• Non ci sono risultati.

Measurement of the Bs0 production cross section with Bs0→J/ψ Decays in pp collisions at √s=7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the Bs0 production cross section with Bs0→J/ψ Decays in pp collisions at √s=7TeV"

Copied!
16
0
0

Testo completo

(1)

Measurement of the B

0s

Production Cross Section with B

0s

! J=

c



Decays in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 22 June 2011; published 20 September 2011)

The B0s differential production cross section is measured as functions of the transverse momentum and

rapidity in pp collisions atpffiffiffis¼ 7 TeV, using the B0s! J=c  decay, and compared with predictions

based on perturbative QCD calculations at next-to-leading order. The data sample, collected by the CMS experiment at the LHC, corresponds to an integrated luminosity of 40 pb1. The B0s is reconstructed from

the decays J=c ! þand  ! KþK. The integrated B0

scross section times B0s ! J=c 

branch-ing fraction in the range 8 < pB

T< 50 GeV=c and jyBj < 2:4 is measured to be 6:9  0:6  0:6 nb, where

the first uncertainty is statistical and the second is systematic.

DOI:10.1103/PhysRevD.84.052008 PACS numbers: 13.85.Ni, 12.38.Bx, 14.40.Nd

The measurements of differential cross sections for heavy-quark production in high-energy hadronic interac-tions are critical input for the underlying next-to-leading order (NLO) quantum chromodynamics (QCD) calcula-tions [1]. While progress has been achieved in the under-standing of heavy-quark production at Tevatron energies [2–10], large theoretical uncertainties remain due to the dependence on the renormalization and factorization scales. Measurements of b-hadron production at the higher energies provided by the LHC represent an important new test of theoretical approaches that aim to reduce the scale dependence of NLO QCD calculations [11,12]. The Compact Muon Solenoid (CMS) experiment, that covers a rapidity range complementary to the specialized b-physics experiment LHCb [13], recently measured the cross sections for production of Bþ[14] and B0[15] in pp collisions at pffiffiffis¼ 7 TeV. This paper presents the first measurement of the production of B0s, with B0s decaying

into J=c, and adds information to improve the under-standing of b-quark production at this energy. Data and theoretical predictions are compared to NLO predictions of heavy-quark production.

The decay channel B0s ! J=c is of wide interest as the

production rate offers a sensitive indirect search of physics beyond the standard model at the LHC. This decay pro-ceeds via the b ! c cs transition that probes the CP-violating phase related to B0s- B0s mixing. The standard

model predicts this phase to be close to zero [16] while new phenomena may alter the observed phase [17].

A sample of exclusive B0s ! J=c decays, with

J=c ! þ and  ! KþK, is reconstructed from the data collected in 2010 by the CMS experiment,

corre-sponding to an integrated luminosity of 39:6  1:6 pb1. The differential production cross sections, d=dpB

T and

d=dyB, are determined as functions of the transverse

momentum pB

T and rapidity jyBj of the reconstructed B0s

candidate. The differential cross sections are calculated from the measured signal yields (nsig), corrected for the

overall efficiency (), bin size (x, with x ¼ pB

T,jyBj), and integrated luminosity (L), dðpp ! B0s! J=cÞ dx ¼ nsig 2    B  L  x; (1) where B is the product of the branching fractions for the decays of the J=c and  mesons. In each bin the signal yield is extracted with an unbinned maximum likelihood fit to the J=c invariant mass and proper decay length ct of the B0s candidates. The factor of 2 in Eq. (1) is required

since we report the result as a cross section for B0s

produc-tion alone, while both B0s and B0s are included in nsig. The

size of the bins is chosen such that the statistical uncer-tainty on nsigis comparable in each of them.

A detailed description of the CMS detector can be found elsewhere [18]. The primary components used in this analysis are the silicon tracker and the muon systems. The tracker operates in a 3.8 T axial magnetic field gen-erated by a superconducting solenoid having an internal diameter of 6 m. The tracker consists of three cylindrical layers of pixel detectors complemented by two disks in the forward and backward directions. The radial region be-tween 20 and 116 cm is occupied by several layers of silicon strip detectors in barrel and disk configurations, ensuring at least nine hits in the pseudorapidity range jj < 2:4, where  ¼  ln½tanð=2Þ and  is the polar angle of the track measured from the positive z-axis of a right-handed coordinate system, with the origin at the nominal interaction point, the x-axis pointing to the center of the LHC, the y-axis pointing up (perpendicular to the LHC plane), and the z-axis along the counterclockwise-beam direction. An impact parameter resolution around *Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

15 m and a pTresolution around 1.5% are achieved for

charged particles with transverse momenta up to 100 GeV=c. Muons are identified in the range jj < 2:4, with detection planes made of drift tubes, cathode strip chambers, and resistive plate chambers, embedded in the steel return yoke.

The first level of the CMS trigger system uses informa-tion from the crystal electromagnetic calorimeter, the brass/scintillator hadron calorimeter, and the muon detec-tors to select the most interesting events in less than 1 s. The high level trigger employs software algorithms and a farm of commercial processors to further decrease the event rate using information from all detector subsystems. The events used in the measurement reported in this paper were collected with a trigger requiring the presence of two muons at the high level trigger, with no explicit momentum threshold.

Reconstruction of B0s ! J=c candidates begins by

identifying J=c ! þ decays. The muon candidates must have one or more reconstructed segments in the muon system that match the extrapolated position of a track reconstructed in the tracker. Furthermore, the muons are required to lie within a kinematic acceptance region de-fined as pT > 3:3 GeV=c for jj < 1:3; total momentum

p> 2:9 GeV=c for 1:3 < jj < 2:2; and pT > 0:8 GeV=c for 2:2 < jj < 2:4. Two oppositely charged

muon candidates are paired and are required to originate from a common vertex using a Kalman vertex fit. The muon pair is required to have a transverse momentum pT> 0:5 GeV=c and an invariant mass within

150 MeV=c2 of the world average J=c mass value [19],

which corresponds to more than 3 times the measured dimuon invariant mass resolution [20].

Candidate  mesons are reconstructed from pairs of oppositely charged tracks with pT> 0:7 GeV=c that are

selected from a sample with the muon candidate tracks removed. The tracks are required to have at least five hits in the silicon tracker detectors, and a track 2 per degree of freedom less than 5. Each track is assumed to be a kaon and the invariant mass of a track pair has to be within 10 MeV=c2of the world average -meson mass [19].

The B0scandidates are formed by combining a J=c with

a  candidate. The two muons and the two kaons are subjected to a combined vertex and kinematic fit [21], where in addition the dimuon invariant mass is constrained to the nominal J=c mass. The selected candidates must have a resulting 2 vertex probability greater than 2%, an invariant mass between 5.20 and 5:65 GeV=c2, and must be in the kinematic range 8 < pB

T< 50 GeV=c and jyBj <

2:4. For events with more than one candidate, the one with the highest vertex-fit probability is selected, which results in the correct choice 97% of the time, as determined from simulated signal events.

The proper decay length of each selected B0scandidate is

calculated using the formula ct ¼ cðMB=pBTÞLxy, where

the transverse decay length Lxyis the length of the vector

~s pointing from the primary vertex [22] to the secondary vertex projected onto the B0s transverse momentum:

Lxy¼ ð~s  ~pBTÞ=pBT, with MB being the reconstructed mass

of the B0s candidate. Candidate B0s mesons are accepted

within the range0:05 < ct < 0:35 cm.

A total of 6200 events pass all the selection criteria. The efficiency of the B0s reconstruction is computed with

a combination of techniques using the data and large samples of simulated signal events generated using

PYTHIA 6.422 [23]. The decays of unstable particles are described by the EVTGEN [24] simulation. Long-lived particles are then propagated through a detailed descrip-tion of the CMS detector based on the GEANT4 [25] package. The trigger and muon reconstruction efficiencies are obtained from a large sample of inclusive J=c ! þ decays in data using a (tag-and-probe) technique similar to that described in Ref. [20], where one muon (the tag) is identified with stringent quality requirements, and the second muon (the probe) is identified using information either exclusively from the tracker (to mea-sure the trigger and muon identification efficiencies), or from the muon system (to measure the silicon tracking efficiency). The dimuon efficiencies are calculated as the product of the single-muon efficiencies obtained with this method. Corrections to account for correlations between the two muons (1%–3%) are obtained from simulation studies. The correction factors are determined in bins of single muon pT and  and are applied independently to

each muon from a B0s ! J=c decay in the simulation to

determine the total corrected efficiency. The probabilities for the muons to lie within the kinematic acceptance region and for the  and B0s candidates to pass the

selection requirements are determined from the simulated events. The efficiencies for hadronic track reconstruction [26] and the vertex-quality requirement are found to be consistent between real data and simulated events within their uncertainties (up to 5%). The total efficiency of this selection, defined as the fraction of B0s! J=c decays

produced with 8 < pB

T< 50 GeV=c and jyBj < 2:4 that

pass all criteria, ranges from 1.3% for pB

T  8 GeV=c to

19.6% for pB

T> 23 GeV=c.

