• Non ci sono risultati.

Exhaled nitric oxide in interstitial lung diseases

N/A
N/A
Protected

Academic year: 2021

Condividi "Exhaled nitric oxide in interstitial lung diseases"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Respiratory

Physiology

&

Neurobiology

j o u r n a l ho me p ag e :w w w . e l s e v i e r . c o m / l o c a t e / r e s p h y s i o l

Exhaled

nitric

oxide

in

interstitial

lung

diseases

P.

Cameli

,

E.

Bargagli,

R.M.

Refini,

M.G.

Pieroni,

D.

Bennett,

P.

Rottoli

DepartmentofMedicalandSurgicalSciencesandNeurosciences,RespiratoryDiseaseandLungTransplantationSection,LeScotteHospital,Siena,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Accepted21March2014 Availableonline2April2014 Keywords:

Nitricoxide

Idiopathicpulmonaryfibrosis Non-specificinterstitialpneumonia biomarker

Oxidativestress Nitrosativestress

a

b

s

t

r

a

c

t

Nitricoxide(NO)isabiomarkerofnitrosativestress,whichisinvolvedinthepathogenesisofidiopathic interstitialpneumonias(IIP).ThisstudyevaluatesexhaledNOlevelsinIIPpatientsandrelates alveo-larconcentrationsofNO(CalvNO)topulmonaryfunctiontest(PFT)and6-minutewalkingtest(6MWT)

parameters.Wemeasuredfractionalexhalednitricoxide(FeNO),CalvNOandmaximumconducting

air-waywallflux(J’awNO)in30healthysubjectsand30patientswithIIP(22idiopathicpulmonaryfibrosis

and8idiopathicnon-specificinterstitialpneumonias).IIPpatientshadhigherFeNOatflowratesof 50–100–150ml/sandhigherCalvNOlevelsthanhealthycontrols(p<0.0001).CalvNOwassignificantly

correlatedwith6-minutewalkingdistance(p<0.0001),recoverytime(p<0.0005),TLC(p<0.001),FVC (p=0.01)andTLCO(p<0.01).IIPpatientsshowedabnormalnitricoxideproduction,probablyduetolung fibrosisandoxidative-mediatedlunginjury.CalvNOwascorrelatedwithPFTand6MWTparametersand

isproposedasapotentialbiomarkeroflungfibrosisandexercisetolerance.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Nitricoxide(NO)isamoleculeproducedbythehumanlungs

andispresentinexhaledbreath.Itplaysahomeostaticroleina

widerangeofphysiologicalprocesses.Sincetheearly1990s,

sys-temsformeasuringNOin exhaledbreathhave beendeveloped

andusedtomeasurethefractionofexhalednitricoxide(FeNO)

inmanylungdiseases,includingasthma,chronicobstructive

pul-monarydisease(COPD),cysticfibrosis,primaryciliarydyskinesia

andpulmonaryarterialhypertension(AmericanThoracicSociety

EuropeanRespiratorySociety,2010).TheanatomicaloriginofNO

productioncanbeseparatedusingatwo-compartmentmodelof

the lung (airway and alveolar compartments) and partitioning

NOintoalveolarconcentrationofexhaledNO(CalvNO)and

max-imumconductingairwaywallflux(J’awNO)(TsoukiasandGeorge,

1998).Atpulmonarylevel,NOactsasavasodilator,bronchodilator,

Abbreviations: NO,nitricoxide;eNO,exhalednitricoxide;FeNO,fractionof exhaledNO;VeNO,exhaledNOoutput;CalvNO,alveolarconcentrationofNO;J’awNO,

maximumconductingairwaywallflux;IPF,idiopathicpulmonaryfibrosis;BAL, bronchoalveolarlavage;NSIP,non-specificinterstitialpneumonia;PFT,pulmonary functiontests;6MWT,6-minutewalkingtest;TLC,totallungcapacity;FVC,forced vitalcapacity;TLCO,transferfactorofthelungforcarbonmonoxide;COPD,chronic obstructivepulmonarydisease;IIP,idiopathicinterstitialpneumonia;2CM, two-compartmentmodel;TMAD,trumpetmodelofaxialdiffusion.

∗ Correspondingauthor.Tel.:+390577586710/+393297856833; fax:+390577280744.

E-mailaddress:paolocameli88@gmail.com(P.Cameli).

neurotransmitterandinflammatorymediator.Itisinvolvedin

sev-eralpathologicalconditions,includingfibrogenesisandoxidative

stress.NOistheprincipalreactivenitrogenspeciesencountered

invivo,andathighconcentrationscausestoxicitybycombining

withsuperoxide anion to produce peroxynitrite.This molecule

maycause nitration(additionof −NO2)ofmost classesof

bio-logicalmolecules,determiningproteindysfunction,inhibitionof

mitochondrialrespirationandDNAdamage.Experimentalstudies

supporttheroleofoxidativeandnitrosativestressinthe

patho-genesisofinterstitiallung diseases(ILD),thoughfewstudieson

exhaledNOanalysisareavailableforidiopathicinterstitial

pneu-monia (IIP) and particularlyidiopathicpulmonary fibrosis (IPF)

patients(Chapmanetal.,2010;Chowetal.,2012;Hua-Huyetal.,

2010;MoodleyandLalloo,2001).Inparticular,Pullamssettietal. (2011)notedapotentialroleofNOinIPF.IPFandidiopathic

non-specificinterstitialpneumonia(NSIP)withfibrosingpatternarethe

mostcommonidiopathicinterstitialpneumonias:theyare

charac-terizedbyapoorprognosis(3–5yearssurvivalforIPF),duetothe

chronicprogressiverestrictivefunctionalimpairmentofthelung,

causedbyfibroticdegenerationofthelungparenchyma.Inaddition

tothat,IPFandNSIPpatientsearlydevelopasevereimpairmentof

physicaltolerance,duetoprogressivehypoxemia,whichseriously

deterioratestheirperformancestatusandqualityoflife.Inorder

toanalyzethisperspectiveinthesepatients,theuseof6-minute

walkingtest(6MWT)hasbeenalreadyvalidatedinIPF,becauseof

itssafetyanditspracticality:therefore,unlikemaximal

cardiopul-monaryexercisetesting,6MWTcanbeperformedbyalmostall

patientsand,becauseitisself-paced,isbettertoleratedandmore

http://dx.doi.org/10.1016/j.resp.2014.03.011 1569-9048/©2014ElsevierB.V.Allrightsreserved.

