• Non ci sono risultati.

Close encounter characterisation and deflection design for planetary protection and defence

N/A
N/A
Protected

Academic year: 2021

Condividi "Close encounter characterisation and deflection design for planetary protection and defence"

Copied!
31
0
0

Testo completo

(1)

Close encounter characterisation and deflection

design for planetary protection and defence

Camilla Colombo, Matteo Romano, Mathieu Petit

(2)
(3)

Reach, control operational orbit

Introduction

WE NEED SPACE Traditional approach: counteract perturbations APPROACH

leverage and control

perturbations Services, technologies,

science, space exploration

Space debris Asteroids.

planetary protection

ORBIT PERTURBATIONS

Reduce extremely high

space mission costs especially for small satellites

Create new opportunities for exploration, exploitation and planetary protection

Mitigate space debris

SP ACE SIT UA TIO N A W AR EN ES S SP ACE T RA NS FER

๏‚ง Complex orbital dynamics ๏‚ง Increase fuel requirements

(4)

Introduction

โ€ข On average a 10-km-sized asteroid strikes the Earth every 30-50 million years

(globally catastrophic effects). Tunguska class (100 m in size) asteroid impact every 100 years (locally devastating effects)

โ€ข Near Earth Asteroids can be a threat but also an opportunity for science and

material utilisation

โ€ข This is enables by mission to asteroids and demonstration mission for asteroid

deflection

Asteroid missions and asteroid deflection

Tunguska, Siberia (1908), flattening 2000 km2 of forest, 50-70 m asteroid Chelyabinsk, Russia (2013), 17-30 m diameter asteroid Asteroid manipulation

(5)

Introduction

โ€ข Humans now routinely venture beyond Earth and send spacecraft to explore

other planets.

โ€ข With this extraordinary ability comes great responsibility: do not introduce

terrestrial biological contamination to other planets and moons that have potential for past or present life

โ€ข For interplanetary missions and missions at Libration Point Orbit, planetary

protection analysis need to be performed

Planetary protection

Breakup of the object WT110F during re-entry (November 2015)

Planetary protection verification

(6)
(7)

For interplanetary missions and missions at Libration Point Orbit, planetary

protection analysis need to be performed (Forward contamination)

๏‚ง Ensure that the impact probability of spacecraft and upper stages with planets

and moons over 50-100 years is below the required threshold with a give

confidence level.

๏‚ง Compliance with requirements should be verified for

โ€ข The nominal trajectory

โ€ข Considering on-board failures

โ€ข Considering uncertainties on orbit injection, s/c parameters or physical

environment

Introduction

Planetary protection requirements for forward contamination

๏ƒ˜ G. Kminek. ESA planetary protection requirements. Technical Report ESSB-ST-U-001, European Space

(8)

Introduction

Nov. 13, 2015: โ€œWT1190F Safely Re-enters Earthโ€™s Atmosphereโ€

๏ƒ˜

(9)

SNAPPshot

Monte Carlo

initialisation propagationTrajectory analysisB-plane

Input:

Uncertainty distribution Planetary protection requirement: max impact prob. and confidence level

Number of MC runs

Initial conditions Trajectory propagation

Number of impacts Increase number of runs Output and graphics YES NO planetary Verify protection requiremen ts

Suite for Numerical Analysis of Planetary Protection

๏ƒ˜ Colombo C., Letizia F., Van den Eynde J., R., Jehn, โ€œSNAPPSHOT: ESA planetary

(10)

Uncertainties

๏‚ง Dispersion of the initial condition due to launcher inaccuracy

Input: 6 x 6 Covariance matrix describing the dispersion of the escape velocity and position of injection

๏‚ง Failure of the propulsion system

Input: random failure time within a time interval

๏‚ง Uncertainty on spacecraft parameters (e.g. unknown area-to-mass ratio)

Input: Distribution can be selected (e.g., uniform, triangular, etc.) Planetary protection

Input: impact probability (p) and confidence (ฮฑ)

Output: minimum number of required MC runs (n)

Monte Carlo initialisation

Inputs

(11)