The two main background sources are prompt and non-prompt J=c production. The latter background is mainly composed of Bþand B0mesons that decay to a J=c and a higher-mass K-meson state (such as the Kþ1). Such events

tend to contribute to the low-mass side of the MB mass

distribution. Inspection of a large variety of potential back-ground channels confirms that there is no single dominant component and that the channel B0 ! J=cKð892Þ [with Kð892Þ0 ! Kþ], which a priori is kinematically simi-lar to the signal decay and more abundantly produced, is strongly suppressed by the restriction on the KþK invari-ant mass. A study of the sidebands of the dimuon invariinvari-ant mass distribution confirms that the contamination from

(3)

events without a J=c decay to two muons is negligible after all selection criteria have been applied.

The signal yields in each pB

T and jyBj bin, given in

Table I, are obtained using an unbinned extended maxi-mum likelihood fit to MBand ct. The likelihood for event j

is obtained by summing the product of the yield niand the

probability density functions (PDF)PiandQifor each of the signal and background hypotheses i. Three individual components are considered: signal, nonprompt b ! J=c X, and prompt J=c. The extended likelihood function is then the product of likelihoods for each event j:

L ¼ expX3 i¼1 ni Y j X3 i¼1 niPiðMB; ~ iÞQiðct; ~iÞ  : (2) The PDFsPiandQiare parameterized separately for each fit component with shape parameters ~ ifor MBand ~ifor

ct. The yields ni are then determined by minimizing the

quantity  lnL with respect to the signal yields and a subset of the PDF parameters [27]. Possible correlations between MB and ct are found to be less than 2%.

Therefore, they are assumed to have a negligible impact on the fit, and potential biases arising from this assumption are accounted for in the systematic uncertainty on the fitted signal yield as described below.

The PDFs are constructed from basic analytical func-tions that satisfactorily describe the variable distribufunc-tions from simulated events. Shape parameters are obtained from data when possible. The MB PDF is the sum of two

Gaussian functions for the signal, a second-order polyno-mial for the nonprompt J=c that allows for possible cur-vature in the shape, and a first-order polynomial for prompt J=c. The resolution on MB is approximately 20 MeV=c2

near the B0s mass.

For the signal, the ct PDF is a single exponential pa-rameterized in terms of a proper decay length c . It is

convolved with a resolution function that is a combination of two Gaussian functions to account for a dominant core and small outlier distribution; the core fraction is varied in the fit and found to be consistently larger than 95%. The ct distribution for the nonprompt J=c background is de-scribed by a sum of two exponentials, with effective life-times that are allowed to be different. The ‘‘long-lifetime exponential’’ corresponds to decays of b-hadrons to a J=c plus some charged particles that survive the  selection, while the ‘‘short-lifetime exponential’’ accounts for events where the muons from the J=c decay are wrongly com-bined with hadron tracks originating from the pp collision point. The exponential functions are convolved with a resolution function with the same parameters as the signal. For the prompt J=c component the pure resolution func-tion is used. The core resolufunc-tion in ct is measured in data to be 45 m.

All background shapes are obtained directly from data, while the signal shape in MB is taken from a fit to

recon-structed signal events from the simulation. The effective lifetime and resolution function parameters for prompt and nonprompt backgrounds are extracted, using the full data sample irrespective of pB

TandjyBj, from regions in MBthat

are separated by more than 4 times the width of the observed B0s signal from the mean B0s peak position (MB

sidebands): 5:20 < MB< 5:29 GeV=c2 and 5:45 < MB<

5:65 GeV=c2. A comparison of the PDF shapes for the

different sideband regions in simulated events confirms that their average over the signal-free regions is a good representation of the background in the signal region. With the lifetimes for signal and nonprompt background fixed from this first step, the resolution function parameters are then determined separately in each pB

T andjyBj bin, from

the MB sidebands. The signal and background yields in

each pBT and jyBj bin are determined in a final iteration,

using the full MBrange, with all parameters floating except

TABLE I. Signal yield nsig, efficiency ð%Þ, and measured differential cross sections d=dpBT and d=dyB, compared to the

MC@NLOandPYTHIApredictions, in different pBTandjyBj intervals. The uncertainty on n

sigis statistical only while the uncertainties on

the measured cross sections are statistical and systematic, respectively, excluding the common luminosity of 4% and the 1.4% from the J=c and  branching fractions.

d=dpB

T (nb=GeV=c)

pB

T (GeV=c) nsig  (%) Data MC@NLO PYTHIA

8–12 138  16 1:28  0:05 1:172  0:136  0:113 0.719 1.513 12–16 176  17 5:26  0:23 0:364  0:035  0:034 0.240 0.515 16–23 162  16 11:9  0:6 0:085  0:008  0:008 0.074 0.144 23–50 86  11 19:6  1:1 0:007  0:001  0:001 0.008 0.010 d=dyB(nb) jyBj n

sig  (%) Data MC@NLO PYTHIA

0.00–0.80 151  15 2:75  0:09 1:484  0:147  0:148 1.040 2.281

0.80–1.40 144  15 4:65  0:18 1:123  0:117  0:102 1.023 2.051

1.40–1.70 129  15 5:68  0:31 1:634  0:190  0:160 0.929 1.833

1.70–2.40 139  17 3:26  0:20 1:316  0:161  0:139 0.801 1.559

(4)

the background lifetimes and the lifetime resolution func-tions, which are fixed to the results of the fit to the MB

sidebands. It has been verified that leaving all parameters floating changes the signal yield by an amount smaller than the systematic uncertainty assigned to the fit procedure.

Many detailed studies have been conducted to validate the accuracy and robustness of the fit procedure. A large number of pseudoexperiments were performed, each cor-responding to the yields observed in each pB

T and jyBj

bin for a data sample corresponding to an integrated luminosity of 40 pb1, where signal and background events were generated randomly from the PDFs in each bin. The fit yields were found to be unbiased and their uncertainties estimated properly. The effects of residual correlations between MB and ct were studied by mixing

fully simulated signal and background events to produce pseudoexperiments. The observed deviations between the fitted and generated yields (1%–2%) are taken as the systematic uncertainty due to potential biases in the fit method.

Figure1shows the fit projections for MBand ct from the

inclusive sample with 8 < pB

T< 50 GeV=c and jyBj < 2:4.

When plotting MB, the selection ct > 0:01 cm is applied for

better visibility of the individual contributions. The number of signal events in the entire data sample is 549 32, where the uncertainty is statistical only. The obtained proper decay length of the signal, c ¼ 478  26 m, is within 1.4 standard deviations of the world average value [19], even though this analysis was not optimized for lifetime measurements.

TableIsummarizes the fitted signal yield in each bin of pB

T and jyBj. The differential cross section is calculated

according to Eq. (1), using the product of the branching fractions BðJ=c ! þÞ ¼ ð5:93  0:06Þ  102 and Bð ! KþKÞ ¼ ð48:9  0:5Þ  102[19]. All

efficien-cies are calculated separately in each bin, and account for bin-to-bin migrations (less than 1%) due to the finite resolution of the measured momentum and rapidity.

The cross section measurement is affected by several sources of systematic uncertainty arising from uncertain-ties on the fit, efficiencies, branching fractions, and inte-grated luminosity. In every bin the total uncertainty is about 11%. Uncertainties on the muon efficiencies from the trigger, identification, and tracking are determined directly from data (3%–5%). The uncertainty of the method employed to measure the efficiency in the data has been estimated from a large sample of full-detector simulated events (1%–3%). The tracking efficiency for the charged kaons has been shown to be consistent with simulation. A conservative uncertainty of at most 9% in each bin has been assigned for the hadronic track recon-struction (adding linearly the uncertainties on the two kaon tracks [26]), which includes the uncertainty due to misalignment of the silicon detectors. The uncertainty on the fit procedure arising from potential biases and

imperfect knowledge of the PDF parameters is estimated by varying the parameters by 1 standard deviation (2%–4%). The contribution related to the B0s momentum

spectrum (1%–3%) is evaluated by reweighting the shape of the pB

Tdistribution generated withPYTHIAto match the

spectrum predicted by MC@NLO [28]. An uncertainty of 1% is assigned to the variation of the selection criteria applied to the vertex-fit probability, the transverse mo-mentum of the kaons, the B0s transverse momentum, and

the KþK invariant mass window. An uncertainty is added to account for the limited number of simulated events (at most 3% in the highest pB

T bin). The total

uncorrelated systematic uncertainty on the cross section measurement is computed in each bin as the sum in quadrature of the individual uncertainties, and is summa-rized in TableI. In addition, there are common uncertain-ties of 4% from the integrated luminosity measurement [29] and 1.4% from the J=c and  branching fractions. As the reported result is a measurement of the B0s cross

)

2

invariant mass (GeV/c

φ ψ J/ 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 ) 2 Events / (0.018 GeV/c 0 20 40 60 80 100 120 140 160 180 200 220 ) 2

invariant mass (GeV/c

φ ψ J/ 5.2 5.25 5.3 5.35 5.4 5.45 5.5 5.55 5.6 5.65 ) 2 Events / (0.018 GeV/c 0 20 40 60 80 100 120 140 160 180 200 220 = 7 TeV s CMS -1 L = 40 pb (a) ct > 0.01 cm ct (cm) -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Events / (0.01 cm) -1 10 1 10 2 10 3 10 4 10 ct (cm) -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 Events / (0.01 cm) -1 10 1 10 2 10 3 10 4 10 = 7 TeV s CMS -1 L = 40 pb (b)

FIG. 1. Projections of the fit results in MB(a) and ct (b) for

8 < pB

T< 50 GeV=c and jyBj < 2:4. The curves in each plot are

the sum of all contributions (solid line), signal (dashed line), prompt J=c (dotted line), and nonprompt J=c (dotted-dashed line). For better visibility of the individual contributions, plot (a) includes the requirement ct > 0:01 cm.

