Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Search
for
new
physics
in
events
with
two
soft
oppositely
charged
leptons
and
missing
transverse
momentum
in
proton–proton
collisions
at
√
s
=
13
TeV
.
The
CMS
Collaboration
CERN,Switzerland
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory: Received 5 January 2018Received in revised form 1 May 2018 Accepted 15 May 2018
Available online 25 May 2018 Editor: M. Doser Keywords: CMS SUSY Compressed Leptons Missing energy
A searchis presentedfornewphysics inevents withtwolow-momentum,oppositelycharged leptons (electronsormuons)andmissingtransversemomentuminproton-protoncollisionsatacentre-of-mass energy of13 TeV. The data collectedusingthe CMS detector atthe LHCcorrespond toan integrated luminosityof35.9 fb−1.Theobservedeventyieldsareconsistentwiththeexpectationsfromthestandard model.Theresultsareinterpretedintermsofpairproductionofcharginosandneutralinos(
χ
1±andχ
02) with nearlydegeneratemasses,asexpectedinnaturalsupersymmetrymodelswithlighthiggsinos, as wellasintermsofthepairproductionoftopsquarks(t),whenthelightestneutralinoandthetopsquark havesimilarmasses.At95%confidencelevel,wino-like
χ
1±/χ
02 massesareexcludedupto230 GeV for amass differenceof20 GeV relativetothelightest neutralino.Inthe higgsino-like model,massesare excluded upto168 GeV forthe samemassdifference.Fort pairproduction,top squarkmassesupto 450 GeV areexcludedforamassdifferenceof40 GeV relativetothelightestneutralino.
©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
Supersymmetry(SUSY) [1–5] isa widelyconsidered extension ofthe standard model(SM) ofparticle physics, asit canprovide solutionsto severalopen questionsintheSM, inparticularthose relatedtothehierarchyproblem [6–8] andthenatureofdark mat-ter.SUSYpredictssuperpartnersofSMparticleswhosespinsdiffer byone-halfunitwithrespecttotheirSMpartners.InR-parity con-servingmodels [9],SUSYparticlesarepair-producedandtheir de-caychainsendinthestable,lightestSUSYparticle(LSP),whichin manymodelscorrespondstothelightestneutralino(
χ
01).Astable
LSPwouldescapeundetected,yieldingacharacteristicsignatureof alargemagnitudeofmissingtransversemomentum(pmissT )in col-lisionsattheCERNLHC.Asastable,neutralandweaklyinteracting particle,theneutralino matchesthepropertiesrequiredofa dark mattercandidate [10].
The absence ofSUSY signals in previous experiments,as well asattheLHC,canbe interpreted asan indication that SUSY par-ticleshave verylarge mass,leading to theexpectationthat SUSY eventshavelarge visibleenergyandmomentum.As aresult, the manysearchesthatyieldthemoststringentlimitson themasses
E-mailaddress:cms-publication-committee-chair@cern.ch.
of the SUSY particles are based on events with large pmissT and energetic final-stateobjects such asleptons andjets. Another in-terpretation for the absence of a SUSY signal is that the SUSY particlesareinapartoftheparameterspacethatisnoteasily ac-cessible.Onesuch scenario,wherepreviously mentionedsearches wouldnotbesensitive,iswherethemassspectrumiscompressed, i.e. the mass splitting between the produced SUSY particles and theLSPissmall.WhenthemasssplittingsbetweenSUSYparticles aresmall, thevisibleenergyintheevent,andalsopotentiallythe
pmiss
T , is relatively low, which motivates searches in events with
low-momentumobjects.
Compressed mass spectra arise in several SUSY models, in-cluding natural SUSY, i.e. SUSY models that solve the hierarchy problem with little fine tuning. It has been pointed out in sev-eral studies, for example in Refs. [6–8,11–15], that naturalness imposes constraints onthemassesof higgsinos,top squarks,and gluinos. Natural SUSY is generally considered to require at least onecolouredSUSYparticleofmassbelowapproximatelyone TeV. Further,itisoftenassumedthatthisparticleisthetopsquark(
t). More recently,however, thehypothesis ofnaturalSUSY requiring a light top squark hasbeen disputed asarising from oversimpli-fiedassumptions[16–18].Irrespectiveofthetopsquark,higgsinos remainacomplementarywindowtonaturalSUSYastheyare gen-erally expectedto be light.As pointedout in Refs. [19–22], lighthttps://doi.org/10.1016/j.physletb.2018.05.062
0370-2693/©2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
higgsinosare likelyto haveacompressed massspectrum, poten-tiallyleading tosignatures withsoftleptons andmoderate pmissT . Thusfar,themostsensitivesearchesinthismodelhavebeen car-riedout by experiments atLEP [23,24] and ATLAS [25]. The LEP experimentsexcluded
χ
1±massesupto103.5 GeV foramass split-tingbetweentheχ
1±andχ
01 ofatleast3 GeV.
Thesearch described inthis letteris designedfor neutralinos andcharginos,whicharecollectivelyreferredtoas “electroweaki-nos”,inamodelwheretheseelectroweakinosformacompressed mass spectrum [19,21,22,26]. Two models are considered where the electroweakinosare either pure wino/bino-like orwhere the lightestelectroweakinosareofmostlyhiggsinonature.Thesearch hasdiscoverypotential alsowhen alight topsquarkandthe LSP arenearly degenerate inmass andthetop squarkdecays tofour fermions.Amoredetaileddiscussionofsuchmodelscanbefound inRef. [27].Thenear-degeneracyinmassofthetopsquarkandthe LSP is typical ofthe so-called“co-annihilation region”, in which theLSPisthesolesourceofdarkmatter [28].
In the models considered in this analysis, the visible decay products inthe SUSY signal have low momentum, which can be distinguishedfromSM processeswhenajet withlargetransverse momentum(pT) frominitial-stateradiation(ISR) leads toa large
boostoftheSUSYparticlepair.Thisboostalsoenhancesthe pmissT
intheevent.Asimilarsearchhaspreviouslybeenreportedbythe ATLASCollaboration [25].Forthesignalstudiedinthisletter,SUSY particles can decayleptonically, and the presenceof low-pT
lep-tonscanbe usedto discriminateagainst otherwisedominantSM backgrounds,such asmultijetproductionthrough quantum chro-modynamics(QCD)andZ
+
jets eventswithinvisibleZ boson de-cays.Thecurrentstrategyissimilarto thatintheprevious publica-tionbasedon8 TeV data [29],withthemaindifference beingthe deploymentofanewtriggerselectionthatimprovesthesensitivity ofthesearchineventswithtwomuonsandlow pmissT .Inaddition, theselectionhasfurtherbeenoptimizedforelectroweakinoswith a compressedmass spectrum. At least one jet is requiredin the finalstate;inthe caseofthesignal,thisjet mustarise fromISR, whichprovidesthefinal-stateparticleswithaboostinthe trans-verseplane,andtherebythepotentialformoderateorlarge pmiss
T
intheevent. Unlikethe8 TeV analysis,thereisnoupperlimiton thenumberofjetsintheevent.
2. CMSdetector
The central feature of the CMS apparatus is a superconduct-ingsolenoidof 6 minternal diameter,providing amagnetic field of3.8 T.Withinthesolenoidvolumeare asilicon pixelandstrip tracker,aleadtungstatecrystalelectromagneticcalorimeter(ECAL), andabrassandscintillatorhadroncalorimeter(HCAL),each com-posedofa barreland twoendcap sections.Forwardcalorimeters extendthepseudorapidity(
η
)coverageprovidedbythebarreland endcapdetectors.Muonsare detectedin gas-ionizationchambers embeddedinthesteelflux-returnyokeoutsidethesolenoid.Events ofinterest are selected usinga two-tieredtrigger sys-tem [30].The firstlevel(L1),composed ofcustom hardware pro-cessors,uses informationfromthe calorimetersandmuon detec-tors to select eventsat a rate of around 100 kHz within a time intervaloflessthan4 μs.Thesecondlevel,knownasthehigh-level trigger (HLT),consists of a farm of processors running a version of the full event reconstruction software optimized forfast pro-cessing,andreduces theevent rateto around 1 kHzbefore data storage.
