Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Improved
astrophysical
rate
for
the
18
O(p,
α
)
15
N
reaction
by underground
measurements
C.G. Bruno
a,∗
,
M. Aliotta
a,∗
,
P. Descouvemont
b,
A. Best
c,
T. Davinson
a,
D. Bemmerer
d,
A. Boeltzig
e,
f,
1,
C. Broggini
g,
A. Caciolli
h,
F. Cavanna
i,
T. Chillery
a,
G.F. Ciani
e,
P. Corvisiero
i,
j,
R. Depalo
h,
A. Di Leva
c,
Z. Elekes
k,
F. Ferraro
i,
j,
A. Formicola
f,
Zs. Fülöp
k,
G. Gervino
l,
A. Guglielmetti
m,
C. Gustavino
n,
Gy. Gyürky
k,
G. Imbriani
c,
M. Junker
f,
M. Lugaro
o,
P. Marigo
g,
h,
R. Menegazzo
h,
V. Mossa
p,
F.R. Pantaleo
p,
D. Piatti
h,
P. Prati
i,
j,
K. Stöckel
d,
q,
O. Straniero
f,
r,
F. Strieder
s,
T. Szücs
d,
k,
M.P. Takács
d,
q,
D. Trezzi
m aSUPA,SchoolofPhysicsandAstronomy,UniversityofEdinburgh,EH93FDEdinburgh,UnitedKingdombPhysiqueNucléaireThéoriqueetPhysiqueMathématique,C.P.229,UniversitéLibredeBruxelles(ULB),B1050Brussels,Belgium cUniversitàdiNapoli“FedericoII”,andINFN,SezionediNapoli,80126Napoli,Italy
dHelmholtz-ZentrumDresden-Rossendorf,BautznerLandstr.400,01328Dresden,Germany eGranSassoScienceInstitute,VialeF.Crispi7,67100L’Aquila,Italy
fINFN,LaboratoriNazionalidelGranSasso(LNGS),67100Assergi,Italy gINFN,SezionediPadova,ViaF.Marzolo8,35131Padova,Italy
hUniversitàdegliStudidiPadovaandINFN,SezionediPadova,ViaF.Marzolo8,35131Padova,Italy iINFN,SezionediGenova,ViaDodecaneso33,16146Genova,Italy
jUniversitàdegliStudidiGenova,ViaDodecaneso33,16146Genova,Italy
kInstituteforNuclearResearch(MTAATOMKI),POBox51,HU-4001Debrecen,Hungary lUniversitàdegliStudidiTorinoandINFN,SezionediTorino,ViaP.Giuria1,10125Torino,Italy mUniversitàdegliStudidiMilanoandINFN,SezionediMilano,ViaG.Celoria16,20133Milano,Italy nINFN,SezionediRoma,PiazzaleA.Moro2,00185Roma,Italy
oKonkolyObservatory,ResearchCentreforAstronomyandEarthSciences,HungarianAcademyofSciences,1121Budapest,Hungary pUniversitàdegliStudidiBariandINFN,SezionediBari,70125Bari,Italy
qTechnischeUniversitätDresden,InstitutfürKern- undTeilchenphysik,ZellescherWeg19,01069Dresden,Germany rOsservatorioAstronomicodiCollurania,Teramo,andINFN,SezionediNapoli,80126Napoli,Italy
sSouthDakotaSchoolofMines&Technology,501E.SaintJosephSt.,SD57701, USA
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory:
Received23November2018
Receivedinrevisedform9January2019 Accepted11January2019
Availableonline17January2019 Editor:W.Haxton
Keywords:
Stellarhydrogenburning Hydrostaticstellarnucleosynthesis
The18O(p,
α
)15Nreactionaffects thesynthesisof15N,18Oand19Fisotopes, whoseabundancescanbe usedtoprobethenucleosynthesisandmixingprocessesoccurringdeepinsideasymptoticgiantbranch (AGB) stars. We performedalow-background direct measurement ofthe 18O(p,α
)15N reactioncross-section atthe Laboratory for Underground Nuclear Astrophysics (LUNA) from center of mass energy
Ec.m.=340 keV down to Ec.m.=55 keV, the lowest energy measured to date corresponding to a
cross-section of less than 1 picobarn/sr. The strength of a key resonance at center of mass energy
Er=90 keVwasfoundtobeafactorof10higherthanpreviouslyreported.Amulti-channel R-matrix
analysisofourandotherdataavailableintheliteraturewasperformed.Overawidetemperaturerange,
T=0.01–1.00 GK,ournewastrophysicalrateisbothmoreaccurateandprecisethanrecentevaluations. StrongerconstraintscannowbeplacedonthephysicalprocessescontrollingnucleosynthesisinAGBstars withinterestingconsequencesontheabundanceof18Ointhesestarsandinstardustgrains,specifically
ontheproductionsitesofoxygen-richGroup IIgrains.
