• Non ci sono risultati.

Limit on the production of a new vector boson in e+e-→Uγ, U→π+π- with the KLOE experiment

N/A
N/A
Protected

Academic year: 2021

Condividi "Limit on the production of a new vector boson in e+e-→Uγ, U→π+π- with the KLOE experiment"

Copied!
6
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Limit

on

the

production

of

a

new

vector

boson

in

e

+

e

U

γ

,

U

→ π

+

π

with

the

KLOE

experiment

The

KLOE-2

Collaboration

A. Anastasi

e

,

d

,

D. Babusci

d

,

G. Bencivenni

d

,

M. Berlowski

v

,

C. Bloise

d

,

F. Bossi

d

,

P. Branchini

r

,

A. Budano

q

,

r

,

L. Caldeira Balkeståhl

u

,

B. Cao

u

,

F. Ceradini

q

,

r

,

P. Ciambrone

d

,

F. Curciarello

e

,

b

,

l

,

,

E. Czerwi ´nski

c

,

G. D’Agostini

m

,

n

,

E. Danè

d

,

V. De Leo

r

,

E. De Lucia

d

,

A. De Santis

d

,

P. De Simone

d

,

A. Di Cicco

q

,

r

,

A. Di Domenico

m

,

n

,

R. Di Salvo

p

,

D. Domenici

d

,

A. D’Uffizi

d

,

A. Fantini

o

,

p

,

G. Felici

d

,

S. Fiore

s

,

n

,

A. Gajos

c

,

P. Gauzzi

m

,

n

,

G. Giardina

e

,

b

,

S. Giovannella

d

,

E. Graziani

r

,

F. Happacher

d

,

L. Heijkenskjöld

u

,

W. Ikegami Andersson

u

,

T. Johansson

u

,

D. Kami ´nska

c

,

W. Krzemien

v

,

A. Kupsc

u

,

S. Loffredo

q

,

r

,

G. Mandaglio

f

,

g

,

,

M. Martini

d

,

k

,

M. Mascolo

d

,

R. Messi

o

,

p

,

S. Miscetti

d

,

G. Morello

d

,

D. Moricciani

p

,

P. Moskal

c

,

A. Palladino

t

,

M. Papenbrock

u

,

A. Passeri

r

,

V. Patera

j

,

n

,

E. Perez del Rio

d

,

A. Ranieri

a

,

P. Santangelo

d

,

I. Sarra

d

,

M. Schioppa

h

,

i

,

M. Silarski

d

,

F. Sirghi

d

,

L. Tortora

r

,

G. Venanzoni

d

,

W. Wi´slicki

v

,

M. Wolke

u

aINFNSezionediBari,Bari,Italy bINFNSezionediCatania,Catania,Italy

cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

eDipartimentodiScienzeMatematicheeInformatiche,ScienzeFisicheeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy fDipartimentodiScienzeChimiche,Biologiche,FarmaceuticheedAmbientalidell’UniversitàdiMessina,Messina,Italy

gINFNGruppoCollegato diMessina,Messina,Italy

hDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy iINFNGruppoCollegato diCosenza,Rende,Italy

jDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy kDipartimentodiScienzeeTecnologieApplicate,Università“GuglielmoMarconi”,Roma,Italy lNovosibirskStateUniversity,630090Novosibirsk,Russia

mDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy nINFNSezionediRoma,Roma,Italy

oDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy pINFNSezionediRomaTorVergata,Roma,Italy

qDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy rINFNSezionediRomaTre,Roma,Italy

sENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy tDepartmentofPhysics,BostonUniversity,Boston,USA

uDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden vNationalCentreforNuclearResearch,Warsaw,Poland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received18March2016

Receivedinrevisedform6April2016 Accepted7April2016

Availableonline11April2016 Editor:L.Rolandi

TherecentinterestinalightgaugebosonintheframeworkofanextraU(1)symmetrymotivatessearches inthemassrangebelow1GeV.Wepresentasearchforsuchaparticle,thedarkphoton,ine+e−→Uγ, U→ π+π− basedon28million e+e−→ π+π−γ events collectedatDANEbythe KLOEexperiment. The π+ π− productionbyinitial-state radiationcompensates foralossofsensitivity ofpreviousKLOE U→e+e−,μ+μ− searchesduetothesmallbranchingratiosintheρ–ωresonanceregion.Wefound noevidenceforasignalandsetalimitat90%CLonthemixingstrengthbetweenthephotonandthe

*

Correspondingauthors.

