements [27,28]. As an additional isolation requirement, there must not be any reconstructed jet withinΔR≡pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔηÞ2þ ðΔϕÞ2< 0.5 of either selected lepton, where ϕ is the azimuthal angle of the momentum vector. Electron candidates in the transition region between the barrel and the end cap detectors, corresponding to 1.44 < jηj < 1.56, are rejected. Additionally, each lepton is required to have a transverse impact parameter (d0) greater than 0.01 cm, where d0 is defined as the distance of closest approach in the transverse plane of the trajectory of the lepton track to the measured position of the center of the colliding proton beams. Each event is required to have exactly one electron and one muon satisfying the criteria listed above. The two leptons are required to be oppositely charged and separated byΔR > 0.5.

Events passing the preselection requirements are further categorized according to the lepton d0. When an unstable particle decays to charged particles, the impact parameter values of the tracks associated with the decay products will be strongly correlated with the lifetime of the parent. In order to be sensitive to a range of BSM particle lifetimes, we conduct this search in three nonoverlapping signal regions (SRn), defined in the 2D space of electron and muon d0. The SR3 region requires 0.1 < d0< 2 cm for both the electron and the muon and is expected to have very low SM background contamination. An event is classified

in signal region SR2 if it fails the criteria of SR3 but both leptons have d0> 0.05 cm. An event is classified in signal region SR1 if it fails the criteria of both SR3 and SR2 but both leptons have d0> 0.02 cm. This last signal region is expected to contain more SM background, but has higher signal efficiency for the shortest BSM particle lifetimes to which this search is sensitive. For simulated signal events, the selection efficiency is as high as 20%, for top squark lifetimes near cτ ¼ 1 cm. This efficiency does not depend significantly on the top squark mass but is strongly dependent on top squark lifetime.

We use Monte Carlo simulation to estimate the signal acceptance as well as contributions from several of the SM backgrounds. Simulated samples of pp → ~t~t&events were generated usingPYTHIA8[32]. The samples simulating Z þ jets and single-top-quark production were generated using POWHEG[33–38], while those simulating W þ jets and t¯t were generated using MADGRAPH 5 [39], with PYTHIA6 used for hadronization for both generators[40]. Samples of diboson production were simulated withPYTHIA6. For the background samples generated with POWHEG, the CT10 parton distribution functions (PDF) are used[41]. All other samples use CTEQ6L1 [42] PDFs. All generated events have minimum bias interactions superimposed to simulate the effect of overlapping interactions within the same event (pileup). They are then processed through a detailed simulation of the CMS detector based on GEANT4 [43]. In the tables and figures that follow, the “Top quark” sample is the combination of all t¯t and single-top-quark processes, the “Other EW” sample is the combination of W þ jets, Z → ee, Z → μμ, and all diboson processes. The heavy-flavor QCD sample (“HF”) is obtained directly from data, as described below.

We apply several correction factors to the Monte Carlo simulations to address known deficiencies in the modeling of data. The simulation is adjusted to match the distribution of pileup observed in data. Scale factors are derived to correct the performance of lepton identification and iso-lation algorithms. The lepton corrections are estimated from data with the “tag-and-probe” method [44] using Z → ll events. The simulated events are reweighted according to the data to simulation scale factors per lepton, as a function of pT and jηj. We use cosmic muon events in data and simulation to estimate the degradation of track reconstruction efficiency for large values of the impact parameter[21]. The tracking efficiency is greater than 90% in data and simulation and shows little variation for values of d0up to 2 cm. We use these events to calculate a scale factor to correct the simulation to match the data in the region beyond d0¼ 0.02 cm. This scale factor is measured to be 0.960 # 0.014. This factor is applied to leptons in simulated events that pass the selection criteria. Trigger efficiencies are estimated using an independent data sample recorded with a combination of jet and ET triggers. This sample is enriched with t¯t events by requiring the

(3)

preselected events to have an electron and a muon candi-date, two jets with pT > 30 GeV and jηj < 2.4, and at least one b-tagged jet, selected with the medium working point of the combined secondary vertex algorithm[45,46]. The ratio of efficiencies for data and simulated t¯t events to pass the trigger requirements is used as a correction factor. This scale factor is calculated to be 0.981 # 0.004 and is applied to all the simulated data sets used in the search.

There are two SM sources of leptons with large displacements that constitute the dominant backgrounds to this search: HF states, which can have lifetimes of τ≈ 0.05 cm=c, and tau leptons (τ ≈ 0.0087 cm=c), which come mainly from Z → ττ decays. The HF estimate is derived from the data-driven approach described below, while the Z → ττ estimate, as well as other subdominant background estimates, are taken from the simulation.

The HF estimate is obtained using data collected on the same trigger described above. A modified preselection is then applied, which excludes the requirements on lepton isolation and the sign of the lepton charge product. We then use these two uncorrelated variables to define four non-overlapping regions. We calculate the ratio of events in two of the four regions and apply this ratio to the number of events in the third region to obtain an estimate of the number of HF events in the fourth region. We define four regions corresponding to the following: isolated leptons whose charges have the opposite sign (iso OS); isolated leptons whose charges have the same sign (iso SS); opposite sign leptons that are both anti-isolated (anti-iso OS); and same sign leptons that are both anti-isolated (anti-iso SS). The iso OS region corresponds to the standard preselection criteria, while the other three regions are expected to contain primarily HF events. The small con-tributions in these three regions from sources other than HF are subtracted using the simulation. We then calculate the ratio of the number of HF events in the iso SS region to the number of HF events in the anti-iso SS region. We construct a HF background data set by taking events in the anti-iso OS region and normalizing them to the iso OS region using this ratio. We use the impact parameter distributions from this data set, then apply the d0selections described above to obtain an estimate of the HF yield in the signal regions. Figure 1 shows the d0 distributions for background and data after the preselection requirements. The background prediction is 162 # 9 ðstatÞ # 17 ðsystÞ events and the observation is 154 events.

For each source of background that is estimated from simulation, we calculate the efficiency for the selected electron and muon to pass the d0 selections separately, in order to overcome statistical limitations associated with sparsely populated regions of the simulated distributions. We then estimate the number of events that satisfy both d0 criteria by multiplying the two efficiencies and applying this factor to the events that satisfy the preselection criteria. In cases in which this method results in an estimated yield

of zero events, we use the yield calculated from the less exclusive neighboring search region, which should always overestimate the background in that bin. This technique produces virtually identical limits to simply using a null estimate in these cases.

There are several sources of systematic uncertainty in this search. Cross section uncertainties for simulated data sets range from 4% to 8% for the SM background and 15% to 28% for the signal process. Following the official PDF4LHC recommendation [47], we obtain PDF uncer-tainties using an envelope of several PDF sets, ranging from

[cm] 0 Electron d Entries / 0.01 cm -3 10 -2 10 -1 10 1 10 2 10 3 10 Data

Stat. & syst. errors τ τ → Z HF Other EW Top quark = 0.1 cm) τ (c t ~ t ~ = 1 cm) τ (c t ~ t ~ = 10 cm) τ (c t ~ t ~ = 0.1 cm) τ (c t ~ t ~ = 1 cm) τ (c t ~ t ~ = 10 cm) τ (c t ~ t ~ CMS (8 TeV) -1 19.7 fb [cm] 0 Muon d Entries / 0.01 cm -3 10 -2 10 -1 10 1 10 2 10 3 10 Data

Stat. & syst. errors τ τ → Z HF Other EW Top quark = 0.1 cm) τ (c t~ t~ = 1 cm) τ (c t~ t~ = 10 cm) τ (c t~ t~ = 0.1 cm) τ (c t~ t~ = 1 cm) τ (c t~ t~ = 10 cm) τ (c t~ t~ CMS (8 TeV) -1 19.7 fb 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

FIG. 1 (color online). Lepton transverse impact parameter distributions for data and expected background processes after the preselection requirements have been applied, for electrons (top) and muons (bottom). The signal expected from 500 GeV top squark pair production is overlaid for cτ ¼ 0.1, 1, and 10 cm. The event yields per bin have been rescaled to account for the varying bin sizes. The rightmost bin of each plot contains the overflow entries.

(4)

1% to 5%. The PDF and cross section uncertainties are propagated into the limits for all simulated data sets. The luminosity estimate, based on the pixel cluster counting method[48], has an uncertainty of 2.6%. For the displaced track reconstruction efficiency, the (4%) correction is correlated for each lepton, resulting in a 8.0% systematic uncertainty per event. The uncertainty in the data-driven HF estimate is 30% and is dominated by the limited size of the sample used. Uncertainties in trigger efficiency, pileup correction, and lepton correction factors are calculated and incorporated but are small compared to the previously mentioned uncertainties.