©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
*
Correspondingauthors.E-mailaddresses:[email protected](C.G. Bruno),[email protected](M. Aliotta).
1 Currentaddress:UniversityofNotreDame,DepartmentofPhysics,225NieuwlandScienceHall,NotreDame,IN46556,USA.
https://doi.org/10.1016/j.physletb.2019.01.017
0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
1. Introduction
The18O(p,
α
)15Nreactioninfluencestheabundancesof15N,18O and19Fisotopes[1,2],criticaltoconstrainawidevarietyofstellarmodels. For example, the O isotopic ratios observed in asymp-totic giant branch (AGB) stars of different masses [3–5] can be usedto probethe nucleosynthesisandmixingprocessesin these stars.Furthermore,the18O/16Oabundanceratioiscriticalin clas-sifyingstardustoxideandsilicategrainsthatoriginallycondensed inAGB stars,supernovae, andnovae andcanbe found preserved inmeteorites [6,7]. Onestriking exampleis givenby oxygen-rich Group II grains whose experimentally measured 18O/16O ratios are significantly higher than predicted by models, and dilution withmatterofsolar compositioniscurrentlyassumedto explain thisdiscrepancy(e.g.,[8]).Alow-backgroundmeasurement ofthe
18O(p,
α
)15N reaction atenergies of astrophysical interestcanre-sultin more accurate predictions forthe O isotopic composition andplacestrongerconstraintsonthestellarsitesfromwherethese grainsoriginate[8,9].
The18O(p,
α
)15Nreaction( Q -value=
3.
98 MeV)hasbeenstud-iedusing bothdirect [10–12] and indirect[13,14] approaches.At temperaturesofastrophysicalinterest(T
=
0.
01–1.
00 GK),itsrate isdominatedbytheinterferenceofthree J π=
1/
2+resonancesat centerofmass energies Er=
143, 610 and800 keV,respectively. Forthelattertwo resonances, resultsontheir energyandpartial widthsare largely inconsistent [14], andtensions havealso been reportedbetweenthecrosssectionofdifferentdatasetsatenergiesEc.m.
≤
1 MeV[14]. While theexcitation function hasbeen mea-sureddirectlytoenergiesaslowasEc.m.=
70 keV[11],significantuncertainties remainthat affectthe cross-sectionextrapolationto lower energies. In addition, the energy and partial widths of a
Er
=
90 keVresonancewerequestionedinrecenttheoreticalwork [15].As aconsequence,thestellar reactionratestillcontains sig-nificantuncertainties.This letter presentsthe results of a direct underground mea-surement ofthe 18O(p,
α
)15N reaction cross-section from Ec.m.
=
340 keVdown to Ec.m.
=
55 keV,the lowestenergy measuredto date. The primary aim of the presentstudy was to measure the non-resonant componentof the crosssection ofthe 18O(p,α
)15Nreaction at proton beamenergies from Ep
=
360 to 60 keV, ex-tending therange ofdirect measurements to energies ofinterest forintermediate andlow-mass AGB stars.We alsoaimed to de-termine,withimprovedaccuracy,thestrengthofthreeresonances ofastrophysicalinterestat Er=
90,200,320 keV,usingthe thick-target yieldapproach, inaddition tothe Er=
143 keV resonance strengthalreadyreported[24]. Theexperimentwas performedat the underground LUNA-400 accelerator [16,17] of the Laboratori Nazionalidel GranSasso(LNGS), Italy, within aprogram of reac-tionstudiesofhydrogenburninginadvancedCNOcycles[18–23]. Thereducedbackgroundachievedunderground[24] allowedusto measurecross-sectionsaslowas1 picobarn/srwithunprecedented precision.2. Methodology
FulldetailsontheexperimentalsetuparereportedinRef. [24]. Briefly, a proton beam was accelerated onto solid Ta2O5 targets
enriched (98%) in 18O [26]. Targets were produced with thick-nesses corresponding to energy losses of 5 or 15 keV at proton
beam energy Ep
=
151 keV for cross-section measurementsre-spectively above and below Ep
=
103 keV. Alpha particles from the18O(p,α
)15Nreactionweredetected atbackwardanglesusingan array of eight silicon detectors: four placed at 135◦ with re-specttothebeamaxisandfourat102.5◦(ofthese,onlytwowere workingproperly during data taking) [24]. Protective aluminized
Mylar foils were mounted in front of each detector. Their thick-ness(5.5 μm)waschosensoastostopelasticallyscatteredprotons while atthe same time letting the alpha particles pass through withminimal energyloss (
≈
800 keV).Typical detectionenergies wereaboutEα=
2.