(2)

reflectiveofdailyactivitiesthanotherfunctionaltests:Muraetal. (2012)hasdemonstratedthat6minwalkdistanceatthetimeof

diagnosisisasignificantpredictorofsurvivalinIPFpatients.The

progressofthesediseasesisalsounpredictableatthetimeof

diag-nosis,sotheneedfor newseveritybiomarkersthatcanpredict

thenaturalhistoryandthephysicaltoleranceofthesepatientsis

intenselyfelt

Regardingotherdiffuselungdiseases,Tievetal.(2012)reported

increasedproductionofalveolarnitricoxideassociatedwithlung

fibroblastproliferationinpatientswithpulmonaryfibrosis

associ-atedwithsystemicsclerosisandproposedCalvNOasanon-invasive

biologicalmarkerofalveolitispredictiveofdeteriorationoflung

function.Evaluation ofNO in exhaledbreath condensatesfrom

patientswithsarcoidosis(amultisystemgranulomatousdiseaseof

unknownetiology,inwhichinflammationcanplayafundamental

physiopathologicalrole,onlyevolvingtodiffusepulmonaryfibrosis

inaminorityofpatients)hasproducedconflictingresults.Moodley

etal.(1999)reportedhigherconcentrationsofFeNOinexhaled

breathsamplesfrom12patientswithsarcoidosisthanincontrols,

whileWilsheretal.(2005)describedcontraryfindingsinacohort

of52patients.Choietal.(2009)failedtofindanysignificant

dif-ferencesinFeNOconcentrationsbetweenpatientswithsarcoidosis

andhealthynon-smokercontrols,howevertheyreported

signifi-cantnegativecorrelationsbetweenCalvNOandpercentagevaluesof

forcedvitalcapacity(FVC)andtransferfactorofthelungforcarbon

monoxide(TLCO).Theauthorsconcludedbynotrecommending

exhaledFeNOdetectioninroutineclinicalpractice,duetothelarge

inter-subjectvariabilitytheyfound.HigherCalvNOlevelshavealso

beenreportedin pneumoconiosispatientsthanincontrols, and

exhaledNOhasbeenproposedasapotentialclinicalbiomarkerof

silica-andasbestos-exposedsubjectssusceptibletosilicosis(Fubini

andHubbard,2003;Saunietal.,2012)andasbestosis(Lehtimäki etal.,2010).

AslimitedliteratureisavailableonexhaledNOlevelsinpatients

withidiopathic interstitialpneumonias (Furukawaet al., 2011;

Schildge,2011;Zhaoetal.,2012),wedesignedthepresentstudyto

compareexhaledFeNOconcentrationsofpatientswithidiopathic

pulmonaryfibrosisandnon-specificinterstitialpneumonia with

thoseofapopulationofhealthysex-andage-matchedcontrols,

inordertocontributetothestudyofFeNOinIIP.Instead,toour

knowledge,noliteratureisavailableontheeffectofmildphysical

exerciseinexhaledNOlevelsinIPFandNSIPpatients.Forthis

rea-son,tobettercharacterizethepatternofNOinfibroticpatients,we

alsoexaminedeNOparametersatrestandafterthe6-minute

walk-ingtest(6MWT)inrelationtoreducedphysicaltolerance(which

influencesqualityoflifeandthereproducibilityoflungfunction

tests).

2. Materialsandmethods

2.1. Studypopulationandstudydesign

ThirtyILDpatientswereenrolledinthestudythatwas

per-formed at Siena Regional Referral Centre for Sarcoidosis and

InterstitialLungDiseasesbetweenSeptember2012andMay2013.

Twenty-twopatientshadidiopathicpulmonaryfibrosis(17males,

meanage64±10years),andeightpatientshadidiopathic

non-specific interstitialpneumonia withfibrosing pattern (2males,

mean age63±9 years). Diagnosis wasperformed accordingto

international guidelines (Raghu et al., 2011) and all patients

underwentpulmonaryfunctiontests(PFT),includingsingle-breath

diffusingcapacity forcarbon monoxideatdiagnosisandalmost

every six months thereafter. An accurate medical history was

obtainedfromallpatientsinordertoevaluateprofessional

expo-sure,smokingand medicationhistory. Chestx-raysweretaken

inposterior-anteriorandlateralprojections.Highresolution

com-putedtomographyofthechestwasperformedinallpatientsfor

diagnosticpurposes.Allpatientsandcontrolswereaskedto

per-formacomplete6-minutewalkingtest(6MWT).NineIPFpatients

were non-smokers and 13 were ex-smokers (mean packs/year

10.27±12.23).SixNSIPpatientswerenon-smokersandtwoNSIP

patients were ex-smokers (mean packs/year 5.62±10.5). The

patientshadnohistoryofatopy,concomitantasthma,canceror

autoimmunedisorders,andNSIPsecondarytosystemicsclerosis

orrheumatoidarthritiswasspecificallyexcluded.Atthemoment

ofNOdetection,patientswithIPFandNSIPwereinstablephaseand

hadbeenfreeofrespiratoryinfectionsand/oracuteexacerbations

foratleast4weeks.

The control group included 30 healthy volunteers (16

male, mean age 62±4.73 years), 15 non-smokers and 15

ex-smokers (mean packs/year 5.25±7.2). Patients treated with

phosphodiesterase-five inhibitors and ICS were excluded. All

healthyvolunteershadnormallungfunctionandhadsufferedno

respiratorysymptomsorinfectionsinthelast4weeks.Allpatients

and controlsgave theirwritteninformed consenttothe study,

whichwasapprovedbythelocalethicscommittee,andall

por-tionsofthestudywereperformedaccordingtotheDeclarationof

Helsinki.

2.2. Studyprotocol

Participantswereaskedtoavoidalcoholicdrinks, coffeeand

otherfoodorbeveragescontainingcaffeine(cola,tea,cocoa)for

atleast3hbeforetheexamination.Theyalsohadtoabstainfrom

foodscontainingnitrates(lettuce,spinach,cabbage,sausages)and

high-fatfoodsfor atleast12hbeforetheexamination.Patients

onbronchodilatorshadtosuspendtherapy 12hbeforethetest.