Table I shows the numbers of observed and expected background events in the three search regions. We do not observe any significant excess over the background expect-ation. We set 95% confidence level (CL) upper limits on the cross section for top squark pair production at 8 TeV. We perform this as a simultaneous counting experiment in three bins of the three search regions. We use a Bayesian calculation assuming a flat prior for the signal as a function of top squark mass. Nuisance parameters arising from statistical uncertainties are modeled as gamma tions, while all others are modeled as log-normal distribu-tions. These cross section limits are translated into upper limits on the top squark mass, where the cross section for each mass hypothesis is calculated at next-to-leading-order and next-to-leading-logarithmic precision within a simpli-fied model with decoupled squarks and gluinos [49–51]. The resulting expected and observed limit contours are shown in Fig.2. The region to the left of the contours is excluded. For a lifetime of cτ ¼ 2 cm, we exclude top squark masses up to 790 GeV, to be compared with a value of 780 GeV expected in the absence of any signal.

In summary, a search has been performed for new physics with an electron and muon with opposite charges having a signature of large impact parameter values, with no requirements made on jets or missing transverse energy. No excess is observed above background for

displacements up to 2 cm. While this search is expected to have sensitivity to a wide range of theoretical models, the results are interpreted in the context of a displaced supersymmetry model [1] with a pair-produced top squark having a lifetime between cτ ¼ 0.02 cm and cτ ¼ 100 cm. Limits are placed at 95% C.L. on this model as a function of top squark mass and lifetime. For a lifetime hypothesis of cτ ¼ 2 cm, top squark masses up to 790 GeV are excluded. These are the most restrictive limits obtained to date on this model.

TABLE I. Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions). Background and signal expectations are quoted as Nexp# 1σðstatÞ # 1σðsystÞ. If the estimated background is zero in a particular search region, the estimate is instead taken from the preceding region. Since this should always overestimate the background, we denote this by a preceding “<” symbol. Event source SR1 SR2 SR3 Other EW 0.65# 0.13 # 0.09 ð0.89 # 0.53 # 0.12Þ × 10−2 < ð89 # 53 # 12Þ × 10−4 Top quark 0.77# 0.04 # 0.08 ð1.25 # 0.26 # 0.12Þ × 10−2 ð2.4 # 1.3 # 0.2Þ × 10−4 Z → ττ 3.93# 0.42 # 0.39 ð0.73 # 0.73 # 0.07Þ × 10−2 < ð73 # 73 # 7Þ × 10−4 HF 12.7# 0.2 # 3.8 ð98 # 6 # 30Þ × 10−2 ð340 # 110 # 100Þ × 10−4

Total expected background 18.0# 0.5 # 3.8 1.01# 0.06 # 0.30 0.051# 0.015 # 0.010

Observed 19 0 0 pp → ~t~t& (M~t¼ 500 GeV) cτ ¼ 0.1 cm 30.1# 0.7 # 5.3 6.54# 0.34 # 1.16 1.34# 0.15 # 0.24 cτ ¼ 1 cm 35.3# 0.8 # 6.2 30.3# 0.7 # 5.3 51.3# 1.0 # 9.0 cτ ¼ 10 cm 4.73# 0.30 # 0.83 5.57# 0.32 # 0.98 26.3# 0.7 # 4.6 [GeV] t ~ M [cm]τ Stop c -1 10 1 10 2 10 expected σ 2 ± expected σ 1 ± Expected limit Observed limit (8 TeV) -1 19.7 fb CMS Excluded region 400 500 600 700 800

FIG. 2 (color online). Expected and observed 95% C.L. cross section exclusion contours for top squark pair production in the plane of top squark lifetime (cτ) and top squark mass. These limits assume a branching fraction of 100% through the RPV vertex ~t → bl, where the branching fraction to any lepton flavor is equal to 1=3. As indicated in the plot, the region to the left of the contours is excluded by this search.

(5)

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (U.S.).

[1] P. W. Graham, D. E. Kaplan, S. Rajendran, and P. Saraswat,

J. High Energy Phys. 07 (2012) 149.

[2] R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet, S. Lavignac, G. Moreau, E. Perez, and Y. Sirois,Phys. Rep. 420, 1 (2005). [3] J. L. Hewett, B. Lillie, M. Masip, and T. G. Rizzo,J. High

Energy Phys. 09 (2004) 070.

[4] M. Fairbairn, A. C. Kraan, D. A. Milstead, T. Sjöstrand, P. Z. Skands, and T. Sloan,Phys. Rep. 438, 1 (2007). [5] G. F. Giudice and R. Rattazzi, Phys. Rep. 322, 419

(1999).

[6] T. Han, Z. Si, K. M. Zurek, and M. J. Strassler, J. High Energy Phys. 07 (2008) 008.

[7] L. Basso, A. Belyaev, S. Moretti, and C. H. Shepherd-Themistocleous,Phys. Rev. D 80, 055030 (2009). [8] M. J. Strassler and K. M. Zurek, Phys. Lett. B 661, 263

(2008).

[9] A. Heister et al. (ALEPH Collaboration),Eur. Phys. J. C 25, 339 (2002).

[10] G. Abbiendi et al. (OPAL Collaboration),Eur. Phys. J. C 46, 307 (2006).

[11] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 97, 161802 (2006).

[12] N. Craig,arXiv:1309.0528.

[13] CMS Collaboration,J. High Energy Phys. 07 (2013) 122.

[14] ATLAS Collaboration,Phys. Lett. B 720, 277 (2013). [15] CMS Collaboration,J. High Energy Phys. 08 (2012) 026.

[16] ATLAS Collaboration,Phys. Rev. D 88, 112003 (2013). [17] ATLAS Collaboration,Phys. Lett. B 722, 305 (2013). [18] ATLAS Collaboration,Phys. Rev. D 88, 112006 (2013). [19] ATLAS Collaboration,Phys. Lett. B 707, 478 (2012). [20] ATLAS Collaboration,Phys. Lett. B 719, 280 (2013). [21] CMS Collaboration,J. High Energy Phys. 02 (2013) 085.

[22] ATLAS Collaboration, J. High Energy Phys. 11 (2014) 088.

[23] ATLAS Collaboration,Phys. Rev. D 90, 112005 (2014). [24] CMS Collaboration,J. High Energy Phys. 11 (2012) 172.

[25] CMS Collaboration,Phys. Lett. B 722, 273 (2013). [26] CMS Collaboration, JINST 3, S08004 (2008). [27] CMS Collaboration,JINST 7, P10002 (2012). [28] CMS Collaboration,JINST 8, P09009 (2013).

[29] CMS Collaboration, CMS Report No. CMS-DP-2010-032, CERN, 2010, http://cds.cern.ch/record/1299116.

[30] M. Cacciari, G. P. Salam, and G. Soyez,Eur. Phys. J. C 72, 1896 (2012).

[31] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[32] T. Sjöstrand, S. Mrenna, and P. Skands, Comput. Phys. Commun. 178, 852 (2008).

[33] P. Nason,J. High Energy Phys. 11 (2004) 040.

[34] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[35] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 06 (2010) 043.

[36] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 07 (2008) 060.

[37] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 09 (2009) 111.

[38] E. Re,Eur. Phys. J. C 71, 1547 (2011).

[39] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[40] T. Sjöstrand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[41] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).

[42] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung,J. High Energy Phys. 07 (2002) 012.

[43] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [44] CMS Collaboration,J. High Energy Phys. 01 (2011) 080.

[45] CMS Collaboration, CMS Report No. CMS-PAS-BTV-13-001, CERN, 2013, http://cds.cern.ch/record/1581306. [46] CMS Collaboration,JINST 8, P04013 (2013). [47] S. Alekhin et al.,arXiv:1101.0536.

[48] CMS Collaboration, CMS Report No. CMS-PAS-LUM-13-001, CERN, 2013, http://cds.cern.ch/record/1581306. [49] M. Krämer, A. Kulesza, R. van der Leeuw, M. Mangano,

S. Padhi, T. Plehn, and X. Portell,arXiv:1206.2892.

[50] J. Alwall, P. C. Schuster, and N. Toro,Phys. Rev. D 79, 075020 (2009).