3 MeV,dependingontheprotonbeamenergy. For narrow and isolated resonances (as those investigated in this study), the resonance strengthωγ
can be directly obtained fromthethick-targetyieldY as[27]:ωγ
=
2λ
2eff
YW
η
(1)where
eff is the effective stopping power in units of eV/(atom/
cm2);
η
isthedetectionefficiency;λ
isthedeBrogliewavelengthoftheprojectileattheresonantenergy;andW takesintoaccount theangulardistributionattheangleofthedetector.TheW factor
(atmost20%deviationfromunityinthisstudy)wascalculated us-ingan R-matrixapproach(seelater)basedon J π valuesreported inpreviousexperimentalstudies[11,13].
At eachbeamenergy,countsinthe alphapeak wereobtained by integration [24]. The natural background (
≈
0.
04 counts/h/ detector) under the alpha peak of the 18O(p,α
)15N reaction(
∼
2 MeV)was negligible atall beamenergies asa resultof the ten-foldbackgroundreductionachievedundergroundatthese en-ergies[24].Theonlysourceofbackgroundwasfrombeam-induced reactions ontraceboron contaminantsinthetarget givingriseto abroadfeaturearound3 MeVthroughthe11B(p,α
)2α
reaction.Itscontribution to the 18O(p,
α
)15N alpha peak was estimated using a linear extrapolation and found to be less than 2% atall ener-giesinvestigated here.We conservativelyassignedan asymmetric uncertaintyof−
3% tothenumberofcountsinthealphapeak. 3. Results3.1. Narrowresonances
For the Er
=
200 and 320 keV (Fig. 1 top panel) resonances we first determined the non-resonant yield contribution from a second-order polynomial fit of the data points above and below the resonanceregion,andthenaddedthe polynomialfunction to afitofthethick-targetresonanceprofile[24]:f
(
Ep)
=
H 1+
exp ER−E δL1
+
exp E−ER−E δR (2)where H istheplateauheight; ER istheresonanceenergyinthe laboratory system;
δ
L andδ
R describe,respectively, thesteepnessof rising andfalling edges of theprofile; and
E is the energy-equivalent target thickness(in thelaboratory). Thisprocedure al-lowed us to extract the net yield Y
(
=
H)
used to calculate the resonancestrengthaccordingtoEq. (1).The situationwas morecomplicatedforthe Er
=
90 keV reso-nance(Fig.1bottompanel)becausedatawereacquiredon5 keV-thicktargetsforbeamenergiesEp>
103 keVandon15 keV-thicktargets for beam energies Ep
≤
103 keV to increase thecount-ing rate. Non-resonant yield data taken with both targets were first converted into cross-section data and these latter were fit with a single R-matrix calculation [28]. The fitted cross section was then convertedback into a yield curve in orderto establish the non-resonantyield contribution(dashedlineinFig. 1)to the thick-target resonanceyield.Afitto thethick-targetyieldplateau (solidlineinFig.1)wasfinallyperformedtoextracttheresonance strengthvalue.Notethatallfits tothick-targetyieldprofiles were
performed only on data acquired at 135◦ to minimize
system-atic uncertainties inefficiency dueto two non-workingdetectors at 102.5◦ (see[24] fordetails).
