• Non ci sono risultati.

Wave-scattering from a gently curved surface

N/A
N/A
Protected

Academic year: 2021

Condividi "Wave-scattering from a gently curved surface"

Copied!
4
0
0

Testo completo

(1)

Physics Letters B 760 (2016) 149–152

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Wave-scattering

from

a

gently

curved

surface

Giuseppe Bimonte

a

,

b

,

aDipartimento di Fisica E. Pancini, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy bINFN Sezione di Napoli, I-80126 Napoli, Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Article history:

Received16May2016

Receivedinrevisedform21June2016 Accepted24June2016

Availableonline29June2016 Editor:M.Cvetiˇc

We studywavescatteringfromagentlycurvedsurface.Weshowthat therecursiverelations,implied byshiftinvariance,amongthecoefficientsoftheperturbativeseriesforthescatteringamplitudeallow to perform an infinite resummationof the perturbative seriesto all orders in the amplitude of the corrugation.Theresummedseriesprovidesaderivativeexpansionofthescatteringamplitudeinpowers ofderivatives ofthe heightprofile,whichis expectedtobecome exactin thelimitof quasi-specular scattering.Wediscusstherelationofourresultswiththeso-calledsmall-slopeapproximationintroduced sometimeagobyVoronovich.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Theproblemofwave scatteringatroughinterfaceshasalways attractedmuch attention, due to its importance in diverseareas ofphysicsrangingfromoptics,toacoustics,communications, geo-physics, etc. Its difficulty is universally acknowledged, and even withpresentlyavailablecomputersitrepresentsaformidable chal-lenge in realistic situations. Despiteimpressive progress madein numerical methods, approximate analytical approaches are still much valuable as the only ones capable of providing an insight intogeneralphysicalfeaturesofwavescattering. Itisnot surpris-ing then that a number of diverseapproximation schemes, with differentranges ofvalidity, have been developed over the years. Forareview,weaddressthereadertothemonograph[1]ortothe recentreview [2].Historically,the first andperhaps mostwidely knownapproximatetheory of scatteringbyrough surfaces isthe

smallperturbationmethod (SPM) originally developed by Rayleigh tostudyscatteringofsoundwavesbysinusoidallycorrugated sur-faces of small amplitude, and later generalized by several other authorstoelectromagneticscattering.Anotherclassicapproximate schemeistheKirchhoffapproximation (KA),alsoknownasthe tan-gentplane approximation(TPA), whichrepresents a valid approx-imationfor locallysmooth surfaces withlarge radii ofcurvature. A schemeaimingatreconcilingSPMandKAwasproposedtwenty years ago by Voronovich [1,3], i.e. the small-slopeapproximation

(SSA).It consistsof an ingeniousansatz for the scattering

ampli-*

Correspondenceto:DipartimentodiFisicaE.Pancini,UniversitàdiNapoli Fed-ericoII,ComplessoUniversitariodiMonteS.Angelo,ViaCintia,I-80126Napoli,Italy.

E-mail address:bimonte@na.infn.it.

tude(SA),thatmanagestocapturetheleadingcurvaturecorrection to theKA.The ansatz involves unknowncoefficients thatare de-termined aposteriori by matching theSSA withthe SPM intheir commonregionofvalidity. Numericalinvestigationsrevealedthat withinitsdomainofvaliditytheSSAisindeedremarkablyaccurate

[2].Severalauthorshaveattemptedtoproviderigorous mathemat-icalderivationsoftheSSA,utilizingtheextinctiontheorem[4,5]or theMeecham–Lysanovmethod[6].

Inrecentyearsithasbeenshown[7–9]that curvature correc-tions to the Casimir interaction between two gently curved sur-faces can be estimatedusing a derivative expansion (DE) of the Casimir-energy functional, in powers of derivativesof the height profiles ofthesurfaces.TheDE hasbeenlaterusedto study cur-vatureeffects intheCasimir–Polder interactionofa particlewith a gentlycurvedsurface [10,11].The samemethodhasbeenused veryrecentlytoestimatetheshiftsoftherotationallevelsofa di-atomicmoleculeduetoitsvanderWaalsinteractionwithacurved dielectricsurface[12].Animportantinsightintothenatureofthe DE wasachievedin[13] (see also[10]) whereit wasshownthat the derivative expansion amounts to an infinite resummation of theperturbative seriesfortheCasimirenergytoallorders inthe amplitude of the corrugation, forsmall in-plane momenta of the electromagneticfield.Thesemethodscanindeedbeadaptedtothe problemof wave scattering by a rough surface. In this letterwe demonstratethat theinfiniterecursiverelationsamongthe coeffi-cientsoftheperturbativeseriesfortheSA,engenderedbyitsexact invarianceunderverticalandhorizontal shiftsofthesurface,allow toperformaninfinite resummationoftheperturbativeseries,toall ordersintheamplitudeofthecorrugation.Theresummation pro-cedure resultsintoa DEoftheSAinpowersofderivativesofthe

