• Non ci sono risultati.

Bs0→μ+μ−γ from Bs0→μ+μ−

N/A
N/A
Protected

Academic year: 2021

Condividi "Bs0→μ+μ−γ from Bs0→μ+μ−"

Copied!
5
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

B

0

s

μ

+

μ

γ

from

B

0

s

μ

+

μ

Francesco Dettori

a

,

Diego Guadagnoli

b

,

,

Méril Reboud

b

,

c

aEuropeanOrganizationforNuclearResearch(CERN),Geneva,Switzerland

bLaboratoired’Annecy-le-VieuxdePhysiqueThéoriqueUMR5108,UniversitédeSavoieMont-BlancetCNRS,B.P.110,F-74941,Annecy-le-VieuxCedex,France cÉcoleNormaleSupérieuredeLyon,F-69364,LyonCedex07,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received19December2016 Accepted18February2017 Availableonline27February2017 Editor: G.F.Giudice

The B0

s

μ

+

μ

γ

decayofferssensitivityto awiderset ofeffectiveoperators thanitsnon-radiative

counterpartB0

s

μ

+

μ

−,andasetthatisinterestinginthelightofpresent-daydiscrepanciesinflavour

data. On the otherhand, the directmeasurement of the B0s

μ

+

μ

γ

decayposeschallenges with

respect tothe B0

s

μ

+

μ

− one. We present anovelstrategy tosearch for B0s

μ

+

μ

γ

decays in

theveryeventsampleselectedfor B0

s

μ

+

μ

− searches.ThemethodconsistsinextractingtheB0s

μ

+

μ

γ

spectrumasa“contamination”tothe B0

s

μ

+

μ

−one,asthesignalwindowforthelatteris

extendeddownwardwithrespecttothepeakregion.Weprovideargumentsfortheactualpracticability ofthemethodalreadyonRun 2dataoftheLHC.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

The B0s

μ

+

μ

− decay is one of the cleanest low-energy

probes of physics beyond the Standard Model (SM). The pres-ence of new dynamics at scales above the electroweak one can beprobedmostgenerallybyadoptinganeffective-fieldtheory ap-proach, whereby beyond-SM physics manifests itself as shifts to the Wilsoncoefficients of the operators of the b

s



effective hamiltonian.Inthiscontext,the B0

s

μ

+

μ

− decayissensitiveto

the scalar andpseudoscalar operators

O

(S),P,and to the operator

O

10,definedas(seeforexample

[1]

)

O

S

=

αem

4

π

mb

¯

s PRb

¯ ,

O

P

=

αem

4

π

mb

¯

s PRb

¯

γ5

 ,

O

10

=

αem

4

π

¯

s

γ

μP Lb

¯

γ

μ

γ

5

 ,

(1) with

O

S,P defined from the unprimed counterparts via the re-placements PR

PL andmb

ms inEq.(1).WithintheSM, to

anexcellentapproximationonlytheoperator

O

10contributes.The goodagreementbetweentheSMprediction

[2]

B

(

B0s

μ

+

μ

)

SM

= (

3.65

±

0.23)

×

10−9 (2)

andthecurrentbestmeasurement[3]

B

(

B0s

μ

+

μ

)

exp

= (

2.8+00..76

)

×

10−9

= (

0.76+00..2018

)

×

B

(

B0s

μ

+

μ

)

SM

,

(3)

*

Correspondingauthor.

E-mailaddress:diego.guadagnoli@lapth.cnrs.fr(D. Guadagnoli).

forces scalar and pseudoscalar contributions to negligible values

[4,5].Ontheotherhand



O(15%)newcontributionstotheWilson coefficientoftheoperator

O

10areallowed bypresenterrors,and actually favoured – provided they are indestructive interference withtheSMcontribution–bytheabout25%toolowcentralvalue inEq.(3).

Adding a photon to the final state, namely considering the B0s

μ

+

μ

γ

decay, yields an observable sensitive not only to

O

10, but also to

O

9 and to the electromagnetic-dipole oper-ator

O

7, aswell asto their chirality-flipped counterparts

[6–11]

. (Thesensitivityto

O

7occursforvaluesofthefinal-stateinvariant mass squaredclose to zero; asour discussion will be concerned with the high invariant-mass region, this operator will not be consideredanyfurther.)Increasingthenumberofobservables sen-sitivetotheseoperators,especially

O

9 and

O

10,isveryimportant inthe lightofpresentdata.Infact, theLHCbexperimentaswell asthe B factoriesperformedanumberofmeasurements ofb

s transitions, and the overall agreement with the SM is less than perfect.Discrepanciesconcerninparticular:

the ratio RK of the branching fractions for B+

K+



+



−,

with



=

μ

,

e[12]

RK

B

(

B+

K+

μ

+

μ

)

B

(

B+

K+e+e

)

,

(4) showinga2

.