All participants had a mouthwash with water just before the

test.Baselinedeterminationofsystolicpressure,diastolicpressure,

heart rate,pulsed arterialoxygensaturationand exhaled nitric

oxidemeasurementswere takenafter10minofrestin a quiet

andcomfortableenvironment.Allsubjectsthenperformeda

com-plete6MWT,afterwhichexhalednitricoxidemeasurementswere

repeatedwithin5min.IPFandNSIPpatientsalsounderwentPFT

onthesameday.

2.3. Pulmonaryfunctiontests

The following lung function measurements were recorded

accordingtoATS/ERSstandards(Milleretal.,2005),usingaJaeger

BodyPlethysmographwithcorrectionsfortemperatureand

baro-metric pressure: forced expiratory volume in the first second

(FEV1), forcedvitalcapacity(FVC),FEV1/FVC,totallungcapacity

(TLC),residualvolume(RV),carbonmonoxidelungtransferfactor

(TLCO)andcapacitycarbonmonoxidelungtransferfactor/alveolar

volume(TLCO/VA).Allparameterswereexpressedaspercentages

ofpredictedreferencevalues.TLCOmeasurementcouldnotbe

per-formedinfourpatientswhowereonoxygentherapy.PFTswere

performedatleast2hafterexhaledNOmeasurements.

2.4. Six-minutewalkingtest

IPFandNSIPpatientsandcontrolsperformedthesix-minute

walkingtestaccordingtothestandardsoftheATS/ERSguidelines

(ATSStatement,2002).

2.5. Exhalednitricoxidemeasurements

Nitricoxidewasmeasuredusingachemiluminescenceanalyzer

(modelHypairFeNOmedisoftCardiolineExp’air,2010)according

toATS-ERSrecommendationsforonlinemeasurementofFeNOin

(3)

Table1

Demographicfindings,clinicalfeatures,6MWTparameters,lungfunctiontestparametersincludingTLCOinpatientswithIPFandNSIPpatientscomparedthancontrols.

Parameters IPF NSIP Controls p-Value

No. 22 8 30

Age(aa) 64.81±10.45 63.25±9.48 62±4.73 ns

Male(n) 17(59%) 2(25%) 16(51%) ns

BMI(kg/m2) 26.25±3.49 27.65±2.51 25.9±2.9 ns

Tobaccouse(pack/year) 10.27±11.8 5.62±10.5 5.2±7.2 ns

SystolicPA(mmHg) 125±12.23 123.75±10.26 121.3±11.9 ns DiastolicPA(mmHg) 73.18±10.86 75±9.25 72.6±9.8 ns Heartrate(bpm) 78.95±11.63 76.5±5.2 73±9 ns SpO2% 95.4±1.14 95.7±2.3 97.6±0.9 <0.001 6MWT baselineSpO2% 95.2±0.94 95.87±1.88 97.4±0.6 <0.0001*

endtestSpO2% 89.63±2.92 90.5±2.32 96.5±1.8 <0.0001*

baselineHR(bpm) 77.5±8.4 78.75±6.4 71.9±8.4 <0.0001*

posttestHR(bpm) 100.36±17.49 100.87±12.11 85±10.9 <0.0001*

Walkdistance(m) 297.72±55.02 282.5±73.63 366.8±39 <0.0001*

SpO2recoverytime(s) 110.9±59.19 88.75±65.56 7.6±11 <0.0001*

Borgindexbaseline 0.68±1.24 0.75±1.48 0 <0.0001*

Borgindexposttest 4±2.37 5.25±2.96 0.4±0.8 <0.0001*

PFT(%referencevalues) FVC% 69.52±18.15 77.71±25.51 ns FEV1% 69.95±18.33 76.81±25.82 ns FEV1/FVC% 78.22±9.44 78.96±8.64 ns ITGV% 88±16.72 91.31±26.52 ns RV% 92.51±18.06 93.03±25.74 ns TLC% 77.45±14.95 76.47±16.36 ns RV/TLC 48.29±8.19 48.21±8.75 ns TLCO% 43.33±16.65 41.06±21.25 ns TLCO/VA% 68.51±19.22 59.81±11.07 ns

Lungfunctiontestareexpressedaspercentagesofpredictedvalues:FVC,ForcedVitalCapacity;FEV1,ForcedExpiratoryVolumein1s;ITGV,IntrathoracicGasVolume;RV,

ResidualVolume;TLC,TotalLungCapacity;TLCO,TransferFactoroftheLungforCarbonMonoxide;VA,AlveolarVolume.

* p-valuebetweenIIP(IPFandNSIP)patientsandcontrols. p-valuebetweenIPFandcontrols.

p-valuebetweenIPFandNSIPpatients.

2010).TheanalyzerwassensitivetoNOfrom1to500ppbwitha

resolutionof1ppb.Allmeasurementswereundertakenat

ambi-entNOlevelsof<10ppb.Subjectswerestudiedinsittingposition.

Exhaled NO was measured during slow exhalation from total

lungcapacityagainstapositivepressurekeptconstantlybetween

5–20cm H2O togenerate exhalationflow rates of 50, 100 and

150ml/s.Theexhalationflowratewaskeptasconstantas

pos-sibleusing a biofeedback visualdisplay. For each flow rate, at

leasttwo technicallyadequate measurements wereperformed.

In orderto evaluateNO concentrationprofileversus time

dur-ingexhalation,wealsomeasuredexhaledNOoutput(VeNO)in

patients and controls. A third measurement was performed if

thedifferencebetweenfirst twomeasurementswasmore than

10%.Thefourpatientsonoxygentherapyweretakenoffit

dur-ingexhalednitricoxidemeasurements.Theflow-independentNO

parameters,CalvNOandJ’awNO,werecalculatedusingtheTsoukias

two-compartment model of NO exchange (2CM; Tsoukias and

George,1998).Anotheranalyticalmethodtorepresentourresults

wasthetrumpetmodelofaxialdiffusion(TMAD)ofCondorellietal.

(2007).Alinearrelationshipbetweenthethreepoints(50,100and

150ml/s)oftheNOfluxagainsttheflowwasevaluatedforeach

subjectbyalinearitytest.

2.6. Datacollectionandreproducibility

Eachmeasurement was consideredacceptable witha

confi-dence rate >95% and a flow stability >90%. All measurements

weremadebyasingleinvestigator,guaranteeinginter-and

intra-observeragreement.

2.7. Statisticalanalysis

Datawasexpressedasmean±standarddeviation(SD).