AmoredetaileddescriptionoftheCMSdetector,togetherwith adefinitionofthecoordinatesystemusedandtherelevant kine-maticvariables,canbefoundinRef. [31].
3. Dataandsimulatedsamples
Thedatausedinthissearchcorrespondtoanintegrated lumi-nosityof35.9 fb−1 ofproton–proton(pp)collisionsata centre-of-massenergyof 13 TeV,recordedin2016using theCMSdetector. The data are selected usingtwo triggers: an inclusive pmiss
T
trig-ger,whichisusedforsignalregions(SRs)withanofflinepmiss
T cut
>
200 GeV andanadditionaltriggerwhichrequirestwomuonsto lowertheoffline pmissT cutto 125 GeV.Boththemuon pT andthemuonpairpThaveatriggeronlinecutofpT
>
3 GeV.TheinclusivepmissT triggerscorrespondtoan integratedluminosity of35.9 fb−1, whereastheeventsrecordedwiththedimuon
+
pmissT trigger cor-respondto33.2 fb−1.Simulated signal and major background processes, such as tt, W
+
jets, and Z+
jets are generated with the MadGraph5_ amc@nlo 2.2.2[32,33] event generatoratleading order(LO) pre-cision in perturbative QCD usingthe MLM merging scheme [34]. Additional partons are modelled in these samples. The diboson processesWW, ZZ,andWγ
aregenerated withthe MadGraph5_ amc@nlo 2.2.2eventgeneratoratnext-to-leadingorder(NLO) pre-cisionusingtheFxFxmergingscheme [33],whiletheWZprocess isgenerated atNLO with powheg v2.0[35–39]. Rarebackground processes(e.g. ttW,ttZ,WWW,ZZZ,WZZ,andWWZ)arealso gen-erated at NLO precision with MadGraph5_amc@nlo 2.2.2 (2.3.2.2 for ttZ) [32,33].The rarebackgroundfromsingle top quarks pro-ducedinassociationwithaW bosonisgeneratedatNLOprecision with powheg v1.0 [40]. The NNPDF3.0 [41] LO and NLO parton distribution functions (PDF) are used for the simulated samples generated atLO andNLO. Showering, hadronization andthe un-derlying eventdescriptionare carriedout using the pythia 8.212 package [42] withthe CUETP8M1 underlying event tune [43,44]. AdetailedsimulationoftheCMSdetectorisbasedonthe Geant4 [45] package.Afastdetectorsimulation [46] isused forthelarge numberofsignalsamples,correspondingtodifferentSUSYparticle masses.Thetrigger,leptonidentification,andb taggingefficiencies arecorrectedinthesimulationthroughapplicationofscalefactors measured indedicateddatasamples [47].Corrections fortheuse ofthefastdetectorsimulationarealsoapplied.For the signal, we consider the neutralino–chargino (
χ
0 2–χ
1±)pair production where the mass degenerate
χ
02 and
χ
1± areas-sumedtodecaytotheLSPviavirtualZ andW bosons.Thedecays ofelectroweakinosare carriedout using pythia,assuming a con-stant matrix element. The SM branching fractions are assumed forthe decays ofthe virtual Z and W bosons.The simulation of the
χ
02 (
χ
1±) decay takes into account the Breit–Wigner shapeof the Z (W) boson mass. The production cross sections corre-spondtothoseofpurewinoproduction [48–50] computedatNLO plus next-to-leading-logarithmic (NLL) precision. A second mass scan simulates a simplified model of
t-pair production,in which a heavy chargino mediates the decay of thet into leptons andχ
01, namely
t→
bχ
1±→
bW∗χ
10. The mass of theχ
1± is set to(
mt+
mχ01
)/
2,andthemassdifferencebetweent andχ
0
1 issetto
be lessthan 80 GeV,thus bjetsareexpectedtohavea pT below
25 GeV.Fig.1showsdiagramsforthesetwosimplifiedmodels.We denotetheupperdiagraminFig.1asTChiandthelowerdiagram asT2tt.Themassesaregivenwiththemodelname,i.e. TChi150/20 (T2tt150/20)denotesa
χ
02-
χ
1±(t pair)production,wherethepro-ducedparticleshavea massof150 GeV anda massdifferenceto theLSPof20GeV.
Weinterprettheresultsofthissearchintwovariations ofthe electroweakinomodel.Whilethemodeldescribedaboveusespure winocross sectionswiththe
χ
02 and
χ
1± mass degenerate,theseadditional models resemble a scenario where the electroweaki-nos are of higgsino nature. The first ofthese higgsinosimplified
Fig. 1. Production
and decay of an electroweakino pair (upper) and of a
chargino-mediated t pair (lower).
models features associated
χ
02 and
χ
1± production and as suchcorresponds to the same diagram as the one shown in Fig. 1
(upper). The second higgsino model considers associated
χ
0 2-χ
10production. In both cases, the mass of the chargino is given as
mχ± 1
= (
mχ 0 2+
mχ 0 1)/
2, andtheχ
02 decaysvia an off-shellZ
bo-son, and if applicable, the
χ
1± decays via an off-shell W boson. Thesimplifiedmodels donotincludeanyspin correlationsinthe decays.Inthesimplifiedhiggsinomodel,thiscanleadtoa differ-entM()
distributionthatwedonotaccountfor.In addition to the electroweakino models, we interpret the results in a phenomenological minimal supersymmetric model (pMSSM) [51], in which the higgsino (
μ
), bino (M1), and wino(M2) mass parameters are varied. There is only a small
depen-dencyontan
β
,whichissetto10.Allother massparametersare assumedtobedecoupled.Toreducetheparameterspacetoa two-dimensionalgrid,M2 issetto2M1.Thisconventionisinspiredbyelectroweakinomassunificationatthegrandunifiedtheoryscale. Sincethefocusisonelectroweakproductiononly,thegluinomass parameter M3 isassumedtobe decoupled.Alltrilinearcouplings
arediscarded.Inthismodel,thehiggsinomassparameter
μ
is var-iedbetween100and200 GeV, while M1 variesbetween300 GeVand1 TeV. Events for this“higgsino pMSSM” are generated with MadGraph5_amc@nlo [52]. TheNLO crosssectionsare computed usingProspino2 [53].Severaladditionalpackages[54–58] areused tocalculatemassspectraandparticledecays.
4. Objectreconstruction
Theanalysismakesuseoftheparticle-flow(PF)algorithm [59], whichreconstructsandidentifieseach individualparticlethrough an optimized combination of information from the various ele-ments of the CMS detector.The difficulties inreconstructing the event of interest, because of the presence of the large average numberofinteractionsper bunchcrossing (pileup),aremitigated by a primary vertex selection and other methods described be-low. The reconstructed vertexwith the largest value of summed physics-objectp2Tistakentobetheprimary pp interactionvertex. Thephysicsobjectsarethejets,clusteredusingthejetfinding al-gorithm [60,61] withthetracks assignedto the vertexasinputs, andtheassociated pmissT , takenasthenegative vector pT sumof
thosejets.
Theleadingandsubleadingmuon(electron)arerequiredto sat-isfy pT
>
5GeV,|
η
|
<
2.
4 (2.
5).A requirementof pT<
30GeV onthe leptons is alsoapplied; thisthresholdis identified asthe pT
value below which the current analysis is more sensitive in the compressed regionscompared toother CMSanalyses.To increase the sensitivityinthecompressed massregime, thelower thresh-old on the pT of the subleading muon is set to 3.5 GeV in the
high-pmissT regionsofthe
t search.Muons are required to satisfy standard identification crite-ria [62],andtobe isolated withina conein
η
–φ
spaceofradiusR
=
(
η
)
2+ ( φ)
2=
0.