6

σ

deficitwithrespecttotheSM

[13–16]

; http://dx.doi.org/10.1016/j.physletb.2017.02.048

0370-2693/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

the absolute B+

K+

μ

+

μ

− branching ratio [17,18], about 30%lowerthantheSM

[19–21]

;

themeasurementof

B(

B0s

→ φ

μ

+

μ

)

[22,23],lowerthanthe SMpredictionbymorethan3

σ

[22];

the angular distribution of the B0

K∗0



+



decays and, most notably, the quantity known as P5 [24], measured by both LHCb [25,26]and Belle

[27]

, whosetheoretical error is, however,stilldebated

[28–32]

.

Remarkably,onecanfindaconsistenttheoreticalinterpretationof all these discrepancies, aswell as of the last equalityin Eq. (3), within an effective-theory approach [5,33–36]. Data can be ac-countedfor atone stroke withnew contributions to C9 only, or jointlytoC9 andC10.Furthermore,theindicationsofnew-physics (NP)couplingspreferringmuonsoverelectrons canbe accommo-datedbyinvokinganeffectiveinteractioncoupleddominantly (be-foreelectroweak-symmetrybreaking) tothird-generationfermions

[37]. This possibility would even allow to relate the mentioned b

s discrepancieswithothersexistinginb

c transitions

[38]

. Given its sensitivity to C9 and C10 alike, the radiative decay

B0

s

μ

+

μ

γ

offers anadditionalprobeintophysics beyondthe

SM,andin particularaprobe ofcouplingsthat are interestingin thelightofcurrentdata.However,thedirectmeasurement of ra-diativehadrondecaysisharderwithrespecttotheirnon-radiative counterparts for various reasons. First, the detection and recon-structionefficiency ofa photon is typically smallerthan the one ofchargedtracks.Secondly,theenergybeingsharedwiththe ad-ditionalphotonmakestheotherdaughterparticlessofter,yielding smallertriggerandreconstructionefficiencies.Furthermore,the in-variant massreconstructed indecays with photonshas, at these energies,a worse resolutionthan indecays without.Thisinturn leadstoalargerbackgroundunderthesignalpeak.Theabove con-siderationsholdinparticularforhadron-colliderexperiments,due tothe highoccupancy oftypical events,andforlow-energy pro-cesses such as thoseof interest to flavour physics. Despite these difficulties, rare radiative decays with branching ratios of order 10−6

÷

10−7 have been observed and exploitedfor NP searches byseveralexperiments,see

[39]

forarecentreview.However,the ratesjust mentioned arestill very‘abundant’ if comparedto the B0

s

μ

+

μ

− decayandits radiativecounterpart.The latterposes

thereforeaformidablechallengefordirectdetection. InthispaperweproposeamethodtosearchforB0

s

μ

+

μ

γ

events in the very same event sample selected for the

B(

B0s

μ

+

μ

)

measurement. In one sentence, the method consists in measuring B0

s

μ

+

μ

γ

as“contamination”to B0s

μ

+

μ

−,by

suitably enlarging downward the signal window for the latter search. This possibility requires a number ofqualifications, since the B0s

μ

+

μ

− measurement itselfcomes withsome subtleties asfar as photons are concerned – notably the treatment of soft final-stateradiation.

Inan idealised measurement, the B0

s

μ

+

μ

− decayappears

as a peak in the invariant mass squared of the two final-state muons,withnegligibleintrinsicwidth.1Alreadyatthislevel, how-ever, the ‘definition’ of the final-state muons is complicated by the fact that they emit soft bremsstrahlung, giving riseto B0s

μ

+

μ

+

decays,withthen photonsundetected.Thiseffectis howeverwell known [40–42]. As reappraised in Ref. [43], it can be summed analytically to all orders in the soft-photon approx-imation, yielding a multiplicative correction to the non-radiative rate. This contribution skews downwards the peak region of the

1 Theexperimentalresolutioninthemuonmomentagivesthispeakan approxi-matelyGaussianshape,thewidthbeingforexampleofabout25 MeVfortheLHCb experimentandrangesfrom32to75 MeVfortheCMSexperiment[3].

