• Non ci sono risultati.

Improved astrophysical rate for the 18O(p,α)15N reaction by underground measurements

N/A
N/A
Protected

Academic year: 2021

Condividi "Improved astrophysical rate for the 18O(p,α)15N reaction by underground measurements"

Copied!
6
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Improved

astrophysical

rate

for

the

18

O(p,

α

)

15

N

reaction

by underground

measurements

C.G. Bruno

a

,∗

,

M. Aliotta

a

,∗

,

P. Descouvemont

b

,

A. Best

c

,

T. Davinson

a

,

D. Bemmerer

d

,

A. Boeltzig

e

,

f

,

1

,

C. Broggini

g

,

A. Caciolli

h

,

F. Cavanna

i

,

T. Chillery

a

,

G.F. Ciani

e

,

P. Corvisiero

i

,

j

,

R. Depalo

h

,

A. Di Leva

c

,

Z. Elekes

k

,

F. Ferraro

i

,

j

,

A. Formicola

f

,

Zs. Fülöp

k

,

G. Gervino

l

,

A. Guglielmetti

m

,

C. Gustavino

n

,

Gy. Gyürky

k

,

G. Imbriani

c

,

M. Junker

f

,

M. Lugaro

o

,

P. Marigo

g

,

h

,

R. Menegazzo

h

,

V. Mossa

p

,

F.R. Pantaleo

p

,

D. Piatti

h

,

P. Prati

i

,

j

,

K. Stöckel

d

,

q

,

O. Straniero

f

,

r

,

F. Strieder

s

,

T. Szücs

d

,

k

,

M.P. Takács

d

,

q

,

D. Trezzi

m aSUPA,SchoolofPhysicsandAstronomy,UniversityofEdinburgh,EH93FDEdinburgh,UnitedKingdom

bPhysiqueNucléaireThéoriqueetPhysiqueMathématique,C.P.229,UniversitéLibredeBruxelles(ULB),B1050Brussels,Belgium cUniversitàdiNapoli“FedericoII”,andINFN,SezionediNapoli,80126Napoli,Italy

dHelmholtz-ZentrumDresden-Rossendorf,BautznerLandstr.400,01328Dresden,Germany eGranSassoScienceInstitute,VialeF.Crispi7,67100L’Aquila,Italy

fINFN,LaboratoriNazionalidelGranSasso(LNGS),67100Assergi,Italy gINFN,SezionediPadova,ViaF.Marzolo8,35131Padova,Italy

hUniversitàdegliStudidiPadovaandINFN,SezionediPadova,ViaF.Marzolo8,35131Padova,Italy iINFN,SezionediGenova,ViaDodecaneso33,16146Genova,Italy

jUniversitàdegliStudidiGenova,ViaDodecaneso33,16146Genova,Italy

kInstituteforNuclearResearch(MTAATOMKI),POBox51,HU-4001Debrecen,Hungary lUniversitàdegliStudidiTorinoandINFN,SezionediTorino,ViaP.Giuria1,10125Torino,Italy mUniversitàdegliStudidiMilanoandINFN,SezionediMilano,ViaG.Celoria16,20133Milano,Italy nINFN,SezionediRoma,PiazzaleA.Moro2,00185Roma,Italy

oKonkolyObservatory,ResearchCentreforAstronomyandEarthSciences,HungarianAcademyofSciences,1121Budapest,Hungary pUniversitàdegliStudidiBariandINFN,SezionediBari,70125Bari,Italy

qTechnischeUniversitätDresden,InstitutfürKern- undTeilchenphysik,ZellescherWeg19,01069Dresden,Germany rOsservatorioAstronomicodiCollurania,Teramo,andINFN,SezionediNapoli,80126Napoli,Italy

sSouthDakotaSchoolofMines&Technology,501E.SaintJosephSt.,SD57701, USA

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received23November2018

Receivedinrevisedform9January2019 Accepted11January2019

Availableonline17January2019 Editor:W.Haxton

Keywords:

Stellarhydrogenburning Hydrostaticstellarnucleosynthesis

The18O(p,

α

)15Nreactionaffects thesynthesisof15N,18Oand19Fisotopes, whoseabundancescanbe usedtoprobethenucleosynthesisandmixingprocessesoccurringdeepinsideasymptoticgiantbranch (AGB) stars. We performedalow-background direct measurement ofthe 18O(p,

α

)15N reaction

cross-section atthe Laboratory for Underground Nuclear Astrophysics (LUNA) from center of mass energy