(6)

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 M. Friedl,2

R. Frühwirth,2,bV. M. Ghete,2 C. Hartl,2 N. Hörmann,2 J. Hrubec,2 M. Jeitler,2,b W. Kiesenhofer,2 V. Knünz,2 M. Krammer,2,bI. Krätschmer,2D. Liko,2I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2

J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,bV. Mossolov,3 N. Shumeiko,3 J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4A. Knutsson,4 S. Luyckx,4S. Ochesanu,4R. Rougny,4M. Van De Klundert,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5N. Daci,5N. Heracleous,5J. Keaveney,5S. Lowette,5M. Maes,5 A. Olbrechts,5Q. Python,5 D. Strom,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5

C. Caillol,6 B. Clerbaux,6 G. De Lentdecker,6 D. Dobur,6L. Favart,6 A. P. R. Gay,6 A. Grebenyuk,6 A. Léonard,6 A. Mohammadi,6L. Perniè,6,cT. Reis,6T. Seva,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6F. Zenoni,6V. Adler,7

K. Beernaert,7 L. Benucci,7 A. Cimmino,7 S. Costantini,7 S. Crucy,7 S. Dildick,7A. Fagot,7G. Garcia,7 J. Mccartin,7 A. A. Ocampo Rios,7D. Ryckbosch,7S. Salva Diblen,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7E. Yazgan,7 N. Zaganidis,7S. Basegmez,8C. Beluffi,8,dG. Bruno,8R. Castello,8A. Caudron,8L. Ceard,8G. G. Da Silveira,8C. Delaere,8

T. du Pree,8D. Favart,8 L. Forthomme,8 A. Giammanco,8,e J. Hollar,8A. Jafari,8 P. Jez,8 M. Komm,8 V. Lemaitre,8 C. Nuttens,8 D. Pagano,8 L. Perrini,8 A. Pin,8 K. Piotrzkowski,8A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8 M. Vidal Marono,8 J. M. Vizan Garcia,8 N. Beliy,9 T. Caebergs,9 E. Daubie,9 G. H. Hammad,9 W. L. Aldá Júnior,10

G. A. Alves,10L. Brito,10M. Correa Martins Junior,10T. Dos Reis Martins,10C. Mora Herrera,10M. E. Pol,10W. Carvalho,11 J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11

H. Malbouisson,11 D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11 A. Santoro,11 A. Sznajder,11E. J. Tonelli Manganote,11,g A. Vilela Pereira,11C. A. Bernardes,12bS. Dogra,12a

T. R. Fernandez Perez Tomei,12a E. M. Gregores,12bP. G. Mercadante,12b S. F. Novaes,12aSandra S. Padula,12a A. Aleksandrov,13V. Genchev,13,c P. Iaydjiev,13A. Marinov,13S. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13

M. Vutova,13A. Dimitrov,14I. Glushkov,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14 B. Pavlov,14 P. Petkov,14 J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15R. Plestina,15,hF. Romeo,15J. Tao,15Z. Wang,15

C. Asawatangtrakuldee,16Y. Ban,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16L. Zhang,16W. Zou,16C. Avila,17 L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20L. Sudic,20

A. Attikis,21 G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Bodlak,22 M. Finger,22 M. Finger Jr.,22,iY. Assran,23,jA. Ellithi Kamel,23,k M. A. Mahmoud,23,lA. Radi,23,m,nM. Kadastik,24M. Murumaa,24

M. Raidal,24 A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26 M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26 J. Tuominiemi,26E. Tuovinen,26L. Wendland,26J. Talvitie,27T. Tuuva,27 M. Besancon,28F. Couderc,28 M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28J. Rander,28A. Rosowsky,28 M. Titov,28S. Baffioni,29 F. Beaudette,29P. Busson,29C. Charlot,29T. Dahms,29M. Dalchenko,29 L. Dobrzynski,29N. Filipovic,29A. Florent,29 R. Granier de Cassagnac,29 L. Mastrolorenzo,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29 P. Paganini,29S. Regnard,29R. Salerno,29J. B. Sauvan,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,o J. Andrea,30A. Aubin,30D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,oJ.-C. Fontaine,30,oD. Gelé,30

U. Goerlach,30 C. Goetzmann,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32N. Beaupere,32

G. Boudoul,32,cE. Bouvier,32S. Brochet,32C. A. Carrillo Montoya,32J. Chasserat,32R. Chierici,32D. Contardo,32,c P. Depasse,32H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32

L. Mirabito,32S. Perries,32J. D. Ruiz Alvarez,32D. Sabes,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32 S. Viret,32H. Xiao,32 Z. Tsamalaidze,33,iC. Autermann,34 S. Beranek,34M. Bontenackels,34M. Edelhoff,34 L. Feld,34

O. Hindrichs,34 K. Klein,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34 J. Sammet,34S. Schael,34 H. Weber,34 B. Wittmer,34V. Zhukov,34,fM. Ata,35M. Brodski,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35

A. Güth,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35 A. Meyer,35P. Millet,35M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35 S. A. Schmitz,35L. Sonnenschein,35

D. Teyssier,35S. Thüer,35M. Weber,35V. Cherepanov,36Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36A. Heister,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Künsken,36J. Lingemann,36,c

(7)

A. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37

U. Behrens,37 A. J. Bell,37M. Bergholz,37,p A. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37 A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37

T. Eichhorn,37G. Flucke,37J. Garay Garcia,37A. Geiser,37P. Gunnellini,37J. Hauk,37M. Hempel,37,pD. Horton,37H. Jung,37 A. Kalogeropoulos,37M. Kasemann,37P. Katsas,37J. Kieseler,37C. Kleinwort,37D. Krücker,37W. Lange,37J. Leonard,37 K. Lipka,37A. Lobanov,37W. Lohmann,37,pB. Lutz,37R. Mankel,37I. Marfin,37,pI.-A. Melzer-Pellmann,37A. B. Meyer,37 G. Mittag,37J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37A. Nayak,37O. Novgorodova,37E. Ntomari,37H. Perrey,37

D. Pitzl,37R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37B. Roland,37E. Ron,37M. Ö. Sahin,37 J. Salfeld-Nebgen,37P. Saxena,37R. Schmidt,37,pT. Schoerner-Sadenius,37M. Schröder,37 C. Seitz,37 S. Spannagel,37 A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37M. Aldaya Martin,38V. Blobel,38M. Centis Vignali,38A. R. Draeger,38

J. Erfle,38E. Garutti,38K. Goebel,38M. Görner,38J. Haller,38M. Hoffmann,38R. S. Höing,38H. Kirschenmann,38 R. Klanner,38R. Kogler,38J. Lange,38T. Lapsien,38T. Lenz,38I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38 J. Poehlsen,38T. Poehlsen,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38 M. Seidel,38V. Sola,38H. Stadie,38G. Steinbrück,38D. Troendle,38E. Usai,38L. Vanelderen,38A. Vanhoefer,38C. Barth,39 C. Baus,39J. Berger,39C. Böser,39E. Butz,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39 F. Frensch,39M. Giffels,39F. Hartmann,39,cT. Hauth,39,cU. Husemann,39I. Katkov,39,fA. Kornmayer,39,cE. Kuznetsova,39

P. Lobelle Pardo,39M. U. Mozer,39Th. Müller,39A. Nürnberg,39G. Quast,39K. Rabbertz,39F. Ratnikov,39S. Röcker,39 H. J. Simonis,39F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39R. Wolf,39G. Anagnostou,40

G. Daskalakis,40T. Geralis,40V. A. Giakoumopoulou,40A. Kyriakis,40D. Loukas,40 A. Markou,40C. Markou,40 A. Psallidas,40I. Topsis-Giotis,40S. Kesisoglou,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41X. Aslanoglou,42

I. Evangelou,42G. Flouris,42 C. Foudas,42 P. Kokkas,42N. Manthos,42I. Papadopoulos,42E. Paradas,42G. Bencze,43 C. Hajdu,43 P. Hidas,43 D. Horvath,43,qF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,r A. J. Zsigmond,43N. Beni,44

S. Czellar,44J. Karancsi,44,sJ. Molnar,44J. Palinkas,44Z. Szillasi,44P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. K. Swain,46 S. B. Beri,47V. Bhatnagar,47R. Gupta,47U. Bhawandeep,47A. K. Kalsi,47M. Kaur,47R. Kumar,47M. Mittal,47N. Nishu,47

J. B. Singh,47Ashok Kumar,48Arun Kumar,48S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48A. Kumar,48S. Malhotra,48 M. Naimuddin,48K. Ranjan,48V. Sharma,48 S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49S. Dutta,49B. Gomber,49 Sa. Jain,49Sh. Jain,49R. Khurana,49A. Modak,49S. Mukherjee,49D. Roy,49S. Sarkar,49M. Sharan,49A. Abdulsalam,50 D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50,c L. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51S. Banerjee,51 S. Bhowmik,51,tR. M. Chatterjee,51R. K. Dewanjee,51S. Dugad,51S. Ganguly,51S. Ghosh,51M. Guchait,51A. Gurtu,51,u G. Kole,51S. Kumar,51M. Maity,51,tG. Majumder,51 K. Mazumdar,51G. B. Mohanty,51B. Parida,51 K. Sudhakar,51 N. Wickramage,51,vH. Bakhshiansohi,52H. Behnamian,52S. M. Etesami,52,wA. Fahim,52,xR. Goldouzian,52M. Khakzad,52