Fig. 1. Breakup ofthe full B0

sμ+μγ spectrum(solidblue)–calculatedin

Ref.[11],denotedasMNinthelegend–intoitspureISRcomponent(long-dashed blue),FSRone(medium-dashedblue),andISR-FSRinterference(dot-dashedblue). WealsoreporttheB0

sμ+μ−+ spectruminthesoft-photonapproximation

(dottedorange)fromRef.[43],denotedasBGGIinthelegend.(Forinterpretationof thereferencestocolourinthisfigure,thereaderisreferredtothewebversionof thisarticle.)

B0s

μ

+

μ

−distribution,asshownbythedottedorangecurveof

Fig. 1.

In order to compare the measured B0

s

μ

+

μ

− rate with

the theoretical one [2], the mentioned soft-radiation tail due to B0s

μ

+

μ

+

needstobesubtractedoff.Forexample,a B0s

μ

+

μ

− signalwindowextendingdowntoabout5.3 GeVis equiv-alenttoasingle-photonenergycut



20

÷

100 MeV, amount-ing to a negative shift of

B(

B0s

μ

+

μ

)

as large as 15% [43]. Experimentally, the radiative tail is obtained and taken into ac-count using Monte Carlo B0

s

μ

+

μ

− events with full detector

simulation and with bremsstrahlung photon emission modelled through the Photos application [44]. The advantage of this ap-proach over the analytic one [43] is that the correction factor is alreadyadjustedfordetectorefficiencies.

Forsofterandsofterphotons(orequivalentlyfor+μ− closer andclosertothe B0

s peakregion),thesingle-photoncomponentin

B(

B0s

μ

+

μ

+

)

isexpected tomatchtheradiative branch-ing ratio

B(

B0s

μ

+

μ

γ

)

, ascomputed in Ref. [11] to leading order in

α

em (see also update in Ref. [45]).2 This is indeed the case, asshownbycomparingthe solidblue distributionwiththe dotted orange one in Fig. 1. We can actually go farther in this comparisonby separatingthecontributionsdueto photons emit-tedfromfinal-stateleptons–tobedenotedasfinal-stateradiation (FSR) – with respect to the rest – to be collectively referred to asinitial-stateradiation(ISR)contributions.Thisseparationmakes sensetotheextentthatwecanidentifytworegionsinmμμ where onlyoneofthetwocontributionsisdominant.Thebreakupofthe B0s

μ

+

μ

γ

spectrum intoitsdifferentcomponentsis likewise

reportedin

Fig. 1

.Aswellknown,theFSRcontributionisdominant for soft photons (or highmμμ), whereas the ISR one dominates forharderandharderphotons,namelyasmμμ decreasesfromthe peakregion.Thecrossoverregionbetweenthetwocontributionsis atmμμ

5

.

0 GeV.Moreimportantlyforourpurposes,the contri-butionfromtheinterferencetermisalwaysbelow1%ofthetotal spectrum.3 ThisholdstruefairlygenerallyalsobeyondtheSM.In particular,shiftsinC9 andC10 withoppositesignwithrespectto

2 Inthisspirit,wewouldalsoexpecttheISRcomponentoftheB0

sμ+μγ

spectrumcalculatedinRef.[46]tomatch,inthe+μ− regionclosetothe end-pointofthis distribution,thecorrespondingspectrumcalculatedinRef.[11].We actuallyfindthat,whilethetwodistributionshaveasimilarshape,thedistribution from[46]is,inthementioned+μ−region,afactorofalmost4abovetheonein [11].BarringanormalisationtypoinRef.[46],weareunabletophysicallyinterpret thisdifference.

(3)

Fig. 2. Fractionofthe fullB0

sμ+μγ spectrumasafunctionofthechosen

signal-regionlowerboundmISR

μμ,forthreescenarios, specifiedinthe legend.See

textfordetails.

therespectiveSMcontributions,ashintedatbytherecentb

s discrepanciesmentionedearlier,tendtodecreasetheinterference termevenfurther.Asaconsequence,theISRandFSRcontributions canbetreatedastwobasicallyindependentspectra.