Ec.m.=340 keV down to Ec.m.=55 keV, the lowest energy measured to date corresponding to a

cross-section of less than 1 picobarn/sr. The strength of a key resonance at center of mass energy

Er=90 keVwasfoundtobeafactorof10higherthanpreviouslyreported.Amulti-channel R-matrix

analysisofourandotherdataavailableintheliteraturewasperformed.Overawidetemperaturerange,

T=0.01–1.00 GK,ournewastrophysicalrateisbothmoreaccurateandprecisethanrecentevaluations. StrongerconstraintscannowbeplacedonthephysicalprocessescontrollingnucleosynthesisinAGBstars withinterestingconsequencesontheabundanceof18Ointhesestarsandinstardustgrains,specifically

ontheproductionsitesofoxygen-richGroup IIgrains.

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

*

Correspondingauthors.

E-mailaddresses:[email protected](C.G. Bruno),[email protected](M. Aliotta).

1 Currentaddress:UniversityofNotreDame,DepartmentofPhysics,225NieuwlandScienceHall,NotreDame,IN46556,USA.

https://doi.org/10.1016/j.physletb.2019.01.017

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

1. Introduction

The18O(p,

α

)15Nreactioninfluencestheabundancesof15N,18O and19Fisotopes[1,2],criticaltoconstrainawidevarietyofstellar

models. For example, the O isotopic ratios observed in asymp-totic giant branch (AGB) stars of different masses [3–5] can be usedto probethe nucleosynthesisandmixingprocessesin these stars.Furthermore,the18O/16Oabundanceratioiscriticalin clas-sifyingstardustoxideandsilicategrainsthatoriginallycondensed inAGB stars,supernovae, andnovae andcanbe found preserved inmeteorites [6,7]. Onestriking exampleis givenby oxygen-rich Group II grains whose experimentally measured 18O/16O ratios are significantly higher than predicted by models, and dilution withmatterofsolar compositioniscurrentlyassumedto explain thisdiscrepancy(e.g.,[8]).Alow-backgroundmeasurement ofthe

18O(p,

α

)15N reaction atenergies of astrophysical interestcan

re-sultin more accurate predictions forthe O isotopic composition andplacestrongerconstraintsonthestellarsitesfromwherethese grainsoriginate[8,9].

The18O(p,

α

)15Nreaction( Q -value

=

3

.

98 MeV)hasbeen

stud-iedusing bothdirect [10–12] and indirect[13,14] approaches.At temperaturesofastrophysicalinterest(T

=

0

.

01–1

.

00 GK),itsrate isdominatedbytheinterferenceofthree J π

=

1

/

2+resonancesat centerofmass energies Er

=

143, 610 and800 keV,respectively. Forthelattertwo resonances, resultsontheir energyandpartial widthsare largely inconsistent [14], andtensions havealso been reportedbetweenthecrosssectionofdifferentdatasetsatenergies

Ec.m.

1 MeV[14]. While theexcitation function hasbeen mea-sureddirectlytoenergiesaslowasEc.m.

=

70 keV[11],significant

uncertainties remainthat affectthe cross-sectionextrapolationto lower energies. In addition, the energy and partial widths of a

Er

=

90 keVresonancewerequestionedinrecenttheoreticalwork [15].As aconsequence,thestellar reactionratestillcontains sig-nificantuncertainties.

This letter presentsthe results of a direct underground mea-surement ofthe 18O(p,

α

)15N reaction cross-section from E

c.m.

=

340 keVdown to Ec.m.

=

55 keV,the lowestenergy measuredto date. The primary aim of the presentstudy was to measure the non-resonant componentof the crosssection ofthe 18O(p,

α

)15N

reaction at proton beamenergies from Ep

=

360 to 60 keV, ex-tending therange ofdirect measurements to energies ofinterest forintermediate andlow-mass AGB stars.We alsoaimed to de-termine,withimprovedaccuracy,thestrengthofthreeresonances ofastrophysicalinterestat Er

=

90,200,320 keV,usingthe thick-target yieldapproach, inaddition tothe Er

=

143 keV resonance strengthalreadyreported[24]. Theexperimentwas performedat the underground LUNA-400 accelerator [16,17] of the Laboratori Nazionalidel GranSasso(LNGS), Italy, within aprogram of reac-tionstudiesofhydrogenburninginadvancedCNOcycles[18–23]. Thereducedbackgroundachievedunderground[24] allowedusto measurecross-sectionsaslowas1 picobarn/srwithunprecedented precision.