Compar-isonsbetweenIPF,NSIPpatientsandcontrolswereperformedby

Mann–Whitneytest.ChangesinclinicalandexhaledNO

param-eters observedafter the6MWTwerecompared using two-way

ANOVA,withBonferroni’sposttest.CorrelationsbetweenCalvNO,

PFTvaluesand6MWTparametersweremadebySpearman’stest.

Ap-value<0.05wasconsideredstatisticallysignificant.Statistical

analyseswereperformedusingGraphPadPrism5.

3. Results

3.1. Clinicalandfunctionalcharacteristics

Clinicaland demographicdataof patientswithIPFand NSIP

andcontrolsare reportedinTable1,togetherwithPFT results,

including TLCO percentages, and 6MWT parameters. Globally,

IIP patients showed mild to moderate restrictive impairment

and 6MWT parameters (baseline and end test SpO2, heart

rate,Borgindex,6-minutewalkingdistanceandrecoverytime)

were significantly different from those measured in controls

(p<0.0001).

3.2. eNOvaluesinIPFandNSIPandhealthycontrols

FeNO values at flow rates of 50, 100 and 150ml/s were

significantlyhigherinIPFandNSIPpatientsthaninhealthy

con-trols(p<0.0001)(Fig.1,Table2).Atbaseline,flow-independent

parameters included CalvNO, that was significantly higher in

IPF and NSIP patients than controls (p<0.0001), and J’awNO,

which did not differ between the two groups (p>0.05)

(Table 2). These results were obtained applying the 2CM

and TMAD. In Table 2, exhaled VeNO was also reported to

evaluate NO concentration profile versus time during

exhala-tion. VeNO values at flow rates of 50, 100 and 150ml/s were

significantlyhigherinIPFandNSIPpatientsthanhealthycontrols

(4)

Fig.1. ComparisonofexhalednitricoxideparametersbetweenIPF+NSIPpatientsandhealthycontrols,beforeandafter6MWT.FeNO,fractionofexhalednitricoxide; CalvNO,alveolarconcentrationofNO;ppb,parsperbillion;IPF,idiopathicinterstitialpneumonia;NSIP,non-specificinterstitialpneumonia;***p<0.0001.**p<0.001.*

p<0.05.

VeNO150(156±24.5vs 144.9±27.6nl/min; p>0.05) werenot

significantlydifferenttoIPFandNSIPpatientswhilewere

signif-icantlyhigherthanhealthycontrols(17.7±8.2vs10.8±2.9ppb;

156±24.5vs95±10nl/min;p<0.01andp<0.001,respectively).

Therewerenosignificantdifferencesbetweennon-smokersand

ex-smokersinanypopulation

3.3. eNOvaluesand6MWT.

Afterthe6MWT,FeNO50values(p<0.001),VeNO50 values

(p<0.0001)andJ’awNOlevels(p<0.001)weresignificantlyhigher,

andFeNO100values(p<0.05),FeNO150values(p<0.05),VeNO

100(p<0.05),VeNO150levels(p<0.05)andCalvNO(p<0.001)

significantlylower,inIPFandNSIPpatientswithrespecttobefore

6MWT(Figs.1and2,Table2).IPFandNSIPpatientsdidn’t

sig-nificantly differ in any baseline or post6MWT parameters. No

significantchangeswereobservedinhealthycontrolsafter6MWT.

Inthepatientsgroup,baselineCalvNOwassignificantlycorrelated

withsix-minutewalkingdistance(r=−0.73,p<0.0001),recovery

time(r=0.63;p<0.0005)andSpO2posttest(r=−0.54;p<0.01).

CalvNOwasalsoinverselyrelatedtoFVC(r=−0.47;p<0.01),TLC

(r=−0.62; p<0.001) and TLCO percentages (r=−0.60; p<0.01)

(Fig.3).NosignificantcorrelationswerefoundbetweenFeNO50,

Fig.2.ComparisonofJ’awNOatbaselineandafter6MWTbetweenpatientsand

healthycontrols.J’awNOdidnotsignificantlychangeinpatientswithrespectto controlsatbaseline,whereasitwassignificantlyhigherinIIPpatientsthan con-trolsafter6MWT.J’awNOdidnotchangeinhealthysubjectsafter6MWT.J’awNO,

maximumconductingairwaywallflux;6MWT,6-minutewalkingtest;IPF, idio-pathicpulmonaryfibrosis;NSIP,non-specificinterstitialpneumonia;***p<0.001in

patients;ns:nonsignificant.

Table2

eNOparametersinIPFandNSIPpatientsandhealthycontrols.

eNoparameters IPF NSIP Controls p-Value

Baseline Post6MWT Baseline Post6MWT Baseline Post6MWT

FeNO50ml/s(ppb) 22.3±8.4 26.1±10.5 21±8 27.3±11.2 15.8±4.1 16.1±4.1 <0.0001* FeNO100ml/s(ppb) 18.2±6.8 16.1±6.8 17.8±5.3 16.6±6.4 13.1±2.8 12.2±3.5 <0.0001* FeNO150ml/s(ppb) 15.2±7.7 13.2±5.5 15.1±5.1 13.6±4.6 10.8±2.9 9.7±2.4 <0.0001* J’awNO(nl/min)a 42.6±24.6 69.5±37.1 40.3±30.9 83.2±71.3 45.3±22.3 48.7±20.5 ns CalvNO(ppb)a 11.5±6.6 7±3.8 12.6±6.8 6.7±3.2 4.7±2.3 3.9±1.6 <0.0001* J’awNO(nl/min)b 71.4±44 124±81 67.6±49.2 135.6±114 77.1±38 82.8±35 Ns CalvNO(ppb)b 10.7±5.9 6.2±3.3 11.2±5.7 6.1±2.7 4.3±2.08 3.6±1.4 <0.0001* VeNO50ml/s(nl/min) 81.8±18.4 94.6±22.5 78.3±24 100.5±32 47.7±10.4 51.5±8.4 <0.0001* VeNO100ml/s(nl/min) 115±25 105±21 104±30 118±45 82.5±12 84.2±9 <0.0001* VeNO150ml/s(nl/min) 149±27 132±18 144±32 137±34 95±10 99±7 <0.0001*

FeNO,fractionalofexhalednitricoxide;CalvNO,alveolarconcentrationofnitricoxide;J’awNO,maximumconductingairwaywallflux. *p-valuebetweenIIP(IPFandNSIP)patientsandcontrols.

p<0.05withbaselineIPF. p<0.05withbaselineNSIP.

aTwo-compartmentmodelbyTsoukiasandGeorge.