Inshort,totheextentthattheFSRcontributioncanbe system-aticallysubtractedoff,asisthecaseforB0

s

μ

+

μ

−searches,one

canmeasuretheISRcomponentoftheBs0

μ

+

μ

γ

spectrum– andtherebythe B0

s

μ

+

μ

γ

differentialrate– as

“contamina-tion” of B0s

μ

+

μ

− candidate events as the signal window is enlargeddownwards.Wenotethatsuchcontaminationis,in prin-ciple,alreadypresentinexisting B0

s

μ

+

μ

− searches.However,

itisnegligibleinthetypicalwindowof

±

3

÷

5 standarddeviations aroundthe B0

s

μ

+

μ

−peak, anditssmooth distributioncanbe

absorbed in other background distributions due, for example, to combinatorialbackgroundorpartiallyreconstructed B decays.For thisreasonitwastypicallynotincludedasseparate componentin recentB0s

μ

+

μ

− decaymeasurements[52–54].

On the other hand, as the signal window is enlarged down-wards,theISRcomponentoftheB0

s

μ

+

μ

γ

spectrumbecomes

sizable. Fig. 2 shows in more detail how large this contamina-tionisexpectedto be.The figuredisplays thefractionofthe full B0

s

μ

+

μ

γ

spectrumasafunctionofthechosenvalueformISRμμ fortheSM case,aswellasforthetwoscenariosthat bestfitthe b

s anomalies:onewitha V

A shifttoC9 andC10,andsuch that

δ

C9

= −

12%CSM9 , the other with a C9-only shift such that

δ

C9

= −

30%CSM9 [5].The figurerevealsthat thisfractionislarger withintheSMthanintheconsideredNPscenarios.Forexample,it isabout4.8%intheSM fora B0

s

μ

+

μ

− signalwindow

extend-ingdowntomISRμμ

=

4

.

6 GeV,whereasitisabout4%intheV

A scenario.

Wealsonotethattheassociatedeventyieldislarge, compara-bletothatfortheB0s

μ

+

μ

−signal,becausetheB0s

μ

+

μ

γ

rateintegratestoatotalbranchingratioofabout2

×

10−8[11],an orderofmagnitudeabovetheB0s

μ

+

μ

−one.Theexpectedsize ofthe B0

s

μ

+

μ

γ

spectrumisdisplayedin

Fig. 3

,by

superim-posingthisspectrum totherecentLHCb B0

s

μ

+

μ

−analysisof

Ref.[52].WeshowthecaseofaSM signalaswellastheNPcase mentionedearlier,namely

δ

C9

= −δ

C10

= −

12%CSM9 .Fromthe ab-solutesizeofthesecurveswecanalreadyinferthatNPscenarios withthe B0s

μ

+

μ

γ

spectrum enhanced by orders of

magni-tudewithrespect to theSM areunlikely in thelight of data: as shownin

Fig. 3

,afactorof10enhancementwouldresultina sub-stantialdistortionofthemeasuredspectrumfrommμμ



5

.

1 GeV downwards.

The B0s

μ

+

μ

γ

spectrumshowninFig. 3isobtainedfrom our theoretical calculation, i.e. it is not a fit to existing B0

s

Fig. 3. DimuoninvariantmassdistributionfromLHCb’smeasurementofB(B0

s

μ+μ) [52]overlayedwith the contributionexpectedfrom B0

sμ+μγ

de-cays(ISRonly).Assumesflatefficiencyversus+μ−.Thelinedenotedas‘B0s

μ+μγ NP’referstotheVA casewithδC9= −12%CSM9 (seealsoFig. 2).The twofilledcurvesarenotstackedontoeachother.

μ

+

μ

− data. The spectrum assumes that normalisation and effi-ciency be equal to those of the B0s

μ

+

μ

− distribution itself.

This is exactly true by definition at the endpoint mμμ

=

mB0

s,

andincreasingly lessso forlower masses, dueto thevarious se-lectioncriteria. Forexample,typical analyses enforcepointing re-quirementswithrespecttotheprimaryinteractionvertex,andthe latter are lesssatisfied when an additional undetectedphoton is present.TheseissuescanonlybevalidatedinfullMonteCarlo sim-ulationsoftheconsideredexperimentandanalysis.

Withenoughstatistics,onecangobeyondtheintegratedB0

s

μ

+

μ

γ

branching ratio, and measure the B0s

μ

+

μ

γ

spec-trum. This could be within reach of LHC experiments with Run 2data.Infact,shiftstothedifferentialbranchingratioareroughly linearinshiftstoC9orC10.Therefore,foraC9orC10deviationof theorderof15%(ashintedatbytheglobalfitstob

s data),the corresponding variation in the spectrum isexpected to be about 15% as well. Then, a fit to data could resolve such shift at one standarddeviationforaneventyieldofabout50.