Fig. 1. Thick-targetyieldprofileoftheEr=320 keV(top)and90 keV(bottom)
reso-nancesinthe18O(p,α)15Nreaction.Theresonancestrengthwasobtainedfromafit (redcurves)totheyieldprofile(Eq. (2))takingintoaccountnon-resonant contribu-tions(dashedlines)determinedeitherfromapolynomialfit(dashedline,toppanel) orfromanR-matrixcalculation(dashedlines,bottompanel).Errorbarsshow sta-tisticaluncertainties(seeTable2).Thedifferentialyieldshownontheordinateis definedhereastheyielddividedbythesolidangle.
Table 1
Resonance energiesand strengths ωγ for the three resonancesin 18O(p,α)15Nmeasuredinthisworkandpreviously.Theuncertainty ontheresonantenergiesofthisworkcorrespondstoourbeam en-ergyresolution[29].Statistical(st)andsystematic(sy)uncertainties arereportedforthiswork.Otherworksreporttotaluncertaintiesonly.
Er[keV] ωγ[meV] Ref.
90±3 (0.16±0.05)×10−3 [11] 96.6±2.2 (0.18±0.03)×10−3 [13] 90.3±0.3 (1.57±0.14st±0.12sy)×10−3 this work 143.9±0.9 170±20 [11] 142.8±0.1 167±12 [30] 143.2±0.3 164.2±0.9st±+−1211..17 sy [24] 205±1 2.3±0.6 [11] 204.7±0.3 2.37±0.12st±0.18sy this work 316±1 57±10 [11] 317.0±0.3 85±9st±7sy this work
Resonancestrengthsobtainedinthepresentstudyforallthree resonances,aswellasforthe Er
=
143 keVresonancealready re-portedinRef. [24],areshowninTable1,withuncertaintiesgiven in Table 2. Theωγ
values for the Er=
200 and 320 keV reso-nancesare infair agreementwithprevious determinations while thestrength ofthe Er=
90 keVresonance isan orderofmagni-Table 2
Errorbudgetforstatistical(tailasymmetry,background sub-traction,chargeintegration)andsystematic(stoppingpower, efficiency)uncertainties.
Source Rel. uncertainty Ref.
Tail asymmetry +2.0% [24]
Background subtraction −3.0% this work
Charge integration ±2.0% [24]
Stopping power ±4.0% [31]
Efficiency ±5.5% [24]
Table 3
DatasetsincludedinourglobalR-matrixfit.
Reaction Ec.m[keV] θlab[◦] Reference
18O(p,α)15N 55–320 102.5, 135 this work
18O(p,α)15N 220–660 integrated [10]
18O(p,α)15N 70–886 90, 135 [11]
18O(p,α)15N 590–1670 several [12]
18O(p,p)18O 570–1340 90, 140 [36]
tudehigherthan previouslyreportedin Lorenz-Wirzbaet al. [11] andLa Cognataet al.[13].WenotehoweverthatinherPhDthesis [32],Lorenz-Wirzbareports
ωγ
=
2.
1±
0.
6 μeVinexcellent agree-mentwithourpresentvalue.Itisunclearwhydifferentvaluesfor thisstrength appearin Refs. [11,32] but thediscrepancyis likely due to an over-estimateof the poorly-known total widthtot of
thisEr
=
90 keV resonanceinRef. [11].Inourstudywehave suf-ficientdatatofittheyield(Fig.1),andwedonotneedtoassume atotvaluetodeterminearesonancestrength.
3.2. R-matrixanalysis
Thedifferentialcross-sectionwascalculatedfromour differen-tialyielddatapointsusingthemedianenergyapproachdescribed in Ref. [33]. More details on this deconvolution analysis can be found in Ref. [34]. Electron screening corrections (at most 20% here) based on the adiabatic limit approximation [35] were ap-pliedtoeachcross-sectiondatapoint.