(5)

section times the B0s! J=c branching fraction, the

30% uncertainty on the B0s ! J=c branching fraction

[19] is not included in the result.

The differential cross sections times branching fractions as functions of pBTandjyBj are listed in TableIand plotted

in Fig. 2, together with predictions from MC@NLO and

PYTHIA. The predictions ofMC@NLOuse the renormaliza-tion and factorizarenormaliza-tion scales  ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi m2bc4þ p2Tc2

q

, where pTis the transverse momentum of the b quark, a b-quark

mass of mb¼ 4:75 GeV=c2, and the CTEQ6M parton

distribution functions [30]. The uncertainty on the

MC@NLOcross section is obtained simultaneously varying

the renormalization and factorization scales by factors of two, varying mb by 0:25 GeV=c2, and using the

CTEQ6.6 parton distribution function set. The prediction ofPYTHIAuses the CTEQ6L1 parton distribution functions [30], a b-quark mass of 4:8 GeV=c2, and the Z2 tune [31] to simulate the underlying event. The total integrated B0s

cross section times B0s! J=c branching fraction for the

range 8 < pBT< 50 GeV=c and jyBj < 2:4 is measured to

be 6:9  0:6  0:6 nb, where the first uncertainty is statis-tical and the second is systematic. The statisstatis-tical and systematic uncertainties are derived from the bin-by-bin uncertainties and propagated through the sum. The mea-sured total cross section lies between the theoretical pre-dictions of MC@NLO (4:6þ1:91:7 1:4 nb) and PYTHIA

(9:4  2:8 nb), where the last uncertainty is from the B0s!

J=c branching fraction [19]. Also the previous CMS cross section measurements of Bþ[14] and B0 [15] production in pp collisions at pffiffiffis¼ 7 TeV gave values between the two theory predictions, indicating internal consistency amongst the three different B-meson results.

In summary, the first measurements of the B0sdifferential

cross sections d=dpB

Tand d=dyB, in the decay channel

B0s! J=c and in pp collisions at

ffiffiffi s p

¼ 7 TeV, have been presented. The results cover the kinematical window jyBj < 2:4 and 8 < pB

T< 50 GeV=c. They add

comple-mentary information to previous results in moving towards a comprehensive description of b-hadron production atffiffiffi

s p

¼ 7 TeV.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from the following: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS

(Lithuania); CINVESTAV, CONACYT, SEP, and

UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA). )[GeV/c] s (B T p 10 15 20 25 30 35 40 45 50 |<2.4)[nb/(GeV/c)] B ; |yφ ψ J/s B(pp T /dpσ d -3 10 -2 10 -1 10 1 Data

PYTHIA (MSEL 1, CTEQ6L1, Z2 tuning) ) 2 = 4.75 GeV/c b MC@NLO (CTEQ6M, m MC@NLO total uncertainty

= 7 TeV s CMS -1 L = 40 pb (a)

BF (30%) and Lumi (4%) uncertainties not shown

)| s |y(B 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 <50 GeV/c)[nb] B T ; 8<pφ ψ J/s B/dy(ppσ d 0.5 1 1.5 2 2.5 3 Data

PYTHIA (MSEL 1, CTEQ6L1, Z2 tuning) ) 2 = 4.75 GeV/c b MC@NLO (CTEQ6M, m MC@NLO total uncertainty

= 7 TeV s CMS -1 L = 40 pb (b)

BF (30%) and Lumi (4%) uncertainties not shown

FIG. 2 (color online). Measured differential cross sections d=dpB

T(a) and d=dyB(b) compared with theoretical

predic-tions. The (yellow) band represents the sum in quadrature of statistical and systematic uncertainties. The dotted (red) line is

thePYTHIAprediction; the solid and dashed (blue) lines are the

MC@NLOprediction and its uncertainty, respectively. The

com-mon uncertainties of 4% on the data points, due to the integrated luminosity, and of 30% on the theory curves, due to the B0s !

J=c  branching fraction, are not shown.

(6)

[1] P. Nason et al.,Nucl. Phys. B303, 607 (1988).

[2] F. Abe et al. (CDF Collaboration),Phys. Rev. Lett. 71, 500 (1993).

[3] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 75, 1451 (1995).

[4] D. E. Acosta et al. (CDF Collaboration),Phys. Rev. D 65, 052005 (2002).

[5] S. Abachi et al. (D0 Collaboration),Phys. Rev. Lett. 74, 3548 (1995).

[6] B. Abbott et al. (D0 Collaboration),Phys. Rev. Lett. 84, 5478 (2000).

[7] B. Abbott et al. (D0 Collaboration),Phys. Rev. Lett. 85, 5068 (2000).

[8] D. E. Acosta et al. (CDF Collaboration),Phys. Rev. D 71, 032001 (2005).

[9] A. Abulencia et al. (CDF Collaboration),Phys. Rev. D 75, 012010 (2007).

[10] M. Cacciari et al.,J. High Energy Phys. 07 (2004) 033. [11] M. Cacciari et al.,J. High Energy Phys. 05 (1998) 007. [12] B. A. Kniehl et al.,Phys. Rev. D 77, 014011 (2008). [13] R. Aaij et al. (LHCb Collaboration), Phys. Lett. B 694,

209 (2010).

[14] V. Khachatryan et al. (CMS Collaboration), Phys. Rev. Lett. 106, 112001 (2011).

[15] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. Lett. 106, 252001 (2011).

[16] A. Lenz et al.,J. High Energy Phys. 06 (2007) 072.

[17] I. Dunietz et al.,Phys. Rev. D 63, 114015 (2001). [18] S. Chatrchyan et al. (CMS Collaboration), JINST 3,

S08004 (2008).

[19] K. Nakamura et al. (Particle Data Group),J. Phys. G 37, 075021 (2010).

[20] V. Chachatryan et al. (CMS Collaboration),Eur. Phys. J. D 71, 1575 (2011).

[21] K. Prokofiev and T. Speer, in Proceedings of Computing in High Energy Physics and Nuclear Physics (Interlaken, Switzerland, 2004), p. 411.

[22] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-TRK-10-005, 2010.

[23] T. Sjo¨strand et al.,J. High Energy Phys. 05 (2006) 026. [24] D. J. Lange,Nucl. Instrum. Methods Phys. Res., Sect. A

462, 152 (2001).

[25] S. Agostinelli et al. (GEANT4),Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[26] CMS Collaboration, CMS Physics Analysis Summary, Report No. CMS-PAS-TRK-10-002, 2010.

[27] I. Antcheva et al., Comput. Phys. Commun. 180, 2499 (2009).

[28] S. Frixione et al.,J. High Energy Phys. 08 (2003) 007. [29] CMS Collaboration, CMS Physics Analysis Summary,

Report No. CMS-PAS-EWK-10-004, 2010.

[30] J. Pumplin et al.,J. High Energy Phys. 07 (2002) 012. [31] R. Field, in Proceedings of the Hadron Collider Physics

Symposium (Toronto, Canada, 2010).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2R. Scho¨fbeck,2

J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2 V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4L. Benucci,4E. A. De Wolf,4X. Janssen,4J. Maes,4

T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4F. Blekman,5S. Blyweert,5J. D’Hondt,5O. Devroede,5R. Gonzalez Suarez,5

A. Kalogeropoulos,5M. Maes,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6 B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6T. Hreus,6P. E. Marage,6L. Thomas,6

C. Vander Velde,6P. Vanlaer,6V. Adler,7A. Cimmino,7S. Costantini,7M. Grunewald,7B. Klein,7J. Lellouch,7 A. Marinov,7J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7S. Walsh,7 N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8E. Cortina Gil,8J. De Favereau De Jeneret,8 C. Delaere,8,bD. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8

S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9T. Caebergs,9E. Daubie,9G. A. Alves,10 D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11E. M. Da Costa,11C. De Oliveira Martins,11

S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11 S. M. Silva Do Amaral,11A. Sznajder,11C. A. Bernardes,12,cF. A. Dias,12T. R. Fernandez Perez Tomei,12

E. M. Gregores,12,cC. Lagana,12F. Marinho,12P. G. Mercadante,12,cS. F. Novaes,12Sandra S. Padula,12 N. Darmenov,13,bV. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13 V. Tcholakov,13R. Trayanov,13A. Dimitrov,14R. Hadjiiska,14A. Karadzhinova,14V. Kozhuharov,14L. Litov,14 M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15