E-mailaddresses:fcurciarello@unime.it(F. Curciarello),gmandaglio@unime.it(G. Mandaglio).

http://dx.doi.org/10.1016/j.physletb.2016.04.019

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

isathermalrelicfromtheBigBang, accountingforabout24%of thetotalenergydensityoftheUniverse[2]andproducingeffects onlythroughits gravitationalinteractionswithlarge-scale cosmic structures.ToincludetheDMina particletheoreticalframework, theStandardModel(SM)isusuallycomplementedwithmany ex-tensions [3–7] that attribute to the DM candidates also strong self interactions and weak-scale interactions with SM particles. Amongthepossiblecandidates,a WeaklyInteractingMassive Par-ticle (WIMP) aroused much interest since a particle with weak-scaleannihilationcrosssectioncanaccountfortheDMrelic abun-danceestimatedthroughthestudyofthecosmicmicrowave back-ground[2].TheforcecarrierinWIMPannihilationscouldbeanew gaugevectorboson,knownasU boson,darkphoton,

γ

or A,with alloweddecaysintoleptons andhadrons.Its assiduousworldwide searchhasbeen stronglymotivatedbythe astrophysicalevidence recentlyobservedinmanyexperiments[8–14]andbyitspossible positiveone-loopcontributiontothetheoreticalvalueofthemuon magneticmomentanomaly [15],which couldsolve, partlyor en-tirely, the well known 3.6

σ

discrepancy withthe experimental measurement[16].

Inthispaperweassumethesimplesttheoreticalhypothesis ac-cordingtowhichthedarksectorconsistsofjustoneextraabelian gaugesymmetry,U

(

1

)

,withonegaugeboson,theUboson,whose decaysinto invisible light darkmatter are kinematically inacces-sible. Inthisframework thedark photonwould actlike a virtual photon, with virtuality q2

=

m2

U. It would couple to leptons and quarkswiththesamestrengthandwouldappear(itswidthbeing much smaller than the experimental mass resolution) as a nar-rowresonanceinanyprocessinvolvingrealorvirtualphotons.The couplingtotheSMphotonwouldoccurbymeansofavector por-talmechanism[3],i.e.loopsofheavydarkparticleschargedunder boththeSM andthedarkforce. Thestrengthofthe mixingwith thephotonisparametrized byasingle factor

ε

2

=

α



/

α

whichis

theratio ofthe effective darkand SM photon couplings [3]. The sizeofthe

ε

2parameterisexpectedtobeverysmall(10−2–10−8) causingasuppressionoftheUbosonproductionrate.TheUboson decaysintoSM particleswouldhappen throughthesame mixing operator, withthe corresponding decay amplitude suppressed by an

ε

2 factor,butarestill expectedtobe detectableathigh lumi-nositye+e− colliders[17–19].

KLOEhasalreadysearchedforradiativeUbosonproductionin thee+e−

U

γ

,U

e+e−,

μ

+

μ

−processes[20,21].The leptonic channelsareaffectedbyadecreaseinsensitivityinthe

ρ

ω

region dueto the dominant branching fractioninto hadrons. For a vir-tualphotonwithq2

<

1GeV2,thecouplingtothechargedpionis givenbytheproductoftheelectricchargeandthepionform fac-tor,eFπ

(

q2

)

.TheeffectivecouplingoftheUbosontopionsisthus predictedtobegivenbytheproductofthevirtualphotoncoupling andthekinetic mixingparameter

ε

2e

(

q2

)

[19].Beingfarfrom the

π

+

π

− massthreshold (see Section 3) finite mass effects can be safelyneglected. We thus searched fora short livedU boson

The KLOE detector operates at DA



NE, the Frascati

φ

-factory. DA



NEis an e+e− colliderusually operated ata centerof mass energymφ



1

.