(5)

100,150,J’awNOandsix-minutewalkingdistance,recoverytime,

FVC,TLCandTLCO.

4. Discussion

Thepresentstudyevaluatedexhalednitricoxideparametersin

IPFandNSIPpatients,comparedwithagroupofhealthysubjects,

demonstratinganincreaseatrestinFeNOatflowratesof50,100

and150ml/sandanincreaseinCalvNOinIPFandNSIPpatients

comparedwithhealthycontrols.

VerylittledataisavailableonFeNOconcentrationsinexhaled

breath of patients with IPF and NSIP (Furukawa et al., 2011;

Schildge,2011;Zhaoetal.,2012),whichpromptedustoexplore

NOpatterninthesediseases,consideringthepotentialimplications

ofNOasamediatorinthepathogenesisofpulmonaryfibrosis.We

alsocomparedeNOvaluesatrestandafterexerciseinour

popu-lationasacontributiontotheanalysisofexercise-inducedeffects

oneNOconcentrationsinIIPpatients,asnoliteratureisavailable

onthistopicandthesepatientssoondeveloplowphysical

toler-ance(whichimpairsqualityoflifeandthereproducibilityofPFT).

PhysicalexerciseisacrucialtriggerofdesaturationinIPFandNSIP

patientsandwedecidedtoestablishitseffectonNOkinetics.

4.1. NOandpulmonaryfibrosis

The increase in eNO parameters in our IIP patients can be

explainednot onlyby a reducedgas diffusionthrougha

thick-enedalveolar-capillarymembrane,butalsobyoverexpressionof

induciblenitric oxidesynthase(iNOS)and consequentlyhigher

productionofNOinthelungparenchyma(Pullamsettietal.,2011).

TheobservationthatNOisimplicatedinpulmonaryfibrogenesis

isdemonstrated by studiesreportingabnormal NOand

deriva-tiveconcentrations inBAL of murinefibrotic lungs (Janget al.,

2004;Wellsetal.,2009)andBALfluidofIPFpatientsPullamsetti

et al., 2011) as a result of overexpression of dimethylarginine

dimethylaminohydrolases(DDAH)by type II pneumocytes.Our

studystronglysupportsthesefindingsindicatingpotential

involve-mentofNOandderivatesinthepathogenesisofinterstitiallung

diseases.

4.2. NOandoxidative/nitrosativestress

AnotherpotentialpathogenicroleofNOininterstitiallung

dis-easepathogenesisisNOinvolvementinoxidation-mediatedlung

damage(afunctionreportedsincetheearly2000s).FeNOhasbeen

proposedasabiomarkerofoxidativestressinotherfibroticdiffuse

lung diseases, includingbleomycin-induced pulmonary fibrosis,

systemicsclerosisandpneumoconiosis(FubiniandHubbard,2003;

Inghillerietal.,2006;Saunietal.,2012;Tievetal.,2012),while

therehavebeenfewstudiesontheroleofFeNOin

oxidative-stress-mediatedlung fibrotic injuryin IPFand NSIP. Asmanyauthors

considernitricoxideanessentialmoleculeinthemodulationof

oxidant-antioxidantbalance(Allenetal.,2009;Lanzettietal.,2012;

Rahmanetal.,2006),theincreasewefoundinourIIPpatientsisof interest.

LiteraturesustainingapossibleroleofNOintheoxidativeand

nitrosativestressthatoccurs indiffuselung diseases formsthe

backgroundofthepresentstudy.Wedemonstratedhigher

alve-olarconcentrationsofNOinIIPpatientsthanincontrolsandan

inversecorrelationbetweenCalvNOandlungfunctiontest

param-eters,suggestingthatrespiratoryimpairmentwasassociatedwith

higherNOconcentrations.

ComparingIPFandNSIPpatientswithanasthmaticpopulation,

whereofmoreisknownabouteNOlevelsintheliterature,itcan

bereportedthatFeNO50–100andJ’awNOlevelsofourpatientsare

ingenerallowerthaninasthmaticpatients.TheincreaseofFeNO

andofthemaximumfluxofNOintheairwaysregardingasthma

hasbeenalreadyexploredinmanymanuscripts(Chládkováetal.,

2012;Lehtimäkietal.,2001;Spearsetal.,2011):thedifference

betweenasthmaticandIIPpatientscouldbeexplainedby

distinc-tivepathogeneticpathways:inparticular,elevatedFeNOvaluesin

asthmaisjustifiedbythepresenceofeosinophilicinflammation

intheairways,whichisnotcommonlyobservedinIPFandNSIP

patients.

4.3. NOandlungfunctiontests

InourstudyweanalyzedexhaledNOconcentrationsinpatients

andcontrolsaccordingtotwodifferentanalyticmodels.The2CM

is a simple and attractive way tocalculate CalvNO and J’awNO.

Since itprobably doesnotrepresent theheterogeneityof

alve-olarcompartmentsofIPFandNSIP,wealsoappliedCondorelli’s

trumpetmodelofaxialdiffusion(TMAD)thatconsidersincreasing

airwaycross-sectionwithdistanceintotheairwaytreeand

gas-phaseaxialdiffusionofNO,bothcriticalaspectsofNOexchange.

ThesignificantdifferenceinCalvNObetweenpatientsandcontrols

wasconfirmedbybothmodels,suggestingtheimportanceofthis

parameter,recentlyproposedasanon-invasivebiomarkerof

alve-olitis,predictiveofdeteriorationoflungfunction(Tievetal.,2012).

Atthesametime, reducedgasdiffusionmaypartiallyinfluence

theincrease in CalvNO by reducing theremoval of alveolarNO

acrossthethickenedalveolar-capillarymembrane.Interestingly,

ina recentmanuscript, inwhich NOmeasurementswere

com-paredindifferentILDpopulations,Schildgeaddedairwaydiffusing

capacityofNO(DAWNO)toevaluatereducedNOdiffusionfrom

alveolitothebloodduetothickeningofalveolarmembranes.In

ourspecificpopulation,TLCOwasmildlytoseverelyreduced:of

thefivepatientsreportingsimilarCalvNOlevelstohealthysubjects,

onlytwoshowedmildTLCOimpairment(Fig.3),suggestingthat

increasedCalvNOmaynotonlybeduetoalowereliminationrate

butalsotohigherlocalproduction(Pullamssettietal.,2011).Tiev

etal.(2013)obtainedsimilarresultstooursinaveryrecentstudy

ofapopulationofpatientswithpulmonaryfibrosisassociatedwith

systemicsclerosis,inwhomincreasedCalvNOinexhaledbreathwas

associatedwithseverereductioninTLCandTLCO.AlthoughFeNO

at50ml/sisrecognizedasacentralairwaysparameter,itselevation

inIPFpatientshasalsobeenreportedbyGuilleminaultetal.(2013),

withvaluescomparabletoours,suggestingthatelevatedalveolar

concentrationsofNOcoulddrivetheincreasedlevelsmeasuredat

allflowrates.