2. Methodology

FulldetailsontheexperimentalsetuparereportedinRef. [24]. Briefly, a proton beam was accelerated onto solid Ta2O5 targets

enriched (98%) in 18O [26]. Targets were produced with thick-nesses corresponding to energy losses of 5 or 15 keV at proton

beam energy Ep

=

151 keV for cross-section measurements

re-spectively above and below Ep

=

103 keV. Alpha particles from the18O(p,

α

)15Nreactionweredetected atbackwardanglesusing

an array of eight silicon detectors: four placed at 135◦ with re-specttothebeamaxisandfourat102.5◦(ofthese,onlytwowere workingproperly during data taking) [24]. Protective aluminized

Mylar foils were mounted in front of each detector. Their thick-ness(5.5 μm)waschosensoastostopelasticallyscatteredprotons while atthe same time letting the alpha particles pass through withminimal energyloss (

800 keV).Typical detectionenergies wereabout

=

2

.

3 MeV,dependingontheprotonbeamenergy. For narrow and isolated resonances (as those investigated in this study), the resonance strength

ωγ

can be directly obtained fromthethick-targetyieldY as[27]:

ωγ

=

2

λ

2

eff

Y

W

η

(1)

where



eff is the effective stopping power in units of eV/(atom/

cm2);

η

isthedetectionefficiency;

λ

isthedeBrogliewavelength

oftheprojectileattheresonantenergy;andW takesintoaccount theangulardistributionattheangleofthedetector.TheW factor

(atmost20%deviationfromunityinthisstudy)wascalculated us-ingan R-matrixapproach(seelater)basedon J π valuesreported inpreviousexperimentalstudies[11,13].

At eachbeamenergy,countsinthe alphapeak wereobtained by integration [24]. The natural background (

0

.

04 counts/h/ detector) under the alpha peak of the 18O(p,

α

)15N reaction

(

2 MeV)was negligible atall beamenergies asa resultof the ten-foldbackgroundreductionachievedundergroundatthese en-ergies[24].Theonlysourceofbackgroundwasfrombeam-induced reactions ontraceboron contaminantsinthetarget givingriseto abroadfeaturearound3 MeVthroughthe11B(p,

α

)2

α

reaction.Its

contribution to the 18O(p,

α

)15N alpha peak was estimated using a linear extrapolation and found to be less than 2% atall ener-giesinvestigated here.We conservativelyassignedan asymmetric uncertaintyof

3% tothenumberofcountsinthealphapeak. 3. Results

3.1. Narrowresonances

For the Er

=

200 and 320 keV (Fig. 1 top panel) resonances we first determined the non-resonant yield contribution from a second-order polynomial fit of the data points above and below the resonanceregion,andthenaddedthe polynomialfunction to afitofthethick-targetresonanceprofile[24]:

f

(

Ep

)

=

H



1

+

exp



ER−E δL

 

1

+

exp



EER−E δR



(2)

where H istheplateauheight; ER istheresonanceenergyinthe laboratory system;

δ

L and

δ

R describe,respectively, thesteepness

of rising andfalling edges of theprofile; and

E is the energy-equivalent target thickness(in thelaboratory). Thisprocedure al-lowed us to extract the net yield Y

(

=

H

)

used to calculate the resonancestrengthaccordingtoEq. (1).

The situationwas morecomplicatedforthe Er

=

90 keV reso-nance(Fig.1bottompanel)becausedatawereacquiredon5 keV-thicktargetsforbeamenergiesEp

>

103 keVandon15 keV-thick

targets for beam energies Ep

103 keV to increase the

count-ing rate. Non-resonant yield data taken with both targets were first converted into cross-section data and these latter were fit with a single R-matrix calculation [28]. The fitted cross section was then convertedback into a yield curve in orderto establish the non-resonantyield contribution(dashedlineinFig. 1)to the thick-target resonanceyield.Afitto thethick-targetyieldplateau (solidlineinFig.1)wasfinallyperformedtoextracttheresonance strengthvalue.Notethatallfits tothick-targetyieldprofiles were

performed only on data acquired at 135◦ to minimize

system-atic uncertainties inefficiency dueto two non-workingdetectors at 102.5◦ (see[24] fordetails).

(3)

Fig. 1. Thick-targetyieldprofileoftheEr=320 keV(top)and90 keV(bottom)

reso-nancesinthe18O(p,α)15Nreaction.Theresonancestrengthwasobtainedfromafit (redcurves)totheyieldprofile(Eq. (2))takingintoaccountnon-resonant contribu-tions(dashedlines)determinedeitherfromapolynomialfit(dashedline,toppanel) orfromanR-matrixcalculation(dashedlines,bottompanel).Errorbarsshow sta-tisticaluncertainties(seeTable2).Thedifferentialyieldshownontheordinateis definedhereastheyielddividedbythesolidangle.