M. Mohammadi Najafabadi,52M. Naseri,52S. Paktinat Mehdiabadi,52F. Rezaei Hosseinabadi,52 B. Safarzadeh,52,y M. Zeinali,52M. Felcini,53M. Grunewald,53M. Abbrescia,54a,54bL. Barbone,54a,54bC. Calabria,54a,54bS. S. Chhibra,54a,54b

A. Colaleo,54a D. Creanza,54a,54cN. De Filippis,54a,54c M. De Palma,54a,54b L. Fiore,54aG. Iaselli,54a,54cG. Maggi,54a,54c M. Maggi,54a S. My,54a,54c S. Nuzzo,54a,54bA. Pompili,54a,54b G. Pugliese,54a,54c R. Radogna,54a,54b,c G. Selvaggi,54a,54b

A. Sharma,54aL. Silvestris,54a,c R. Venditti,54a,54bG. Zito,54a G. Abbiendi,55aA. C. Benvenuti,55a D. Bonacorsi,55a,55b S. Braibant-Giacomelli,55a,55bL. Brigliadori,55a,55bR. Campanini,55a,55bP. Capiluppi,55a,55bA. Castro,55a,55bF. R. Cavallo,55a

G. Codispoti,55a,55bM. Cuffiani,55a,55bG. M. Dallavalle,55a F. Fabbri,55a A. Fanfani,55a,55b D. Fasanella,55a,55b P. Giacomelli,55a C. Grandi,55a L. Guiducci,55a,55bS. Marcellini,55a G. Masetti,55a A. Montanari,55a F. L. Navarria,55a,55b

A. Perrotta,55aF. Primavera,55a,55bA. M. Rossi,55a,55bT. Rovelli,55a,55bG. P. Siroli,55a,55bN. Tosi,55a,55bR. Travaglini,55a,55b S. Albergo,56a,56bG. Cappello,56a M. Chiorboli,56a,56bS. Costa,56a,56bF. Giordano,56a,cR. Potenza,56a,56bA. Tricomi,56a,56b

C. Tuve,56a,56bG. Barbagli,57aV. Ciulli,57a,57b C. Civinini,57a R. D’Alessandro,57a,57bE. Focardi,57a,57b E. Gallo,57a S. Gonzi,57a,57bV. Gori,57a,57b,c P. Lenzi,57a,57b M. Meschini,57a S. Paoletti,57a G. Sguazzoni,57a A. Tropiano,57a,57b

L. Benussi,58 S. Bianco,58F. Fabbri,58D. Piccolo,58R. Ferretti,59a,59b F. Ferro,59a M. Lo Vetere,59a,59bE. Robutti,59a S. Tosi,59a,59b M. E. Dinardo,60a,60b S. Fiorendi,60a,60bS. Gennai,60a,c R. Gerosa,60a,c A. Ghezzi,60a,60bP. Govoni,60a,60b

M. T. Lucchini,60a,60b,cS. Malvezzi,60a R. A. Manzoni,60a,60bA. Martelli,60a,60b B. Marzocchi,60a D. Menasce,60a L. Moroni,60aM. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aT. Tabarelli de Fatis,60a,60bS. Buontempo,61a

N. Cavallo,61a,61cS. Di Guida,61a,61d,c F. Fabozzi,61a,61c A. O. M. Iorio,61a,61b L. Lista,61a S. Meola,61a,61d,c M. Merola,61a P. Paolucci,61a,c P. Azzi,62aD. Bisello,62a,62b A. Branca,62a,62b R. Carlin,62a,62b P. Checchia,62a M. Dall’Osso,62a,62b

(8)

T. Dorigo,62aM. Galanti,62a,62b F. Gasparini,62a,62bU. Gasparini,62a,62b P. Giubilato,62a,62b A. Gozzelino,62a

K. Kanishchev,62a,62c S. Lacaprara,62a M. Margoni,62a,62b A. T. Meneguzzo,62a,62bJ. Pazzini,62a,62bM. Pegoraro,62a N. Pozzobon,62a,62bP. Ronchese,62a,62bF. Simonetto,62a,62bE. Torassa,62a M. Tosi,62a,62bA. Triossi,62aP. Zotto,62a,62b

A. Zucchetta,62a,62bG. Zumerle,62a,62b M. Gabusi,63a,63bS. P. Ratti,63a,63bV. Re,63a C. Riccardi,63a,63b P. Salvini,63a P. Vitulo,63a,63bM. Biasini,64a,64bG. M. Bilei,64a D. Ciangottini,64a,64bL. Fanò,64a,64bP. Lariccia,64a,64bG. Mantovani,64a,64b

M. Menichelli,64a A. Saha,64a A. Santocchia,64a,64b A. Spiezia,64a,64b,c K. Androsov,65a,z P. Azzurri,65a G. Bagliesi,65a J. Bernardini,65a T. Boccali,65a G. Broccolo,65a,65c R. Castaldi,65a M. A. Ciocci,65a,z R. Dell’Orso,65aS. Donato,65a,65c

F. Fiori,65a,65c L. Foà,65a,65cA. Giassi,65a M. T. Grippo,65a,z F. Ligabue,65a,65cT. Lomtadze,65a L. Martini,65a,65b A. Messineo,65a,65b C. S. Moon,65a,aa F. Palla,65a,cA. Rizzi,65a,65bA. Savoy-Navarro,65a,bb A. T. Serban,65a P. Spagnolo,65a

P. Squillacioti,65a,zR. Tenchini,65aG. Tonelli,65a,65bA. Venturi,65a P. G. Verdini,65a C. Vernieri,65a,65c,c L. Barone,66a,66b F. Cavallari,66a G. D’imperio,66a,66b D. Del Re,66a,66bM. Diemoz,66a M. Grassi,66a,66b C. Jorda,66aE. Longo,66a,66b

F. Margaroli,66a,66bP. Meridiani,66a F. Micheli,66a,66b,c S. Nourbakhsh,66a,66bG. Organtini,66a,66bR. Paramatti,66a S. Rahatlou,66a,66bC. Rovelli,66a F. Santanastasio,66a,66bL. Soffi,66a,66b,c P. Traczyk,66a,66b N. Amapane,67a,67b R. Arcidiacono,67a,67c S. Argiro,67a,67b M. Arneodo,67a,67cR. Bellan,67a,67bC. Biino,67a N. Cartiglia,67a S. Casasso,67a,67b,c

M. Costa,67a,67b A. Degano,67a,67bN. Demaria,67a L. Finco,67a,67b C. Mariotti,67a S. Maselli,67a E. Migliore,67a,67b V. Monaco,67a,67bM. Musich,67aM. M. Obertino,67a,67c,cG. Ortona,67a,67bL. Pacher,67a,67bN. Pastrone,67aM. Pelliccioni,67a

G. L. Pinna Angioni,67a,67b A. Potenza,67a,67bA. Romero,67a,67bM. Ruspa,67a,67c R. Sacchi,67a,67bA. Solano,67a,67b A. Staiano,67a U. Tamponi,67a S. Belforte,68aV. Candelise,68a,68b M. Casarsa,68a F. Cossutti,68a G. Della Ricca,68a,68b

B. Gobbo,68a C. La Licata,68a,68b M. Marone,68a,68b A. Schizzi,68a,68b T. Umer,68a,68b A. Zanetti,68a S. Chang,69 A. Kropivnitskaya,69S. K. Nam,69D. H. Kim,70G. N. Kim,70M. S. Kim,70D. J. Kong,70S. Lee,70Y. D. Oh,70H. Park,70

A. Sakharov,70D. C. Son,70 T. J. Kim,71J. Y. Kim,72S. Song,72S. Choi,73D. Gyun,73 B. Hong,73M. Jo,73H. Kim,73 Y. Kim,73B. Lee,73K. S. Lee,73S. K. Park,73Y. Roh,73M. Choi,74J. H. Kim,74I. C. Park,74G. Ryu,74M. S. Ryu,74Y. Choi,75

Y. K. Choi,75J. Goh,75D. Kim,75 E. Kwon,75J. Lee,75H. Seo,75I. Yu,75A. Juodagalvis,76 J. R. Komaragiri,77 M. A. B. Md Ali,77H. Castilla-Valdez,78E. De La Cruz-Burelo,78I. Heredia-de La Cruz,78,ccA. Hernandez-Almada,78

R. Lopez-Fernandez,78 A. Sanchez-Hernandez,78S. Carrillo Moreno,79F. Vazquez Valencia,79I. Pedraza,80 H. A. Salazar Ibarguen,80E. Casimiro Linares,81A. Morelos Pineda,81 D. Krofcheck,82P. H. Butler,83S. Reucroft,83