3: the pT sumof other charged
par-ticle tracks within the cone, Isoabs, is required to be less than
5 GeV.In addition,thequantity Isorel,whichis theratioofIsoabs
andthe pT ofthe muon,isrequiredtobelessthan0.5.
Contam-ination frompileup within the isolation coneis subtracted using techniques that utilize charged particle depositswithin the cone itself [62].
Electronsfrompromptdecaysareselectedusingamultivariate discriminant basedon theenergy distributionin theshower and trackquality variables. Thelooseworkingpoint employed by the H
→
ZZ∗→
4analysis [63] isusedfor pT
<
10GeV,andatighteroneforpT
>
10GeV.Thesamedefinitionofisolationandthesameisolationcriteriaareappliedforelectronsasusedformuons. To suppress nonprompt leptons, requirements on the three-dimensionalimpactparameter [64] relative totheprimary vertex, IP3D, anditssignificance, SIP3D,are applied.Leptons arerequired
tohaveIP3D
<
0.
01 cmandSIP3D<
2 standarddeviations(s.d.).Thecombinedefficiencyforreconstruction,selectionand isola-tion dependson the pT of thelepton. The efficiencies are inthe
range 70%(50%) formuons(electrons) at5 GeV,up to80% (60%) formuons (electrons)at30 GeV.
Jetsare clusteredusing theanti-kT algorithm [60] with a
dis-tance parameterof0.4 [65], asimplemented inthe FastJet pack-age [61]. The momentum of a jet, which is determined by the vectorial sum of all particle momenta in the jet, is found from simulation to be within 5 to 10% of the true momentum over the full pT spectrum and detector acceptance. An offset
correc-tionisappliedtojetenergiestotakeintoaccountthecontribution frompileup [66].Jetenergycorrectionsareobtainedfrom simula-tion, andconfirmedthrough in situmeasurements ofthe energy balance in dijet and photon
+
jet events [67]. Jets are selected with pT>
25GeV and|
η
|
<
2.
4. In the following, the transversehadronic energy, HT, is definedas the scalar pT sumof the
se-lectedjets.
Jets arising from the hadronization of b quarks are identi-fiedthrough thecombinedsecondaryvertex(CSV)tagger [68,69], whichemploysbothsecondaryvertexandtrack-basedinformation. Inthisanalysis,alooseworkingpointcorrespondingtoab tagging efficiencyofabout80%isusedwithmisidentificationratesof10% and40%forlight-quarkorgluonjetsandforcquarkjets, respec-tively [68].
The
pTmiss is determined using the PF-reconstructed objects. A varietyofeventfiltersareappliedtoremovedetector- andbeam relatednoise [70].5. Eventselection
The analysisrequirestwooppositely chargedleptons(N
=
2),of either same (ee,
μμ
) ordifferent flavour (eμ
), andmoderatepmissT inthefinalstate,togetherwithatleastonejetintheevent. The main backgrounds arise fromevents in whichone of the leptons isnotprompt(mainly fromW
+
jets events),eventsfrom fully leptonic tt decays (tt(
2)
), and Drell–Yan (DY) processes withsubsequentdecaysγ
/
Z∗→
τ τ
→
ν
ν
ν
τν
τ .SmallerWW andZZ∗,withZ∗
→
and Z→
νν
(VV).Processessuch as ttW, ttZ, WWW, ZZZ, WZZ and WWZ as well as processes in-cluding the Higgs boson have very small contributions, and are groupedtogether as“Rare”.The following eventselection shown inTable1includesanumberofrequirementsdesignedtoreduce thesebackgrounds:•
0.
6<
pmissT
/
HT<
1.
4:thiscriterioniseffectiveinrejectingSMeventscompriseduniquelyofjetsproducedthroughthestrong interaction, referredtoasQCDmultijetevents,while remain-ing efficient foreventswithISR,asin thecaseofthe signal. Theboundsontheratiopmiss
T
/
HT isdeterminedfromastudyof a control region (CR) atlow-pmiss
T andwith dimuonmass
closetothat oftheJ/
ψ
meson. Thisrequirementrejects such eventswhileleavingthesignalunaffected.•
b jet eventveto: requiring events where no jet is tagged as originating from b quarks significantly reduces the tt back-ground in which b jets originate fromthe decay of the top quarks. This requirement is applied to all jets with pT>
25GeV and usesthe b taggingselection criteriadescribed in Section4.Theefficiencyforapotentialsignalfrom
t decaysis notaffectedsignificantlysinceinthecompressedt-LSPmodel, theb jetsareexpectedtohavesmallpTandarethereforenottagged.
•
M(
τ τ
)
<
0 orM(
τ τ
)
>
160GeV:thisrequirementonthe esti-mate of the ditau mass isdesigned to reject the large back-ground from Z→
τ τ
decays, with theτ
leptons decaying leptonically. Thequantity M(
τ τ
)
[22] iscomputedasfollows: since theτ
leptons from the decayof a Z boson have largepTcomparedtotheirmass,thedirectionoftheoutgoing
lep-ton is approximately the same as that of the
τ
lepton (i.e.R
(,
τ
)
≈
0).Themagnitudesoftheleptonmomentum vec-tors are then rescaled so that the lepton pair balances the hadronicrecoil.ForZ→
τ τ
events,thisleads toafairlygood approximation oftheoriginalτ
momenta.Theinvariantmass of the twoτ
leptons, M(
τ τ
)
, is estimated by the invariant mass ofthetwoscaled leptons. Insomeevents,the estimate of the magnitudeof theτ
momentum results in a negative value whentheflightdirectionisopposite tothedirectionof thelepton.Insuchcases,M(
τ τ
)
issettoitsnegativevalue.•
MT(
i,
pmissT)
<
70GeV,fori=
1,
2:thetransversemassMTisdefinedas MT
(,
pmissT)
=
2p TpmissT 1−
cosφ
,
pmissT,
and
1 and
2 aretheleadingandsubleadingleptons,
respec-tively. For the signal, the leading lepton is typically aligned withtheboostdirectionoftheLSP(
φ (,
pmissT)
≈
0).This re-quirementiseffectiveinfurthersuppressingthett background for the electroweakino search, butnot for thet search. It is thereforeonlyappliedintheelectroweakinosearch.•
J/ψ
, andϒ
veto:to suppressbackground contributions from J/ψ
,low-massγ
∗,andϒ
decays,thedileptoninvariantmassM
()
isrequiredtosatisfy M()
>
4GeV andtoalsolie out-sidetherange9<
M()
<
10.
5GeV.Thisvetoisonlyapplied tosameflavourleptonpairs.•
pmissT
>
125GeV: to ensure high trigger efficiency, both thepmissT andthemuon corrected pmissT ,whichiscomputedfrom the vectorial sumof the pmissT and the pT ofthe muons
se-lected intheevent,isrequiredtobelargerthan125 GeV.The region 125GeV
<
pmissT<
200 GeV is only accessible by the dimuon trigger andtherefore only dimuon pairs are consid-ered.Theregion pmissT
>
200 GeV includesalsoelectrons.•
Trigger acceptance:in theonlineselection, thelepton pairisrequiredtohaveasmallboostofpT
>
3GeV,togetherwithanTable 1
Common selection requirements for the signal regions. The subleading lepton pT
threshold is reduced to 3.5 GeV for muons in the high-pmiss
T , t-like signal region.
Variable SR selection criteria
N 2 (μμ,μe, ee)
q(1)q(2) −1
pT(1), pT(2) [5,30]GeV pT(μ2)for high-pmissT t-like SR [3.5,30]GeV
|ημ| <2.4
|ηe| <2.5
IP3D <0.01 cm
SIP3D <2
Isorel(1,2) <0.5
Isoabs(1,2) <5 GeV
pT(jet) >25 GeV
|η|(jet) <2.4
Nb(pT>25 GeV, CSV) 0
M() [4,9]or[10.5,50]GeV (forμμand ee)
pT() >3 GeV
pmiss
T >125 GeV (forμμ)
>200 GeV (forμe, ee)
pmiss
T (muon corrected) >125 GeV (forμμ)
>200 GeV (forμe, ee)
pmiss
T /HT [0.6,1.4]
HT >100 GeV
M(τ τ) veto[0,160]GeV
MT(i,pmissT ),i=1,2 <70 GeV (electroweakino selection only)
upperbound on thedimuon invariant mass M
()
<
60GeV, to limit the trigger rate. To remain fully efficient after of-flinereconstruction,anupperboundof50 GeV onM()
and a lower requirement on the dilepton transverse momentumpT
()
>
3GeV areimposed.•
HT>
100GeV:thisrequirementsuppressesbackgroundswithlowhadronicactivityintheevent.