Toarriveatafinal reactionrate, weperformeda global multi-channel R-matrix [28] analysis on our differential cross-sections, at both 135◦ and 102.5◦, and the most recent 18O(p,
α
)15N and18O(p,p)18Odatasets (Table 3). The inclusion of elastic-scattering
data in the fitting procedure provides strong constraints on the
R-matrixfitssincethepoleenergies andprotonwidthsare iden-tical.However,fortheadditionaldatasetsconsideredherewehad torelyondigitizedinformationfromthe exfor database[37] be-cause original data were not available. Similarly, error bars were either unavailableorunreliable (ifobtained fromthe digitization procedure, e.g. for errors smaller than the symbol size). There-fore, the statisticaluncertainty on all data points was arbitrarily setto
±
10%unlessthedigitizeduncertainty(whereavailable)was higher. Statistical uncertainties in our cross-section data points were calculatedasa combinationinquadratureofPoisson uncer-tainty, tail asymmetry and backgroundsubtraction (see Table 2). Furthermore,the 0.3 keV uncertainty in theenergy of each data point ofthiswork was converted intoan uncertainty inthe cor-responding cross-section and added in quadrature to the other statisticaluncertainties.Our global R-matrix fitis shown inFig. 2 with ourdata and those from Ref. [11] (top panel) inthe form of the (differential)
Fig. 2. Global R-matrixfit(solidline)showntogetherwith 18O(p,α)15N differen-tialS-factordataat135◦fromourstudyandfromRef. [11] (toppanel);andwith 18O(p,p)18Oelasticscatteringdataat140◦from[36] (bottompanel). Thereddashed linedintheinsetshowstheeffectofremovingthenewstateatEr=106 keV.
astrophysical S
(
E)
factor,2 and with elastic scattering data fromRef. [36] (bottompanel).
SometensionsbetweenourdataandthosereportedinRef. [11] atresonant energies below Ec.m.
=
170 keV (Fig. 2top panel, in-set) maybe the resultof an incorrect(in the sense ofRef. [33])deconvolution of the median energy near the strong Er
=
143and 90 keV resonances. This deconvolution is less problematic at higher, non-resonant energies. The tensions observed at reso-nant energies could be resolved by increasing the uncertainties in data from [11], but this strategy would result in a lower re-ducedchi-square
χ
˜
2 valuewithoutanyaddedphysicsconstraintstothe data.Instead,we decided to discarddatafrom[11] below
Ec.m.
=
170 keV for both angles (approximately 10% of the data set).R-matrix fits were carried out using both AZURE2 [38] and rmatrix2015 [39] independently.The R-matrixradius was set to
a
=
5fm1.
4fm× (
181/3+
11/3)
, but we observed no signifi-cant differences using a=
5.
5 or 6 fm. We used a proton (al-pha) separation threshold value of Sp=
7993.
599(
1)
keV (Sα=
4013.
799(
1)
keV) [40]. Angular distribution values were taken2 TheS(E)factorisdefinedasS(E)=σ(E)exp(2π η)E,whereσ(E)isthe reac-tioncrosssection,ηistheSommerfeldparameter,andE istheinteractionenergy [27].
Table 4
R-matrixbest-fitparametersvalues(center-of-mass):inbold-face,valuesobtained fromfitstothick-targetyields(Table1)andincludedinthe calculation,butnot optimizedbythefit.Notetheinclusionofapreviouslyunobservedresonanceat
Er=106 keVwithtentativespin-parityassignmentsinbrackets,andthepresence
ofabackgroundpoleat7MeV.Uncertainties(fromMINUIT)arestatisticalonly.The lastcolumngivestheoff-diagonalinterferencesignbetweenresonances.
Jπ E r[keV] p α Int. 1/2+ 142.8±0.3 164±12 meV 150±1 eV + 1/2+ 612.5±1.2 7.7±0.1 keV 163±1 keV − 1/2+ 799.8±0.3 24.4±0.3 keV 26.1±0.3 keV + 3/2− 597.6±0.3 36±2 eV 2.5±0.1 keV + 3/2+ 89.0±0.3 797±57 neV 121±5 eV + 5/2+ 204.7±0.3 791±56 μeV 12±1 eV + 5/2+ 317.2±0.3 28.2±2.0 meV 1.9±0.1 keV − (1/2−) 106±3 120±10 μeV 86±1.6 keV + 1/2− 7000 29±12 MeV 431±180 MeV +
from [11], except for the Er
=
90 keV resonance for which we usedmorerecentinformationin[13] instead.Inaddition,a back-ground pole [28] was also included. However, even by adding a background pole and by optimizing interference effects between resonances,we wereunable toreproducethebroadstructure ob-served around Ec.m.=
110 keV (Fig. 2), unless by assuming the existenceofahithertounobservednewresonanceatEr=
106 keV. This newresonance isnot incompatible withprevious datafrom Lorenz-Wirzbaet al. [11] at 135◦ (Fig. 2). Because ofourlimited angular information (detectors were placed at two angles only), wewereonlyabletotentativelyassignaspin-parityof J π=
1/
2− tothisnewstatebasedonthelowestχ
˜
2 valueobtainedfromthe R-matrixfit(seebelow).R-matrixresultswithAZURE2andrmatrix2015 werein excel-lentagreement.However,AZURE2offersthepossibilityofdefining scaling factors for each dataset that can be treated asadditional
degrees of freedom and optimized during the fitting procedure
[38].Thesescaling factorscan help attenuate systematictensions between datasets and effectively model their systematic uncer-tainty. We arbitrarily set all scaling factors to a value of
±
7%, corresponding to the total percent systematic uncertainty in ourdata. Using AZURE2 with a proper normalization coefficient and
increaseduncertainties asdiscussedabove,we minimizedthe
χ
˜
2usingtheMINUITpackageincludedinAZURE2.Best-fitparameters aregiveninTable4.