A. Ahmad,84M. Ahmad,84Q. Hassan,84H. R. Hoorani,84W. A. Khan,84T. Khurshid,84M. A. Shah,84M. Shoaib,84 H. Bialkowska,85 M. Bluj,85B. Boimska,85T. Frueboes,85M. Górski,85M. Kazana,85K. Nawrocki,85 K. Romanowska-Rybinska,85M. Szleper,85 P. Zalewski,85G. Brona,86K. Bunkowski,86 M. Cwiok,86W. Dominik,86

K. Doroba,86A. Kalinowski,86M. Konecki,86J. Krolikowski,86M. Misiura,86M. Olszewski,86W. Wolszczak,86 P. Bargassa,87 C. Beirão Da Cruz E Silva,87P. Faccioli,87P. G. Ferreira Parracho,87M. Gallinaro,87L. Lloret Iglesias,87 F. Nguyen,87J. Rodrigues Antunes,87J. Seixas,87 J. Varela,87P. Vischia,87S. Afanasiev,88P. Bunin,88M. Gavrilenko,88 I. Golutvin,88I. Gorbunov,88A. Kamenev,88V. Karjavin,88V. Konoplyanikov,88A. Lanev,88A. Malakhov,88V. Matveev,88,dd P. Moisenz,88V. Palichik,88V. Perelygin,88S. Shmatov,88N. Skatchkov,88V. Smirnov,88A. Zarubin,88V. Golovtsov,89 Y. Ivanov,89V. Kim,89,eeP. Levchenko,89V. Murzin,89V. Oreshkin,89I. Smirnov,89V. Sulimov,89L. Uvarov,89S. Vavilov,89

A. Vorobyev,89 An. Vorobyev,89 Yu. Andreev,90A. Dermenev,90S. Gninenko,90N. Golubev,90 M. Kirsanov,90 N. Krasnikov,90A. Pashenkov,90D. Tlisov,90A. Toropin,90V. Epshteyn,91V. Gavrilov,91N. Lychkovskaya,91V. Popov,91

I. Pozdnyakov,91G. Safronov,91S. Semenov,91A. Spiridonov,91V. Stolin,91E. Vlasov,91A. Zhokin,91V. Andreev,92 M. Azarkin,92I. Dremin,92M. Kirakosyan,92A. Leonidov,92G. Mesyats,92S. V. Rusakov,92A. Vinogradov,92A. Belyaev,93

E. Boos,93V. Bunichev,93M. Dubinin,93,ff L. Dudko,93 A. Ershov,93A. Gribushin,93V. Klyukhin,93I. Lokhtin,93 S. Obraztsov,93S. Petrushanko,93V. Savrin,93A. Snigirev,93I. Azhgirey,94 I. Bayshev,94S. Bitioukov,94V. Kachanov,94

A. Kalinin,94D. Konstantinov,94V. Krychkine,94V. Petrov,94R. Ryutin,94A. Sobol,94L. Tourtchanovitch,94S. Troshin,94 N. Tyurin,94A. Uzunian,94A. Volkov,94P. Adzic,95,ggM. Ekmedzic,95J. Milosevic,95V. Rekovic,95J. Alcaraz Maestre,96

C. Battilana,96E. Calvo,96M. Cerrada,96M. Chamizo Llatas,96N. Colino,96B. De La Cruz,96A. Delgado Peris,96 D. Domínguez Vázquez,96A. Escalante Del Valle,96C. Fernandez Bedoya,96 J. P. Fernández Ramos,96J. Flix,96

M. C. Fouz,96P. Garcia-Abia,96O. Gonzalez Lopez,96S. Goy Lopez,96J. M. Hernandez,96M. I. Josa,96 E. Navarro De Martino,96A. Pérez-Calero Yzquierdo,96J. Puerta Pelayo,96A. Quintario Olmeda,96I. Redondo,96 L. Romero,96M. S. Soares,96C. Albajar,97J. F. de Trocóniz,97M. Missiroli,97D. Moran,97H. Brun,98J. Cuevas,98

(9)

A. Calderon,99J. Duarte Campderros,99M. Fernandez,99G. Gomez,99A. Graziano,99A. Lopez Virto,99J. Marco,99

R. Marco,99 C. Martinez Rivero,99F. Matorras,99F. J. Munoz Sanchez,99J. Piedra Gomez,99 T. Rodrigo,99 A. Y. Rodríguez-Marrero,99A. Ruiz-Jimeno,99L. Scodellaro,99I. Vila,99R. Vilar Cortabitarte,99D. Abbaneo,100

E. Auffray,100G. Auzinger,100 M. Bachtis,100P. Baillon,100A. H. Ball,100D. Barney,100A. Benaglia,100 J. Bendavid,100 L. Benhabib,100J. F. Benitez,100 C. Bernet,100,h P. Bloch,100 A. Bocci,100A. Bonato,100 O. Bondu,100 C. Botta,100

H. Breuker,100T. Camporesi,100G. Cerminara,100 S. Colafranceschi,100,hh M. D’Alfonso,100D. d’Enterria,100 A. Dabrowski,100A. David,100 F. De Guio,100 A. De Roeck,100 S. De Visscher,100 E. Di Marco,100 M. Dobson,100 M. Dordevic,100N. Dupont-Sagorin,100A. Elliott-Peisert,100J. Eugster,100G. Franzoni,100W. Funk,100D. Gigi,100K. Gill,100

D. Giordano,100M. Girone,100F. Glege,100 R. Guida,100S. Gundacker,100M. Guthoff,100J. Hammer,100 M. Hansen,100 P. Harris,100J. Hegeman,100 V. Innocente,100P. Janot,100K. Kousouris,100K. Krajczar,100 P. Lecoq,100 C. Lourenço,100 N. Magini,100L. Malgeri,100 M. Mannelli,100 J. Marrouche,100 L. Masetti,100 F. Meijers,100S. Mersi,100E. Meschi,100

F. Moortgat,100S. Morovic,100M. Mulders,100 P. Musella,100 L. Orsini,100 L. Pape,100E. Perez,100L. Perrozzi,100 A. Petrilli,100 G. Petrucciani,100 A. Pfeiffer,100 M. Pierini,100 M. Pimiä,100 D. Piparo,100 M. Plagge,100 A. Racz,100 G. Rolandi,100,ii M. Rovere,100H. Sakulin,100 C. Schäfer,100 C. Schwick,100 A. Sharma,100 P. Siegrist,100 P. Silva,100 M. Simon,100P. Sphicas,100,jj D. Spiga,100 J. Steggemann,100B. Stieger,100 M. Stoye,100Y. Takahashi,100D. Treille,100 A. Tsirou,100 G. I. Veres,100,r N. Wardle,100H. K. Wöhri,100 H. Wollny,100W. D. Zeuner,100W. Bertl,101 K. Deiters,101

W. Erdmann,101R. Horisberger,101Q. Ingram,101H. C. Kaestli,101 D. Kotlinski,101U. Langenegger,101D. Renker,101 T. Rohe,101F. Bachmair,102L. Bäni,102L. Bianchini,102M. A. Buchmann,102B. Casal,102N. Chanon,102G. Dissertori,102

M. Dittmar,102M. Donegà,102M. Dünser,102P. Eller,102C. Grab,102D. Hits,102J. Hoss,102W. Lustermann,102B. Mangano,102 A. C. Marini,102P. Martinez Ruiz del Arbol,102M. Masciovecchio,102D. Meister,102N. Mohr,102C. Nägeli,102,kk

F. Nessi-Tedaldi,102 F. Pandolfi,102 F. Pauss,102M. Peruzzi,102 M. Quittnat,102L. Rebane,102 M. Rossini,102 A. Starodumov,102,ll M. Takahashi,102K. Theofilatos,102R. Wallny,102H. A. Weber,102C. Amsler,103,mmM. F. Canelli,103

V. Chiochia,103 A. De Cosa,103 A. Hinzmann,103T. Hreus,103B. Kilminster,103 C. Lange,103 B. Millan Mejias,103 J. Ngadiuba,103P. Robmann,103 F. J. Ronga,103S. Taroni,103M. Verzetti,103 Y. Yang,103 M. Cardaci,104 K. H. Chen,104

C. Ferro,104C. M. Kuo,104 W. Lin,104Y. J. Lu,104R. Volpe,104 S. S. Yu,104P. Chang,105Y. H. Chang,105 Y. W. Chang,105 Y. Chao,105K. F. Chen,105P. H. Chen,105C. Dietz,105U. Grundler,105W.-S. Hou,105K. Y. Kao,105Y. J. Lei,105Y. F. Liu,105