X. Meng,15J. Tao,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15 Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16B. Zhu,16W. Zou,16A. Cabrera,17 B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18

K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20S. Duric,20 K. Kadija,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21

(7)

M. Finger,22M. Finger, Jr.,22Y. Assran,23,eS. Khalil,23,fM. A. Mahmoud,23,gA. Hektor,24M. Kadastik,24 M. Mu¨ntel,24M. Raidal,24L. Rebane,24V. Azzolini,25P. Eerola,25G. Fedi,25S. Czellar,26J. Ha¨rko¨nen,26 A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26

T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26 L. Wendland,26K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27D. Sillou,28M. Besancon,29 S. Choudhury,29M. Dejardin,29D. Denegri,29B. Fabbro,29J. L. Faure,29F. Ferri,29S. Ganjour,29F. X. Gentit,29

A. Givernaud,29P. Gras,29G. Hamel de Monchenault,29P. Jarry,29E. Locci,29J. Malcles,29M. Marionneau,29 L. Millischer,29J. Rander,29A. Rosowsky,29I. Shreyber,29M. Titov,29P. Verrecchia,29S. Baffioni,30F. Beaudette,30

L. Benhabib,30L. Bianchini,30M. Bluj,30,hC. Broutin,30P. Busson,30C. Charlot,30T. Dahms,30L. Dobrzynski,30 S. Elgammal,30R. Granier de Cassagnac,30M. Haguenauer,30P. Mine´,30C. Mironov,30C. Ochando,30P. Paganini,30

D. Sabes,30R. Salerno,30Y. Sirois,30C. Thiebaux,30B. Wyslouch,30,iA. Zabi,30J.-L. Agram,31,jJ. Andrea,31 D. Bloch,31D. Bodin,31J.-M. Brom,31M. Cardaci,31E. C. Chabert,31C. Collard,31E. Conte,31,jF. Drouhin,31,j C. Ferro,31J.-C. Fontaine,31,jD. Gele´,31U. Goerlach,31S. Greder,31P. Juillot,31M. Karim,31,jA.-C. Le Bihan,31 Y. Mikami,31P. Van Hove,31F. Fassi,32D. Mercier,32C. Baty,33S. Beauceron,33N. Beaupere,33M. Bedjidian,33 O. Bondu,33G. Boudoul,33D. Boumediene,33H. Brun,33J. Chasserat,33R. Chierici,33D. Contardo,33P. Depasse,33

H. El Mamouni,33J. Fay,33S. Gascon,33B. Ille,33T. Kurca,33T. Le Grand,33M. Lethuillier,33L. Mirabito,33 S. Perries,33V. Sordini,33S. Tosi,33Y. Tschudi,33P. Verdier,33D. Lomidze,34G. Anagnostou,35S. Beranek,35 M. Edelhoff,35L. Feld,35N. Heracleous,35O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35 A. Ostapchuk,35A. Perieanu,35F. Raupach,35J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35M. Weber,35

B. Wittmer,35M. Ata,36E. Dietz-Laursonn,36M. Erdmann,36T. Hebbeker,36A. Hinzmann,36K. Hoepfner,36 T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aC. Magass,36M. Merschmeyer,36A. Meyer,36 P. Papacz,36H. Pieta,36H. Reithler,36S. A. Schmitz,36L. Sonnenschein,36J. Steggemann,36D. Teyssier,36

M. Bontenackels,37M. Davids,37M. Duda,37G. Flu¨gge,37H. Geenen,37M. Giffels,37W. Haj Ahmad,37 D. Heydhausen,37F. Hoehle,37B. Kargoll,37T. Kress,37Y. Kuessel,37A. Linn,37A. Nowack,37L. Perchalla,37

O. Pooth,37J. Rennefeld,37P. Sauerland,37A. Stahl,37M. Thomas,37D. Tornier,37M. H. Zoeller,37 M. Aldaya Martin,38W. Behrenhoff,38U. Behrens,38M. Bergholz,38,kA. Bethani,38K. Borras,38A. Cakir,38 A. Campbell,38E. Castro,38D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38G. Flucke,38A. Geiser,38

J. Hauk,38H. Jung,38,bM. Kasemann,38I. Katkov,38,lP. Katsas,38C. Kleinwort,38H. Kluge,38A. Knutsson,38 M. Kra¨mer,38D. Kru¨cker,38E. Kuznetsova,38W. Lange,38W. Lohmann,38,kR. Mankel,38M. Marienfeld,38 I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38A. Mussgiller,38J. Olzem,38A. Petrukhin,38D. Pitzl,38 A. Raspereza,38A. Raval,38M. Rosin,38R. Schmidt,38,kT. Schoerner-Sadenius,38N. Sen,38A. Spiridonov,38 M. Stein,38J. Tomaszewska,38R. Walsh,38C. Wissing,38C. Autermann,39V. Blobel,39S. Bobrovskyi,39J. Draeger,39

H. Enderle,39U. Gebbert,39M. Go¨rner,39K. Kaschube,39G. Kaussen,39H. Kirschenmann,39R. Klanner,39 J. Lange,39B. Mura,39S. Naumann-Emme,39F. Nowak,39N. Pietsch,39C. Sander,39H. Schettler,39P. Schleper,39 E. Schlieckau,39M. Schro¨der,39T. Schum,39J. Schwandt,39H. Stadie,39G. Steinbru¨ck,39J. Thomsen,39C. Barth,40

J. Bauer,40J. Berger,40V. Buege,40T. Chwalek,40W. De Boer,40A. Dierlamm,40G. Dirkes,40M. Feindt,40 J. Gruschke,40C. Hackstein,40F. Hartmann,40M. Heinrich,40H. Held,40K. H. Hoffmann,40S. Honc,40 J. R. Komaragiri,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40O. Oberst,40A. Oehler,40 J. Ott,40T. Peiffer,40G. Quast,40K. Rabbertz,40F. Ratnikov,40N. Ratnikova,40M. Renz,40C. Saout,40A. Scheurer,40 P. Schieferdecker,40F.-P. Schilling,40G. Schott,40H. J. Simonis,40F. M. Stober,40D. Troendle,40J. Wagner-Kuhr,40 T. Weiler,40M. Zeise,40V. Zhukov,40,lE. B. Ziebarth,40G. Daskalakis,41T. Geralis,41S. Kesisoglou,41A. Kyriakis,41

D. Loukas,41I. Manolakos,41A. Markou,41C. Markou,41C. Mavrommatis,41E. Ntomari,41E. Petrakou,41 L. Gouskos,42T. J. Mertzimekis,42A. Panagiotou,42E. Stiliaris,42I. Evangelou,43C. Foudas,43P. Kokkas,43 N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43A. Aranyi,44G. Bencze,44L. Boldizsar,44C. Hajdu,44,b P. Hidas,44D. Horvath,44,mA. Kapusi,44K. Krajczar,44,nF. Sikler,44,bG. I. Veres,44,nG. Vesztergombi,44,nN. Beni,45 J. Molnar,45J. Palinkas,45Z. Szillasi,45V. Veszpremi,45P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46S. B. Beri,47

V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Jindal,47M. Kaur,47J. M. Kohli,47M. Z. Mehta,47N. Nishu,47 L. K. Saini,47A. Sharma,47A. P. Singh,47J. Singh,47S. P. Singh,47S. Ahuja,48B. C. Choudhary,48B. Gomber,48

P. Gupta,48S. Jain,48S. Jain,48R. Khurana,48A. Kumar,48M. Naimuddin,48K. Ranjan,48R. K. Shivpuri,48 S. Bhattacharya,49S. Dutta,49S. Sarkar,49R. K. Choudhury,50D. Dutta,50S. Kailas,50V. Kumar,50P. Mehta,50 A. K. Mohanty,50,bL. M. Pant,50P. Shukla,50T. Aziz,51M. Guchait,51,oA. Gurtu,51M. Maity,51,pD. Majumder,51

(8)

G. Majumder,51K. Mazumdar,51G. B. Mohanty,51A. Saha,51K. Sudhakar,51N. Wickramage,51S. Banerjee,52 S. Dugad,52N. K. Mondal,52H. Arfaei,53H. Bakhshiansohi,53,qS. M. Etesami,53A. Fahim,53,qM. Hashemi,53

A. Jafari,53,qM. Khakzad,53A. Mohammadi,53,rM. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53 B. Safarzadeh,53M. Zeinali,53,sM. Abbrescia,54a,54bL. Barbone,54a,54bC. Calabria,54a,54bA. Colaleo,54a D. Creanza,54a,54cN. De Filippis,54a,54c,bM. De Palma,54a,54bL. Fiore,54aG. Iaselli,54a,54cL. Lusito,54a,54b G. Maggi,54a,54cM. Maggi,54aN. Manna,54a,54bB. Marangelli,54a,54bS. My,54a,54cS. Nuzzo,54a,54bN. Pacifico,54a,54b

G. A. Pierro,54aA. Pompili,54a,54bG. Pugliese,54a,54cF. Romano,54a,54cG. Roselli,54a,54bG. Selvaggi,54a,54b L. Silvestris,54aR. Trentadue,54aS. Tupputi,54a,54bG. Zito,54aG. Abbiendi,55aA. C. Benvenuti,55aD. Bonacorsi,55a