Table 1

Resonance energiesand strengths ωγ for the three resonancesin 18O(p,α)15Nmeasuredinthisworkandpreviously.Theuncertainty ontheresonantenergiesofthisworkcorrespondstoourbeam en-ergyresolution[29].Statistical(st)andsystematic(sy)uncertainties arereportedforthiswork.Otherworksreporttotaluncertaintiesonly.

Er[keV] ωγ[meV] Ref.

90±3 (0.16±0.05)×10−3 [11] 96.6±2.2 (0.18±0.03)×10−3 [13] 90.3±0.3 (1.57±0.14st±0.12sy)×10−3 this work 143.9±0.9 170±20 [11] 142.8±0.1 167±12 [30] 143.2±0.3 164.2±0.9st±+1211..17 sy [24] 205±1 2.3±0.6 [11] 204.7±0.3 2.37±0.12st±0.18sy this work 316±1 57±10 [11] 317.0±0.3 85±9st±7sy this work

Resonancestrengthsobtainedinthepresentstudyforallthree resonances,aswellasforthe Er

=

143 keVresonancealready re-portedinRef. [24],areshowninTable1,withuncertaintiesgiven in Table 2. The

ωγ

values for the Er

=

200 and 320 keV reso-nancesare infair agreementwithprevious determinations while thestrength ofthe Er

=

90 keVresonance isan orderof

magni-Table 2

Errorbudgetforstatistical(tailasymmetry,background sub-traction,chargeintegration)andsystematic(stoppingpower, efficiency)uncertainties.

Source Rel. uncertainty Ref.

Tail asymmetry +2.0% [24]

Background subtraction −3.0% this work

Charge integration ±2.0% [24]

Stopping power ±4.0% [31]

Efficiency ±5.5% [24]

Table 3

DatasetsincludedinourglobalR-matrixfit.

Reaction Ec.m[keV] θlab[◦] Reference

18O(p,α)15N 55–320 102.5, 135 this work

18O(p,α)15N 220–660 integrated [10]

18O(p,α)15N 70–886 90, 135 [11]

18O(p,α)15N 590–1670 several [12]

18O(p,p)18O 570–1340 90, 140 [36]

tudehigherthan previouslyreportedin Lorenz-Wirzbaet al. [11] andLa Cognataet al.[13].WenotehoweverthatinherPhDthesis [32],Lorenz-Wirzbareports

ωγ

=

2

.

1

±

0

.

6 μeVinexcellent agree-mentwithourpresentvalue.Itisunclearwhydifferentvaluesfor thisstrength appearin Refs. [11,32] but thediscrepancyis likely due to an over-estimateof the poorly-known total width

tot of

thisEr

=

90 keV resonanceinRef. [11].Inourstudywehave suf-ficientdatatofittheyield(Fig.1),andwedonotneedtoassume a

totvaluetodeterminearesonancestrength.

3.2. R-matrixanalysis

Thedifferentialcross-sectionwascalculatedfromour differen-tialyielddatapointsusingthemedianenergyapproachdescribed in Ref. [33]. More details on this deconvolution analysis can be found in Ref. [34]. Electron screening corrections (at most 20% here) based on the adiabatic limit approximation [35] were ap-pliedtoeachcross-sectiondatapoint.

Toarriveatafinal reactionrate, weperformeda global multi-channel R-matrix [28] analysis on our differential cross-sections, at both 135◦ and 102.5◦, and the most recent 18O(p,

α

)15N and

18O(p,p)18Odatasets (Table 3). The inclusion of elastic-scattering

data in the fitting procedure provides strong constraints on the

R-matrixfitssincethepoleenergies andprotonwidthsare iden-tical.However,fortheadditionaldatasetsconsideredherewehad torelyondigitizedinformationfromthe exfor database[37] be-cause original data were not available. Similarly, error bars were either unavailableorunreliable (ifobtained fromthe digitization procedure, e.g. for errors smaller than the symbol size). There-fore, the statisticaluncertainty on all data points was arbitrarily setto

±

10%unlessthedigitizeduncertainty(whereavailable)was higher. Statistical uncertainties in our cross-section data points were calculatedasa combinationinquadratureofPoisson uncer-tainty, tail asymmetry and backgroundsubtraction (see Table 2). Furthermore,the 0.3 keV uncertainty in theenergy of each data point ofthiswork was converted intoan uncertainty inthe cor-responding cross-section and added in quadrature to the other statisticaluncertainties.