http://dx.doi.org/10.1016/j.physletb.2016.06.058

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

150 G. Bimonte / Physics Letters B 760 (2016) 149–152

height profile,whichis expectedto becomeexact inthe limit of quasi-specularscattering.WeshowthatourDEoftheSAisindeed equivalenttoVoronovich’sSSAansatz,thusprovidingaformal jus-tificationforit.

2. PerturbativeexpansionoftheSA

We consider a surface



separating two media of different (optical or acoustical) properties. A cartesian coordinate system

(

x

,

y

,

z

)

is chosen such that the z-axis is directed upwards in the direction going from medium 2 towards medium 1, while

(

x

,

y

)

span a reference plane orthogonal to the z-axis. It is as-sumedthatthesurface



canberepresentedby a(single-valued)

smooth height profile of equation z

=

h

(

x

)

=

h

(

x

,

y

)

. A down-wardpropagating (electromagnetic oracoustic)wave E(αin0)

(

x

,

z

)

=

E(α00)

/

q0 exp

[

i

(

k0

·

x

q0z

)

]

with wave vector K0

= (

k0

,

q0

)

, wavenumber K0

=

2

π/λ

01 is incident on the surface. The index

α

0takesvaluesinadiscretesetconsistingofoneortwoelements, dependingonwhetheranacousticorelectromagneticwaveis con-sidered.ThescatteredfieldE(sc)

(

r

,

z

)

atpointsaboveandfarfrom



canbeexpressedthroughtheSASαα0

(

k

,

k0

)

asasuperpositions

ofupwardspropagatingwaveswithwavevectorK

= (

k

,

q

)

as:

E(αsc)

(

x

,

z

)

=



d2k 4

π

2 1

qei(k·x+qz)Sαα0

(

k

,

k0

)

E (0) α0

.

(1)

TheSAsatisfiestwogeneralproperties.Thefirstoneisreciprocity:

Sαα0

(

k

,

k0

)

=

0α

(

k0

,

k

) ,

(2)

whichfollowsfrommicroscopicreversibility[14].Thesecond gen-eralpropertysatisfiedbytheSAisshiftinvariance,whichamounts tothe following transformationproperty oftheSA undera hori-zontalandverticaldisplacementofthesurface



:

Sαα0

(

k

,

k0

)

|h

(x−a)b

=

e

i[(k0−k)·a−(q0+q)b]S

αα0

(

k

,

k0

)

|h

(x)

.

(3)

According to the SPM, we postulate that for sufficiently small heightprofilesh theSAcanbeexpandedasapowerseriesinthe heightprofile: Sαα0

(

k

,

k0

)

=



n≥0 1 n

!



d2x1

· · ·



d2xn

×

G(ααn)0

(

x1

, . . . ,

xn;k

,

k0

)

h

(

x1

) . . .

h

(

xn

) ,

(4)

wherethe kernels G(μνn)

(

x1

,

. . . ,

xn

;

k

,

k0

)

are symmetric functions of

(

x1

. . .

xn

)

.In momentumspace, the perturbative expansion of

theSAreads: Sαα0

(

k

,

k0

)

=



n≥0 1 n

!



d2k1

(

2

π

)

2

· · ·



d2kn

(

2

π

)

2

× ¯

G(ααn)0

(

k1

, . . . ,

kn;k

,

k0

) ˜

h

(

k1

) . . . ˜

h

(

kn

) .