Fortheselectedevents,asetofSRsare defined,basedon the dileptoninvariantmassandpmiss
T .Foreventswithleptonsofsame
flavourandoppositecharge,fourSRsaredefinedin M
()
ranges of 4–9, 10.5–20, 20–30, and 30–50 GeV. These SRs are intended for searches forχ
02
→
Z∗χ
10 events, where M()
is related tothemass differencebetweenthetwo electroweakinos.Forevents with leptons of different flavour and opposite charge, three SRs are definedin the leading lepton pT ranges of 5–12, 12–20, and
20–30 GeV. Thedefinition ofthebins oftheSRs canbe found in Table2.
Toexploitthepotentialofthedimuonplus pmissT trigger,events areseparatedaccordingtothevalueofpmissT :intotalthreeranges areusedforthesignalregions,namely pmiss
T
∈
125–200,200–300,and
>
300 GeV forthet search,andpmissT
∈
125–200,200–250,and>
250 GeV for the electroweakino search. Since the low-pmissT re-gioncontainseventsaccessibleonlyviathedimuon+
pmissT trigger, onlyμμ
pairs are considered. The muons need to be of oppo-site charge. Conversely, in the high-pmissT regions, both electron and muon flavours are considered. The electroweakino SRs are populated by ee andμμ
pairs,where theleptons are oppositely charged.Forthet SRs,eμ
pairsarealsoconsidered.Forthelatter, the pT thresholdon the trailinglepton is reducedto 3.5 GeV formuonsinthehigh-pmissT regiontogainsensitivityinthesearchfor
t signal.TheacceptancetimesefficiencyforthesignalmodelTChi150/20 (T2tt350/330) in the electroweakino (stop) selection is between 3
×
10−5(3×
10−5)and7×
10−5(15×
10−5).Theefficiencytimes acceptanceformuonsisabout2to5timeshigherthan for elec-trons in the electroweakino selection and about 1.5 to 3 times higherinthestopselection.Table 2
Definition of bins in the two SRs. The lowest pmiss
T region includes only muon pairs, since it is only accessible by
the dimuon trigger.
Electroweakino search region t search region
pmiss T [GeV] M()[GeV] p miss T [GeV] p lepton T [GeV] [125,200] [4,9] [125,200] [5,12] [12,20] [20,30] [10.5,20] [20,30] [30,50] [200,250] [4,9] [200,300] [ 5,12] [12,20] [20,30] [10.5,20] [20,30] [30,50] >250 [4,9] >300 [5,12] [12,20] [20,30] [10.5,20] [20,30] [30,50] Table 3
Summary of changes in selection criteria relative to Table1for CRs and the VV validation region (VR).
DY CR tt (2) CR VV VR
No upper requirement on pT()
Isorel<0.1 as an or condition with the SR isolation
0 <M(τ τ)<160 GeV
IP3D<0.0175 cm, SIP3D<2.5 s.d.
pT(1)>20 GeV, or IP3D>0.01 cm, or SIP3D>2 s.d. MTas for electroweakino SR
No requirements on MT
At least one b-tagged jet with pT>40 GeV
pT(1)>20 GeV
|same flavour M()−M(Z)|>10 GeV
MT>90 GeV
6. Backgroundestimation
BackgroundswithtwopromptleptonsareestimatedusingCRs chosentobemostlyfreefromsignalbutwhenpossible,with sim-ilar kinematic characteristics as the events in the signal regions. Different CRsare employed foreach SM process that contributes significantly to the signal region, i.e. the tt dilepton background andthe DY
+
jets background.The normalization of the diboson backgroundiscrosscheckedinavalidationregion(VR).Foreachbackground,thenumberofeventsineachSRis esti-matedusingthenumberofeventsobservedinthecorresponding CR,andatransferfactorthatisusedtodescribetheexpectedratio ofeventsintheSRandCRfortheprocess inquestion.The trans-ferfactorforaspecificprocess,Fprocess,isdeterminedfromMonte
Carlo(MC)simulationoftheprocessthroughtheratio
Fprocess
=
NSRMC process NCRMC process
.
Sincea CRtypically contains contributions fromother physics processes,they needto besubtracted fromtheobserved number ofeventsintheCR, NCRdata.Thesecontributions,NMC otherCR ,aresmall compared to the main process for which the CRis defined, and arethusestimatedusingMCsimulation.Theestimateofthe back-groundfromaspecificphysicsprocessintheSRisthengivenby
NSRprocess
=
NCRdata−
NMC otherCR Fprocess.
SystematicuncertaintiesinthevalueofFprocess areincludedwhen
determiningthe fulluncertaintyin NprocessSR .Thetotal background
inthe SRis givenasthe sumofthe backgrounds expectedfrom eachprocess.
The differentCRsare split into two pmissT bins: The low pmissT
binwithpmissT between125and200 GeV isusedtoconstrainthe SRswiththesamepmiss
T range,whilethehighpmissT binwithpmissT
>
200 GeV is used toconstrain all SRs with pmissT above 200 GeV.
The shapes for M
()
andthe lepton pT are taken directlyfromsimulation. Asummary ofallCRs forpromptlepton backgrounds isgiveninTable3.Forthedibosonbackground,avalidationregion enriched inVV(mainly WW events)isadded.Thisregionisused toestablishhowwell thesimulationagreeswithdatainorderto validatetheuncertaintyassignedtothedibosonsimulation.About halfoftheeventsinthisregionstemfromVV.
6.1. TheDY
+
jetscontrolregionThe main difference between the CR for the DY
+
jets back-ground andthe SRlies in therequirement imposed on the Mττvariable; the CR consistsofevents that are vetoed in the SR se-lection, namely those events with Mττ in the range 0–160 GeV. To increase the efficiency for leptons from
τ
decays, the im-pactparameterrequirementsarerelaxedtoIP3D<
0.
0175 cm andSIP3D
<
2.
5 s.d.The variation ofthescale factors appliedtosim-ulation by changing thecuts onIP3D and SIP3D was found to be
negligible.Inaddition,the30GeV upperboundonthelepton pTis
removed,andtheregionwithleptonpT
<
20GeV,IP3D<
0.
01 cm,andSIP3D
<
2 isalsoremovedtoreducethepresenceofpotentialsignal.Thedistributionsinkinematicquantitiesoftheseevents, in-cludingthevariablesusedtodefine thesignal regions,M
()
and theleadinglepton pT,arewell describedinsimulation.Theeventyieldsestimatedfromsimulationandtheobservedeventyieldsare listedinTable4.
6.2. Thett (2
)controlregion
To obtain a sample enriched in tt events, at least one jet is required tobe identified asoriginating fromb quarks. Toreduce potentialsignalcontamination,theleadingb-taggedjetisrequired to satisfy pT
>
40GeV.To increase the number of events in theCR, whilestillavoidingpotentially largesignalcontamination, the upper bound onthe lepton pT is alsoremoved. The eventyields
estimatedfromsimulationandtheobservedeventyields arealso showninTable4.