The above argument is of statistical nature only, i.e.it disre-gards systematic uncertainties. There are two prominent sources of such errors.The first isthe theoretical errorassociated to the B0s

μ

+

μ

γ

spectrum prediction

[11]

.The dominantsource of uncertainty in this respect is by far the one associated to the B0s

γ

vector and axial form factors, defined from the rela-tions[11]



γ

(

k

,

)

s

γ

μ

γ5

b

|

B0s

(

p

)

=

ie

ν

(

gμνpk

pνkμ

)

FA

(

q 2

)

MB0 s

,



γ

(

k

,

)

s

γ

μb

|

Bs0

(

p

)

=

e

ν

μνρσpρkσ FV

(

q2

)

MB0 s

.

(5)

To the authors’knowledge, no first-principle calculation of these formfactorsexists,forexamplewithinlatticeQCD.Theform-factor predictionsusedinthisworkareobtainedfromtherecentanalysis

[48] of heavy-meson transition form factors, based on the rela-tivistic constituentquark model[49,50]. The analytic expressions forthe formfactorsfrom theconstituentquark modelreproduce theknownresultsfromQCDforheavy-to-heavyandheavy-to-light form factors [51]. Form-factor predictions within this model are therebyattachedan uncertaintyofabout10%,implyinga20% un-certainty on the branching-ratio prediction. It is clear that such levelofaccuracyisnotsufficienttoclearly resolvetheeffects ex-pected from new physics (see legend of Fig. 2). However, what is needed for the proposed method are the form factors in the

(4)

high-q2 range closeto the kinematic endpoint.This range isthe preferredoneforlattice-QCDsimulations.

The second potential source of systematicuncertainty forour methodisofexperimental nature.The impact ofthisuncertainty dependsontheactualpossibilitytowellconstraintheother back-ground components populating the signal window as it is en-largedtowardslowervalues.Thispartofthespectrum,inaddition to combinatorialbackground,consistsmainly of semileptonic de-cays in the form B

h±

μ

ν

(

+

X

)

, where h is a pion or kaon misidentified as muon and X can be any other possible hadron (not reconstructed), and rare decayssuch as B0,+

h0,+

μ

+

μ

, whichdo not need anymisidentification. While thesemileptonic decays do not represent a problem as they can be constrained from control channels directly in data, the rare decays need to be estimated witha combination ofexperimental measurements andtheoreticalinputs;asanexampletheB0

π

0

μ

+

μ

decayis not yetobserved experimentally and iscurrentlyconstrained us-ingthespectral shapemeasured fromthe B+

π

+

μ

+

μ

− decay andtheoretical estimates of theratio of the two branching frac-tions[3,52].Thespecificdetailsonhowtotreatthesinglesources of backgrounds will have to be addressed by the single experi-mentsdepending ontheexperimental capabilities,butwedonot foreseethesetobeirreduciblebackgrounds.

Weemphasizethatourproposedmethodispotentially applica-bletoseveralotherdecays– inprincipletheradiativecounterpart of any two-body decay whereby the initial-state meson mass is completelyreconstructible.Straightforwardexamplesareprovided by alltheother Bq

→ 

+



γ

modes,forwhich theonlyexisting

limitsconcernB0

e+e

γ

or

μ

+

μ

γ

withatechniquebasedon explicitphotonreconstruction

[55]

.Seriousconsiderationofthese decays will be timely when mature measurements of the corre-spondingnon-radiativedecayswillbecomeavailable.

Inconclusion,wepresenteda novelmethodforthe extraction ofthe B0s

μ

+

μ

γ

spectrum athighm2μμ.The methodavoids thedrawbacksofexplicitphotonreconstruction,andtakes advan-tage of the fact that this spectrum inevitably contaminates the B0s

μ

+

μ

−eventsampleasthem2μμ signal windowisenlarged downward.

Fig. 3

showsthatorder-of-magnitudeenhancementsof the B0s

μ

+

μ

γ

decayrateare unlikely,alreadyin thelight of existingdatabelowmμμ



5

.

1 GeV.Morelikely,themeasurement willinvolveadedicatedfitby experiments,andthisiswhereour methodmaymakethedifference.Thismethodcanrealisticallybe applicableinLHCRun2data,andwouldtherebyallowtosetthe firstlimitfor

B(

B0s

μ

+

μ

γ

)

,orprovidethefirstmeasurement

thereof.