S. Braibant-Giacomelli,55a,55bL. Brigliadori,55aP. Capiluppi,55a,55bA. Castro,55a,55bF. R. Cavallo,55a M. Cuffiani,55a,55bG. M. Dallavalle,55aF. Fabbri,55aA. Fanfani,55a,55bD. Fasanella,55aP. Giacomelli,55a

M. Giunta,55aC. Grandi,55aS. Marcellini,55aG. Masetti,55bM. Meneghelli,55a,55bA. Montanari,55a F. L. Navarria,55a,55bF. Odorici,55aA. Perrotta,55aF. Primavera,55aA. M. Rossi,55a,55bT. Rovelli,55a,55b G. Siroli,55a,55bR. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56a,56bM. Chiorboli,56a,56b,bS. Costa,56a,56b

A. Tricomi,56a,56bC. Tuve,56a,56bG. Barbagli,57aV. Ciulli,57a,57bC. Civinini,57aR. D’Alessandro,57a,57b E. Focardi,57a,57bS. Frosali,57a,57bE. Gallo,57aS. Gonzi,57a,57bP. Lenzi,57a,57bM. Meschini,57aS. Paoletti,57a G. Sguazzoni,57aA. Tropiano,57a,bL. Benussi,58S. Bianco,58S. Colafranceschi,58,tF. Fabbri,58D. Piccolo,58 P. Fabbricatore,59R. Musenich,59A. Benaglia,60a,60bF. De Guio,60a,60b,bL. Di Matteo,60a,60bS. Gennai,60a,b

A. Ghezzi,60a,60bS. Malvezzi,60aA. Martelli,60a,60bA. Massironi,60a,60bD. Menasce,60aL. Moroni,60a M. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aS. Sala,60aT. Tabarelli de Fatis,60a,60b S. Buontempo,61aC. A. Carrillo Montoya,61a,bN. Cavallo,61a,uA. De Cosa,61a,61bF. Fabozzi,61a,uA. O. M. Iorio,61a,b

L. Lista,61aM. Merola,61a,61bP. Paolucci,61aP. Azzi,62aN. Bacchetta,62aP. Bellan,62a,62bD. Bisello,62a,62b A. Branca,62aR. Carlin,62a,62bP. Checchia,62aM. De Mattia,62a,62bT. Dorigo,62aU. Dosselli,62aF. Fanzago,62a F. Gasparini,62a,62bU. Gasparini,62a,62bA. Gozzelino,62aS. Lacaprara,62aI. Lazzizzera,62a,62cM. Margoni,62a,62b M. Mazzucato,62aA. T. Meneguzzo,62a,62bM. Nespolo,62a,bL. Perrozzi,62a,bN. Pozzobon,62a,62bP. Ronchese,62a,62b F. Simonetto,62a,62bE. Torassa,62aM. Tosi,62a,62bS. Vanini,62a,62bP. Zotto,62a,62bG. Zumerle,62a,62bP. Baesso,63a,63b U. Berzano,63aS. P. Ratti,63a,63bC. Riccardi,63a,63bP. Torre,63a,63bP. Vitulo,63a,63bC. Viviani,63a,63bM. Biasini,64a,64b

G. M. Bilei,64aB. Caponeri,64a,64bL. Fano`,64a,64bP. Lariccia,64a,64bA. Lucaroni,64a,64b,bG. Mantovani,64a,64b M. Menichelli,64aA. Nappi,64a,64bF. Romeo,64a,64bA. Santocchia,64a,64bS. Taroni,64a,64b,bM. Valdata,64a,64b

P. Azzurri,65a,65cG. Bagliesi,65aJ. Bernardini,65a,65bT. Boccali,65a,bG. Broccolo,65a,65cR. Castaldi,65a R. T. D’Agnolo,65a,65cR. Dell’Orso,65aF. Fiori,65a,65bL. Foa`,65a,65cA. Giassi,65aA. Kraan,65aF. Ligabue,65a,65c

T. Lomtadze,65aL. Martini,65a,vA. Messineo,65a,65bF. Palla,65aG. Segneri,65aA. T. Serban,65aP. Spagnolo,65a R. Tenchini,65aG. Tonelli,65a,65b,bA. Venturi,65a,bP. G. Verdini,65aL. Barone,66a,66bF. Cavallari,66aD. Del Re,66a,66b

E. Di Marco,66a,66bM. Diemoz,66aD. Franci,66a,66bM. Grassi,66a,bE. Longo,66a,66bP. Meridiani,66a S. Nourbakhsh,66aG. Organtini,66a,66bF. Pandolfi,66a,66b,bR. Paramatti,66aS. Rahatlou,66a,66bC. Rovelli,66a,b

N. Amapane,67a,67bR. Arcidiacono,67a,67cS. Argiro,67a,67bM. Arneodo,67a,67cC. Biino,67aC. Botta,67a,67b,b N. Cartiglia,67aR. Castello,67a,67bM. Costa,67a,67bN. Demaria,67aA. Graziano,67a,67b,bC. Mariotti,67a M. Marone,67a,67bS. Maselli,67aE. Migliore,67a,67bG. Mila,67a,67bV. Monaco,67a,67bM. Musich,67a,67b M. M. Obertino,67a,67cN. Pastrone,67aM. Pelliccioni,67a,67bA. Potenza,67a,67bA. Romero,67a,67bM. Ruspa,67a,67c R. Sacchi,67a,67bV. Sola,67a,67bA. Solano,67a,67bA. Staiano,67aA. Vilela Pereira,67aS. Belforte,68aF. Cossutti,68a

G. Della Ricca,68a,68bB. Gobbo,68aD. Montanino,68a,68bA. Penzo,68aS. G. Heo,69S. K. Nam,69S. Chang,70 J. Chung,70D. H. Kim,70G. N. Kim,70J. E. Kim,70D. J. Kong,70H. Park,70S. R. Ro,70D. Son,70D. C. Son,70 T. Son,70Zero Kim,71J. Y. Kim,71S. Song,71S. Choi,72B. Hong,72M. Jo,72H. Kim,72J. H. Kim,72T. J. Kim,72

K. S. Lee,72D. H. Moon,72S. K. Park,72K. S. Sim,72M. Choi,73S. Kang,73H. Kim,73C. Park,73I. C. Park,73 S. Park,73G. Ryu,73Y. Choi,74Y. K. Choi,74J. Goh,74M. S. Kim,74E. Kwon,74J. Lee,74S. Lee,74H. Seo,74I. Yu,74

M. J. Bilinskas,75I. Grigelionis,75M. Janulis,75D. Martisiute,75P. Petrov,75T. Sabonis,75H. Castilla-Valdez,76 E. De La Cruz-Burelo,76I. Heredia-de La Cruz,76R. Lopez-Fernandez,76R. Magan˜a Villalba,76 A. Sa´nchez-Herna´ndez,76L. M. Villasenor-Cendejas,76S. Carrillo Moreno,77F. Vazquez Valencia,77 H. A. Salazar Ibarguen,78E. Casimiro Linares,79A. Morelos Pineda,79M. A. Reyes-Santos,79D. Krofcheck,80 J. Tam,80P. H. Butler,81R. Doesburg,81H. Silverwood,81M. Ahmad,82I. Ahmed,82M. I. Asghar,82H. R. Hoorani,82

W. A. Khan,82T. Khurshid,82S. Qazi,82G. Brona,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83 M. Konecki,83J. Krolikowski,83T. Frueboes,84R. Gokieli,84M. Go´rski,84M. Kazana,84K. Nawrocki,84

(9)

K. Romanowska-Rybinska,84M. Szleper,84G. Wrochna,84P. Zalewski,84N. Almeida,85P. Bargassa,85A. David,85 P. Faccioli,85P. G. Ferreira Parracho,85M. Gallinaro,85P. Musella,85A. Nayak,85J. Pela,85,bP. Q. Ribeiro,85 J. Seixas,85J. Varela,85S. Afanasiev,86I. Belotelov,86P. Bunin,86I. Golutvin,86A. Kamenev,86V. Karjavin,86 G. Kozlov,86A. Lanev,86P. Moisenz,86V. Palichik,86V. Perelygin,86S. Shmatov,86V. Smirnov,86A. Volodko,86

A. Zarubin,86V. Golovtsov,87Y. Ivanov,87V. Kim,87P. Levchenko,87V. Murzin,87V. Oreshkin,87I. Smirnov,87 V. Sulimov,87L. Uvarov,87S. Vavilov,87A. Vorobyev,87An. Vorobyev,87Yu. Andreev,88A. Dermenev,88 S. Gninenko,88N. Golubev,88M. Kirsanov,88N. Krasnikov,88V. Matveev,88A. Pashenkov,88A. Toropin,88 S. Troitsky,88V. Epshteyn,89V. Gavrilov,89V. Kaftanov,89,aM. Kossov,89,bA. Krokhotin,89N. Lychkovskaya,89