019GeV.Positronandelectronbeamscollideatan angleof

π

25mrad,producing

φ

mesonsnearlyatrest.TheKLOE detectorconsistsofalargecylindricaldriftchamber(DC)[22], sur-rounded by a lead scintillating-fiber electromagnetic calorimeter (EMC) [23]. A superconducting coil around the EMC provides a 0.52 T magnetic field along the bisector of the colliding beams. Thebisectoristakenasthez axisofourcoordinatesystem.Thex

axisishorizontal, pointingtothecenterofthecolliderringsand the y axisisvertical,directedupwards.

The EMC barrel and end-caps cover 98% of the solid angle.

Calorimetermodulesarereadoutatbothendsby4880 photomul-tipliers. Energy andtime resolutions are

σ

E

/

E

=

0

.

057

/

E

(

GeV

)

and

σ

t

=

57 ps

/

E

(

GeV

)

100ps, respectively. The drift

cham-berhasonlystereowiresandis4 mindiameter,3.3 mlong.Itis builtout ofcarbon-fibersandoperates witha low- Z gasmixture (heliumwith10%isobutane).Spatialresolutionsare

σ

xy

150μm

and

σ

z

2mm.Themomentumresolutionforlargeangletracksis

σ

(

p

)/

p

0

.

4%.ThetriggerusesbothEMCandDCinformation. Events used inthis analysisare triggered by atleast two energy depositslargerthan50 MeVintwosectorsofthebarrel calorime-ter[24].

3. Eventselection

We selected

π

+

π

γ

candidates byrequesting eventswithtwo oppositely-chargedtracksemitted atlargepolarangles,50◦

< θ <

130◦,withtheundetectedISR photon missingmomentum point-ing –accordingto the

π

+

π

γ

kinematics –atsmall polar angles (

θ <

15◦,

θ >

165◦).Thetrackswererequiredtohavethepointof closestapproachtothez axiswithinacylinderofradius8cmand length15cmcentered attheinteractionpoint.Inordertoensure goodreconstruction andefficiency,we selectedtrackswith trans-verseandlongitudinalmomentumintherangep

>

160MeV or p

>

90MeV,respectively.

Sincethe

π

+

π

γ

crosssectionbehavior asafunctionoftheISR photonpolarangleisdivergent(

1

4

γ), thetrackandthephoton

acceptanceselectionsmake thefinal-stateradiation(FSR)andthe

φ

resonantprocessesrelativelyunimportant,leavinguswithahigh purityISRsampleandincreasingoursensitivitytotheU

→ π

+

π

− decay[25].

The Monte Carlo simulation of the Mππ spectrum was

pro-ducedwiththe

PHOKHARA

eventgenerator [26] withtheKühn–

Santamaria (KS) [27] pion form factor parametrization and

in-cluded a full description of the KLOE detector (GEANFI

pack-age [28]). The collected data were simulated including

φ

decays andleptonicprocessese+e−

→ 

+



γ(γ)

,



=

e

,

μ

.Themain back-groundcontributionsaffectingtheISR

π

+

π

γ

samplearethe res-onante+e−

→ φ

→ π

+

π

π

0 processandtheISRandFSRe+e−

(3)

Fig. 1. ExampleofMtrk distributionsforthe Mππ=820–840MeV bin.Measured data arerepresented inblack, simulatedπ+π−γ and μ+μ−γ inred. Simulated

μ+μγ + π+πγ inblue.Eventsat theleftoftheverticallinearerejected.(For interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferred tothewebversionofthisarticle.)

background” inthe following). We reduced their contribution by applying kinematic cuts in the Mtrk–Mππ2 plane, as explained in Refs. [29,30]. M2ππ is the squared invariant mass of the two se-lected tracksinthe pionmasshypothesis whileMtrk isthemass ofthechargedparticles associatedtothetracks,computedinthe

equalmasshypothesisandassumingthatthemissingmomentum

oftheeventpertainstoasinglephoton.1 DistributionsoftheMtrk variable for data andsimulation are shown in Fig. 1, wherethe

Mtrk

>

130MeV cuttodiscriminatemuonsfrompions isalso in-dicated.