Our global R-matrix fitis shown inFig. 2 with ourdata and those from Ref. [11] (top panel) inthe form of the (differential)

(4)

Fig. 2. Global R-matrixfit(solidline)showntogetherwith 18O(p,α)15N differen-tialS-factordataat135◦fromourstudyandfromRef. [11] (toppanel);andwith 18O(p,p)18Oelasticscatteringdataat140from[36] (bottompanel). Thereddashed linedintheinsetshowstheeffectofremovingthenewstateatEr=106 keV.

astrophysical S

(

E

)

factor,2 and with elastic scattering data from

Ref. [36] (bottompanel).

SometensionsbetweenourdataandthosereportedinRef. [11] atresonant energies below Ec.m.

=

170 keV (Fig. 2top panel, in-set) maybe the resultof an incorrect(in the sense ofRef. [33])

deconvolution of the median energy near the strong Er

=

143

and 90 keV resonances. This deconvolution is less problematic at higher, non-resonant energies. The tensions observed at reso-nant energies could be resolved by increasing the uncertainties in data from [11], but this strategy would result in a lower re-ducedchi-square

χ

˜

2 valuewithoutanyaddedphysicsconstraints

tothe data.Instead,we decided to discarddatafrom[11] below

Ec.m.

=

170 keV for both angles (approximately 10% of the data set).

R-matrix fits were carried out using both AZURE2 [38] and rmatrix2015 [39] independently.The R-matrixradius was set to

a

=

5fm



1

.

4fm

× (

181/3

+

11/3

)

, but we observed no signifi-cant differences using a

=

5

.

5 or 6 fm. We used a proton (al-pha) separation threshold value of Sp

=

7993

.

599

(

1

)

keV (Sα

=

4013

.

799

(

1

)

keV) [40]. Angular distribution values were taken

2 TheS(E)factorisdefinedasS(E)=σ(E)exp(2π η)E,whereσ(E)isthe reac-tioncrosssection,ηistheSommerfeldparameter,andE istheinteractionenergy [27].

Table 4

R-matrixbest-fitparametersvalues(center-of-mass):inbold-face,valuesobtained fromfitstothick-targetyields(Table1)andincludedinthe calculation,butnot optimizedbythefit.Notetheinclusionofapreviouslyunobservedresonanceat

Er=106 keVwithtentativespin-parityassignmentsinbrackets,andthepresence

ofabackgroundpoleat7MeV.Uncertainties(fromMINUIT)arestatisticalonly.The lastcolumngivestheoff-diagonalinterferencesignbetweenresonances.

E r[keV] p α Int. 1/2+ 142.8±0.3 164±12 meV 150±1 eV + 1/2+ 612.5±1.2 7.7±0.1 keV 163±1 keV − 1/2+ 799.8±0.3 24.4±0.3 keV 26.1±0.3 keV + 3/2− 597.6±0.3 36±2 eV 2.5±0.1 keV + 3/2+ 89.0±0.3 797±57 neV 121±5 eV + 5/2+ 204.7±0.3 791±56 μeV 12±1 eV + 5/2+ 317.2±0.3 28.2±2.0 meV 1.9±0.1 keV − (1/2−) 106±3 120±10 μeV 86±1.6 keV + 1/2− 7000 29±12 MeV 431±180 MeV +

from [11], except for the Er

=

90 keV resonance for which we usedmorerecentinformationin[13] instead.Inaddition,a back-ground pole [28] was also included. However, even by adding a background pole and by optimizing interference effects between resonances,we wereunable toreproducethebroadstructure ob-served around Ec.m.

=

110 keV (Fig. 2), unless by assuming the existenceofahithertounobservednewresonanceatEr

=

106 keV. This newresonance isnot incompatible withprevious datafrom Lorenz-Wirzbaet al. [11] at 135◦ (Fig. 2). Because ofourlimited angular information (detectors were placed at two angles only), wewereonlyabletotentativelyassignaspin-parityof J π

=

1

/

2− tothisnewstatebasedonthelowest

χ

˜

2 valueobtainedfromthe R-matrixfit(seebelow).

R-matrixresultswithAZURE2andrmatrix2015 werein excel-lentagreement.However,AZURE2offersthepossibilityofdefining scaling factors for each dataset that can be treated asadditional

degrees of freedom and optimized during the fitting procedure

[38].Thesescaling factorscan help attenuate systematictensions between datasets and effectively model their systematic uncer-tainty. We arbitrarily set all scaling factors to a value of

±

7%, corresponding to the total percent systematic uncertainty in our

data. Using AZURE2 with a proper normalization coefficient and

increaseduncertainties asdiscussedabove,we minimizedthe

χ

˜

2

usingtheMINUITpackageincludedinAZURE2.Best-fitparameters aregiveninTable4.