Acknowledgements

The work of DG is partially supported by the CNRS grant PICS07229.TheauthorsareindebtedtoDmitriMelikhovformany clarificationsonRef.[11]andrelatedwork.Theauthorsalsothank GinoIsidoriforcommentsonthemanuscript, andMikolajMisiak fordiscussions.

References

[1]C.Bobeth,T.Ewerth,F.Krüger,J.Urban,AnalysisofneutralHiggsboson con-tributionstothedecays B¯s→ +− andB¯→K+−,Phys.Rev.D64(2001)

074014,arXiv:hep-ph/0104284.

[2]C.Bobeth,M.Gorbahn,T.Hermann,M.Misiak,E.Stamou,etal.,Bs,d→ +

intheStandardModelwithreducedtheoreticaluncertainty,Phys.Rev.Lett. 112(2014)101801,arXiv:1311.0903.

[3]CMS,LHCbCollaboration,V.Khachatryan,etal.,ObservationoftherareB0

s

μ+μ− decay from the combined analysis ofCMS and LHCb data, Nature (2015),arXiv:1411.4413.

[4]R.Alonso,B.Grinstein,J. MartinCamalich,SU(2)×U(1)gaugeinvarianceand theshapeofnewphysicsinrareB decays,Phys.Rev.Lett.113(2014)241802, arXiv:1407.7044.

[5]W.Altmannshofer, D.M.Straub, Newphysicsinbs transitions afterLHC run 1,Eur.Phys.J.C75(2015)382,arXiv:1411.3161.

[6]F.Kruger,D.Melikhov,Gaugeinvarianceandform-factorsforthedecay Bγ+−,Phys.Rev.D67(2003)034002,arXiv:hep-ph/0208256.

[7]C.Q.Geng,C.C.Lih,W.-M.Zhang,StudyofBs,d→ +γ decays,Phys.Rev.D

62(2000)074017,arXiv:hep-ph/0007252.

[8]Y.Dincer,L.M.Sehgal,Chargeasymmetryandphotonenergyspectruminthe decayBs→ +γ,Phys.Lett.B521(2001)7–14,arXiv:hep-ph/0108144.

[9]S.Descotes-Genon,C.T.Sachrajda,UniversalityofnonperturbativeQCDeffects inradiativeBdecays,Phys.Lett.B557(2003)213–223,arXiv:hep-ph/0212162. [10]T.M.Aliev,A.Ozpineci,M.Savci,Bq→ +γdecaysinlightconeQCD,Phys.

Rev.D55(1997)7059–7066,arXiv:hep-ph/9611393. [11]D.Melikhov,N.Nikitin, Rareradiativeleptonic decays B0

d,s→ +γ, Phys.

Rev.D70(2004)114028,arXiv:hep-ph/0410146.

[12]LHCb collaboration, R. Aaij,et al., Test of lepton universalityusing B+→

K++−decays,Phys.Rev.Lett.113(2014)151601,arXiv:1406.6482. [13]M.Bordone,G.Isidori,A.Pattori,OntheStandardModelpredictionsfor RK

andRK∗,arXiv:1605.07633.

[14]C.Bobeth,G.Hiller,G.Piranishvili,AngulardistributionsofB¯→ ¯K+−decays, J.HighEnergyPhys.12(2007)040,arXiv:0709.4174.

[15]HPQCD collaboration, C. Bouchard, G.P. Lepage, C. Monahan, H. Na, J. Shigemitsu,StandardModelPredictionsfor BK+− withFormFactors fromLatticeQCD,Phys.Rev.Lett.111(2013)162002,arXiv:1306.0434. [16]G.Hiller,F.Krüger,Moremodelindependentanalysisofbs processes,Phys.

Rev.D69(2004)074020,arXiv:hep-ph/0310219.

[17]LHCbcollaboration,R.Aaij,etal.,Differentialbranchingfractionsandisospin asymmetriesofBK(∗)μ+μdecays,J.HighEnergyPhys.06(2014)133,

arXiv:1403.8044.

[18]LHCbcollaboration,R.Aaij,etal.,Differentialbranchingfractionandangular analysisofthe B+→K+μ+μ− decay,J.HighEnergy Phys.02(2013)105, arXiv:1209.4284.