B-plane

Plane orthogonal to the object

planetocentric velocity when the object

enters the planetโ€™s sphere of influence

๏‚ง ฮท-axis: parallel to the relative

velocity ๐‘ผ๐‘ผ

๏‚ง ๐œ๐œ-axis points in the opposite

direction as the projection of the planetโ€™s velocity vector on the

b-plane: time shift at close approach

๏‚ง ๐œ‰๐œ‰-axis completes the right-handed

reference frame: geometrical MOID

Definition

๏‚ง

Intersection of the

incoming

asymptote

and the b-plane:

๐’ƒ๐’ƒ =

impact parameter

(12)

๏‚ง Circle on the b-plane

๏‚ง Requirement: Tisserand criterion < 3

๏‚ง Hypotheses: 2-Body Problem,

Circular Earth orbit

๏‚ง For a given close encounter, the

post-encounter semi-major axis is

computed. The resulting period is

compared to the ones of possible

resonances. ๐‘˜๐‘˜ฮค๐‘ƒ๐‘ƒ = โ„Žฮคโ€ฒ โŸถ ๐‘Ž๐‘Žโ€ฒ

๏‚ง A circle can be drawn on the b-plane

for each couple of integers โ„Ž, ๐‘˜๐‘˜

B-plane

Resonance plotted according to their k value: dark low k, light low k

Resonances

๏ƒ˜ Valsecchi G. B., Milani A., Gronchi G. F. and Chesley S. R., โ€œResonant returns to close approaches: Analytical theoryโ€, 2003

(13)

B-plane analysis in SNAPPshot

State characterisation: ๏‚ง Impact ๏‚ง Gravitational focussing State characterisation ๐‘…๐‘…๐บ๐บ๐บ๐บ = ๐‘…๐‘…๐ธ๐ธ 1 + ๐‘…๐‘…2๐œ‡๐œ‡๐ธ๐ธ ๐ธ๐ธ๐‘ˆ๐‘ˆ2 Impact region

(14)

B-plane analysis in SNAPPshot

State characterisation

๏‚ง Resonance:

Severity: measured by the value of k

(planetโ€™s period repetitions): the lowest, the most critical.

Resonance selection: closest

resonance or resonance with the lowest k (and below the period threshold)

Resonance plotted according to their k value: dark low k, light low k

(15)

๏‚ง When multiple fly-bys are recorded,

for the Monte Carlo analysis first or

worst encounter are analysed.

๏‚ง Sorting of multiple encounters:

identify the most critical ones (e.g. impact with Earth > resonance with Mars)

โ€ข Distance-driven

โ€ข State-driven:

impact > resonance > simple close approach Earth > Mars > Venus

B-plane analysis in SNAPPshot

Close-encounter sorting -5 0 5 x 105 -6 -4 -2 0 2 4 6x 10 5 ฮพ [km] ฮถ [km]

Evolution of one GAIA Fregat trajectory on the Earthโ€™s b-plane for 100 years of propagation

1

2 3

Consecutive fly-bys

(16)

Results

Effect of launcher dispersion: Solo launcher

Representation of the worst close approaches for the 1000 Monte Carlo runs of the launcher of Solo on the b-plane of Venus.

Uncertainty: state dispersion (covariance matrix)

Propagation: time 100 years, Number of runs: 54114 (the

minimum number of runs required to prove that planetary protection verified with 99% confidence)

(17)

The Line Sampling (LS) is a Monte Carlo sampling method that probes the

uncertainty domain by using lines instead of random points

๏‚ง Line used to identify the boundaries of the impact region inside the domain

โ€ข The lines follow a reference direction pointing toward the impact subdomain

โ€ข Can be done independently from initial uncertainty and probability estimation

Sampling techniques

Line Sampling

๏‚ง The estimation of impact probability is reduced

to a number of 1D problems along each line

โ€ข Analytical evaluation increases the accuracy of the solution

๏‚ง This generally improves the estimation of impact

probability and reduces the amount of random samples required

๏ƒ˜ Zio E., Pedroni N., Subset Simulation and Line Sampling for Advanced Monte Carlo Reliability Analysis, 2009

(18)