(5)

Shiftinvariance under a horizontal translation of the profile h

(

x

)

implies that the kernels G

˜

(ααn)0

(

k1

,

. . . ,

kn

;

k

,

k0

)

must be of the

form:

¯

G(ααn)0

(

k1

, . . . ,

kn;k

,

k0

)

= (

2

π

)

2

δ

(2)

(

k1

+ . . .

kn

+

k0

k

)

× ˜

G(ααn)0

(

k1

, . . . ,

kn;k

,

k0

) ,

(6)

where G

˜

(ααn)0

(

k1

,

· · · ,

kn

;

k

,

k0

)

are symmetricfunctionsof the in-plane momentak1

,

. . . ,

k2,whichare definedonly onthe hyper-plane

P

(n)

≡ {

k1

+ . . .

kn

+

k0

k

=

0

}

.Ofcourse

1 WefollowthenormalizationofwavesadoptedbyVoronovich[3].

¯

G(αα0)0

(

k

,

k0

)

= (

2

π

)

2

δ

(2)

(

k

0

k

)

Rαα0

(

k0

) ,

(7)

where Rαα0

(

k0

)

arethefamiliarreflectioncoefficientsforaplanar

surface.ByinsertingEq.(6)intoEq.(5),theperturbativeseriescan berewrittenas: Sαα0

(

k

,

k0

)

=



n≥0 1 n

!



d2k 1

(

2

π

)

2

· · ·



d2k n

(

2

π

)

2 h

˜

(

k1

) . . . ˜

h

(

kn

)

× (

2

π

)

2

δ

(2)

(

k1

+ . . .

kn

+

k0

k

) ˜

G(ααn)0

(

k1

, . . . ,

kn;k

,

k0

) .

(8)

Nextweshow thattheperturbativekernels havetosatisfy an in-finite set of relations, asa result ofthe shift invariance under a

vertical shift of theprofile. Toderive theserelations we note the identitythatfollowsfromEq.(3):

ei(q0+q)b S

αα0

(

k

,

k0

)

|h

(x)b

=

Sαα0

(

k

,

k0

)

|h

(x)

.

(9)

Upontaking p derivativesofbothsidesoftheaboverelationwith respecttotheshiftb,weobtaintheidentities:

dp d bp



ei(q0+q)bS αα0

(

k

,

k0

)

|h

(x)b





b=0

A(ααp)0

(

k

,

k0

)

|h

(x)

=

0 (10)

that have to be satisfiedfor any profile h.By making useof the perturbative expansion of the SA Eq. (4) into the l.h.s. of the above identities,oneobtains thefollowingexpansion forthe ker-nels A(ααp)0

(

k

,

k0

)

|

h(x): A(ααp)0

(

k

,

k0

)

|h

(x)

=



n≥0 1 n

!



d2x1

· · ·



d2xn

×

Aαα(p,0n)

(

x1

, . . . ,

xn;k

,

k0

)

h

(

x1

) . . .

h

(

xn

)

=

0

,

(11) with: A(ααp,n0)

(

x1

, . . . ,

xn;k

,

k0

)

=

p



k=0

(

1

)

k p

!

k

!(

p

k

)

!

[

i

(

q0

+

q

)

]

pk

×



d2xn+1

. . .



d2xn+kG(ααn+0k)

(

x1

, . . . ,

xn+k;k

,

k0

) .

(12)

SincetheidentitiesinEq.(10)mustbesatisfiedforarbitrary pro-filesh,itfollowsthat allthekernels Aαα(p,0n)

(

x1

,

. . . ,

xn

;

k

,

k0

)

must

vanishidentically:

A(ααp,n0)

(

x1

, . . . ,

xn;k

,

k0

)

=

0

,

n

0

,

p

>

0

.

(13) Whenexpressedinmomentumspace,theseconditionsread:

(

2

π

)

2

δ

(2)

(

k1

+ . . .

kn

+

k0

k

)

p



k=0

(

1

)

k p

!

k

!(

p

k

)

!

× [

i

(

q0

+

q

)

]

pkG

˜

(ααn+0k)

(

k1

, . . . ,

kn

,

0

, . . . ,

0

)

=

0

.

(14)

Foranyfixedn,theaboverelationscanbesolvediteratively lead-ingto:

˜

G(ααn+0m)

(

k1

, . . . ,

kn

,

0

, . . . ,

0

;

k

,

k0

)

= [

i

(

q0

+

q

)

]

mG

˜

αα(n)0

(

k1

, . . . ,

kn;k

,

k0

) .

(15)

Werecallthat theseidentitiesholdon

P

(n).Equation(15)

consti-tutes a very importantresult, andin next Section we show that withtheir helpit ispossibletoperform aninfinite re-summation

(3)

G. Bimonte / Physics Letters B 760 (2016) 149–152 151

3. Resummationoftheperturbativeseries

Nowwe considera surface



whoselocal radiusofcurvature is everywhere large compared to the wavelength of the incom-ingwave. For sucha gently curvedprofile, theFouriertransform

˜

h

(

k

)

of theheight profileissignificantly differentfromzeroonly for small in-plane wave vectors k. For quasi specular-scattering, i.e. for k



k0, it is therefore legitimate to Taylor-expand the kernels G

˜

(ααn)0

(

k1

,

. . . ,

kn

;

k

,

k0

)

around k1

= · · · =

kn

=

0.