Table 4
Data and simulation yields for the DY and tt (2) CRs, corresponding to integrated luminosities of 35.9 fb−1(high-pmiss
T region) and 33.2 fb− 1
(low-pmiss
T region). The SR scale
factors are derived by subtracting the other processes from the observed data count, and dividing this number by the expected event yields from simulation for the process in question. The uncertainties are statistical only.
pmiss
T DY CR tt (2) CR
125–200 GeV >200 GeV 125–200 GeV >200 GeV
DY+jets or tt 70.1±5.1 64.5±3.3 1053.7±9.4 535.7±7.1
All SM processes 82.6±5.5 75.2±3.6 1170.0±11.0 710.4±11.1
Data 84 75 1157 680
SR scale factor 1.02±0.13 0.99±0.13 0.99±0.03 0.94±0.05
6.3.Nonpromptbackground
The background from nonprompt or misidentified leptons is evaluated using a “tight-to-loose” method. Events where atleast one lepton fails the tight identification andisolation criteriabut passesalooserselectiondefinethe“applicationregion”.Eventsin thisregion areweighted bya transferfactorbasedonthe proba-bilitythatnonpromptleptons passingthelooserequirementsalso satisfy thetight ones. The resultingestimate is corrected forthe presenceofpromptleptonsintheapplicationregion.
Theprobabilityfornonpromptormisidentified leptonstopass the tight selection criteriais referred to as the misidentification probability,whichisdeterminedasafunctionoflepton pT and
η
.This probability is measured using a dedicated data sample, the “measurementregion”(MR),whichisenriched inthebackground fromSMevents containingonly jetsproducedvia strong interac-tion, referred to as QCD multijet events. This method has been used in severalmultilepton analyses atCMS and is described in moredetailin Ref. [71]. The MRisdefinedthrough thepresence of one loose lepton, obtained by relaxing the isolation and im-pactparameterrequirements,andthroughajetwithpT
>
30GeV,separatedfromtheleptonby
R
>
0.
7.Formuons,eventsare se-lected through prescaled single-lepton triggers with no isolation requirements.Forelectrons, a mixtureofprescaledjet triggers is used.Themethodincludesacorrectionforthepresenceofprompt leptonsintheMR,mostlyduetoW andZ bosonproductionin as-sociationwithjets. Theprobabilityforpromptleptonstopassthe tight selection criteria is taken fromsimulation and is corrected withadata-to-simulationscalefactorextractedfromdataenriched inZ→
decays.In thisanalysis, the misidentification probability measured in QCD multijet events is applied to loosely identified leptons in eventsthataredominatedbyW
+
jets andtt production.The lat-tercanhavebothadifferentcompositionintermsoftheflavourof thejetsthatgiverisetothenonpromptleptons,aswellasdifferent kinematicproperties, potentially resulting in a differenteffective misidentification probability. These effects are studied by com-paring the misidentification probabilities measured in simulated events of these two processes in the kinematic regions probed bythisanalysis.Aclosuretest isthenperformedbyapplyingthe misidentificationprobabilitymeasuredintheQCDsimulated mul-tijet events to a sample of W+
jets events.The yield of events passing the tight identification criteriais compared with the es-timate obtained by applying the misidentification probability to eventsintheapplicationregion. Themethodis foundto be con-sistentwithin alevel of<
40%; thisvalue isusedasasystematic uncertaintyinthe estimate ofthe normalizationofthereducible background.Tofurtherconstrainthe contributionofthe nonpromptlepton backgroundintheSR, adedicatedCRconsistingofsame-sign (SS) leptonsisdefined.Requiringthetwoleptoncandidatestohavethe samesignincreasessignificantly the probabilitythat atleast one ofthe two is a nonprompt ormisidentified lepton. The SS CRis definedusingthe
t selectioninthe pmissT
>
200GeV region,whereFig. 2. Same-sign
CR for
t selection and pmissT >200 GeV. The distribution of the
leading lepton pT is used as input to the final signal extraction. A signal from
neutralino–chargino (χ0
2–χ1±) production is superimposed.
the opposite charge requirement of the two leptons is modified to same-sign.In theSSCR, theprediction ofthenonprompt lep-ton backgroundis derived from the “tight-to-loose” method and agreeswiththedata.Fig.2showstheleadinglepton pT
distribu-tionintheSSCR. Italsoshowsthenearabsenceofasignal.The distributionofthe leading lepton pT isusedasinputto thefinal
fit that performs the signal extraction, as its constraining power is significant, given the significant uncertainty on the measured misidentificationprobability.
7. Systematicuncertainties
Thissectionsummarizesthesystematicuncertaintiesinthe es-timateofthebackgroundfromthevariousSMprocesses.Foreach sourceofsystematicuncertainty,wepresentboththeeffectonthe correspondingspecificbackgroundandtheoveralleffectonthe to-talbackgroundpredictionsarelistedinTable5.
Theuncertaintyinthepredictednonpromptleptonbackground contains astatisticalcomponentduetothe statisticaluncertainty in theapplication region eventyield, it rangesfrom 10% to 50%. When applied in the SR, the uncertainty is 4% to 20%. Another source of statistical uncertainty arises from limited statistics in data and simulationin the DY
+
jets andtt (2) CRs. The effect onthepredictedyields intheSR, obtainedusingthetransfer fac-tordescribed inSection6,isapproximately13%fortheDY
+
jets backgroundand3%forthett background.Table 5
Relative uncertainties in the final total background predictions for each individual systematic source of uncertainty.
Systematic source of uncertainty Typical uncertainty (%)
VV background normalization 3–25
Nonprompt lepton background normalization 4–20
DY+jets background normalization 4–20
tt background normalization 2–8
Rare background normalization 1–3
Jet energy scale 2–12
b tagging 2–6 Pileup 1–5 Lepton selection 1–4 Integrated luminosity 2.5 Trigger 1–2 tt modelling <1
Forthett background,we haveconsidereda setofsystematic uncertainties arising from the modelling ofthe kinematic distri-butions in thesimulation ofthis process. The spin correlation of thetop quarks hasbeen varied by20%, based onthe ATLAS and CMS [72,73] measurements and a comparison between different generators (MadGraph5_amc@nlo versus powheg). The helicity amplitudesoftheW bosonintopquarkdecayshavebeenvaried by5%.Atopquark pTmodellinguncertaintyhasalsobeenderived
by reweighting the simulated tt events based on the number of ISRjets(NISRjets), soastomakethejetmultiplicityagreewithdata. Thereweightingfactorsrangefrom0.92to0.51forNISRjets between 1and6.Thesystematicuncertaintyinthesereweightingfactorsis takento beequal toone half ofthedeviation ofthefactor from unity.Thecombinedeffectofthissetoftt modellinguncertainties onthetotalnumberofpredictedtt backgroundeventsisfoundto beintherange3–5%.
FortheDY
+
jetsbackground,theuncertaintyintheresolution of the pT ofthe system recoiling against the two leptons isob-tained fromdata dominatedby Z
→
μμ
events. The uncertainty affectsthe DY estimate,which usesthe efficiencyofthe require-mentsonMττ fromsimulation.Theeffectontheestimatedyields ofDY+
jetsisfoundtobenegligible(<
1%).As presented in Section 6, the method used to estimate the backgroundfromnonpromptandmisidentified leptons leads toa 40%uncertaintyonthenormalization. Intheglobalfitthis uncer-taintyisreducedto 25%.
A50%uncertaintyisassignedforthedibosonbackground nor-malization,whichischeckedinthededicatedregiondescribedin Section 6.In thisregion, whichis enriched in W W eventswith similar kinematicproperties astheevents inthe SR, the simula-tionisfoundtoagree,withinthegivenuncertainty,withthedata. Aconservative 100% uncertaintyisassigned tothe very small rarebackgroundsthataredominatedbythetW process.
Theexperimentaluncertaintiesrelatedtob tagging,trigger, lep-ton reconstruction,identification, andisolation criteriahavebeen propagatedandtheireffectonthefinalresultsrangesfrom2%up to12%.Thejetenergyscalecorrections(JEC)areappliedtomatch jetenergiesmeasuredindataandsimulation.TheJECareaffected byanintrinsicuncertainty,whichaffectsallsimulatedbackground, leadingtotypically2–12%uncertaintiesinthefinalpredictions.
Anuncertaintyof2.5%isassignedtotheintegratedluminosity measuredbyCMSforthe2016datatakingperiod [74].Thisaffects theestimateoftherareSMbackgroundsthatrelyonthemeasured dataluminosity.