AparticleIDestimator(PID),L±,definedforeachtrackwith as-sociatedenergyreleasedinEMCandbasedonapseudo-likelihood function,uses calorimeterinformation(sizeandshapeofthe en-ergy depositionsandtime offlight)to suppressradiativeBhabha scatteringevents[29–31].

Electrons deposit their energy mainly at the entrance of the

calorimeter while muons andpions tend to have a deeper

pen-etration in the EMC. Events with both tracks having L±

<

0 are identifiedase+e−

γ

eventsandrejected.The efficiencyofthis se-lectionislargerthan99.95%asevaluatedusingmeasureddataand simulated

π

+

π

γ

samples.

After these selections, about 2

.

8

×

107 events are left in the measured datasample. We then applied the sameanalysischain

to the Monte Carlo simulated data: most of the selected

sam-ple consists of

π

+

π

γ

events, with residual ISR



+



γ

,



=

e

,

μ

and

φ

→ π

+

π

π

0. Fig. 2showsthe fractional components ofthe residualbackground, FBG,individually foreach contributing chan-nelandtheir sum. The residualbackground rises upto about6% at low invariant masses andto 5% above 0.9 GeV, decreasing to lessthan1%intheresonanceregion,anditisdominatedby

μμγ

eventsinthewholeinvariantmassrange.

A very good description of the

ρ

–ω interference region (see theinsertof

Fig. 3

)wasachievedbyproducingadedicatedsample

using

PHOKHARA

aseventgenerator withthe Gounaris–Sakhurai

(GS) pion form factor parametrization [32]. The generation pro-cessused properly smeared distributions in order to account for the dipion invariant mass resolution(1.4–1.8 MeV). In Fig. 3the measureddataspectrumiscomparedwiththeresultsofthis sim-ulationprocess,whichincludestheresidualbackground.

1 M

trkis computedfrom themeasured momentaofthetwo particles p± as-suming they have the same mass:

 s−  | p+|2+M2 trk−  | p−|2+M2 trk 2 −  p++ p−2=M2 γ=0.

Fig. 2. Fractional backgrounds, normalizedto the π+π−γ contribution, from the

π+ππ0,e+eγ,andμ+μγchannelsafterallselectioncriteria.

Fig. 3. Comparisonofmeasureddata(bluesquares)andsimulationperformedwith theGounaris–Sakurai||2parametrization(redopensquares)fortheMπ π

invari-antmassspectrum.Thefigureinsertshowsindetailtheagreementachievedinthe

ρωmixingregion(779–791 MeV).

4. Irreduciblebackgroundparametrizationandestimate

Exceptforthe

ρ

–ωregion,weestimatedtheirreducible back-grounddirectlyfromdata.ForeachUmasshypothesisthedataare fitted ina Mππ intervalcentered at MU and18–20times wider

than the Mππ resolution

σ

Mπ π.The backgroundismodeled by a

monotonic function using Chebyshev polinomials up to the sixth orderandisestimatedusingthesidebandtechnique,byexcluding fromthefitthedataintheregion

±

3

σ

Mπ π around MU[20].The procedureisrepeatedinstepsof2MeVinMU.

Fits withthebest reduced

χ

2 areselected ashistograms rep-resenting the background.Forall usedmass intervals, the distri-butions werefound tobe smooth,withno“wiggles”inanymass sub-range. An example ofthe fit procedure isreported in

Fig. 4

.

Fig. 5 shows the distribution of the differences (pulls) between data andthe fittedbackground normalizedto the datastatistical error. Alsoshownisa Gaussianfit ofthisdistribution.The mean andwidthparametersoftheGaussianfitarearoundzeroandone, respectively.