Exis-tence of this Taylor expansion is not guaranteed a priori, but hasto be checkedcaseby case. Withrespect to thisquestion, it is important to observe that by virtue of the iterative relations Eq.(15) existenceofthe Taylorexpansionofordern for the ker-nel G

˜

(ααn)0

(

k1

,

. . . ,

kn

;

k

,

k0

)

automatically implies existence of the

Taylorexpansion tothesameordern forall higherorderkernels

˜

G(ααn+0m)

(

k1

,

. . . ,

kn+m

;

k

,

k0

)

, m

=

1

,

2

,

. . .

. Let usassume that the

perturbativekernelscanbeTaylor-expandedtosecondorderinthe wavevectors2:

˜

G(n)

(

k1

, . . . ,

kn;k

,

k0

)

=

A(n)

(

k

,

k0

)

+

Bμ(n)

(

k

,

k0

)(

k1

+ · · · +

kn

)

μ

+

C(μνn)

(

k

,

k0

)

n



i=1 kiμkνi

Dμν(n)

(

k

,

k0

)



i<j kμi kνj

+

o

(

k2

) ,

(16) where Greek indices take values

(

1

,

2

)

, and for brevity we sup-pressed all polarization indices.Since then-point Green function is defined only on the hyperplanes

P

(n), we are free to add to

˜

G(n)

(

k

1

,

· · · ,

kn

;

k

,

k0

)

anyfunction f(n)

(

k1

,

· · · ,

kn

;

k

,

k0

)

vanish-ingon

P

(n)oftheform

f(n)

(

k1

, . . . ,

kn;k

,

k0

)

= (

k1

+ . . .

kn

+

k0

k

)

μ

×

gμ(n)

(

k1

, . . . ,

kn;k

,

k0

)

(17) whereg(μn)

(

k1

,

· · · ,

kn

;

k

,

k0

)

arearbitrarysmoothsymmetric func-tionsofk1

,

· · · ,

kn.Letustake

gμ(n)

= ˆ

Aμ(n)

(

k

,

k0

)

+ ˆ

Bμν(n)

(

k

,

k0

)(

k1

+ · · · +

kn

)

ν

.

(18)

It iseasy toverify that the coefficients A

ˆ

μ(n)

,

B

ˆ

(μν cann) always be

chosensuchthataddition of f(n)

(

k

1

,

· · · ,

kn

;

k

,

k0

)

toG

˜

(n)

(

k1

,

· · · ,

kn

;

k

,

k0

)

removes from Eq. (16) the terms proportional to B(μn)

and C(μν .n) Without loss ofgenerality, the second order Taylor ex-pansion of the kernels G

˜

(n)

(

k

1

,

· · · ,

kn

;

k

,

k0

)

around k1

= · · · =

kn

=

0 canthusbeassumedtobeoftheform:

˜

G(n)

(

k1

,

· · · ,

kn;k

,

k0

)

=

A(n)

(

k

,

k0

)

D(μνn)

(

k

,

k0

)



i<j kμikνj

+

o

(

k2

) .

(19)

Aftertheabove small-k expansion issubstituted intothe pertur-bativeseriesEq.(8),onefinds:

2 Byanexplicitperturbativecomputation tosecond orderinthe height pro-file, it is possible to verify that the perturbative kernels G˜αα(1)0(k1;k,k0) and

˜

G(αα2)0(k1,k2;k,k0)doadmitasecond-orderTaylor-expansionasperEq.(16),for

bothascalarwavesatisfyingDirichletorNeumannboundaryconditionsonthe sur-face, aswellasfor thescatteringofanelectromagneticwavebyadielectric surface.Explicitformulaefortherelevantperturbativekernelsinthe electromag-neticcaseareprovidedin[3].

S

(

k

,

k0

)

=



n≥0 1 n

!



d2k 1

(

2

π

)

2

· · ·



d2k n

(

2

π

)

2h

˜

(

k1

) . . . ˜

h

(

kn

)

× (

2

π

)

2

δ

(2)

(

k1

+ . . .

kn

+

k0

k

)

× [

A(n)

(

k

,

k0

)

D(μνn)

(

k

,

k0

)



i<j kμi kνj

]

= (

2

π

)

2

δ

(2)

(

k0

k

)

R

(

k0

)

+

A(1)

(

k

,

k0

) ˜

h

(

k

k0

)

+



n≥2



d2x ei(k0−k)·x



1 n

!