R.-S. Lu,105 D. Majumder,105E. Petrakou,105 Y. M. Tzeng,105 R. Wilken,105B. Asavapibhop,106 G. Singh,106 N. Srimanobhas,106N. Suwonjandee,106A. Adiguzel,107M. N. Bakirci,107,nnS. Cerci,107,ooC. Dozen,107I. Dumanoglu,107 E. Eskut,107S. Girgis,107G. Gokbulut,107E. Gurpinar,107I. Hos,107E. E. Kangal,107A. Kayis Topaksu,107G. Onengut,107,pp K. Ozdemir,107S. Ozturk,107,nnA. Polatoz,107D. Sunar Cerci,107,ooB. Tali,107,ooH. Topakli,107,nnM. Vergili,107I. V. Akin,108 B. Bilin,108S. Bilmis,108H. Gamsizkan,108,qqG. Karapinar,108,rrK. Ocalan,108,ssS. Sekmen,108U. E. Surat,108M. Yalvac,108 M. Zeyrek,108E. Gülmez,109B. Isildak,109,ttM. Kaya,109,uuO. Kaya,109,vvK. Cankocak,110F. I. Vardarlı,110L. Levchuk,111 P. Sorokin,111J. J. Brooke,112E. Clement,112D. Cussans,112H. Flacher,112 J. Goldstein,112M. Grimes,112G. P. Heath,112 H. F. Heath,112J. Jacob,112L. Kreczko,112C. Lucas,112Z. Meng,112D. M. Newbold,112,wwS. Paramesvaran,112A. Poll,112

S. Senkin,112V. J. Smith,112 T. Williams,112K. W. Bell,113 A. Belyaev,113,xx C. Brew,113 R. M. Brown,113 D. J. A. Cockerill,113J. A. Coughlan,113K. Harder,113 S. Harper,113E. Olaiya,113 D. Petyt,113

C. H. Shepherd-Themistocleous,113A. Thea,113 I. R. Tomalin,113 W. J. Womersley,113S. D. Worm,113M. Baber,114

R. Bainbridge,114O. Buchmuller,114D. Burton,114D. Colling,114N. Cripps,114M. Cutajar,114P. Dauncey,114G. Davies,114 M. Della Negra,114P. Dunne,114W. Ferguson,114J. Fulcher,114D. Futyan,114A. Gilbert,114G. Hall,114G. Iles,114M. Jarvis,114

G. Karapostoli,114 M. Kenzie,114R. Lane,114 R. Lucas,114,wwL. Lyons,114 A.-M. Magnan,114S. Malik,114 B. Mathias,114 J. Nash,114A. Nikitenko,114,ll J. Pela,114 M. Pesaresi,114K. Petridis,114 D. M. Raymond,114 S. Rogerson,114A. Rose,114

C. Seez,114P. Sharp,114,aA. Tapper,114M. Vazquez Acosta,114T. Virdee,114S. C. Zenz,114J. E. Cole,115 P. R. Hobson,115 A. Khan,115 P. Kyberd,115D. Leggat,115D. Leslie,115W. Martin,115 I. D. Reid,115 P. Symonds,115 L. Teodorescu,115

M. Turner,115J. Dittmann,116K. Hatakeyama,116A. Kasmi,116H. Liu,116T. Scarborough,116O. Charaf,117S. I. Cooper,117 C. Henderson,117P. Rumerio,117A. Avetisyan,118T. Bose,118C. Fantasia,118P. Lawson,118C. Richardson,118J. Rohlf,118

J. St. John,118L. Sulak,118J. Alimena,119E. Berry,119S. Bhattacharya,119G. Christopher,119D. Cutts,119Z. Demiragli,119 N. Dhingra,119A. Ferapontov,119A. Garabedian,119U. Heintz,119G. Kukartsev,119E. Laird,119G. Landsberg,119M. Luk,119

M. Narain,119M. Segala,119T. Sinthuprasith,119T. Speer,119J. Swanson,119 R. Breedon,120 G. Breto,120 M. Calderon De La Barca Sanchez,120 S. Chauhan,120M. Chertok,120J. Conway,120R. Conway,120 P. T. Cox,120

(10)

R. Erbacher,120M. Gardner,120 W. Ko,120R. Lander,120T. Miceli,120 M. Mulhearn,120D. Pellett,120 J. Pilot,120

F. Ricci-Tam,120 M. Searle,120S. Shalhout,120J. Smith,120M. Squires,120 D. Stolp,120 M. Tripathi,120 S. Wilbur,120 R. Yohay,120 R. Cousins,121 P. Everaerts,121 C. Farrell,121J. Hauser,121 M. Ignatenko,121 G. Rakness,121 E. Takasugi,121

V. Valuev,121 M. Weber,121K. Burt,122R. Clare,122J. Ellison,122J. W. Gary,122 G. Hanson,122J. Heilman,122 M. Ivova Rikova,122 P. Jandir,122E. Kennedy,122 F. Lacroix,122O. R. Long,122A. Luthra,122 M. Malberti,122 M. Olmedo Negrete,122A. Shrinivas,122S. Sumowidagdo,122S. Wimpenny,122W. Andrews,123 J. G. Branson,123 G. B. Cerati,123S. Cittolin,123R. T. D’Agnolo,123D. Evans,123A. Holzner,123R. Kelley,123D. Klein,123M. Lebourgeois,123

J. Letts,123I. Macneill,123D. Olivito,123S. Padhi,123C. Palmer,123 M. Pieri,123 M. Sani,123V. Sharma,123 S. Simon,123 E. Sudano,123M. Tadel,123Y. Tu,123A. Vartak,123C. Welke,123 F. Würthwein,123A. Yagil,123D. Barge,124 J. Bradmiller-Feld,124C. Campagnari,124T. Danielson,124A. Dishaw,124V. Dutta,124K. Flowers,124M. Franco Sevilla,124 P. Geffert,124C. George,124F. Golf,124L. Gouskos,124J. Incandela,124C. Justus,124N. Mccoll,124J. Richman,124D. Stuart,124

W. To,124 C. West,124 J. Yoo,124A. Apresyan,125A. Bornheim,125 J. Bunn,125 Y. Chen,125 J. Duarte,125 A. Mott,125 H. B. Newman,125C. Pena,125C. Rogan,125M. Spiropulu,125V. Timciuc,125J. R. Vlimant,125R. Wilkinson,125S. Xie,125

R. Y. Zhu,125 V. Azzolini,126A. Calamba,126 B. Carlson,126 T. Ferguson,126 Y. Iiyama,126 M. Paulini,126 J. Russ,126 H. Vogel,126I. Vorobiev,126J. P. Cumalat,127W. T. Ford,127A. Gaz,127M. Krohn,127E. Luiggi Lopez,127U. Nauenberg,127 J. G. Smith,127K. Stenson,127K. A. Ulmer,127S. R. Wagner,127J. Alexander,128A. Chatterjee,128J. Chu,128S. Dittmer,128

N. Eggert,128N. Mirman,128G. Nicolas Kaufman,128J. R. Patterson,128A. Ryd,128E. Salvati,128L. Skinnari,128W. Sun,128 W. D. Teo,128J. Thom,128 J. Thompson,128 J. Tucker,128Y. Weng,128 L. Winstrom,128 P. Wittich,128 D. Winn,129

S. Abdullin,130M. Albrow,130 J. Anderson,130G. Apollinari,130L. A. T. Bauerdick,130A. Beretvas,130J. Berryhill,130 P. C. Bhat,130G. Bolla,130K. Burkett,130J. N. Butler,130H. W. K. Cheung,130F. Chlebana,130S. Cihangir,130V. D. Elvira,130

I. Fisk,130J. Freeman,130Y. Gao,130E. Gottschalk,130L. Gray,130D. Green,130S. Grünendahl,130O. Gutsche,130J. Hanlon,130 D. Hare,130R. M. Harris,130J. Hirschauer,130B. Hooberman,130S. Jindariani,130M. Johnson,130U. Joshi,130K. Kaadze,130

B. Klima,130B. Kreis,130S. Kwan,130J. Linacre,130D. Lincoln,130R. Lipton,130T. Liu,130J. Lykken,130K. Maeshima,130 J. M. Marraffino,130V. I. Martinez Outschoorn,130S. Maruyama,130D. Mason,130P. McBride,130P. Merkel,130K. Mishra,130