The regionof

ρ

–ωinterferenceis notsmooth (see Fig. 3)and then not easy to be fittedwiththe sidebandtechnique. Wethus estimatedthe backgroundinthisregionby usingthe

PHOKHARA

generator with smeared distributions, as explained in Section 3

(4)

Fig. 4. ExampleofaChebyshevpolinomialsidebandfitfortheMU=936MeV hy-pothesis.

Fig. 5. Distributionofthedifferences(pulls)data-backgroundnormalizedtothedata statisticalerror(bluepoints)andrelativeGaussianfit(redcurve).

5. Systematicerrorsandefficiencies

The main systematic uncertainties affecting this analysis are relatedtotheevaluationoftheirreduciblebackground.Astwo dif-ferentprocedureswereusedindifferentmassranges,theestimate ofthesystematicerrorisaccountedfortwoindependentsources:

systematicuncertaintiesduetothesidebandfittingprocedure;

systematic uncertainties due to the evaluation of the

back-ground with the

PHOKHARA

generator and to the smearing

procedureinthe779–791MeVmassrange.

The evaluation of the systematic uncertainties on the fitted backgroundwas performed by adding in quadrature,bin by bin, thecontributionsduetotheerrors ofthefitandasystematic er-rorduetothefit procedure.Thefirstis obtainedby propagating, foreachfitinterval,thecorrespondingerrorsofthefitparameters. Thesecondisevaluatedbyvaryingthefitparametersby

±

1σ and

computingthemaximumdifference betweenthestandardfitand

thefit derived by usingthe modified parameters. Thesystematic errorislessthan1%inmostofthemassrange.

Inthe

ρ

–ωregionthesystematicerroriscomputedbyadding inquadraturethecontributionsduetothetheoreticaluncertainty oftheMonteCarlogenerator(0

.

5%[26]),thesystematicerrordue totheresidualbackgroundevaluation(0.3%,computedbychanging the analysis cuts within the corresponding experimental resolu-tions),thecontributionofthesmearingprocedure(0.8%, obtained

Fig. 6. Fractionalsystematicerrorontheestimatedbackground.Bluepoints:errors fromthesidebandfitprocedure;blackpoints:errorsestimatedfromthePHOKHARA

MonteCarlosimulationfortheρωinterferenceregion.(Forinterpretationofthe referencestocolorinthisfigure,thereaderisreferredtothewebversionofthis article.)

Table 1

Summaryof the systematic uncertaintiesaffecting the π+πγ analysis.

Systematic source Relative uncertainty (%)

Mtrkcut 0.2 Acceptance 0.6–0.1 as Mπ πincreases Trigger 0.1 Tracking 0.3 Generator 0.5 Luminosity 0.3 PID negligible Total 0.9–0.7 as Mπ πincreases

Fig. 7. Global analysis efficiency as a function of Mπ π.

byvaryingtheappliedsmearingof

±

1

σ

),andthesystematic un-certaintyontheluminosity(0.3%[26]).Theresultingtotal system-aticerrorisabout1%.

The total systematicuncertainty due to the background eval-uation is shown in Fig. 6. The full list of the systematic effects takenintoaccountissummarizedin

Table 1

.Theydonotaffectthe irreduciblebackgroundestimate performedwiththesideband fit-tingtechnique,butpartiallycontributetothebackgroundestimate inthe

ρ

–ωregion (seeabove)andenter inthe determinationof the selection efficiency andthe luminosity measurement. Finally, in

Fig. 7

weshowtheglobalanalysisefficiencyasestimatedwith thefull

π

+

π

γ

simulation(

PHOKHARA

generator

+

GEANFI[28]).

(5)

Fig. 8. Maximum number of U boson events excluded at 90% CL.