A (n)

(

k

,

k 0

)

hn

(

x

)

+

hn−2

(

x

)

2

(

n

2

)

!

D (n) μν

(

k

,

k0

)∂

μh

(

x

)∂

νh

(

x

)



.

(20)

However, theidentities Eq.(15) satisfiedbythe perturbative ker-nelsforn

=

0

,

1

,

2 implyatonce:

A(m)

(

k0

,

k0

)

= (

2 i q0

)

mR

(

k0

) ,

(21)

A(m+1)

(

k

,

k0

)

= [

i

(

q0

+

q

)

]

mA(1)

(

k

,

k0

) ,

(22)

A(m+2)

(

k

,

k0

)

= [

i

(

q0

+

q

)

]

mA(2)

(

k

,

k0

) ,

(23)

D(μνm+2)

(

k

,

k0

)

= [

i

(

q0

+

q

)

]

m Dμν(2)

(

k

,

k0

) .

(24) Bymaking use intoEq. (20)ofthe above identities,it iseasy to performtheinfinitesumsinther.h.s.ofEq.(20):

S

(

k

,

k0

)

= (

2

π

)

2

δ

(2)

(

k0

k

)

R

(

k0

)

A(1)

(

k0

,

k0

)

2iq0

+



d2x ei(k0−k)·x

A(1)

(

k

,

k0

)

i

(

q0

+

q

)

+

1 2D (2) μν

(

k

,

k0

)∂

μh

(

x

)∂

νh

(

x

)

 

n≥0 1 n

!

[

i

(

q

+

q0

)

h

(

x

)

]

n

=



d2x ei[(k0−k)·x+(q+q0)h(x)]

A(1)

(

k

,

k 0

)

i

(

q0

+

q

)

+

1 2D (2) μν

(

k

,

k0

) ∂

μh

(

x

)∂

νh

(

x

)



.

(25)

The above formula forthe SA representsour main result. As we see,thecontributionproportionaltoA(1)

(

k

,

k0

)

reproducesthe KA, whilethesecondtermoforder

(

h

)

2 providestheleading curva-ture correction to theKA. Bearing inmind Eq.(19),we seethat the coefficients A(1)

(

k

,

k0

)

and Dμν(2)

(

k

,

k0

)

occurring in this for-mula can be extracted from the second order Taylor expansion oftheperturbativekernelsG

˜

(αα1)0

(

k1

;

k

,

k0

)

andG

˜

(2)

αα0

(

k1

,

k2

;

k

,

k0

)

,

respectively.Wenow provethatourEq.(25)isindeedequivalent (toorder

(

h

)

2)totheSSAansatzmadebyVoronovich[3]twenty yearsago.

4. ComparisonwithVoronovich’ssmall-slopeapproximation

In Ref. [3]Voronovich postulated the following ansatz for the SSAvalidtoorder

(

h

)

2:

S

(

k

,

k0

)

=

2

qq0 q

+

q0



d2x ei[(k0−k)·x+(q+q0)h(x)]

×



B11

(

k

,

k0

)

i 4



d2k1M11

(

k

,

k0

;

k1

) ˜

h

(

k1

)

eikx



,

(26) where

(4)

152 G. Bimonte / Physics Letters B 760 (2016) 149–152

M11

(

k

,

k0

;

k1

)

=

B112

(

k

,

k0

;

k

k1

)

+

B112

(

k

,

k0

;

k0

+

k1

)

+

2

(

q

+

q0

)

B11

(

k

,

k0

) ,

(27) andforbrevitywesuppressedallpolarizationindices.The pertur-bativekernelsoccurringintheaboveEquationsarerelatedtoours bythefollowingrelations:

˜

G(1)

(

k

k0

;

k

,

k0

)

=

A(1)

(

k

,

k0

)

=

2i

qq0B11

(

k

,

k0

) ,

(28) and

˜

G(n+1)

(

k

k1

,

k2

, . . . ,

kn

,

kn

k0

;

k

,

k0

)

= (

n

+

1

)

!

qq0

(

Bn+1

)

11

(

k

,

k0

;

k1

, . . . ,

kn

) ,

n

=

1

,

2

, . . .