Finally,theuncertaintyrelatedtopileuphasbeenestimatedby varying theminimum-biascrosssection by
±
5% andreweighting the pileup distributionaccordingly. The systematic uncertaintyis foundtobeintherange1–5%.As thesignal yields arefromsimulation,additionalsystematic uncertainties are applied in two categories. One arises from the systematic uncertainty in the inclusiveNLO
+
NLL [48–50] cross section used for the normalization, determined by varying the renormalizationand factorizationscales andthePDF. The depen-dence on these QCD scales yields a total uncertainty of 3%. The other category arisesfrom the uncertaintyin the product of the signalacceptanceandefficiency.ItisimportanttoproperlymodeltheISRthatleadstotheboost ofthe producedSUSY particlesinthe transverseplane. In partic-ular, forthe electroweakinobenchmark, themodelling oftheISR with MadGraph5_amc@nlo affectsthetotaltransversemomentum
pISRT of the system ofSUSY particles, which can be improved by reweighting pISRT inthesimulatedsignalevents.Thisreweightingis basedon pTstudiesofeventscontainingaZ boson [75],inwhich
the factors range between 1.18 at pISRT of 125 GeV, and0.78 for
pISRT
>
600GeV.Thedeviationfrom1.0istakenasthesystematic uncertaintyofthereweightingprocedure.Forthet benchmarkto improve themodelling ofthe multiplicity ofadditional jetsfrom ISR,theeventsarereweightedbasedonthe NISRjets,usingthesame correctionsusedforthetopbackgroundasdescribedearlierinthis section.The typicaluncertaintiesonthefinalresultsfromtheISR modellingarefoundtobeintherange2–7%.WeaccountfordifferencesobservedinpmissT reconstruction ef-fectsinfull andfastsimulationusedforsignal. Theuncertainties varybetween3and5%.Theuncertaintiesrelatedtopotential dif-ferencesin b taggingbetweenthefullandfastsimulationandin theJECvaryintherange1–2%.
These uncertainties, together with those related to the pre-dicted backgrounds described in Section 6, are included as log-normaldistributednuisanceparametersinthelikelihoodapproach.
8. Results
The estimatedyields oftheSM backgroundprocesses andthe data observed inthe SRs are shownin Figs. 3and 4.No signifi-cant excess hasbeen observed.The estimates in theSR bins are extractedfromamaximumlikelihoodfitofthedatausingthe ex-pectedyieldsdescribedinSection6,namelytheDY
+
jets,tt (2), andSSCRs.Log-normaldistributions fornuisanceparameters are usedtodescribethesystematicuncertaintiesofSection7.The un-certaintiesinthepredictedyieldsquotedinthefollowingarethose determinedfromthefit.
The predictedyieldsalong withthedataare alsosummarized in Tables 6and7 foreach bin ofthe SR.Thetotal uncertaintyin theyieldforeachSMprocessincludesthesystematicand statisti-cal uncertaintiesdescribed inSection7,addedinquadrature.The largest deviationfromthe SMexpectationisseen ina binofthe electroweakino search region.Thebinwith pmissT
∈ [
200,
250]
GeV andM()
∈ [
10.
5,
20]
GeV has3.
5±
0.
9 expectedeventsbut0 ob-served. Thesmaller numberofeventsobservedinthisbindrives the observedexclusionto highervaluesthanexpected, ascan be seeninthenextsection.Overall,thereisgoodagreementbetween expectationandobservation.9. Interpretation
The results are interpreted in terms of the simplified mod-els withcompressedmass spectrafor
χ
02
χ
1±→
Z∗W±∗χ
10χ
10 andfor
tt→
bχ
1±bχ
1∓ with the subsequent decayχ
1±→
W±∗χ
0 1 asdiscussed inSection 3. A binned likelihood fit of signal and the backgroundexpectationstothedataisperformed.Thisfittakesas input theyields intheSRs (12fortheelectroweakino interpreta-tion and9forthetop squarkinterpretation),together withthose
Fig. 3. Left:
electroweakino search regions in bins of
M()for 125 <pmissT <200 GeV (muon only channel) for 33.2 fb−
1; middle: 200
<pmiss
T <250 GeV (muon and electron
channel) for 35.9 fb−1; right: pmiss
T >250 GeV (muon and electron channel) for 35.9 fb−
1. A signal from neutralino–chargino (χ0
2–χ1±) production is superimposed. The gap
between 9 and 10.5 GeV corresponds to the ϒveto.
Fig. 4. Left:t search regions in bins of leading lepton pTfor 125 <pmissT <200 GeV (muon only channel) for 33.2 fb−
1; middle: 200
<pmiss
T <300 GeV (muon and electron
channel) for 35.9 fb−1; right: pmiss
T >300 GeV (muon and electron channel) for 35.9 fb−
1. A signal from t pair production is superimposed.
inthe two CRs (125
<
pmissT<
200GeV and pmissT>
200GeV) for thett andDY+
jetsestimates,andthethreepT binsforsame-signleptons forthe pmissT
>
200GeV CR.These background-dominated bins also help to constrain the uncertainties in the background taken from simulation and the one predicted by the “tight-to-loose”method.Upper limits on the cross sections in the benchmark models at95%confidencelevel(CL)areextracted.Weuseasymptotic for-mulae [76] to derive the results. To set limits, the CLs criterion,
as described in [77,78], is used. Figures 5 and 6 show the ob-servedandexpectedupperlimitsontheelectroweakinoand
t pair production cross sections for the benchmarks considered in this search.Fortheelectroweakino simplified model,the productioncross sections are computed at NLO
+
NLL precision in the limit of a massdegeneratewinoχ
02 and
χ
1±,alightbinoχ
10,andassumingallotherSUSYparticlestobeheavyanddecoupled [48–50].Masses
of
χ
20upto230 GeV foram
(
χ
20,
χ
10)
of20 GeV areexcluded.The existenceoft massesupto450 GeV witham
(
t,
χ
01
)
of40 GeV isruledoutforthisspecificmodel.
Theexpectedandobservedexclusioncontoursforthehiggsino pMSSM are shown in Fig. 7. The higgsino mass parameter
μ
is excluded up to 160 GeV, when the bino mass parameter M1 is300 GeV and thewino massparameter M2 is 600 GeV.For larger
values of M1 and M2, the mass splitting
m
(
χ
20,
χ
10)
becomessmallerandthesensitivityisreduced.ForM1
=
700GeV,μ
isex-cludedupto100 GeV.
Fig.8showstheexpectedandobservedexclusioncontoursand upperlimits oncross sectionsat95% CL ina higgsinosimplified model. To calculate the cross sections in this model, a scan in
|
μ
|
, M1, M2 andtanβ
iscarriedout. Allparametersare requiredto be real, M2 to be positive and tan
β
∈ [
1,
100]
. Theremain-ingSUSYparticlemassesaredecoupled,andalltrilinearcouplings arediscarded.Theparameterspaceisthenscannedtoachievethe
Table 6
The number of events observed in the data and the result of the fit of the backgrounds to the data in the electroweakino search regions. The uncertainty indicated is determined from the fit to the 33.2 and 35.9 fb−1integrated luminosities. Values for the
M()ranges are in GeV. Rare background event yields are omitted when they do
not contribute to the SR bin.