V. Popov,89G. Safronov,89S. Semenov,89V. Stolin,89E. Vlasov,89A. Zhokin,89E. Boos,90M. Dubinin,90,w L. Dudko,90A. Ershov,90A. Gribushin,90O. Kodolova,90I. Lokhtin,90A. Markina,90S. Obraztsov,90M. Perfilov,90

S. Petrushanko,90L. Sarycheva,90V. Savrin,90A. Snigirev,90V. Andreev,91M. Azarkin,91I. Dremin,91 M. Kirakosyan,91A. Leonidov,91S. V. Rusakov,91A. Vinogradov,91I. Azhgirey,92I. Bayshev,92S. Bitioukov,92

V. Grishin,92,bV. Kachanov,92D. Konstantinov,92A. Korablev,92V. Krychkine,92V. Petrov,92R. Ryutin,92 A. Sobol,92L. Tourtchanovitch,92S. Troshin,92N. Tyurin,92A. Uzunian,92A. Volkov,92P. Adzic,93,x M. Djordjevic,93D. Krpic,93,xJ. Milosevic,93M. Aguilar-Benitez,94J. Alcaraz Maestre,94P. Arce,94C. Battilana,94

E. Calvo,94M. Cepeda,94M. Cerrada,94M. Chamizo Llatas,94N. Colino,94B. De La Cruz,94A. Delgado Peris,94 C. Diez Pardos,94D. Domı´nguez Va´zquez,94C. Fernandez Bedoya,94J. P. Ferna´ndez Ramos,94A. Ferrando,94 J. Flix,94M. C. Fouz,94P. Garcia-Abia,94O. Gonzalez Lopez,94S. Goy Lopez,94J. M. Hernandez,94M. I. Josa,94

G. Merino,94J. Puerta Pelayo,94I. Redondo,94L. Romero,94J. Santaolalla,94M. S. Soares,94C. Willmott,94 C. Albajar,95G. Codispoti,95J. F. de Troco´niz,95J. Cuevas,96J. Fernandez Menendez,96S. Folgueras,96 I. Gonzalez Caballero,96L. Lloret Iglesias,96J. M. Vizan Garcia,96J. A. Brochero Cifuentes,97I. J. Cabrillo,97

A. Calderon,97S. H. Chuang,97J. Duarte Campderros,97M. Felcini,97,yM. Fernandez,97G. Gomez,97 J. Gonzalez Sanchez,97C. Jorda,97P. Lobelle Pardo,97A. Lopez Virto,97J. Marco,97R. Marco,97

C. Martinez Rivero,97F. Matorras,97F. J. Munoz Sanchez,97J. Piedra Gomez,97,zT. Rodrigo,97 A. Y. Rodrı´guez-Marrero,97A. Ruiz-Jimeno,97L. Scodellaro,97M. Sobron Sanudo,97I. Vila,97 R. Vilar Cortabitarte,97D. Abbaneo,98E. Auffray,98G. Auzinger,98P. Baillon,98A. H. Ball,98D. Barney,98 A. J. Bell,98,aaD. Benedetti,98C. Bernet,98,dW. Bialas,98P. Bloch,98A. Bocci,98S. Bolognesi,98M. Bona,98 H. Breuker,98K. Bunkowski,98T. Camporesi,98G. Cerminara,98T. Christiansen,98J. A. Coarasa Perez,98B. Cure´,98 D. D’Enterria,98A. De Roeck,98S. Di Guida,98N. Dupont-Sagorin,98A. Elliott-Peisert,98B. Frisch,98W. Funk,98 A. Gaddi,98G. Georgiou,98H. Gerwig,98D. Gigi,98K. Gill,98D. Giordano,98F. Glege,98R. Gomez-Reino Garrido,98 M. Gouzevitch,98P. Govoni,98S. Gowdy,98L. Guiducci,98M. Hansen,98C. Hartl,98J. Harvey,98J. Hegeman,98 B. Hegner,98H. F. Hoffmann,98A. Honma,98V. Innocente,98P. Janot,98K. Kaadze,98E. Karavakis,98P. Lecoq,98 C. Lourenc¸o,98T. Ma¨ki,98M. Malberti,98L. Malgeri,98M. Mannelli,98L. Masetti,98A. Maurisset,98F. Meijers,98 S. Mersi,98E. Meschi,98R. Moser,98M. U. Mozer,98M. Mulders,98E. Nesvold,98,bM. Nguyen,98T. Orimoto,98 L. Orsini,98E. Perez,98A. Petrilli,98A. Pfeiffer,98M. Pierini,98M. Pimia¨,98D. Piparo,98G. Polese,98A. Racz,98

J. Rodrigues Antunes,98G. Rolandi,98,bbT. Rommerskirchen,98M. Rovere,98H. Sakulin,98C. Scha¨fer,98 C. Schwick,98I. Segoni,98A. Sharma,98P. Siegrist,98M. Simon,98P. Sphicas,98,ccM. Spiropulu,98,wM. Stoye,98 P. Tropea,98A. Tsirou,98P. Vichoudis,98M. Voutilainen,98W. D. Zeuner,98W. Bertl,99K. Deiters,99W. Erdmann,99

K. Gabathuler,99R. Horisberger,99Q. Ingram,99H. C. Kaestli,99S. Ko¨nig,99D. Kotlinski,99U. Langenegger,99 F. Meier,99D. Renker,99T. Rohe,99J. Sibille,99,ddA. Starodumov,99,eeL. Ba¨ni,100P. Bortignon,100L. Caminada,100,ff

N. Chanon,100Z. Chen,100S. Cittolin,100G. Dissertori,100M. Dittmar,100J. Eugster,100K. Freudenreich,100 C. Grab,100W. Hintz,100P. Lecomte,100W. Lustermann,100C. Marchica,100,ffP. Martinez Ruiz del Arbol,100 P. Milenovic,100,ggF. Moortgat,100C. Na¨geli,100,ffP. Nef,100F. Nessi-Tedaldi,100L. Pape,100F. Pauss,100T. Punz,100

A. Rizzi,100F. J. Ronga,100M. Rossini,100L. Sala,100A. K. Sanchez,100M.-C. Sawley,100B. Stieger,100 L. Tauscher,100,aA. Thea,100K. Theofilatos,100D. Treille,100C. Urscheler,100R. Wallny,100M. Weber,100

L. Wehrli,100J. Weng,100E. Aguilo,101C. Amsler,101V. Chiochia,101S. De Visscher,101C. Favaro,101 M. Ivova Rikova,101B. Millan Mejias,101P. Otiougova,101C. Regenfus,101P. Robmann,101A. Schmidt,101 H. Snoek,101Y. H. Chang,102K. H. Chen,102C. M. Kuo,102S. W. Li,102W. Lin,102Z. K. Liu,102Y. J. Lu,102 D. Mekterovic,102R. Volpe,102J. H. Wu,102S. S. Yu,102P. Bartalini,103P. Chang,103Y. H. Chang,103Y. W. Chang,103

Y. Chao,103K. F. Chen,103W.-S. Hou,103Y. Hsiung,103K. Y. Kao,103Y. J. Lei,103R.-S. Lu,103J. G. Shiu,103 Y. M. Tzeng,103M. Wang,103A. Adiguzel,104M. N. Bakirci,104,hhS. Cerci,104,iiC. Dozen,104I. Dumanoglu,104

(10)

E. Eskut,104S. Girgis,104G. Gokbulut,104I. Hos,104E. E. Kangal,104A. Kayis Topaksu,104G. Onengut,104 K. Ozdemir,104S. Ozturk,104,jjA. Polatoz,104K. Sogut,104,kkD. Sunar Cerci,104,iiB. Tali,104,iiH. Topakli,104,hh

D. Uzun,104L. N. Vergili,104M. Vergili,104I. V. Akin,105T. Aliev,105B. Bilin,105S. Bilmis,105M. Deniz,105 H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105R. Sever,105U. E. Surat,105 E. Yildirim,105M. Zeyrek,105M. Deliomeroglu,106D. Demir,106,llE. Gu¨lmez,106B. Isildak,106M. Kaya,106,mm O. Kaya,106,mmM. O¨ zbek,106S. Ozkorucuklu,106,nnN. Sonmez,106,ooL. Levchuk,107F. Bostock,108J. J. Brooke,108

T. L. Cheng,108E. Clement,108D. Cussans,108R. Frazier,108J. Goldstein,108M. Grimes,108M. Hansen,108 D. Hartley,108G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,ppK. Nirunpong,108

A. Poll,108S. Senkin,108V. J. Smith,108S. Ward,108L. Basso,109,qqK. W. Bell,109A. Belyaev,109,qqC. Brew,109 R. M. Brown,109B. Camanzi,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109

B. W. Kennedy,109E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109 I. R. Tomalin,109W. J. Womersley,109S. D. Worm,109R. Bainbridge,110G. Ball,110J. Ballin,110R. Beuselinck,110

O. Buchmuller,110D. Colling,110N. Cripps,110M. Cutajar,110G. Davies,110M. Della Negra,110W. Ferguson,110 J. Fulcher,110D. Futyan,110A. Gilbert,110A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110 M. Jarvis,110G. Karapostoli,110L. Lyons,110B. C. MacEvoy,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110