3.3. Reactionratecalculation
Recent18O(p,
α
)15Nastrophysicalreactionratesavailableintheliterature [41,42] werecalculatedusing
RatesMC
[43],whichcan only simultaneously treat interferences betweenresonances with the same J π twoata time.However, sincethelow energycross sectionofthe18O(p,α
)15Nreactionisdeterminedbythepresenceof three J π
=
1/
2+ states,rates calculated withRatesMC
have tocombinedifferentcalculationswithdifferentpairsofinterfering resonances, discarding the influence of one resonance in turn in eachcalculation.A more accurate resultcan obtainedby fullytreating the in-terferenceeffectsofallstatessimultaneously.Tothisend,we nu-merically integratedthetotalcrosssectionobtainedwithAZURE2 using the parameters in Table 4(including the background pole) and adding the Er
=
20 keV resonance following Ref. [42]. Our recommended reaction rate, normalized to the Iliadis 2010 rate [41] (calculated withRatesMC
), is shown in Fig. 3. Uncertain-ties werecalculated by varying theparameters in Table4 by±
1Fig. 3. Reactionratesforthe18O(p,α)15Nreaction,calculatedbynumerical integra-tionofthetotalcross-sectionusingtheparametersinTable4ofthiswork(black curve,dashed linesshowuncertainties),andIliadis et al.[41] (bluedashed and dottedline).Allcurvesarenormalized totheratereportedinIliadiset al.[41], cal-culatedwithRatesMC.Uncertaintiesforthislatterrateareshownasredlines.
sigmawithrespectto their central value. Tohighlightthe
differ-ence between the two approaches, we also show the rate that
wouldbe obtained by numerically integrating the cross sections calculatedwithAZURE2usingtheparametersinIliadiset al. [41]. Thisrate (blue dot-dashed line) is also normalized to the Iliadis 2010(
RatesMC
)rateinFig.3.Thanksto theextensionofthe directdataenergyrangedown to Ec.m.
=
55 keVinthepresentstudy,andthesignificant reduc-tionoftheuncertaintyinthecross-sectionbelowEc.m.=
340 keV, improvedconstraints arenow available forthe calculation ofthe interferenceeffects between the three J π=
1/
2+ resonances. In particular,attemperaturesT<
0.
1 GK,ourrateisuptoafactorof 2.5higherthantheIliadis2010rate(RatesMC
),oraboutafactor of5 higher than the numericallyintegrated ratecalculated from theparametersinIliadis2010.Theuncertaintyinourreactionrate isalsoreducedbyup toanorderofmagnitudeoveran extended temperaturerange,T=
0.
01–1.
0 GK.4. Astrophysicalimplications
Thereported increase ofthe 18O(p,
α
)15Nreaction rateover a wide temperaturerange(T=
0.
01–1.
0 GK) hasimplications in a numberofstellarsites.Inparticular,usingourrate,modelspredict18O/16O ratios for oxygen-rich Group II grainslower than
previ-ously assumed[8], reinforcing the need fordilutionwith matter ofsolarcomposition to explain thediscrepancy.Fig. 4showsthe evolution of the 18O and 15N abundances during the Thermally PulsingAsymptoticGiantBranch(TP-AGB)phaseofastarwith ini-tial mass M
=
4.
8 M andsolar-like metallicity Z=
0.