Thisincludes contributions fromkinematic cuts, trigger, tracking, acceptance and PID-likelihood effects. The total systematic error ontheglobalanalysisefficiencyrangesbetween0.7%and0.4% as

Mππ increases. 6. Upperlimits

We did not observe anyexcess of events withrespect to the estimatedbackgroundwithsignificancelargerthanthreestandard

deviations over the whole MU explored spectrum. We thus

ex-tractedthe massdependent limitson

ε

2 at90% confidencelevel (CL)bymeansoftheCLStechnique[33].Theprocedurerequiresas inputsthemeasured invariantmassspectrum,theestimated irre-ducibletotalbackgroundandtheUbosonsignalforeachMππ bin.

Themeasuredspectrumisusedasinputwithoutanyefficiencyor backgroundcorrection.ThesignalisgeneratedvaryingtheUboson masshypothesisinstepsof2 MeV.Ateachstep,aGaussianpeak isbuiltwithawidthcorresponding tothe invariantmass resolu-tionofthedipionsystem.Thesystematicuncertaintiesweretaken intoaccountby performing aGaussiansmearing oftheevaluated backgroundaccordingtotheestimatesinSection5and

Fig. 6

.The resultsofthestatisticalprocedureareshownin

Fig. 8

intermsof thenumberNCLS ofUbosonsignaleventsexcludedat90%CL.

Wecomputedthelimitonthemixingstrength

ε

2 bymeansof thefollowingformula[20,21]:

ε

2

=

α



α

=

NCLS

eff

·

L

·

H

·

I

,

(1)

where

effistheglobalanalysisefficiency(see

Fig. 7

), L isthe in-tegratedluminosity, H is theradiator function computedatQED NLO corrections with a 0.5% uncertainty [34–37], I is the effec-tive e+e−

U

π

+

π

− cross sectionintegrated overthe single mass bin centered at Mππ

=

MU with

ε

=

1. The uncertainties on H ,

eff, L, and I, propagate to the systematicerror on

ε

2 via eq.(1).Theresultinguncertaintyon

ε

2 islower than1% andhas beentaken intoaccount in the estimatedlimit. Fig. 9showsthe results fromeq. (1) after a smoothing procedure (tomake them morereadable), comparedwithlimits fromother experiments in themassrange0–1 GeV. Our90%CL upperlimiton

ε

2 reachesa maximumvalueof1

.

82

×

10−5at529 MeVandaminimumvalue of1

.

93

×

10−7 at 985 MeV.The sensitivityreduction due tothe

ω

→ π

+

π

π

0 decayisofthesameorderofthestatistical fluctua-tionsandthusnotvisibleafterthesmoothingprocedure.

Fig. 9. 90%CLexclusionplotforε2asafunctionoftheU-bosonmass(KLOE

(4)).The

limitsfromtheA1[38]andAPEX[39]fixed-targetexperiments;thelimitsfromthe φDalitzdecay (KLOE(1))[40,41]ande+e−→Uγ processwheretheUboson

de-caysine+e−orμ+μ−(KLOE(3)andKLOE(2)respectively)[20,21];theWASA[42],

HADES[43],BaBar[44]andNA48/2[45]limitsarealsoshown.Thesolidlinesare the limitsfromthemuonandelectronanomaly[15],respectively.The grayline showstheUbosonparametersthatcouldexplaintheobserveddiscrepancywith

a2σ errorband(graydashedlines)[15].(Forinterpretationofthereferencesto colorinthisfigure,thereaderisreferredtothewebversionofthisarticle.)

7. Conclusions

Weusedanintegratedluminosityof1

.

93fb−1 ofKLOEdatato search for darkphoton hadronicdecays inthe e+e−

U

γ

,U

π

+

π

continuumprocess.Nosignalhasbeenobservedandalimit

at 90% CL hasbeen set on the coupling factor

ε

2 in the energy rangebetween527and987 MeV.Thelimitismorestringentthan otherlimitsinthe

ρ

ω

regionandabove.