R. Nandi,110J. Nash,110A. Nikitenko,110,eeA. Papageorgiou,110M. Pesaresi,110K. Petridis,110M. Pioppi,110,rr D. M. Raymond,110S. Rogerson,110N. Rompotis,110A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110 A. Sparrow,110A. Tapper,110S. Tourneur,110M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110N. Wardle,110

D. Wardrope,110T. Whyntie,110M. Barrett,111M. Chadwick,111J. E. Cole,111P. R. Hobson,111A. Khan,111 P. Kyberd,111D. Leslie,111W. Martin,111I. D. Reid,111L. Teodorescu,111K. Hatakeyama,112H. Liu,112 C. Henderson,113T. Bose,114E. Carrera Jarrin,114C. Fantasia,114A. Heister,114J. St. John,114P. Lawson,114 D. Lazic,114J. Rohlf,114D. Sperka,114L. Sulak,114A. Avetisyan,115S. Bhattacharya,115J. P. Chou,115D. Cutts,115

A. Ferapontov,115U. Heintz,115S. Jabeen,115G. Kukartsev,115G. Landsberg,115M. Luk,115M. Narain,115 D. Nguyen,115M. Segala,115T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116

M. Calderon De La Barca Sanchez,116S. Chauhan,116M. Chertok,116J. Conway,116P. T. Cox,116J. Dolen,116 R. Erbacher,116E. Friis,116W. Ko,116A. Kopecky,116R. Lander,116H. Liu,116S. Maruyama,116T. Miceli,116 M. Nikolic,116D. Pellett,116J. Robles,116S. Salur,116T. Schwarz,116M. Searle,116J. Smith,116M. Squires,116 M. Tripathi,116R. Vasquez Sierra,116C. Veelken,116V. Andreev,117K. Arisaka,117D. Cline,117R. Cousins,117 A. Deisher,117J. Duris,117S. Erhan,117C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117C. Plager,117 G. Rakness,117P. Schlein,117,aJ. Tucker,117V. Valuev,117J. Babb,118A. Chandra,118R. Clare,118J. Ellison,118 J. W. Gary,118F. Giordano,118G. Hanson,118G. Y. Jeng,118S. C. Kao,118F. Liu,118H. Liu,118O. R. Long,118

A. Luthra,118H. Nguyen,118B. C. Shen,118,aR. Stringer,118J. Sturdy,118S. Sumowidagdo,118R. Wilken,118 S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119D. Evans,119F. Golf,119A. Holzner,119 R. Kelley,119M. Lebourgeois,119J. Letts,119B. Mangano,119S. Padhi,119C. Palmer,119G. Petrucciani,119H. Pi,119 M. Pieri,119R. Ranieri,119M. Sani,119V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119

S. Wasserbaech,119,ssF. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120C. Campagnari,120 M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120J. Incandela,120C. Justus,120P. Kalavase,120 S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120N. Mccoll,120V. Pavlunin,120F. Rebassoo,120 J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120J. R. Vlimant,120A. Apresyan,121A. Bornheim,121

J. Bunn,121Y. Chen,121M. Gataullin,121Y. Ma,121A. Mott,121H. B. Newman,121C. Rogan,121K. Shin,121 V. Timciuc,121P. Traczyk,121J. Veverka,121R. Wilkinson,121Y. Yang,121R. Y. Zhu,121B. Akgun,122R. Carroll,122

T. Ferguson,122Y. Iiyama,122D. W. Jang,122S. Y. Jun,122Y. F. Liu,122M. Paulini,122J. Russ,122H. Vogel,122 I. Vorobiev,122J. P. Cumalat,123M. E. Dinardo,123B. R. Drell,123C. J. Edelmaier,123W. T. Ford,123A. Gaz,123 B. Heyburn,123E. Luiggi Lopez,123U. Nauenberg,123J. G. Smith,123K. Stenson,123K. A. Ulmer,123S. R. Wagner,123

S. L. Zang,123L. Agostino,124J. Alexander,124D. Cassel,124A. Chatterjee,124S. Das,124N. Eggert,124 L. K. Gibbons,124B. Heltsley,124W. Hopkins,124A. Khukhunaishvili,124B. Kreis,124G. Nicolas Kaufman,124

J. R. Patterson,124D. Puigh,124A. Ryd,124E. Salvati,124X. Shi,124W. Sun,124W. D. Teo,124J. Thom,124 J. Thompson,124J. Vaughan,124Y. Weng,124L. Winstrom,124P. Wittich,124A. Biselli,125G. Cirino,125D. Winn,125

S. Abdullin,126M. Albrow,126J. Anderson,126G. Apollinari,126M. Atac,126J. A. Bakken,126S. Banerjee,126 L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126F. Borcherding,126K. Burkett,126 J. N. Butler,126V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126S. Cihangir,126W. Cooper,126D. P. Eartly,126

(11)

V. D. Elvira,126S. Esen,126I. Fisk,126J. Freeman,126Y. Gao,126E. Gottschalk,126D. Green,126K. Gunthoti,126 O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126H. Jensen,126M. Johnson,126 U. Joshi,126R. Khatiwada,126B. Klima,126K. Kousouris,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126

P. Limon,126D. Lincoln,126R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126D. Mason,126 P. McBride,126T. Miao,126K. Mishra,126S. Mrenna,126Y. Musienko,126,ttC. Newman-Holmes,126V. O’Dell,126

R. Pordes,126O. Prokofyev,126N. Saoulidou,126E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126 L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126 J. Whitmore,126W. Wu,126F. Yang,126F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127 M. Chen,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127R. D. Field,127M. Fisher,127

Y. Fu,127I. K. Furic,127J. Gartner,127B. Kim,127J. Konigsberg,127A. Korytov,127A. Kropivnitskaya,127 T. Kypreos,127K. Matchev,127G. Mitselmakher,127L. Muniz,127C. Prescott,127R. Remington,127M. Schmitt,127

B. Scurlock,127P. Sellers,127N. Skhirtladze,127M. Snowball,127D. Wang,127J. Yelton,127M. Zakaria,127 C. Ceron,128V. Gaultney,128L. Kramer,128L. M. Lebolo,128S. Linn,128P. Markowitz,128G. Martinez,128D. Mesa,128

J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129S. V. Gleyzer,129 J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129L. Quertenmont,129

S. Sekmen,129V. Veeraraghavan,129M. M. Baarmand,130B. Dorney,130S. Guragain,130M. Hohlmann,130 H. Kalakhety,130R. Ralich,130I. Vodopiyanov,130M. R. Adams,131I. M. Anghel,131L. Apanasevich,131Y. Bai,131

V. E. Bazterra,131R. R. Betts,131J. Callner,131R. Cavanaugh,131C. Dragoiu,131L. Gauthier,131C. E. Gerber,131 D. J. Hofman,131S. Khalatyan,131G. J. Kunde,131F. Lacroix,131M. Malek,131C. O’Brien,131C. Silkworth,131 C. Silvestre,131A. Smoron,131D. Strom,131N. Varelas,131U. Akgun,132E. A. Albayrak,132B. Bilki,132W. Clarida,132 F. Duru,132C. K. Lae,132E. McCliment,132J.-P. Merlo,132H. Mermerkaya,132,uuA. Mestvirishvili,132A. Moeller,132

J. Nachtman,132C. R. Newsom,132E. Norbeck,132J. Olson,132Y. Onel,132F. Ozok,132S. Sen,132J. Wetzel,132 T. Yetkin,132K. Yi,132B. A. Barnett,133B. Blumenfeld,133A. Bonato,133C. Eskew,133D. Fehling,133G. Giurgiu,133

A. V. Gritsan,133Z. J. Guo,133G. Hu,133P. Maksimovic,133S. Rappoccio,133M. Swartz,133N. V. Tran,133 A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134O. Grachov,134R. P. Kenny Iii,134M. Murray,134 D. Noonan,134S. Sanders,134J. S. Wood,134V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135

A. Ivanov,135S. Khalil,135M. Makouski,135Y. Maravin,135S. Shrestha,135I. Svintradze,135Z. Wan,135 J. Gronberg,136D. Lange,136D. Wright,136A. Baden,137M. Boutemeur,137S. C. Eno,137D. Ferencek,137 J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137M. Kirn,137Y. Lu,137A. C. Mignerey,137K. Rossato,137 P. Rumerio,137F. Santanastasio,137A. Skuja,137J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137

B. Alver,138G. Bauer,138J. Bendavid,138W. Busza,138E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138 P. Everaerts,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138P. Harris,138Y. Kim,138M. Klute,138 Y.-J. Lee,138W. Li,138C. Loizides,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138C. Roland,138

G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138E. A. Wenger,138 R. Wolf,138S. Xie,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138M. Zanetti,138S. I. Cooper,139P. Cushman,139 B. Dahmes,139A. De Benedetti,139P. R. Dudero,139G. Franzoni,139J. Haupt,139K. Klapoetke,139Y. Kubota,139

J. Mans,139N. Pastika,139V. Rekovic,139R. Rusack,139M. Sasseville,139A. Singovsky,139N. Tambe,139 L. M. Cremaldi,140R. Godang,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140D. Summers,140