S. Mrenna,130Y. Musienko,130,ddS. Nahn,130C. Newman-Holmes,130V. O’Dell,130O. Prokofyev,130E. Sexton-Kennedy,130 S. Sharma,130 A. Soha,130W. J. Spalding,130 L. Spiegel,130 L. Taylor,130 S. Tkaczyk,130N. V. Tran,130L. Uplegger,130 E. W. Vaandering,130R. Vidal,130A. Whitbeck,130J. Whitmore,130F. Yang,130D. Acosta,131P. Avery,131P. Bortignon,131 D. Bourilkov,131M. Carver,131T. Cheng,131D. Curry,131S. Das,131M. De Gruttola,131G. P. Di Giovanni,131R. D. Field,131 M. Fisher,131I. K. Furic,131J. Hugon,131 J. Konigsberg,131A. Korytov,131 T. Kypreos,131J. F. Low,131K. Matchev,131 P. Milenovic,131,yy G. Mitselmakher,131 L. Muniz,131A. Rinkevicius,131L. Shchutska,131 M. Snowball,131D. Sperka,131 J. Yelton,131M. Zakaria,131S. Hewamanage,132S. Linn,132P. Markowitz,132G. Martinez,132J. L. Rodriguez,132T. Adams,133 A. Askew,133J. Bochenek,133B. Diamond,133J. Haas,133S. Hagopian,133V. Hagopian,133K. F. Johnson,133H. Prosper,133

V. Veeraraghavan,133 M. Weinberg,133M. M. Baarmand,134M. Hohlmann,134 H. Kalakhety,134F. Yumiceva,134 M. R. Adams,135L. Apanasevich,135 V. E. Bazterra,135 D. Berry,135R. R. Betts,135I. Bucinskaite,135 R. Cavanaugh,135

O. Evdokimov,135 L. Gauthier,135 C. E. Gerber,135D. J. Hofman,135S. Khalatyan,135P. Kurt,135D. H. Moon,135 C. O’Brien,135C. Silkworth,135P. Turner,135N. Varelas,135E. A. Albayrak,136,zzB. Bilki,136,aaaW. Clarida,136K. Dilsiz,136 F. Duru,136M. Haytmyradov,136J.-P. Merlo,136H. Mermerkaya,136,bbbA. Mestvirishvili,136A. Moeller,136J. Nachtman,136

H. Ogul,136Y. Onel,136F. Ozok,136,zzA. Penzo,136R. Rahmat,136S. Sen,136P. Tan,136E. Tiras,136J. Wetzel,136T. Yetkin,136,ccc K. Yi,136 B. A. Barnett,137B. Blumenfeld,137S. Bolognesi,137 D. Fehling,137 A. V. Gritsan,137 P. Maksimovic,137

C. Martin,137M. Swartz,137P. Baringer,138 A. Bean,138 G. Benelli,138 C. Bruner,138R. P. Kenny III,138M. Malek,138 M. Murray,138D. Noonan,138S. Sanders,138 J. Sekaric,138R. Stringer,138 Q. Wang,138J. S. Wood,138I. Chakaberia,139

A. Ivanov,139S. Khalil,139M. Makouski,139Y. Maravin,139L. K. Saini,139S. Shrestha,139N. Skhirtladze,139I. Svintradze,139 J. Gronberg,140 D. Lange,140 F. Rebassoo,140D. Wright,140A. Baden,141A. Belloni,141B. Calvert,141S. C. Eno,141

J. A. Gomez,141N. J. Hadley,141 R. G. Kellogg,141T. Kolberg,141 Y. Lu,141M. Marionneau,141A. C. Mignerey,141 K. Pedro,141 A. Skuja,141 M. B. Tonjes,141S. C. Tonwar,141A. Apyan,142 R. Barbieri,142 G. Bauer,142 W. Busza,142

I. A. Cali,142M. Chan,142L. Di Matteo,142G. Gomez Ceballos,142M. Goncharov,142D. Gulhan,142M. Klute,142Y. S. Lai,142 Y.-J. Lee,142A. Levin,142P. D. Luckey,142T. Ma,142C. Paus,142D. Ralph,142C. Roland,142G. Roland,142G. S. F. Stephans,142 F. Stöckli,142 K. Sumorok,142D. Velicanu,142J. Veverka,142B. Wyslouch,142M. Yang,142M. Zanetti,142 V. Zhukova,142

(11)

A. Singovsky,143N. Tambe,143J. Turkewitz,143J. G. Acosta,144S. Oliveros,144E. Avdeeva,145K. Bloom,145 S. Bose,145

D. R. Claes,145A. Dominguez,145R. Gonzalez Suarez,145J. Keller,145D. Knowlton,145I. Kravchenko,145J. Lazo-Flores,145 S. Malik,145F. Meier,145G. R. Snow,145M. Zvada,145 J. Dolen,146 A. Godshalk,146 I. Iashvili,146A. Kharchilava,146 A. Kumar,146S. Rappoccio,146G. Alverson,147E. Barberis,147D. Baumgartel,147M. Chasco,147J. Haley,147A. Massironi,147

D. M. Morse,147D. Nash,147T. Orimoto,147D. Trocino,147R.-J. Wang,147 D. Wood,147J. Zhang,147 K. A. Hahn,148 A. Kubik,148 N. Mucia,148N. Odell,148B. Pollack,148A. Pozdnyakov,148M. Schmitt,148S. Stoynev,148 K. Sung,148

M. Velasco,148S. Won,148A. Brinkerhoff,149K. M. Chan,149 A. Drozdetskiy,149 M. Hildreth,149C. Jessop,149

D. J. Karmgard,149N. Kellams,149 K. Lannon,149 W. Luo,149S. Lynch,149 N. Marinelli,149T. Pearson,149 M. Planer,149 R. Ruchti,149N. Valls,149M. Wayne,149M. Wolf,149 A. Woodard,149 L. Antonelli,150J. Brinson,150B. Bylsma,150 L. S. Durkin,150S. Flowers,150A. Hart,150C. Hill,150R. Hughes,150K. Kotov,150T. Y. Ling,150D. Puigh,150M. Rodenburg,150

G. Smith,150B. L. Winer,150H. Wolfe,150H. W. Wulsin,150O. Driga,151P. Elmer,151P. Hebda,151A. Hunt,151S. A. Koay,151 P. Lujan,151D. Marlow,151T. Medvedeva,151 M. Mooney,151J. Olsen,151 P. Piroué,151X. Quan,151H. Saka,151 D. Stickland,151,c C. Tully,151 J. S. Werner,151A. Zuranski,151 E. Brownson,152H. Mendez,152 J. E. Ramirez Vargas,152

V. E. Barnes,153 D. Benedetti,153D. Bortoletto,153 M. De Mattia,153 L. Gutay,153Z. Hu,153M. K. Jha,153M. Jones,153 K. Jung,153 M. Kress,153 N. Leonardo,153 D. Lopes Pegna,153V. Maroussov,153 D. H. Miller,153 N. Neumeister,153 B. C. Radburn-Smith,153 X. Shi,153 I. Shipsey,153 D. Silvers,153 A. Svyatkovskiy,153 F. Wang,153 W. Xie,153L. Xu,153

H. D. Yoo,153 J. Zablocki,153Y. Zheng,153N. Parashar,154J. Stupak,154A. Adair,155B. Akgun,155K. M. Ecklund,155 F. J. M. Geurts,155 W. Li,155 B. Michlin,155B. P. Padley,155 R. Redjimi,155J. Roberts,155 J. Zabel,155 B. Betchart,156

A. Bodek,156 R. Covarelli,156 P. de Barbaro,156 R. Demina,156Y. Eshaq,156 T. Ferbel,156A. Garcia-Bellido,156

P. Goldenzweig,156J. Han,156A. Harel,156 A. Khukhunaishvili,156G. Petrillo,156 D. Vishnevskiy,156 R. Ciesielski,157 L. Demortier,157 K. Goulianos,157 G. Lungu,157C. Mesropian,157 S. Arora,158 A. Barker,158J. P. Chou,158 C. Contreras-Campana,158 E. Contreras-Campana,158 D. Duggan,158D. Ferencek,158Y. Gershtein,158R. Gray,158

E. Halkiadakis,158D. Hidas,158S. Kaplan,158A. Lath,158S. Panwalkar,158M. Park,158R. Patel,158S. Salur,158S. Schnetzer,158 S. Somalwar,158R. Stone,158S. Thomas,158P. Thomassen,158 M. Walker,158 K. Rose,159S. Spanier,159 A. York,159

O. Bouhali,160,ddd A. Castaneda Hernandez,160 R. Eusebi,160W. Flanagan,160 J. Gilmore,160T. Kamon,160,eee V. Khotilovich,160V. Krutelyov,160R. Montalvo,160I. Osipenkov,160Y. Pakhotin,160 A. Perloff,160J. Roe,160A. Rose,160 A. Safonov,160 T. Sakuma,160I. Suarez,160A. Tatarinov,160N. Akchurin,161C. Cowden,161J. Damgov,161C. Dragoiu,161 P. R. Dudero,161J. Faulkner,161K. Kovitanggoon,161S. Kunori,161S. W. Lee,161T. Libeiro,161I. Volobouev,161E. Appelt,162