Since earlier airway closure is a possibility in IPF and NSIP

patients,analysisofVeNOwasaddedtoobtainNOconcentration

profilesduringexhalation. VeNOvalues wereclosely correlated

withFeNOvaluesforallflowratesinpatientsandcontrols,

indicat-ingtheabsenceofairwayclosure,whichthereforecouldnotalter

theinterpretationoftheresultsinpatientswithdiffuselung

dis-eases.Onelimitationofthisstudyisthelackoftheevaluationof

parallelinhomogeneityoflungparenchymainIPFandNSIP:

unfor-tunately,therearenoexperimentalmodelsintheliteraturethat

couldhelpusstandardizeeNOvaluesfordifferentlungareas.

Fur-therresearchcouldbeusefultocreateanewmodelforevaluation

ofeNOvaluesinpatientswithinterstitiallungdiseases.

OurresultsthereforeindicateCalvNOasapotentialbiomarker

ofdiseaseseverity,alsoonthebasis oftheinversecorrelations

observedwithTLCO percentages,6-minutewalkingdistanceand

endtest SpO2,aswellasevidenceofa directrelationship with

recoverytime.CalvNOprovedtobeaninterestingpotential

pro-gnosticparameterworthyoffurtherstudy,assuggestedbyTiev

inpulmonaryfibrosisassociatedwithsystemicsclerosis,

correlat-ingwithwell-knownclinicalprognosticbioindicators,suchasTLCO,

FVCand6-minutewalkingdistance.Thisparametercouldbe

(6)

Fig.3.CorrelationsbetweenCalvNOatbaselineand6MWTandPFTparametersinpatients:(A)6-minwalkingdistance(r=−0.7317,p<0.0001);(B)recoverytime(r=0.6332,

p<0.0005);(C)endtestSpO2(r=−0.5419,p<0.01);(D)TLC%(r=−0.6267,p<0.001);(E)FVC%(r=−0.4745,p<0.01);(F)TLCO%(r=−0.6009,p<0.01).6MWT,6-minute

walkingtest;PFT,pulmonaryfunctiontest;CalvNO,alveolarconcentrationofNO;ppb,parsperbillion;TLC,totallungcapacity;FVC,forcedvitalcapacity;TLCO,carbon

monoxidelungtransferfactor.

therapy(Macintyreetal.,2005).Moreover,theprocedureisless

hardtoperformthanTLCOdetection.

4.4. NOand6-minutewalkingtest

Inourstudy,exercise-inducedvariationsinairwayand

alve-olar exhaled NO parameters were examined for the first time,

revealingsignificantlydifferentpatterns.Afterthe6MWT,FeNO

50values(p<0.001)andJ’awNOlevels(p<0.001)weresignificantly

higher,andFeNO100values(p<0.05),FeNO150values(p<0.05)

andCalvNO(p<0.001)significantlylowerinIPFandNSIPpatients

thanbefore6MWT.Physicalexertionpresumablyaffectedthese

parametersbecauseitcauseschangesinventilationinIIPpatients,

favouringclearanceof NOfromthealveoles andincreasingthe

airwayfluxofNO.Hypoxemiacausedbyphysicalexertionmay

alsoinducelungchangesthatincreaseoxidant-antioxidant

imbal-ance,affectingNOconcentrations.Verylittledataisavailableon

exercise-inducedNOconcentrations, particularlyin IIPpatients.

Mostrelatestostudiesin asthmapatientsandhealthy controls

(Barretoetal.,2013;Therminariasetal.,1998).However,ourstudy

doesnot explain thephysiopathogenetic causesof these

mod-ifications which are worthyof furtherinvestigations fora new

interestingscenario.

Inconclusion, ourdatashows higherlevelsofexhalednitric

oxideinpatientswithidiopathicinterstitialpneumonia,probably

duetooxidative/nitrosativestressrelatedtopulmonaryfibrosis.

Alveolarconcentrationsof NOmaybeproposedasamarkerof

severityin pulmonaryfibrosis sincetheywere mainlyelevated

inIPFandNSIPpatientswithsevererestrictivedeficitandaltered

6MWT.Thepresentresultsalsohighlightthepotentialinterestof

thisnon-invasiveandreproduciblemethodasanadditional

param-eterforlungfunctionalassessmentindiffuselungdiseaseslikeIPF

andNSIP.

Thestudywasconductedat theDepartmentofMedical and

SurgicalSciencesandNeurosciences,RespiratoryDiseaseandLung

TransplantationSection;nofundingsponsorstodeclare.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound,in

theonlineversion,athttp://dx.doi.org/10.1016/j.resp.2014.03.011.

References

Allen,B.W.,Demchenko,I.T.,Piantadosi,C.A.,2009.Twofacesofnitricoxide: impli-cationsforcellularmechanismsofoxygentoxicity.J.Appl.Physiol.106(2), 662–667.

AmericanThoracicSociety;EuropeanRespiratorySociety,2010.ATSERS recom-mendationsforstandardizedproceduresfortheonlineandofflinemeasurement ofexhaledlowerrespiratorynitricoxideandnasalnitricoxide,2005.Am.J. Respir.Crit.CareMed.171,912–930.

(7)

ATSstatement,2002.Guidelinesforthesix-minutewalktest.ATSCommitteeon Pro-ficiencyStandardsforClinicalPulmonaryFunctionLaboratories.Am.J.Respir. Crit.CareMed.166(1),111–117.

Barreto,M.,Zambardi,R.,Villa,M.P.,2013.Exhalednitricoxideandotherexhaled biomarkersinbronchialchallengewithexerciseinasthmaticchildren:current knowledge.Paediatr.Respir.Rev.,pii:S1526-0542(13)00148-6.