K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141T. Kelly,141 I. Kravchenko,141J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142

I. Iashvili,142S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143 E. Barberis,143D. Baumgartel,143O. Boeriu,143M. Chasco,143S. Reucroft,143J. Swain,143D. Trocino,143 D. Wood,143J. Zhang,143A. Anastassov,144A. Kubik,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144 A. Pozdnyakov,144M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145 A. Brinkerhoff,145M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145T. Kolberg,145K. Lannon,145 W. Luo,145S. Lynch,145N. Marinelli,145D. M. Morse,145T. Pearson,145R. Ruchti,145J. Slaunwhite,145N. Valls,145

M. Wayne,145J. Ziegler,145B. Bylsma,146L. S. Durkin,146J. Gu,146C. Hill,146P. Killewald,146K. Kotov,146 T. Y. Ling,146M. Rodenburg,146G. Williams,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147 P. Hebda,147A. Hunt,147J. Jones,147E. Laird,147D. Lopes Pegna,147D. Marlow,147T. Medvedeva,147M. Mooney,147

J. Olsen,147P. Piroue´,147X. Quan,147H. Saka,147D. Stickland,147C. Tully,147J. S. Werner,147A. Zuranski,147 J. G. Acosta,148X. T. Huang,148A. Lopez,148H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148

(12)

A. Zatserklyaniy,148E. Alagoz,149V. E. Barnes,149G. Bolla,149L. Borrello,149D. Bortoletto,149A. Everett,149 A. F. Garfinkel,149L. Gutay,149Z. Hu,149M. Jones,149O. Koybasi,149M. Kress,149A. T. Laasanen,149 N. Leonardo,149C. Liu,149V. Maroussov,149P. Merkel,149D. H. Miller,149N. Neumeister,149I. Shipsey,149

D. Silvers,149A. Svyatkovskiy,149H. D. Yoo,149J. Zablocki,149Y. Zheng,149P. Jindal,150N. Parashar,150 C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151

B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152P. de Barbaro,152R. Demina,152Y. Eshaq,152 H. Flacher,152A. Garcia-Bellido,152P. Goldenzweig,152Y. Gotra,152J. Han,152A. Harel,152D. C. Miner,152 D. Orbaker,152G. Petrillo,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153

K. Goulianos,153G. Lungu,153S. Malik,153C. Mesropian,153M. Yan,153O. Atramentov,154A. Barker,154 D. Duggan,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154D. Hidas,154D. Hits,154A. Lath,154S. Panwalkar,154

R. Patel,154K. Rose,154S. Schnetzer,154S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155 M. Hollingsworth,155S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156 A. Gurrola,156T. Kamon,156V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156J. Pivarski,156 A. Safonov,156S. Sengupta,156A. Tatarinov,156D. Toback,156M. Weinberger,156N. Akchurin,157C. Bardak,157

J. Damgov,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157P. Mane,157Y. Roh,157A. Sill,157 I. Volobouev,157R. Wigmans,157E. Yazgan,157E. Appelt,158E. Brownson,158D. Engh,158C. Florez,158 W. Gabella,158M. Issah,158W. Johns,158P. Kurt,158C. Maguire,158A. Melo,158P. Sheldon,158B. Snook,158S. Tuo,158

J. Velkovska,158M. W. Arenton,159M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159R. Hirosky,159 A. Ledovskoy,159C. Lin,159C. Neu,159R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160P. Lamichhane,160

M. Mattson,160C. Milste`ne,160A. Sakharov,160M. Anderson,161M. Bachtis,161J. N. Bellinger,161 D. Carlsmith,161S. Dasu,161J. Efron,161K. Flood,161L. Gray,161K. S. Grogg,161M. Grothe,161

R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161A. Lanaro,161 C. Lazaridis,161J. Leonard,161R. Loveless,161A. Mohapatra,161F. Palmonari,161D. Reeder,161I. Ross,161

A. Savin,161W. H. Smith,161J. Swanson,161and M. Weinberg161 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium

9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

(13)

29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 31Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg,

Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

36

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 38Deutsches Elektronen-Synchrotron, Hamburg, Germany

39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51Tata Institute of Fundamental Research - EHEP, Mumbai, India 52

Tata Institute of Fundamental Research - HECR, Mumbai, India

53Institute for Research and Fundamental Sciences (IPM), Tehran, Iran 54INFN Sezione di Bari, Universita` di Bari, Politecnico di Bari, Bari, Italy

54aINFN Sezione di Bari, Bari, Italy 54bUniversita` di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy

55INFN Sezione di Bologna, Universita` di Bologna, Bologna, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversita` di Bologna, Bologna, Italy

56INFN Sezione di Catania, Universita` di Catania, Catania, Italy 56aINFN Sezione di Catania, Catania, Italy

56bUniversita` di Catania, Catania, Italy

57INFN Sezione di Firenze, Universita` di Firenze, Firenze, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversita` di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59INFN Sezione di Genova, Genova, Italy

60INFN Sezione di Milano-Bicocca, Universita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Milano-Bicocca, Milano, Italy

60bUniversita` di Milano-Bicocca, Milano, Italy

61INFN Sezione di Napoli, Universita` di Napoli ‘‘Federico II,’’ Napoli, Italy 61aINFN Sezione di Napoli, Napoli, Italy

61bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy 62

INFN Sezione di Padova, Universita` di Padova, Universita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Padova, Padova, Italy 62bUniversita` di Padova, Padova, Italy 62cUniversita` di Trento (Trento), Padova, Italy 63INFN Sezione di Pavia, Universita` di Pavia, Pavia, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63bUniversita` di Pavia, Pavia, Italy

64INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy 64aINFN Sezione di Perugia, Perugia, Italy

64b

Universita` di Perugia, Perugia, Italy

65INFN Sezione di Pisa, Universita` di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy 65aINFN Sezione di Pisa, Pisa, Italy

65bUniversita` di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

(14)

66INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy 66aINFN Sezione di Roma, Roma, Italy

66bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

67INFN Sezione di Torino, Universita` di Torino, Universita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Torino, Torino, Italy

67bUniversita` di Torino, Torino, Italy

67cUniversita` del Piemonte Orientale (Novara), Torino, Italy 68INFN Sezione di Trieste, Universita` di Trieste, Trieste, Italy

68a

INFN Sezione di Trieste, Trieste, Italy

68bUniversita` di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

70Kyungpook National University, Daegu, Korea

71Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 72Korea University, Seoul, Korea

73University of Seoul, Seoul, Korea 74Sungkyunkwan University, Suwon, Korea

75Vilnius University, Vilnius, Lithuania

76Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 77Universidad Iberoamericana, Mexico City, Mexico

78Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 79Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

80University of Auckland, Auckland, New Zealand 81University of Canterbury, Christchurch, New Zealand

82National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 83

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

84Soltan Institute for Nuclear Studies, Warsaw, Poland

85Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 86Joint Institute for Nuclear Research, Dubna, Russia

87Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 88Institute for Nuclear Research, Moscow, Russia

89Institute for Theoretical and Experimental Physics, Moscow, Russia 90Moscow State University, Moscow, Russia

91P.N. Lebedev Physical Institute, Moscow, Russia

92State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 93University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

94Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 95Universidad Auto´noma de Madrid, Madrid, Spain

96Universidad de Oviedo, Oviedo, Spain

97Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 98CERN, European Organization for Nuclear Research, Geneva, Switzerland

99Paul Scherrer Institut, Villigen, Switzerland

100Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 101Universita¨t Zu¨rich, Zurich, Switzerland

102National Central University, Chung-Li, Taiwan 103National Taiwan University (NTU), Taipei, Taiwan

104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106

Bogazici University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas 76706, USA

113The University of Alabama, Tuscaloosa, Alabama 35487, USA 114Boston University, Boston, Massachusetts 02215, USA 115

Brown University, Providence, Rhode Island 02912 USA

116University of California, Davis, Davis, California 95616, USA 117University of California, Los Angeles, Los Angeles, California 90095, USA

118University of California, Riverside, Riverside, California 92521, USA 119University of California, San Diego, La Jolla, California 92093, USA

Figura

Table I , are obtained using an unbinned extended maxi- maxi-mum likelihood fit to M B and ct
Figure 1 shows the fit projections for M B and ct from the
FIG. 2 (color online). Measured differential cross sections d=dp B

Riferimenti

Documenti correlati

Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design.. A review of computational optimisation methods applied

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Nella ricerca etnografica sono state coinvolte alcune delle ospiti e beneficiarie 29 che hanno deciso di partecipare alla ricerca, le volon- tarie 30 e gli operatori, pur prendendo

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

Nicola Barbuti, ha curato sia la progettazione e realizzazione del tracciato in open data utilizzato per indicizzare e pubblicare on line una selezione di volumi a stampa

La prima si lega all’analisi dei bisogni formativi degli insegnanti della rete scolastica partecipante (bisogni espressi e manifestati sia in fase di primo con- tatto con

Significant results are reported also with respect to the perceived maternal care received by subjects during infancy and reported through self-report questionnaires

Keywords: Endocrine disruptor, humic substances, natural organic matter, organic contaminant, phytoremediation,