A. G. Delannoy,162S. Greene,162 A. Gurrola,162W. Johns,162C. Maguire,162Y. Mao,162A. Melo,162M. Sharma,162 P. Sheldon,162 B. Snook,162S. Tuo,162J. Velkovska,162M. W. Arenton,163S. Boutle,163B. Cox,163B. Francis,163 J. Goodell,163 R. Hirosky,163A. Ledovskoy,163 H. Li,163 C. Lin,163 C. Neu,163J. Wood,163C. Clarke,164 R. Harr,164

P. E. Karchin,164 C. Kottachchi Kankanamge Don,164P. Lamichhane,164J. Sturdy,164 D. A. Belknap,165 D. Carlsmith,165 M. Cepeda,165S. Dasu,165L. Dodd,165S. Duric,165E. Friis,165 R. Hall-Wilton,165 M. Herndon,165 A. Hervé,165 P. Klabbers,165 A. Lanaro,165C. Lazaridis,165 A. Levine,165 R. Loveless,165A. Mohapatra,165 I. Ojalvo,165

T. Perry,165G. A. Pierro,165G. Polese,165I. Ross,165T. Sarangi,165A. Savin,165 W. H. Smith,165D. Taylor,165 P. Verwilligen,165C. Vuosalo,165and N. Woods165

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut für Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, São Paulo, Brazil 12bUniversidade Federal do ABC, São Paulo, Brazil

(12)

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18University of Split, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, Split, Croatia 19University of Split, Faculty of Science, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43Wigner Research Centre for Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India 50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53University College Dublin, Dublin, Ireland 54aINFN Sezione di Bari, Bari, Italy

54bUniversità di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversità di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Catania, Italy

56bUniversità di Catania, Catania, Italy 56cCSFNSM, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversità di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59aINFN Sezione di Genova, Genova, Italy

59bUniversità di Genova, Genova, Italy 60aINFN Sezione di Milano-Bicocca, Milano, Italy

60bUniversità di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy

(13)

61bUniversità di Napoli ’Federico II’, Napoli, Italy 61cUniversità della Basilicata (Potenza), Napoli, Italy

61dUniversità G. Marconi (Roma), Napoli, Italy 62aINFN Sezione di Padova, Padova, Italy

62bUniversità di Padova, Padova, Italy 62cUniversità di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversità di Pavia, Pavia, Italy 64aINFN Sezione di Perugia, Perugia, Italy

64bUniversità di Perugia, Perugia, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65bUniversità di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Roma, Roma, Italy 66bUniversità di Roma, Roma, Italy 67aINFN Sezione di Torino, Torino, Italy

67bUniversità di Torino, Torino, Italy

67cUniversità del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversità di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea 71Chonbuk National University, Jeonju, Korea

72Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 73Korea University, Seoul, Korea

74University of Seoul, Seoul, Korea 75Sungkyunkwan University, Suwon, Korea

76Vilnius University, Vilnius, Lithuania

77National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 78Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico

79Universidad Iberoamericana, Mexico City, Mexico 80Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 81Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

82University of Auckland, Auckland, New Zealand 83University of Canterbury, Christchurch, New Zealand

84National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 85National Centre for Nuclear Research, Swierk, Poland

86Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 87Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

88Joint Institute for Nuclear Research, Dubna, Russia

89Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 90Institute for Nuclear Research, Moscow, Russia

91Institute for Theoretical and Experimental Physics, Moscow, Russia 92P.N. Lebedev Physical Institute, Moscow, Russia

93Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 94State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 95University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

96Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 97Universidad Autónoma de Madrid, Madrid, Spain

98Universidad de Oviedo, Oviedo, Spain

99Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 100CERN, European Organization for Nuclear Research, Geneva, Switzerland

101Paul Scherrer Institut, Villigen, Switzerland

102Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 103Universität Zürich, Zurich, Switzerland

104National Central University, Chung-Li, Taiwan 105National Taiwan University (NTU), Taipei, Taiwan

106Department of Physics, Faculty of Science, Chulalongkorn University, Bangkok, Thailand 107Cukurova University, Adana, Turkey

(14)

109Bogazici University, Istanbul, Turkey 110Istanbul Technical University, Istanbul, Turkey

111National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 112University of Bristol, Bristol, United Kingdom

113Rutherford Appleton Laboratory, Didcot, United Kingdom 114Imperial College, London, United Kingdom 115Brunel University, Uxbridge, United Kingdom

116Baylor University, Waco, Texas 76798, USA

117The University of Alabama, Tuscaloosa, Alabama 35487, USA 118Boston University, Boston, Massachusetts 02215, USA 119Brown University, Providence, Rhode Island 02912, USA 120University of California, Davis, Davis, California 95616, USA

121University of California, Los Angeles, California 90095, USA 122University of California, Riverside, Riverside, California 92521, USA 123University of California, San Diego, La Jolla, California 92093, USA 124University of California, Santa Barbara, Santa Barbara, California 93106, USA

125California Institute of Technology, Pasadena, California 91125, USA 126Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 127University of Colorado at Boulder, Boulder, Colorado 80309, USA

128Cornell University, Ithaca, New York 14853, USA 129Fairfield University, Fairfield, Connecticut 06430, USA 130Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

131University of Florida, Gainesville, Florida 32611, USA 132Florida International University, Miami, Florida 33199, USA

133Florida State University, Tallahassee, Florida 32306, USA 134Florida Institute of Technology, Melbourne, Florida 32901, USA 135University of Illinois at Chicago (UIC), Chicago, Illinois 60607, USA

136The University of Iowa, Iowa City, Iowa 52242, USA 137Johns Hopkins University, Baltimore, Maryland 21218, USA

138The University of Kansas, Lawrence, Kansas 66045, USA 139Kansas State University, Manhattan, Kansas 66506, USA

140Lawrence Livermore National Laboratory, Livermore, California 94551, USA 141University of Maryland, College Park, Maryland 20742, USA 142Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

143University of Minnesota, Minneapolis, Minnesota 55455, USA 144University of Mississippi, Oxford, Mississippi 38677, USA 145University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA 146State University of New York at Buffalo, Buffalo, New York 14260, USA

147Northeastern University, Boston, Massachusetts 02115, USA 148Northwestern University, Evanston, Illinois 60208, USA 149University of Notre Dame, Notre Dame, Indiana 46556, USA

150The Ohio State University, Columbus, Ohio 43210, USA 151Princeton University, Princeton, New Jersey 08542, USA 152University of Puerto Rico, Mayaguez, Puerto Rico 00681, USA

153Purdue University, West Lafayette, Indiana 47907, USA 154Purdue University Calumet, Hammond, Indiana 46323, USA

155Rice University, Houston, Texas 77251, USA 156University of Rochester, Rochester, New York 14627, USA 157The Rockefeller University, New York, New York 10021, USA

158Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA 159University of Tennessee, Knoxville, Tennessee 37996, USA

160Texas A&M University, College Station, Texas 77843, USA 161Texas Tech University, Lubbock, Texas 79409, USA 162Vanderbilt University, Nashville, Tennessee 37235, USA 163University of Virginia, Charlottesville, Virginia 22904, USA

164Wayne State University, Detroit, Michigan 48202, USA 165University of Wisconsin, Madison, Wisconsin 53706, USA

Figura

FIG. 1 (color online). Lepton transverse impact parameter distributions for data and expected background processes after the preselection requirements have been applied, for electrons (top) and muons (bottom)
TABLE I. Numbers of expected and observed events in the three search regions (see the text for the definitions of these regions)

Riferimenti

Documenti correlati

Nella ricerca etnografica sono state coinvolte alcune delle ospiti e beneficiarie 29 che hanno deciso di partecipare alla ricerca, le volon- tarie 30 e gli operatori, pur prendendo

Benché non direttamente allievo, tutta- via legato a Rogers anche tramite «Casa- bella» che più volte lo pubblica, Polesello riconosce quanto il suo pensiero debba al Maestro

Modalità e strumenti per l’inizio del progetto Anastasia Kozlova?. How design can contribute to children’s

Il mio incontro con Crimp, il cui esito propongo in forma di intervista, ha se- gnato la mia ricerca di ricostruzione del dibattito critico avvenuto sulle pagine della

While acknowledging that some exceptions in the convergence process emerged in terms of the mean values of the parameters, the authors emphasized the strong link between

La prima si lega all’analisi dei bisogni formativi degli insegnanti della rete scolastica partecipante (bisogni espressi e manifestati sia in fase di primo con- tatto con

Significant results are reported also with respect to the perceived maternal care received by subjects during infancy and reported through self-report questionnaires

In una situazione, come quella attuale, in cui il lavoro di riproduzione (femminile e non) si sovrappone sempre più al lavoro produttivo classicamente inteso, è possibile pensare