Sampling techniques

Results: asteroid Apophis

๐๐๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ ๐๐๐๐๐๐๐๐๐’๐’ ๏ฟฝ๐๐(๐ˆ๐ˆ) ๏ฟฝ๐›”๐›”

MCS 1e6 1e6 5.00e-5 6.86e-6

LS 1e4 ~1e5 5.38e-5 1.18e-6

1e5 ~1e6 5.32e-5 3.45e-7 Similar number of orbital

propagations as MC

Similar confidence level as MC Small expected probability Distributed impact region

Analysed event: expected return in 2036 (according to observations in 2009)2

๐๐๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’๐’ ๐๐๐๐๐๐๐๐๐’๐’ ๏ฟฝ๐๐(๐ˆ๐ˆ) ๏ฟฝ๐›”๐›”

MCS 1e6 1e6 5.00e-5 6.86e-6

LS 1e4 ~1e5 5.38e-5 1.18e-6

1e5 ~1e6 5.32e-5 3.45e-7

2http://newton.dm.unipi.it/neodys

* propagations performed with RK8(7) with relative tolerance 10-12

(19)

Two integration methods were considered:

๏‚ง RK78, explicit Runge-Kutta of 8th order with adaptive step (Dormand-Prince),

already implemented in SNAPPshot

๏‚ง GLRK8, implicit Runge-Kutta of 8th order, symplectic, with fixed-point non-linear

solver, newly implemented in SNAPPshot

The results of the test cases confirmed that, even though the propagation of a single initial condition present differences between integrators, these differences are not relevant on a statistical level (thousands of initial conditions)

๏‚ง Planetary protection analysis returns the same results

Statistical analysis

Effect of numerical integrators

๏ƒ˜ Prince P. and Dormand J., High order embedded Runge-Kutta formulae, Journal of Computational

and Applied Mathematics, 7(1):67โ€“75, 1981. ISSN 03770427

๏ƒ˜ Aristoff, J.M., Poore, A.B, Implicit Rungeโ€“Kutta methods for orbit propagation, Proceedings of the AIAA/AAS Astrodynamics Specialist Conference, Minneapolis, MN, August. Paper AIAA 2012โ€“4880 (2012)

(20)

Statistical analysis

Effect of launcher dispersion: Solo launcher

RK78 GLRK8r

Number of Impacts 2347 (Venus), 1 (Earth) 2348 (Venus), 1 (Earth)

Impact probability (Venus) 4.34e-2 4.34e-2

Confidence level (ฯƒ) 8.76e-4 8.76e-4

(21)

OPTIMAL DEFLECTION OF

NEAR-EARTH OBJECTS USING THE

B-PLANE

(22)

Introduction

๏‚ง Kinetic impactor as the most mature technology

๏‚ง Determine the optimal deflection direction to maximise the displacement on

the b-plane

๏‚ง Design an optimal deflection strategy aimed at avoiding resonant returns of the

asteroid following the deflection manoeuvre

B-plane in asteroid deflection

(23)

๏‚ง Resonant circles are regions of the

b-plane corresponding to returns to Earth

๏‚ง Keyholes are the regions of the

b-plane leading to a subsequent encounter

โ€ข Hit: pre-image of the Earthโ€™s

cross-section

โ€ข Return: pre-image of the Sphere

of Influence (SOI)โ€™s cross-section

๏‚ง Close to the resonant circles

B-plane analysis

Resonances and Keyholes

-1 0 1 2 3 4 5 [km] - Orbital Distance 105 -2 -1 0 1 2 3 [km] - Encounter Phasing 10 5 Earth section

Boundary of impact region Initial value Nominal CA RC (1,1) RC (8,7) RC (9,8) RC (10,9) -1.026 -1.024 -1.022 -1.02 -1.018 -1.016 [km] - Orbital Distance 105 1.352 1.354 1.356 1.358 1.36 [km] - Encounter Phasing 10 5 Earth section

Boundary of impact region Initial value Nominal CA RC (1,1) RC (8,7) RC (9,8) RC (10,9)

๏ƒ˜ Valsecchi G. B., Milani A., Gronchi G. F. and Chesley S. R., โ€œResonant returns to close approaches: Analytical theoryโ€, 2003

(24)