[19]C.Bobeth,G.Hiller,D.vanDyk,MorebenefitsofsemileptonicrareBdecaysat lowrecoil:CPviolation,J.HighEnergyPhys.07(2011)067,arXiv:1105.0376. [20]C.Bobeth,G.Hiller,D.vanDyk,C.Wacker,TheDecay BK+− at Low

HadronicRecoiland Model-Independent B=1 Constraints,J. HighEnergy Phys.01(2012)107,arXiv:1111.2558.

[21]C.Bobeth,G.Hiller,D.vanDyk,GeneralanalysisofB¯→ ¯K(∗)+decaysat

lowrecoil,Phys.Rev.D87(2013)034016,arXiv:1212.2321.

[22]LHCbcollaboration, R.Aaij, et al., Angularanalysisand differential branch-ingfractionofthedecayB0

s→ φμ+μ−,J.HighEnergyPhys.09(2015)179,

arXiv:1506.08777.

[23]LHCbcollaboration, R.Aaij,et al., Differentialbranching fractionand angu-laranalysisofthedecay B0

s→ φμ+μ−,J.HighEnergyPhys.07(2013)084,

arXiv:1305.2168.

[24]S.Descotes-Genon,T.Hurth,J.Matias,J.Virto,OptimizingthebasisofB

Kobservablesinthefullkinematicrange,J.HighEnergyPhys.05(2013) 137,arXiv:1303.5794.

[25]LHCbcollaboration,R.Aaij, etal., MeasurementofForm-Factor-Independent ObservablesintheDecayB0K∗0μ+μ,Phys.Rev.Lett.111(2013)191801,

arXiv:1308.1707.

[26]LHCbcollaboration,R.Aaij,etal.,AngularanalysisoftheB0K∗0μ+μ

de-cayusing3fb−1ofintegratedluminosity,J.HighEnergyPhys.02(2016)104,

arXiv:1512.04442.

[27]Belle collaboration, A. Abdesselam, et al., Angular analysis of B0

K(892)0+,arXiv:1604.04042,2016.

[28]A. Khodjamirian, T. Mannel, A.A. Pivovarov, Y.M. Wang, Charm-loop effect in BK(∗)+and BKγ, J. High Energy Phys. 09 (2010) 089,

arXiv:1006.4945.

[29]S. Descotes-Genon, J. Matias, J. Virto, Understanding the BKμ+μ− anomaly,Phys.Rev.D88(2013)074002,arXiv:1307.5683.

[30]J.Lyon,R.Zwicky,Resonancesgonetopsyturvy–thecharmofQCDornew physicsinbs+−?,arXiv:1406.0566.

[31]S.Jäger,J. MartinCamalich,Reassessingthe discoverypotential ofthe BK+− decaysinthelarge-recoilregion:SMchallengesandBSM opportuni-ties,Phys.Rev.D93(2016)014028,arXiv:1412.3183.

[32]M.Ciuchini,M.Fedele,E.Franco,S.Mishima,A.Paul,L.Silvestrini,etal.,BK+−decaysatlargerecoilintheStandardModel:atheoreticalreappraisal, arXiv:1512.07157.

[33]G.Hiller,M.Schmaltz, RK andfuturebsphysicsbeyondthestandard

modelopportunities,Phys.Rev.D90(2014)054014,arXiv:1408.1627. [34]D.Ghosh,M.Nardecchia,S.Renner,Hintofleptonflavournon-universalityin

B mesondecays,J.HighEnergyPhys.1412(2014)131,arXiv:1408.4097. [35]S. Descotes-Genon, L. Hofer, J. Matias, J. Virto, Global analysis ofbs

anomalies,J.HighEnergyPhys.06(2016)092,arXiv:1510.04239.

[36]T.Hurth,F.Mahmoudi,S.Neshatpour,OntheanomaliesinthelatestLHCb data,Nucl.Phys.B909(2016)737–777,arXiv:1603.00865.

[37]S.L.Glashow,D.Guadagnoli, K. Lane,LeptonFlavorViolationin B Decays?,

(5)

[38]B.Bhattacharya,A.Datta, D.London,S. Shivashankara, Simultaneous expla-nation ofthe RK and R(D(∗))puzzles, Phys. Lett. B742(2015) 370–374,

arXiv:1412.7164.

[39]T.Blake,G.Lanfranchi, D.M.Straub, RareB decaysastests ofthe standard model,arXiv:1606.00916.