3.3. Reactionratecalculation

Recent18O(p,

α

)15Nastrophysicalreactionratesavailableinthe

literature [41,42] werecalculatedusing

RatesMC

[43],whichcan only simultaneously treat interferences betweenresonances with the same J π twoata time.However, sincethelow energycross sectionofthe18O(p,

α

)15Nreactionisdeterminedbythepresence

of three J π

=

1

/

2+ states,rates calculated with

RatesMC

have tocombinedifferentcalculationswithdifferentpairsofinterfering resonances, discarding the influence of one resonance in turn in eachcalculation.

A more accurate resultcan obtainedby fullytreating the in-terferenceeffectsofallstatessimultaneously.Tothisend,we nu-merically integratedthetotalcrosssectionobtainedwithAZURE2 using the parameters in Table 4(including the background pole) and adding the Er

=

20 keV resonance following Ref. [42]. Our recommended reaction rate, normalized to the Iliadis 2010 rate [41] (calculated with

RatesMC

), is shown in Fig. 3. Uncertain-ties werecalculated by varying theparameters in Table4 by

±

1

(5)

Fig. 3. Reactionratesforthe18O(p,α)15Nreaction,calculatedbynumerical integra-tionofthetotalcross-sectionusingtheparametersinTable4ofthiswork(black curve,dashed linesshowuncertainties),andIliadis et al.[41] (bluedashed and dottedline).Allcurvesarenormalized totheratereportedinIliadiset al.[41], cal-culatedwithRatesMC.Uncertaintiesforthislatterrateareshownasredlines.

sigmawithrespectto their central value. Tohighlightthe

differ-ence between the two approaches, we also show the rate that

wouldbe obtained by numerically integrating the cross sections calculatedwithAZURE2usingtheparametersinIliadiset al. [41]. Thisrate (blue dot-dashed line) is also normalized to the Iliadis 2010(

RatesMC

)rateinFig.3.

Thanksto theextensionofthe directdataenergyrangedown to Ec.m.

=

55 keVinthepresentstudy,andthesignificant reduc-tionoftheuncertaintyinthecross-sectionbelowEc.m.

=

340 keV, improvedconstraints arenow available forthe calculation ofthe interferenceeffects between the three J π

=

1

/

2+ resonances. In particular,attemperaturesT

<

0

.

1 GK,ourrateisuptoafactorof 2.5higherthantheIliadis2010rate(

RatesMC

),oraboutafactor of5 higher than the numericallyintegrated ratecalculated from theparametersinIliadis2010.Theuncertaintyinourreactionrate isalsoreducedbyup toanorderofmagnitudeoveran extended temperaturerange,T

=

0

.

01–1

.

0 GK.

4. Astrophysicalimplications

Thereported increase ofthe 18O(p,

α

)15Nreaction rateover a wide temperaturerange(T

=

0

.

01–1

.

0 GK) hasimplications in a numberofstellarsites.Inparticular,usingourrate,modelspredict

18O/16O ratios for oxygen-rich Group II grainslower than

previ-ously assumed[8], reinforcing the need fordilutionwith matter ofsolarcomposition to explain thediscrepancy.Fig. 4showsthe evolution of the 18O and 15N abundances during the Thermally PulsingAsymptoticGiantBranch(TP-AGB)phaseofastarwith ini-tial mass M

=

4

.

8 M andsolar-like metallicity Z

=

0

.

014, that undergoesamildHotBottomBurning(HBB)[44].Nucleosynthesis calculationsare carriedoutwithboththereaction ratepresented inthiswork(right)andinIliadis2010[41] (left).Asaresultofthe newreaction rate, the 18Omass fractionis reduced by an order

ofmagnitude,andwithsignificantlyreduceduncertainties,atthe endoftheevolutionduetotheoperationofHBBcomparedtothe previouslyadopted rate. Thisreduction isobserved onlyforstars undergoingmildHBB (T



40–60 MK),correspondingtoanarrow stellarmassrangearoundM



4

.