Chapman,E.A.,Thomas,P.S.,Yates,D.H.,2010.Breathanalysisinasbestos-related disorders:areviewoftheliteratureandpotentialfutureapplications.J.Breath Res.4(3),034001.

Chládková,J.,Senkerík,M.,Havlínová,Z.,Krcmová,I.,Chládek,J.,2012Nov.Alveolar concentrationandbronchialfluxofnitricoxide:twolinearmodelingmethods evaluatedinchildrenandadolescentswithallergicrhinitisandatopicasthma. Pediatr.Pulmonol.47(11),1070–1079.

Choi,J.,Hoffman,L.A.,Sethi,J.M.,Zullo,T.G.,Gibson,K.F.,2009.Multipleflowrate measurementofexhalednitricoxideinpatientswithsarcoidosis:apilot feasi-bilitystudy.SarcoidosisVasc.DiffuseLungDis.26(2),98–109.

Chow,S.,Thomas,P.S.,Malouf,M.,Yates,D.H.,2012.Exhaledbreathcondensate (EBC)biomarkersinpulmonaryfibrosis.J.BreathRes.6(1),016004. Condorelli,P.,Shin,H.W.,Aledia,A.S.,Silkoff,P.E.,George,S.C.,2007.Asimple

techniquetocharacterizeproximalandperipheralnitricoxideexchangeusing constantflowexhalationsandanaxialdiffusionmodel.J.Appl.Physiol.102(1), 417–425,Epub2006Aug3.

Fubini,B.,Hubbard,A.,2003.Reactiveoxygenspecies(ROS)andreactivenitrogen species(RNS)generationbysilicaininflammationandfibrosis.FreeRadic.Biol. Med.34(12),1507–1516.

Furukawa,K.,Sugiura,H.,Matsunaga,K.,Ichikawa,T.,Koarai,A.,Hirano,T., Yana-gisawa,S.,Minakata,Y.,Akamatsu,K.,Kanda,M.,Nishigai,M.,Ichinose,M.,2011. Increaseofnitrosativestressinpatientswitheosinophilicpneumonia.Respir. Res.12,81.

Guilleminault,L.,Saint-Hilaire,A.,Favelle,O.,Caille,A.,Boissinot,E.,Henriet,A.C., Diot,P.,Marchand-Adam,S.,2013.Canexhalednitricoxidedifferentiatecauses ofpulmonaryfibrosis?Respir.Med.,pii:S0954-6111(13)00260-6.

Hua-Huy,T.,Tiev,K.P.,Chéreau,C.,Duong-Quy,S.,Cabane,J.,Dinh-Xuan,A.T.,2010. Increasedalveolarconcentrationofnitricoxideisrelatedtoserum-inducedlung fibroblastproliferationinpatientswithsystemicsclerosis.J.Rheumatol.37(8), 1680–1687.

Inghilleri,S.,Morbini,P.,Oggionni,T.,Barni,S.,Fenoglio,C.,2006.Insituassessment ofoxidantandnitrogenicstressinbleomycinpulmonaryfibrosis.Histochem. CellBiol.125(6),661–669.

Jang,A.S.,Lee,J.U.,Choi,I.S.,Park,K.O.,Lee,J.H.,Park,S.W.,Park,C.S.,2004.Expression ofnitricoxidesynthase,aquaporin1andaquaporin5inratafterbleomycin inhalation.IntensiveCareMed.30,489–495.

Lanzetti,M.,daCosta,C.A.,Nesi,R.T.,Barroso,M.V.,Martins,V.,Victoni,T.,Lagente, V.,Pires,K.M.,eSilva,P.M.,Resende,A.C.,Porto,L.C.,Benjamim,C.F.,Valenc¸a,S.S., 2012.Oxidativestressandnitrosativestressareinvolvedindifferentstagesof proteolyticpulmonaryemphysema.FreeRadic.Biol.Med.53(11),1993–2001. Lehtimäki,L.,Kankaanranta,H.,Saarelainen,S.,Hahtola,P.,Järvenpää,R.,Koivula, T.,Turjanmaa,V.,Moilanen,E.,2001Jun.ExtendedexhaledNOmeasurement differentiatesbetweenalveolarandbronchialinflammation.Am.J.Respir.Crit. CareMed.163(7),1557–1561.

Lehtimäki,L.,Oksa,P., Järvenpää,R.,Vierikko,T., Nieminen,R.,Kankaanranta, H.,Uitti,J.,Moilanen,E., 2010.Inflammation inasbestos-exposedsubjects withborderlineparenchymalchangesonHRCT.Respir.Med.104(7),1042– 1049.

Macintyre,N.,Crapo,R.O.,Viegi,G.,Johnson,D.C.,vanderGrinten,C.P.,Brusasco,V., Burgos,F.,Casaburi,R.,Coates,A.,Enright,P.,Gustafsson,P.,Hankinson,J.,Jensen, R.,McKay,R.,Miller,M.R.,Navajas,D.,Pedersen,O.F.,Pellegrino,R.,Wanger,J., 2005Oct.Standardisationofthesingle-breathdeterminationofcarbon monox-ideuptakeinthelung.Eur.Respir.J.26(4),720–735.

Miller,M.R.,Crapo,R.,Hankinson,J.,Brusasco,V.,Burgos,F.,Casaburi,R.,Coates,A., Enright,P.,vanderGrinten,C.P.,Gustafsson,P.,Jensen,R.,Johnson,D.C., MacIn-tyre,N.,McKay,R.,Navajas,D.,Pedersen,O.F.,Pellegrino,R.,Viegi,G.,Wanger, J.,ATS/ERSTaskForce.,2005.Generalconsiderationsforlungfunctiontesting. Eur.Respir.J.26(1),153–161.

Moodley,Y.P.,Chetty,R.,Lalloo,U.G.,1999.Nitricoxidelevelsinexhaledairand induciblenitricoxidesynthaseimmunolocalizationinpulmonarysarcoidosis. Eur.Respir.J.14(4),822–827.

Moodley,Y.P.,Lalloo,U.G.,2001.Exhalednitricoxideiselevatedinpatientswith progressivesystemicsclerosiswithoutinterstitiallungdisease.Chest119(5), 1449–1454.

Mura,M.,Porretta,M.A.,Bargagli,E.,Sergiacomi,G.,Zompatori,M.,Sverzellati,N., Taglieri,A.,Mezzasalma,F.,Rottoli,P.,Saltini,C.,Rogliani,P.,2012Jul.Predicting survivalinnewlydiagnosedidiopathicpulmonaryfibrosis:a3-yearprospective study.Eur.Respir.J.40(1),101–109.