๏‚ง Deflection mission

โ€ข Departure from Earth

โ€ข Asteroid hit

โ€ข Deflected NEO fly-by of the Earth

๏‚ง Modeling

โ€ข Deflection a certain amount of

time before the close approach

โ€ข Study the effect at the close

approach

Deflection mission

Introduction

Earth orbit

NEO original orbit Impactor

(25)

Relative motion equations Gauss planetary equations

Deflection manoeuvre

Fully analytical modelling

Impactor

Nominal trajectory Deflected trajectory NEO

๏ƒ˜ Vasile and Colombo, โ€œOptimal Impact Strategies for Asteroid Deflectionโ€, 2008

๏ƒ˜ Conway 2005

Earth

๐œน๐œน๐œน๐œน๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€

๏ฟฝ๐œน๐œน๐œน๐œน๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐œน๐œน๐œน๐œน = ๐‘จ๐‘จ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐œน๐œน๐œน๐œน๐‘‘๐‘‘

๐‘‘๐‘‘ = ๐‘ฎ๐‘ฎ๐‘‘๐‘‘๐œน๐œน๐œน๐œน๐‘‘๐‘‘ โŸน ๐œน๐œน๐œน๐œน๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = ๐‘จ๐‘จ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘ฎ๐‘ฎ๐‘‘๐‘‘๐œน๐œน๐œน๐œน๐‘‘๐‘‘

To maximise ๐œน๐œน๐œน๐œน๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ maximise the quadratic form ๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป by choosing ๐œน๐œน๐œน๐œน

๐‘‘๐‘‘ parallel

to the direction of the eigenvector of ๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป๐‘ป conjugated to its maximum eigenvalue

(26)

๏‚ง Analytical formulation extended to

compute the deviation projection on the b-plane

๏‚ง Same eigenvector-based

maximisation can be applied

Deflection manoeuvre

Extension to the b-plane

ฮถ ฮดrMOID ฮท Projection point b-plane ฮพ ฮถ ฮดrMOID ฮท Projection point b-plane ฮพ ฮดbMOID ฮถ ฮดrMOID ฮท Projection point b-plane ฮพ ฮดฮพMOID ฮดbMOID ฮถ ฮดrMOID ฮท Projection point b-plane ฮพ ฮดฮถMOID ฮดฮพMOID ฮดbMOID ๐œน๐œน๐’ƒ๐’ƒ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = ๐œน๐œน๐œน๐œน๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ โˆ’ ๐œน๐œน๐œน๐œน๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๏ฟฝ ๐’†๐’†๐œผ๐œผ ๐’†๐’†๐œผ๐œผ = ๐’†๐’†๐œผ๐œผ ร— ๐œน๐œน๐œน๐œน๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ร— ๐’†๐’†๐œผ๐œผ = ๐‘ด๐‘ด๐œน๐œน๐’ƒ๐’ƒ๐œน๐œน๐œน๐œน๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ ๐œน๐œน๐’ƒ๐’ƒ๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€๐‘€ = ๐‘ด๐‘ด๐œน๐œน๐’ƒ๐’ƒ๐‘ป๐‘ป๐œน๐œน๐œน๐œน๐‘‘๐‘‘ = ๐‘ป๐‘ป๐œน๐œน๐’ƒ๐’ƒ๐œน๐œน๐œน๐œน๐‘‘๐‘‘

(27)

Deflection manoeuvre

Optimal deflection direction for maximising ๐‘๐‘

0 1 2 3 4 5 t [T N E O] 10 -6 10 -4 10 -2 10 0 Component value [km/s] Max b - t Max b - n Max b - h Pericentre Apocentre Period

(28)

ฮถ

ฮพ

๏‚ง A deviation along ๐œ๐œ is considered

(early deflections)

๏‚ง Target ๐œ๐œ value: The middle point

between the considered keyholes

๏‚ง ๐œน๐œน๐œน๐œน vector direction through

eigenvector problem

๏‚ง Not a pure maximisation when

trying to avoid a keyhole

Deflection manoeuvre

Optimal deflection strategy to avoid keyholes

ฮถ

(29)