125<pmiss T <200 GeV 4<M() <9 10.5<M() <20 20<M() <30 30<M() <50 tt(2) 0.23±0.16 1.9±0.52 2.80±0.65 3.60±0.75 DY+jets 0.83±0.63 3.7±1.5 4.9±1.5 1.60±0.99 VV 0.82±0.48 0.71±0.65 1.7±1.0 2.2±1.2 Nonprompt lepton 1.7±0.7 5.7±1.5 7.5±1.7 3.3±1.1 Rare — 0.46+0.64 −0.45 — 0.33+ 0.49 −0.32 Total SM prediction 3.5±1.0 12.0±2.3 17.0±2.4 11.0±2.0 Data 2 15 19 18 200<pmiss T <250 GeV 4<M() <9 10.5<M() <20 20<M() <30 30<M() <50 tt(2) 0.21±0.17 0.38±0.18 0.11+0.11 −0.10 — DY+jets 0.69±0.62 0.67±0.32 0.42±0.27 — VV 0.26+0.28 −0.25 0.29+ 0.32 −0.28 0.42±0.33 0.33±0.29 Nonprompt lepton 0.44±0.32 2.0±0.7 1.0±0.6 0.03+−00..1402 Rare — 0.14+0.39 −0.13 — 0.17+ 0.37 −0.16 Total SM prediction 1.6±0.7 3.5±0.9 2.0±0.7 0.51+0.52 −0.50 Data 1 0 3 1 pmiss T >250 GeV 4<M() <9 10.5<M() <20 20<M() <30 30<M() <50 tt(2) — 0.19±0.14 0.091±0.091 0.27±0.14 DY+jets 0.24±0.19 0.24±0.17 0.17±0.16 0.014+0.019 −0.013 VV 0.43±0.35 0.29+0.29 −0.28 0.41±0.29 0.66±0.45 Nonprompt lepton 0.28−+00..3327 0.77±0.44 0.38±0.30 0.23±0.18 Rare 0.45+0.57 −0.44 — 0.49+ 0.62 −0.48 0.04+ 0.28 −0.03 Total SM prediction 1.4±0.7 1.5±0.6 1.5±0.8 1.2±0.6 Data 2 1 2 0 Table 7
The number of events observed in the data and the result of the fit of the backgrounds to the data in the t search regions. The uncertainty indicated is determined from the fit to the 33.2 and 35.9 fb−1integrated luminosities. Values for the p
T(1)ranges are in GeV. Rare background event yields are omitted when they do not contribute to the
SR bin. 125<pmiss T <200 GeV 5<pT(1) <12 12<pT(1) <20 20<pT(1) <30 tt(2) 1.9±0.4 11.0±1.9 23.0±3.5 DY+jets 2.9±1.4 5.6±1.9 4.6±1.7 VV 0.8±0.7 4.9+−46..38 9.4±5.4 Nonprompt lepton 8.5±1.9 15.0±2.6 15.0±2.6 Rare 0.10+−00..1609 0.93+ 1.0 −0.92 1.8±1.7 Total SM prediction 14.0±2.3 37.0±6.8 54.0±6.5 Data 16 51 67 200<pmiss T <300 GeV 5<pT(1) <12 12<pT(1) <20 20<pT(1) <30 tt(2) 1.3±0.35 9.9±1.2 15±2.2 DY+jets 0.92±0.83 2.4±0.9 1.6±0.6 VV 2.5±1.4 7.1±4.0 12.0±6.2 Nonprompt lepton 18.0±3.2 20.0±3.4 15.0±2.7 Rare 0.52−+00..5451 1.96±1.46 1.45±1.13 Total SM prediction 23.0±3.5 41.0±5.6 45.0±7.0 Data 23 40 44 pmiss T >300 GeV 5<pT(1) <12 12<pT(1) <20 20<pT(1) <30 tt(2) 0.39±0.25 1.6±0.5 1.6±0.4 DY+jets 0.33±0.26 0.28±0.18 0.19±0.07 VV 0.93±0.53 2.5±1.4 4.2±2.2 Nonprompt lepton 3.1±1.1 5.6±1.3 4.0±1.3 Rare — 0.15+0.18 −0.14 0.45+ 0.50 −0.44 Total SM prediction 4.7±1.3 10.0±1.9 10.0±2.5 Data 4 11 9
Fig. 5. The
observed 95% CL exclusion contours (black curves) assuming the NLO
+NLL cross sections, with the variations corresponding to the uncertainty in the cross section for electroweakino. The dashed (red) curves present the 95% CL expected limits with the band covering 68% of the limits in the absence of signal. Results are based on a simplified model of χ0
2χ1±→Z∗W∗χ10χ10process with a pure wino
pro-duction cross section. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
Fig. 6. The
observed 95% CL exclusion contours (black curves) assuming the NLO
+ NLL cross sections, with the variations corresponding to the uncertainty in the cross section for t. The dashed (red) curves present the 95% CL expected limits with the band covering 68% of the limits in the absence of signal. A simplified model of the t pair production, followed by the t→bχ1±and the subsequent χ1±→W∗χ10decay is used for the t search. In this latter model, the mass of the χ1±is set to be
(mt+mχ0 1)/2.
maximum higgsinocontent for
χ
20,χ
1±, andχ
10 [79]. For am
between15and20 GeV,theproductionmodelofpp
→
χ
0 2χ
1±andpp
→
χ
02
χ
10 isexcludedformassesuptoχ
20∼
167GeV. 10. SummaryA search is presented for new physics in events with two low-momentum leptons of opposite charge and missing trans-verse momentum in data collected by the CMS experiment at a centre-of-mass energy of 13 TeV, corresponding to an integrated
Fig. 7. The
observed 95% CL exclusion contours (black curve) assuming the NLO cross
sections, with the variations corresponding to the uncertainty in the cross sections for the higgsino pMSSM, which has been introduced in the text. The dashed (red) curves present the band covering 68% of the limits in the absence of signal. The model considers all possible production processes.
Fig. 8. The
observed 95% CL exclusion contours (black curves) assuming the NLO
+NLL cross sections, with the variations corresponding to the uncertainty in the cross sections for the higgsino simplified models. The dashed (red) curves present the expected limits with the associated band covering 68% of the limits in the absence of signal.
luminosity of up to 35.9 fb−1. The data are found to be con-sistent with standard model expectations. The results are inter-preted in the framework of supersymmetric simplified models targetingelectroweakinomass-degeneratespectraand
t-χ
01
mass-degeneratebenchmarkmodels.Forthe
t chargino-mediateddecay into bW∗χ
01, top squark masses of up to 450 GeV are excluded
ina simplified modelfor
m
(
t,
χ
01
)
=
40GeV.The search furtherprobesthe
χ
02
χ
1±→
Z∗W∗χ
10χ
10 processformassdifferences(m)
between
χ
0 2 andχ
0
1 oflessthan 20 GeV. Assumingwino
produc-tioncrosssections,
χ
02 massesupto230 GeV areexcludedfor
m
of20 GeV. The search is alsosensitive to higgsinoproduction; in a simplified higgsino model,
χ
02 masses up to 167 GeV are
ex-cluded for
m of 15 GeV, while in a higgsino pMSSM, limits in thehiggsino-binomassparameters
μ
–M1planeareextracted.Acknowledgements
WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentresand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythe computinginfrastructureessential to ouranalyses. Finally, we acknowledge the enduring support for the construc-tionandoperation oftheLHCandthe CMSdetectorprovidedby thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy); MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOE andUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,RosAtom,RAS,RFBR andRAEP(Russia);MESTD (Serbia);SEIDI,CPAN,PCTI andFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEP-Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).
Individuals have received support from the Marie-Curie pro-gramme and the European Research Council and Horizon 2020 Grant,contract No. 675440 (EuropeanUnion);theLeventis Foun-dation;the A. P. Sloan Foundation; theAlexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pourlaFormationàlaRecherchedansl’Industrieetdans l’Agricul-ture(FRIA-Belgium); the Agentschapvoor Innovatie door Weten-schap en Technologie (IWT-Belgium); the Ministry of Education, YouthandSports(MEYS)oftheCzechRepublic;theCouncilof Sci-enceandIndustrialResearch,India;theHOMINGPLUSprogramme of the Foundation for Polish Science, cofinanced from European Union,Regional DevelopmentFund,the MobilityPlusprogramme oftheMinistryofScienceandHigherEducation,theNational Sci-ence Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus2014/13/B/ST2/02543,2014/15/B/ST2/03998,and2015/19/B/ ST2/02861, Sonata-bis 2012/07/E/ST2/01406; the National Priori-tiesResearchProgram byQatar NationalResearch Fund;the Pro-grama Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF andthe Greek NSRF; theRachadapisekSompotFundforPostdoctoralFellowship, Chula-longkornUniversityandtheChulalongkornAcademicintoIts 2nd CenturyProjectAdvancement Project(Thailand);theWelch Foun-dation,contractC-1845;andtheWestonHavensFoundation(USA).