Pullamsetti,S.S.,Savai,R.,Dumitrascu,R.,Dahal,B.K.,Wilhelm,J.,Konigshoff,M., Zakrzewicz,D.,Ghofrani,H.A.,Weissmann,N.,Eickelberg,O.,Guenther,A., Leiper,J.,Seeger,W.,Grimminger,F.,Schermuly,R.T.,2011.Theroleof dimethy-largininedimethylaminohydrolaseinidiopathicpulmonaryfibrosis.Sci.Transl. Med.3(87),87ra53.

Raghu,G.,Collard,H.R.,Egan,J.J.,Martinez,F.J.,Behr,J.,Brown,K.K.,Colby,T.V., Cordier,J.F.,Flaherty,K.R.,Lasky,J.A.,Lynch,D.A.,Ryu,J.H.,Swigris,J.J.,Wells, A.U.,Ancochea,J.,Bouros,D.,Carvalho,C.,Costabel,U.,Ebina,M.,Hansell,D.M., Johkoh,T.,Kim,D.S.,KingJr.,T.E.,Kondoh,Y.,Myers,J.,Müller,N.L.,Nicholson, A.G.,Richeldi,L.,Selman,M.,Dudden,R.F.,Griss,B.S.,Protzko,S.L., Schüne-mann,H.J.,ATS/ERS/JRS/ALATCommitteeonIdiopathicPulmonaryFibrosis., 2011.Idiopathicpulmonaryfibrosis:evidence-basedguidelinesfordiagnosis andmanagement.Am.J.Respir.Crit.CareMed.183(6),788–824.

Rahman,I.,Biswas,S.K.,Kode,A.,2006.Oxidantandantioxidantbalanceinthe airwaysandairwaydiseases.Eur.J.Pharmacol.533(1–3),222–239.

Sauni,R.,Oksa,P.,Lehtimäki,L.,Toivio,P.,Palmroos,P.,Nieminen,R.,Moilanen,E., Uitti,J.,2012.Increasedalveolarnitricoxideandsystemicinflammationmarkers insilica-exposedworkers.Occup.Environ.Med.69(4),256–260.

Schildge,J.,2011Mar.StickstoffmonoxydinderAtemluftvonPatientenmit inter-stitiellenLungenkrankheiten(Nitricoxideinexhaledbreathofpatientswith interstitiallungdiseases).Pneumologie65(3),143–148.

Spears,M.,Weir,C.J.,Smith,A.D.,McSharry,C.,Chaudhuri,R.,Johnson,M.,Cameron, E.,Thomson,N.C.,2011Dec.Bronchialnitricoxideflux(J’aw)issensitivetooral corticosteroidsinsmokerswithasthma.Respir.Med.105(12),1823–1830. Therminarias,A.,Oddou,M.F.,Favre-Juvin,A.,Flore,P.,Delaire,M.,1998.Bronchial

obstructionandexhalednitricoxideresponseduringexerciseincoldair.Eur. Respir.J.12(5),1040–1045.

Tiev,K.P.,Hua-Huy,T.,Kettaneh,A.,Allanore,Y.,Le-Dong,N.N.,Duong-Quy,S., Cabane,J.,Dinh-Xuan,A.T.,2012.Alveolarconcentrationofnitricoxidepredicts pulmonaryfunctiondeteriorationinscleroderma.Thorax67(2),157–163. Tiev, K.P., Hua-Huy, T., Rivière, S., Le-Dong, N.N., Febvre, M., Cabane, J.,

Dinh-Xuan, A.T.,2013 Jan 15.High alveolarconcentrationof nitricoxide is associated with alveolitis in scleroderma. Nitric Oxide 28, 65–70, http://dx.doi.org/10.1016/j.niox.2012.10.005.Epub2012Oct23.

Tsoukias,N.M.,George,S.C.,1998.Atwo-compartmentmodelofpulmonarynitric oxideexchangedynamics.J.Appl.Physiol.85,653–666.

Wells,S.M.,Buford,M.C.,Migliaccio,C.T.,Holian,A.,2009.Elevatedasymmetric dimethylargininealterslungfunctionandinducescollagendepositioninmice. Am.J.Respir.Cell.Mol.Biol.40,179–188.

Wilsher,M.,Fergusson,W.,Milne,D.,Wells,A.U.,2005.Exhalednitricoxidein sarcoidosis.Thorax60(11),967–970.

Zhao,Y.,Cui,A.,Wang,F.,Wang,X.J.,Chen,X.,Jin,M.L.,Huang,K.W.,2012. Char-acteristicsofpulmonaryinflammationincombinedpulmonaryfibrosisand emphysema.Chin.Med.J.(Engl)125(17),3015–3021.

Figura

Fig. 2. Comparison of J’aw NO at baseline and after 6MWT between patients and
Fig. 3. Correlations between Calv NO at baseline and 6MWT and PFT parameters in patients: (A) 6-min walking distance (r = −0.7317, p &lt; 0.0001); (B) recovery time (r = 0.6332,

Riferimenti

Documenti correlati

Moreover, marked heterotrophic denitrification and sulfate reduction processes were detected; although, for the contamination related to synthetic fertilizer, the attenuation

The horizontal red dotted line shows the tidal disruption radius of the planet (see equation 12). The yellow dotted horizontal lines indicate the planetary radius. The green and

Great trochanter pain syndrome, proximal hamstring tendinopathy, insertional adductor tendinopathy and ileopsoas tendinopathy are the most common clinical conditions

«Se il partito che dirige il movimento italiano nella Giulia è quello della Democrazia cristiana, predominante nel CLN, la colpa l’abbiamo noi perché, come afferma Regent, “noi non

The resulting vaccine candidate, mime[4]CRM elicited a robust immune response in a triple-negative breast cancer mouse model, correlated with high frequency of CD4+ T cells and

Averill Liebow (Figure 1.5), on the basis of his extensive clinical and pathologic sci- ences, classified interstitial pneumonitis into five different histologic types: usual

ATS/ERS classification of idiopathic interstitial pneumonias comprises the following entities: idiopathic pulmonary fibrosis (IPF/UIP), nonspecific interstitial pneumonia

The term idiopathic pulmonary fibrosis refers to a specific form of chronic fibrosing interstitial pneumonia limited to the lung and always associated with histological appearance of