5–5 M,dependingonthestellar evolutioncodeused andthemetallicity. Ournewrateintroduces starsinthisnarrowmassrangeasapotentialnewsiteforthe pro-ductionofsomegrains,requiringnodilutionwithmaterialofSolar Systemcomposition.Inparticular,AGBstellarmodels[45] of5 M

Fig. 4. Evolutionof15Nand18OsurfaceabundancesduringtheentireTP-AGBphase ofastarwithinitialmassof4.8 MandsolarmetallicityZ=0.014,computedwith theCOLIBRIcode[44].PredictionsobtainedwiththeratefromIliadis2010(left) andthe newonefrom LUNA(right)areshowntogetherwiththecorresponding uncertaintyranges.

andmetallicity Z

=

0

.

03 couldproducegrainswith18O/16Odown

to5

×

10−4and17O/16O

=

1

.

7

×

10−3.Thesevaluesareveryclose tothosereportedincorundumgrainT84,an outlyingoxygen-rich Group IIgrain,having18O/16O

=

4

.

5

×

10−4,17O/16O

=

1

.

5

×

10−3, withouttheneedtoassumedilutionwithmaterialofsolar compo-sition.Dataonthealuminum isotopicratiosofthistypeofgrains isneededto confirmthisnewpossibleproductionsite. Complete astrophysicalimplicationsofCNOratesrecentlymeasuredatLUNA [18,20,21,25], includingtheratepresented here, requiremore in-depth and comprehensive astrophysical analyses that go beyond the scopeof thisLetterandwill be thesubjectofa forthcoming publication.

5. Conclusions

We reported an improved 18O(p,

α

)15N reaction measurement

extending the reach of direct measurements down to Ec.m.

=

55 keV,the lowestenergytodate,withunprecedentedprecision. Resonance energies andstrengths forkeyastrophysical statesare ingoodagreementwithpreviouswork,exceptfortheEr

=

90 keV resonance whose strength value of 1

.

57

±

0

.

14stat

±

0

.

12syst μeV

isan orderofmagnitudehigherthanpreviously reported[11,13]. A multi-channel R-matrixanalysis ofour new cross-section data and other datasets available in the literature was performed to extrapolate thecross-section to energies ofastrophysical interest. The R-matrix fit presented in this work is the first attempt, to our knowledge, at fitting all available datasets, including elastic scattering,tominimizethestatisticalandsystematicuncertainties.

Thanks to the improved constraints offered by the new

under-groundmeasurement,ourrecommended18O(p,

α

)15Nreactionrate is moreprecise than the ratepresented inRef. [41] overa wide temperaturerange(T

=

0

.

01–1

.

00 GK)ofinterestinAGBstars.In particular, ourresultsreinforce theneed toassume dilutionwith matterofsolarcompositiontoreproduceobservedabundances of mostoxygen-richGroup IIgrainsoriginatinginintermediate-mass AGB stars[8]. Forsome outlyingoxygen-rich Group II grains, the

(6)

presentratesuggestsanewpotentialproductionsiterequiringno dilutiontomatchexperimental isotopic ratios.More dataon this typeofgrainsishighlydesirable.

Theauthors acknowledgeA.I. Karakasforproviding thestellar structureofthe5 M Monashmodel,andR.J.deBoerfora digiti-zationofdatafrom[11].ThisworkwassupportedinpartbyINFN, STFCUK(grantno.ST/L005824/1),NKFIH(grantno.K120666),HAS Lendület(grantno.LP2014-17),andDFG(grantno.BE4100/4-1). C.G.B. gratefullyacknowledges the support of a SUPAShort-Term Visit Award during his stay in Brussels. P.M. acknowledges the supportfromtheERCConsolidatorGrantfundingscheme(project STARKEY,G.A.n.615604).

References

[1]M.Lugaro,etal.,Astrophys.J.615(2004)934. [2]S.Cristallo,etal.,Astron.Astrophys.540(2014)A46. [3]C.Abia,etal.,Astron.Astrophys.599(2017)A39. [4]O.Straniero,etal.,Astron.Astrophys.598(2017)A128. [5]K.Justtanont,etal.,Astron.Astrophys.578(2015)A115.

[6]E.Zinner,in:A.M.Davis(Ed.),TreatiseonGeochemistry,vol. 1,2nded., Else-vier,2014,pp. 181–213.

[7]L.P.Nittler,etal.,Astrophys.J.483(1997)475. [8]M.Lugaro,etal.,Nat.Astron.1(2017)0027. [9]S.Palmerini,etal.,Astrophys.J.764(2013)128. [10]H.-B.Mak,etal.,Nucl.Phys.A304(1978)210. [11]H.Lorenz-Wirzba,etal.,Nucl.Phys.A313(1979)346.