References
[1] J. Wess, B. Zumino, Supergauge transformations in four dimensions, Nucl. Phys. B 70 (1974) 39, https://doi.org/10.1016/0550-3213(74)90355-1.
[2] H.P. Nilles, Supersymmetry, supergravity and particle physics, Phys. Rep. 110 (1984) 1, https://doi.org/10.1016/0370-1573(84)90008-5.
[3] H.E. Haber, G.L. Kane, The search for supersymmetry: probing physics beyond the standard model, Phys. Rep. 117 (1985) 75, https://doi.org/10.1016/0370 -1573(85)90051-1.
[4] R. Barbieri, S. Ferrara, C.A. Savoy, Gauge models with spontaneously broken lo-cal supersymmetry, Phys. Lett. B 119 (1982) 343, https://doi.org/10.1016/0370 -2693(82)90685-2.
[5] S. Dawson, E. Eichten, C. Quigg, Search for supersymmetric particles in hadron–hadron collisions, Phys. Rev. D 31 (1985) 1581, https://doi.org/10.1103/ PhysRevD.31.1581.
[6] R. Barbieri, G. Giudice, Upper bounds on supersymmetric particle masses, Nucl. Phys. B 306 (1988) 63, https://doi.org/10.1016/0550-3213(88)90171-X. [7] E. Witten, Dynamical breaking of supersymmetry, Nucl. Phys. B 188 (1981) 513,
https://doi.org/10.1016/0550-3213(81)90006-7.
[8] S. Dimopoulos, H. Georgi, Softly broken supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150, https://doi.org/10.1016/0550-3213(81)90522-8.
[9] G.R. Farrar, P. Fayet, Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry, Phys. Lett. B 76 (1978) 575, https://doi.org/10.1016/0370-2693(78)90858-4.
[10] Particle Data Group, C. Patrignani, et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001, https://doi.org/10.1088/1674-1137/40/10/100001. [11] B. de Carlos, J. Casas, One-loop analysis of the electroweak breaking in
super-symmetric models and the fine-tuning problem, Phys. Lett. B 309 (1993) 320, https://doi.org/10.1016/0370-2693(93)90940-J, arXiv:hep -ph /9303291. [12] M. Dine, W. Fischler, M. Srednicki, Supersymmetric technicolor, Nucl. Phys. B
189 (1981) 575, https://doi.org/10.1016/0550-3213(81)90582-4.
[13] S. Dimopoulos, S. Raby, Supercolor, Nucl. Phys. B 192 (1981) 353, https://doi. org/10.1016/0550-3213(81)90430-2.
[14] N. Sakai, Naturalness in supersymmetric GUTS, Z. Phys. C 11 (1981) 153, https://doi.org/10.1007/BF01573998.
[15] R.K. Kaul, P. Majumdar, Cancellation of quadratically divergent mass corrections in globally supersymmetric spontaneously broken gauge theories, Nucl. Phys. B 199 (1982) 36, https://doi.org/10.1016/0550-3213(82)90565-X.
[16] J.A. Casas, J.M. Moreno, S. Robles, K. Rolbiecki, B. Zaldívar, What is a natural SUSY scenario?, J. High Energy Phys. 06 (2015) 070, https://doi.org/10.1007/ JHEP06(2015)070, arXiv:1407.6966.
[17] H. Baer, V. Barger, D. Mickelson, M. Padeffke-Kirkland, SUSY models under siege: LHC constraints and electroweak fine-tuning, Phys. Rev. D 89 (2014) 115019, https://doi.org/10.1103/PhysRevD.89.115019, arXiv:1404 .2277. [18] A. Mustafayev, X. Tata, Supersymmetry, naturalness, and light higgsinos, Indian
J. Phys. 88 (2014) 991, https://doi.org/10.1007/s12648-014-0504-8, arXiv:1404 . 1386.
[19] G.F. Giudice, T. Han, K. Wang, L.-T. Wang, Nearly degenerate gauginos and dark matter at the LHC, Phys. Rev. C 81 (2010) 115011, https://doi.org/10.1103/ PhysRevD.81.115011, arXiv:1004 .4902.
[20] H. Baer, A. Mustafayev, X. Tata, Monojet plus soft dilepton signal from light higgsino pair production at LHC14, Phys. Rev. D 90 (2014) 115007, https://doi. org/10.1103/PhysRevD.90.115007, arXiv:1409 .7058.
[21] C. Han, A. Kobakhidze, N. Liu, A. Saavedra, L. Wu, J.M. Yang, Probing light hig-gsinos in natural SUSY from monojet signals at the LHC, J. High Energy Phys. 02 (2014) 049, https://doi.org/10.1007/JHEP02(2014)049, arXiv:1310 .4274. [22] Z. Han, G.D. Kribs, A. Martin, A. Menon, Hunting quasidegenerate Higgsinos,
Phys. Rev. D 89 (2014) 075007, https://doi.org/10.1103/PhysRevD.89.075007, arXiv:1401.1235.
[23] A. Heister, et al., ALEPH, Search for charginos nearly mass degenerate with the lightest neutralino in e+e−collisions at center-of-mass energies up to 209 GeV, Phys. Lett. B 533 (2002) 223, https://doi.org/10.1016/S0370-2693(02)01584-8, arXiv:hep -ex /0203020.
[24] J. Abdallah, et al., DELPHI, Searches for supersymmetric particles in e+e− col-lisions up to 208 GeV and interpretation of the results within the MSSM, Eur. Phys. J. C 31 (2003) 421, https://doi.org/10.1140/epjc/s2003-01355-5, arXiv: hep -ex /0311019.
[25]ATLAS Collaboration, Search for electroweak production of supersymmetric statesinscenarioswith compressedmassspectraat √s=13 TeVwith the ATLASdetector,arXiv:1712.08119,2017.
[26] P. Schwaller, J. Zurita, Compressed electroweakino spectra at the LHC, J. High Energy Phys. 03 (2014) 060, https://doi.org/10.1007/JHEP03(2014)060, arXiv: 1312 .7350.
[27] R. Gröber, M.M. Mühlleitner, E. Popenda, A. Wlotzka, Light stop decays: impli-cations for LHC searches, Eur. Phys. J. C 75 (2015) 420, https://doi.org/10.1140/ epjc/s10052-015-3626-z, arXiv:1408 .4662.
[28] C. Balázs, M. Carena, C.E.M. Wagner, Dark matter, light stops and electroweak baryogenesis, Phys. Rev. D 70 (2004) 015007, https://doi.org/10.1103/PhysRevD. 70.015007, arXiv:hep -ph /0403224.
[29] CMS Collaboration, Search for supersymmetry in events with soft leptons, low jet multiplicity, and missing transverse energy in proton–proton collisions at √
s=8 TeV, Phys. Lett. B 759 (2016) 9, https://doi.org/10.1016/j.physletb.2016. 05.033, arXiv:1512 .08002.
[30] CMS Collaboration, The CMS trigger system, JINST 12 (2017) P01020, https:// doi.org/10.1088/1748-0221/12/01/P01020, arXiv:1609 .02366.
[31] CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3 (2008) S08004, https://doi.org/10.1088/1748-0221/3/08/S08004.
[32] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S. Shao, T. Stelzer, P. Torrielli, M. Zaro, The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, J. High Energy Phys. 07 (2014) 079, https:// doi.org/10.1007/JHEP07(2014)079, arXiv:1405 .0301.
[33] R. Frederix, S. Frixione, Merging meets matching in MC@NLO, J. High En-ergy Phys. 12 (2012) 061, https://doi.org/10.1007/JHEP12(2012)061, arXiv:1209 . 6215.