014, that undergoesamildHotBottomBurning(HBB)[44].Nucleosynthesis calculationsare carriedoutwithboththereaction ratepresented inthiswork(right)andinIliadis2010[41] (left).Asaresultofthe newreaction rate, the 18Omass fractionis reduced by an orderofmagnitude,andwithsignificantlyreduceduncertainties,atthe endoftheevolutionduetotheoperationofHBBcomparedtothe previouslyadopted rate. Thisreduction isobserved onlyforstars undergoingmildHBB (T
40–60 MK),correspondingtoanarrow stellarmassrangearoundM4.
5–5 M,dependingonthestellar evolutioncodeused andthemetallicity. Ournewrateintroduces starsinthisnarrowmassrangeasapotentialnewsiteforthe pro-ductionofsomegrains,requiringnodilutionwithmaterialofSolar Systemcomposition.Inparticular,AGBstellarmodels[45] of5 MFig. 4. Evolutionof15Nand18OsurfaceabundancesduringtheentireTP-AGBphase ofastarwithinitialmassof4.8 MandsolarmetallicityZ=0.014,computedwith theCOLIBRIcode[44].PredictionsobtainedwiththeratefromIliadis2010(left) andthe newonefrom LUNA(right)areshowntogetherwiththecorresponding uncertaintyranges.
andmetallicity Z
=
0.
03 couldproducegrainswith18O/16Odownto5
×
10−4and17O/16O=
1.
7×
10−3.Thesevaluesareveryclose tothosereportedincorundumgrainT84,an outlyingoxygen-rich Group IIgrain,having18O/16O=
4.
5×
10−4,17O/16O=
1.
5×
10−3, withouttheneedtoassumedilutionwithmaterialofsolar compo-sition.Dataonthealuminum isotopicratiosofthistypeofgrains isneededto confirmthisnewpossibleproductionsite. Complete astrophysicalimplicationsofCNOratesrecentlymeasuredatLUNA [18,20,21,25], includingtheratepresented here, requiremore in-depth and comprehensive astrophysical analyses that go beyond the scopeof thisLetterandwill be thesubjectofa forthcoming publication.5. Conclusions
We reported an improved 18O(p,
α
)15N reaction measurementextending the reach of direct measurements down to Ec.m.
=
55 keV,the lowestenergytodate,withunprecedentedprecision. Resonance energies andstrengths forkeyastrophysical statesare ingoodagreementwithpreviouswork,exceptfortheEr
=
90 keV resonance whose strength value of 1.
57±
0.
14stat±
0.
12syst μeVisan orderofmagnitudehigherthanpreviously reported[11,13]. A multi-channel R-matrixanalysis ofour new cross-section data and other datasets available in the literature was performed to extrapolate thecross-section to energies ofastrophysical interest. The R-matrix fit presented in this work is the first attempt, to our knowledge, at fitting all available datasets, including elastic scattering,tominimizethestatisticalandsystematicuncertainties.
Thanks to the improved constraints offered by the new
under-groundmeasurement,ourrecommended18O(p,
α
)15Nreactionrate is moreprecise than the ratepresented inRef. [41] overa wide temperaturerange(T=
0.
01–1.
00 GK)ofinterestinAGBstars.In particular, ourresultsreinforce theneed toassume dilutionwith matterofsolarcompositiontoreproduceobservedabundances of mostoxygen-richGroup IIgrainsoriginatinginintermediate-mass AGB stars[8]. Forsome outlyingoxygen-rich Group II grains, thepresentratesuggestsanewpotentialproductionsiterequiringno dilutiontomatchexperimental isotopic ratios.More dataon this typeofgrainsishighlydesirable.
Theauthors acknowledgeA.I. Karakasforproviding thestellar structureofthe5 M Monashmodel,andR.J.deBoerfora digiti-zationofdatafrom[11].ThisworkwassupportedinpartbyINFN, STFCUK(grantno.ST/L005824/1),NKFIH(grantno.K120666),HAS Lendület(grantno.LP2014-17),andDFG(grantno.BE4100/4-1). C.G.B. gratefullyacknowledges the support of a SUPAShort-Term Visit Award during his stay in Brussels. P.M. acknowledges the supportfromtheERCConsolidatorGrantfundingscheme(project STARKEY,G.A.n.615604).