[40]D.Yennie,S.C. Frautschi,H. Suura,Theinfrared divergencephenomenaand high-energyprocesses,Ann.Phys.13(1961)379–452.

[41]S.Weinberg,Infraredphotonsandgravitons,Phys.Rev.140(1965)B516–B524. [42]G.Isidori,Soft-photoncorrectionsinmulti-bodymesondecays,Eur.Phys.J.C

53(2008)567–571,arXiv:0709.2439.

[43]A.J.Buras,J.Girrbach,D.Guadagnoli,G.Isidori,OntheStandardModel predic-tionforBR(B0

s,dμ+μ),Eur.Phys.J.C72(2012)2172,arXiv:1208.0934.

[44]P.Golonka,Z.Was,PHOTOSMonteCarlo:aprecisiontoolforQEDcorrections inZ andW decays,Eur.Phys.J.C45(2006)97–107,arXiv:hep-ph/0506026. [45]A. Kozachuk, D. Melikhov, N. Nikitin, Rare radiative leptonic B-decays,

arXiv:1609.06491,2016.

[46]Y.G.Aditya,K.J.Healey,A.A.Petrov,FakingB0

sμ+μ−,Phys.Rev.D87(2013)

074028,arXiv:1212.4166.

[47]D.Guadagnoli,D.Melikhov,M.Reboud,Moreleptonflavorviolating observ-ablesforLHCb’srun2,Phys.Lett.B760(2016)442–447,arXiv:1605.05718.

[48]A.Kozachuk,D.Melikhov,N.Nikitin,Annihilationtyperareradiative B(s)

decays,Phys.Rev.D93(2016)014015,arXiv:1511.03540.

[49]V.V. Anisovich, D.I. Melikhov,V.A. Nikonov, Photon–meson transition form-factorsγ π0,γ ηand γ ηat lowandmoderatelyhighQ2,Phys. Rev.D55

(1997)2918–2930,arXiv:hep-ph/9607215.

[50]D.Melikhov,Dispersionapproachtoquarkbindingeffectsinweakdecaysof heavymesons,Eur.Phys.J.C4(2002)2,arXiv:hep-ph/0110087.

[51]D.Melikhov,B.Stech,Weakform-factorsforheavymesondecays:anupdate, Phys.Rev.D62(2000)014006,arXiv:hep-ph/0001113.

[52]LHCbcollaboration,R.Aaij,etal.,MeasurementoftheB0

sμ+μ−branching

fractionandsearchforB0μ+μdecaysattheLHCbexperiment,Phys.Rev.

Lett.111(2013)101805,arXiv:1307.5024.

[53]CMS collaboration, S.Chatrchyan, et al., Measurementof the B0

sμ+μ

branchingfractionandsearchforB0μ+μwiththeCMSExperiment,Phys.

Rev.Lett.111(2013)101804,arXiv:1307.5025.

[54]ATLAScollaboration,M.Aaboud,etal.,StudyoftheraredecaysofB0

sand B0

into muonpairsfromdatacollectedduringthe LHCRun1withtheATLAS detector,arXiv:1604.04263.

[55]BaBarcollaboration,B.Aubert,etal.,Searchforthedecays B0e+eγ and

Riferimenti

Documenti correlati

Arbeit, so bescheiden sie auch sein möge, immerhin ein Recht, das in vielen Verfassungen von Staaten verankert ist, ist für Soyfer eine conditio sine qua non für

L’idea è quella di misurare la differenza di pressione su specifici diametri (dette pressioni diametrali) della sezione trasversale del cilindro, per ricavare direzione e intensità

(In other networks, such a loop might only be revealed after extensive constraint propagation.) How- ever, a DC CSTN may contain negative-length loops whose edges have

Es- sentially, we can figure out which is the maximum bandwidth manageable by a single node, the maximum number of channels achievable and, above all, whether the spectrometer can

Based on the identified-particle yields from the figure 1 (left), the projections of the statistical uncertainties on the elliptic flow measurement v 2 , as a function of η lab

Lack of efficacy was cited as one of the most common reasons for treatment discontinuation in both real-life studies and the NEONet database, while patient decision and adverse

Il Service Learning viene quindi presentato come metodo in grado di sviluppare le competenze di ricerca nei futuri docenti, secondo un modello capace di

Come sappiamo l'operazione sotto copertura deve sempre essere compiuta dalla polizia giudiziaria, anche quando essa si avvalga dell'aiuto di privati o