[12]N.S.Christensen,etal.,Nucl.Instrum.MethodsPhys.B51(1990)97. [13]M.LaCognata,etal.,Phys.Rev.Lett.101(2008)152501.

[14]M.LaCognata,C.Spitaleri,A.M.Mukhamedzhanov,Astrophys.J.723(2010) 1512.

[15]H.T.Fortune,Phys.Rev.C88(2013)015801. [16]H.Costantini,etal.,Rep.Prog.Phys.72(2009)086301.

[17]C.Broggini,D.Bemmerer,A.Caciolli,D.Trezzi,Prog.Part.Nucl.Phys.98(2018) 55.

[18]D.A.Scott,etal.,Phys.Rev.Lett.109(2012)202501. [19]A.DiLeva,etal.,Phys.Rev.C89(2014)015803. [20]F.Cavanna,etal.,Phys.Rev.Lett.115(2015)252501;

F.Cavanna,etal.,Phys.Rev.Lett.120(2018),239901(E). [21]C.G.Bruno,etal.,Phys.Rev.Lett.117(2016)142502. [22]R.Depalo,etal.,Phys.Rev.C94(2016)055804. [23]A.Boeltzig,etal.,Eur.Phys.J.A52(2016)75. [24]C.G.Bruno,etal.,Eur.Phys.J.A51(2015)94. [25]F.Ferraro,etal.,Phys.Rev.Lett.121(2018)172701. [26]A.Caciolli,etal.,Eur.Phys.J.A48(2012)144.

[27]C.Iliadis,NuclearPhysicsofStars,2ndedition,Wiley-VCH,2015. [28]P.Descouvemont,D.Baye,Rep.Prog.Phys.73(2010)036301.

[29]A.Formicola,etal.,Nucl.Instrum.MethodsPhys.A507(2003)609–616. [30]H.W.Becker,etal.,Z.Phys.A351(1995)453.

[31] J.Ziegler,SRIM2013.00,http://srim.org.

[32]H.-M.Lorenz-Wirzba,PhDthesis,WestfälischenWilhelms-Universitätzu Mün-ster,1978.

[33]C.R.Brune,D.B.Sayre,Nucl.Instrum.MethodsPhys.A698(2013)49–59. [34]C.G.Bruno,PhDthesis,TheUniversityofEdinburgh,2017.

[35]H.J.Assenbaum,K.Langanke,C.Rolfs,Z.Phys.A327(1987)461. [36]K.Yagi,J.Phys.Soc.Jpn.17 (4)(1962)604.

[37]N.Otuka,etal.,Nucl.DataSheets120(2014)272–276. [38]R.E.Azuma,etal.,Phys.Rev.C81(2010)045805.

[39]D.J.Mountford,etal.,Nucl.Instrum.MethodsA767(2014)359–363. [40]M.Wang,etal.,CPC36 (12)(2012)1603.

[41]C.Iliadis,etal.,Nucl.Phys.A841(2010)31–250. [42]A.L.Sallaska,etal.,Astrophys.J.Suppl.Ser.207 (18)(2013). [43]R.Longland,etal.,Nucl.Phys.A841(2010)1–30.

[44]P.Marigo,etal.,Mon.Not.R.Astron.Soc.434(2013)488–526. [45]A.I.Karakas,M.Lugaro,Astrophys.J.825(2016)1.

Riferimenti

Documenti correlati

Drawing on Old Institutional Economics (OIE), Burns and Scapens (2000a) recognize that demands for change can derive form intentional and rational selections of new

Kuk JL, Janiszewski PM, Ross R (2007) Body mass index and hip and thigh circumferences are negatively associated with visceral adipose tissue after control for waist

Undoubtely the gap between real and virtual tourism is unfillable, but this project aims to offer a travel experience to including not only cultural heritage strictly speaking,

coronación propiamente dicha, que se demorará hasta el siglo xii, pero la presen- cia, real –si la hubo– o simbólica –en imagen– del objeto, contribuye a afirmar el poder

E Glucose consumption per million of cells estimated in the cell-populated scaffold provided with a channel Ri /Re = 0.375 cultured in the perfused bioreactor and under

More important is the choice of an editorial line that will do its modest share to genuinely stimulate original research in the field of human diabetes and metabolism.. This may

112 subjects received CBT (consisting of 14 1-hour therapist-assisted ERP sessions), sertraline (mean dose 170 mg/day), CBT and sertraline (mean dose 133 mg/day) or placebo for

We explore two kinds of kinetic constraints which lead to the suppression or the facilitation of atomic excitations in the vicinity of atoms excited to Rydberg states.. Our