References
[1]M.Lugaro,etal.,Astrophys.J.615(2004)934. [2]S.Cristallo,etal.,Astron.Astrophys.540(2014)A46. [3]C.Abia,etal.,Astron.Astrophys.599(2017)A39. [4]O.Straniero,etal.,Astron.Astrophys.598(2017)A128. [5]K.Justtanont,etal.,Astron.Astrophys.578(2015)A115.
[6]E.Zinner,in:A.M.Davis(Ed.),TreatiseonGeochemistry,vol. 1,2nded., Else-vier,2014,pp. 181–213.
[7]L.P.Nittler,etal.,Astrophys.J.483(1997)475. [8]M.Lugaro,etal.,Nat.Astron.1(2017)0027. [9]S.Palmerini,etal.,Astrophys.J.764(2013)128. [10]H.-B.Mak,etal.,Nucl.Phys.A304(1978)210. [11]H.Lorenz-Wirzba,etal.,Nucl.Phys.A313(1979)346.
[12]N.S.Christensen,etal.,Nucl.Instrum.MethodsPhys.B51(1990)97. [13]M.LaCognata,etal.,Phys.Rev.Lett.101(2008)152501.
[14]M.LaCognata,C.Spitaleri,A.M.Mukhamedzhanov,Astrophys.J.723(2010) 1512.
[15]H.T.Fortune,Phys.Rev.C88(2013)015801. [16]H.Costantini,etal.,Rep.Prog.Phys.72(2009)086301.
[17]C.Broggini,D.Bemmerer,A.Caciolli,D.Trezzi,Prog.Part.Nucl.Phys.98(2018) 55.
[18]D.A.Scott,etal.,Phys.Rev.Lett.109(2012)202501. [19]A.DiLeva,etal.,Phys.Rev.C89(2014)015803. [20]F.Cavanna,etal.,Phys.Rev.Lett.115(2015)252501;
F.Cavanna,etal.,Phys.Rev.Lett.120(2018),239901(E). [21]C.G.Bruno,etal.,Phys.Rev.Lett.117(2016)142502. [22]R.Depalo,etal.,Phys.Rev.C94(2016)055804. [23]A.Boeltzig,etal.,Eur.Phys.J.A52(2016)75. [24]C.G.Bruno,etal.,Eur.Phys.J.A51(2015)94. [25]F.Ferraro,etal.,Phys.Rev.Lett.121(2018)172701. [26]A.Caciolli,etal.,Eur.Phys.J.A48(2012)144.
[27]C.Iliadis,NuclearPhysicsofStars,2ndedition,Wiley-VCH,2015. [28]P.Descouvemont,D.Baye,Rep.Prog.Phys.73(2010)036301.
[29]A.Formicola,etal.,Nucl.Instrum.MethodsPhys.A507(2003)609–616. [30]H.W.Becker,etal.,Z.Phys.A351(1995)453.
[31] J.Ziegler,SRIM2013.00,http://srim.org.
[32]H.-M.Lorenz-Wirzba,PhDthesis,WestfälischenWilhelms-Universitätzu Mün-ster,1978.
[33]C.R.Brune,D.B.Sayre,Nucl.Instrum.MethodsPhys.A698(2013)49–59. [34]C.G.Bruno,PhDthesis,TheUniversityofEdinburgh,2017.
[35]H.J.Assenbaum,K.Langanke,C.Rolfs,Z.Phys.A327(1987)461. [36]K.Yagi,J.Phys.Soc.Jpn.17 (4)(1962)604.
[37]N.Otuka,etal.,Nucl.DataSheets120(2014)272–276. [38]R.E.Azuma,etal.,Phys.Rev.C81(2010)045805.
[39]D.J.Mountford,etal.,Nucl.Instrum.MethodsA767(2014)359–363. [40]M.Wang,etal.,CPC36 (12)(2012)1603.
[41]C.Iliadis,etal.,Nucl.Phys.A841(2010)31–250. [42]A.L.Sallaska,etal.,Astrophys.J.Suppl.Ser.207 (18)(2013). [43]R.Longland,etal.,Nucl.Phys.A841(2010)1–30.
[44]P.Marigo,etal.,Mon.Not.R.Astron.Soc.434(2013)488–526. [45]A.I.Karakas,M.Lugaro,Astrophys.J.825(2016)1.