Results

Preliminary Deflection Mission Design

๏‚ง 2095 encounter of 2010 RF12-like

with the Earth - 6,5 keyhole

๏‚ง Target ๐œ๐œ value between keyholes

6,5 and 7,6

๏‚ง Escape, DSM, impact

๏‚ง Max distance from the closest

keyholes

๏‚ง Min initial s/c mass

-2 -1 0 1 2 x [km] 108 -1.5 -1 -0.5 0 0.5 1 y [km] 108 Earth Orbit NEO Orbit Earth MOID NEO MOID Departure Leg 1 DSM Leg 2 Deviation -2 -1 0 1 2 x [km] 108 -1.5 -1 -0.5 0 0.5 1 y [km] 108 Earth Orbit NEO Orbit Earth MOID NEO MOID Departure Leg 1 DSM Leg 2 Deviation -2 -1 0 1 2 x [km] 108 -1.5 -1 -0.5 0 0.5 1 y [km] 108 Earth Orbit NEO Orbit Earth MOID NEO MOID Departure Leg 1 DSM Leg 2 Deviation -2 -1 0 1 2 x [km] 108 -1.5 -1 -0.5 0 0.5 1 y [km] 108 Earth Orbit NEO Orbit Earth MOID NEO MOID Departure Leg 1 DSM Leg 2 Deviation 3.4 3.5 3.6 3.7 3.8 3.9 mjd2000 104 0 0.5 1 1.5 2 2.5 3 3.5 4

Earth - NEO Distance [km]

108 Nominal conditions Deviated asteroid Earth's SOI 0 2 4 6 [km] - Orbital Distance 105 -2 -1 0 1 2 3 [km] - Encounter Phasing 105 Earth section

Boundary of impact region Initial value Nominal CA - Keyhole (6,5) Deviated CA Keyhole (7,6) 0 2 4 6 [km] - Orbital Distance 105 -2 -1 0 1 2 3 [km] - Encounter Phasing 105 Earth section

Boundary of impact region Initial value Nominal CA - Keyhole (6,5) Deviated CA Keyhole (7,6) 0 2 4 6 [km] - Orbital Distance 105 -2 -1 0 1 2 3 [km] - Encounter Phasing 105 Earth section

Boundary of impact region Initial value Nominal CA - Keyhole (6,5) Deviated CA Keyhole (7,6) 3001 2095

(30)

๏‚ง An analytical correlation between the deflection and the displacement on the

b-plane is obtained

๏‚ง It allows analytic optimization of impulsive deflection direction

๏‚ง Impulsive deflection technique to avoid the keyholes as preliminary design for

n-body propagation

๏‚ง Uncertainty in initial conditions, spacecraft parameters, engine failures effect

on 100 propagation for interplanetary space mission

๏‚ง Minimum numbers of MC or line sampling runs for ensuring compliance to

planetary protection requirements

Conclusions

(31)

Close encounter characterisation and deflection

design for planetary protection and defence

Contacts: camilla.colombo@polimi.it

@COMPASS_ERC

Riferimenti

Documenti correlati

Relative density measured in the experimental Test No. Pipe internal pressure in this test was zero. 168 shows the soil deformation of the finite element model for a caisson

Orsigna (1) Calarese, Pastinese, Ceppa Traditional 30ยฐC 45 days Grindstones powered by water. Orsigna (2) Calarese, Pastinese, Ceppa No traditional 30ยฐC 45 days

La contrapposizione e la compartecipazione tra fedeltร  e osservanza comporta la delineazione, entro le coordinate della democrazia costituzionale, dellโ€™incessante

A entrambi gli aspetti sono stati dedicati contributi molto importanti, sebbene sul tema della malattia dโ€™amore la ricerca storico medica sia stata piรน discontinua e meno in grado

Furthermore, in addition to the notion of diagnosability where the detection delay of each fault occurrence is nite for every sequence of transition rings, we also consider

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet รผber

The Consensus Statement by Zhai et al 6 and the Subcommittee of the International Society on Thrombosis and Haemostasis 7 suggest only LMWH for pro- phylaxis and treatment of

Fixing some items in the global experience dimension, concentrating on offering some items to fit the ability of respondents can be considered as effective approaches to improving