Acknowledgements

We warmly thank our former KLOE colleagues for the

ac-cess to the data collected during the KLOE data taking

cam-paign. We thank the DA



NE team for their efforts in

main-taining low background running conditions and their

collabo-ration during all data taking. We want to thank our

techni-cal staff: G.F. Fortugno and F. Sborzacchi for their dedication

in ensuring efficient operation of the KLOE computing

facili-ties; M. Anelli for his continuous attention to the gas system and detector safety; A. Balla, M. Gatta, G. Corradi and G. Pa-palino for electronics maintenance; M. Santoni, G. Paoluzzi and R. Rosellini for generaldetectorsupport; C. Piscitelli for his help

during major maintenance periods. This work was supported in

part bythe EU IntegratedInfrastructure InitiativeHadron Physics Project under contract number RII3-CT-2004-506078; by the

Eu-ropean Commission under the Seventh Framework Programme

through the ‘Research Infrastructures’ action of the ‘Capacities’

Programme,Call:FP7-INFRASTRUCTURES-2008-1,GrantAgreement

No. 227431; by the Polish National Science Centre through the GrantsNos. 2011/03/N/ST2/02652,2013/08/M/ST2/00323,2013/11/ B/ST2/04245,2014/14/E/ST2/00262,2014/12/S/ST2/00459.

References

[1]F.Zwicky,Helv.Phys.Acta6(1933)110–127; F.Zwicky,Astrophys.J.86(1937)217.

[2]K.Olive,etal.,Reviewofparticlephysics,Chin.Phys.C38(2014)090001. [3]B.Holdom,Phys.Lett.B166(1985)196.

[4]C.Boehm,P.Fayet,Nucl.Phys.B683(2004)219. [5]P.Fayet,Phys.Rev.D75(2007)115017.

[6]Y.Mambrini,J.Cosmol.Astropart.Phys.1009(2010)022. [7]M.Pospelov,A.Ritz,M.B.Voloshin,Phys.Lett.B662(2008)53.

(6)

[25]L.Barzè,etal.,Eur.Phys.J.C71(2011)1680.

[26]H.Czy ˙z,A.Grzelinska,J.H.Kühn,G.Rodrigo,Eur.Phys.J.C39(2005)411. [27]J.H.Kühn,A.Santamaria,Z.Phys.C48(1990)445.

[43]G.Agakishiev,etal.,HADESCollaboration,Phys.Lett.B731(2014)265. [44]J.P.Lees,etal.,BaBarCollaboration,Phys.Rev.Lett.113(2014)201801. [45]J.R.Batley,etal.,NA48/2Collaboration,Phys.Lett.B746(2015)178.

Figura

Fig. 1. Example of M trk distributions for the M ππ = 820–840 MeV bin. Measured data are represented in black, simulated π + π − γ and μ + μ − γ in red
Fig. 4. Example of a Chebyshev polinomial sideband fit for the M U = 936 MeV hy- hy-pothesis.
Fig. 9. 90% CL exclusion plot for ε 2 as a function of the U-boson mass (KLOE

Riferimenti

Documenti correlati

Le scelte degli autori dei testi analizzati sono diverse: alcuni (per esempio Eyal Sivan in Uno specialista) usano materiale d’archivio co- me fotografie e filmati, altri invece

Despite the average overall effects observed, a relevant aspect of our study is that when considering individual subjects, only 40% of the participants showed a

The WhiteRef .csv output file (a sample is displayed in Table 1) included all the relevant information about the measurement date, acquisition number, measurement type,

In the last part of the article I argue that a solution to this situation is an ethic of self- limitation, in which a rediscovery of limit leads to a new concept

particolare il Tex di Gian Luigi Bonelli (cui diede forma visiva e visibile, com’è noto, Aurelio Galleppini, in arte Galep); e dunque riguarderanno anche, in gran parte, il Tex

Questo piccolo rito collettivo potrebbe essere un aiuto per ricominciare a percepire la magia delle donne riunite, avvicinando le une alle altre in una sorellanza che supera i

Based on the spectroscopic results of this work, which al- low us to provide accurate frequency predictions up to 700 GHz, we have carried out a search for HNCHCN emission toward

Nell’ambito della suddetta iniziativa sono stati progettati e realizzati numerosi laboratori didattici finalizzati alla formazione degli insegnanti calabresi; all’interno di questa