(29)

Inview of Eq.(28),itis clearthat thefirsttermbetweenthe squarebracketsinEq.(26)reproducesthefirsttermbetweenthe square bracketsofEq.(25).Byan explicitcomputation, itis pos-sibleto verifythatthesecond termsbetweenthesquare brackets ofEqs.(26)and(25)coincideaswell.InviewofEq.(29),and us-ing thesecond orderTaylorexpansionof G

˜

(2)

(

k1

,

k2

;

k

,

k0

)

given inEq.(19),wefind:

qq0

(

B112

(

k

,

k0

;

k

k1

)

+

B112

(

k

,

k0

;

k0

+

k1

))

=

1 2

[ ˜

G (2)

(

k 1

,

k

k0

k1

;

k

,

k0

)

+ ˜

G(2)

(

k

k0

k1

,

k1

;

k

,

k0

)

]

= ˜

G(2)

(

k1

,

k

k0

k1

;

k

,

k0

)

=

A(2)

(

k

,

k0

)

D(μν2)

(

k

,

k0

)

kμ1

(

k

k0

k1

)

ν

.

(30) Therefore

qq0M11

(

k

,

k0

;

k1

)

=

A(2)

(

k

,

k0

)

i

(

q

+

q0

)

A(1)

(

k

,

k0

)

D(μν2)

(

k

,

k0

)

kμ1

(

k

k0

k1

)

ν

= −D

(2) μν

(

k

,

k0

)

kμ1

(

k

k0

k1

)

ν

,

(31) whereinthelast passagewe usedtherecursive relationEq.(22)

tocancelthefirsttwotermsintheintermediateexpression.Then:

qq0



d2k1M11

(

k

,

k0

;

k1

) ˜

h

(

k1

)

eikx

= −D

(2) μν

(

k

,

k0

)



d2k1eikxkμ1

(

k

k0

k1

)

νh

˜

(

k1

)

eikx

=

i D(μν2)

(

k

,

k0

)(

k

k0

+

i

∂)

ν

μh

(

x

) .

(32)

Usingtheaboveformula,weseethatthetermofEq.(26)involving thek1 integralcanberecastas:

i

qq 0 2

(

q

+

q0

)



d2x ei[(k0−k)·x+(q+q0)h(x)]

×



d2k1M11

(

k

,

k0

;

k1

) ˜

h

(

k1

)

eik1·x

=

D (2) μν

(

k

,

k0

)

2

(

q

+

q0

)



d2x ei[(k0−k)·x+(q+q0)h(x)]

× (

k

k0

+

i

∂)

ν

μh

(

x

)

=

1 2D (2) μν

(

k

,

k0

)



d2x ei[(k0−k)·x+(q+q0)h(x)]

μh

(

x

)∂

νh

(

x

) ,

(33)

where in the last passage we performedan integration by parts on the term involving second derivatives of h. Comparison with Eq.(25)showsthattheabovetermcoincideswiththesecondterm onther.h.s. ofEq.(25).

5. Conclusions

Wehaveshownthat theSAdescribingscatteringofawave by agentlycurvedsurfaceadmitsaderivativeexpansioninpowersof derivatives ofthe height profile. Thisderivative expansion of the SA hasbeenderived herebyperforming an infiniteresummation of the perturbative seriesfor the SA, to all orders inthe ampli-tude of the corrugation. Based on this formal derivation it can be expectedthat the derivative expansionis asymptotically exact in thelimit of quasi-specularscattering. In theleading order the derivative expansion coincides with the classic KA, while in the next orderitprovides theleadingcurvaturecorrection tothe KA. We have also shown that the derivative expansion is equivalent totheorder

(

h

)

2 totheSSAansatz,proposed sometimeago by Voronovich to describe wave scattering by a rough surface. The resummation of the perturbative series performed here to order

(

h

)

2,can beeasily generalizedtohigherorders in

h,provided onlythattheperturbativekernelsforthescatteringamplitude ad-mitaTaylorexpansionofsufficientlyhighorderforsmallin-plane wavevectors.

Acknowledgements

TheauthorthanksT. Emig,N. Graham,M. Kruger,R.L. Jaffeand M. Kardar for valuable discussions while the manuscript was in preparation.

References

[1]A.Voronovich,WaveScatteringfromRoughSurfaces,Springer-Verlag,Berlin, Heidelberg,1999.

[2]T.M.Elfouhaily,C.-A.Guérin,WavesRandomMedia14(2004)R1–R40. [3]A.Voronovich,WavesRandomMedia4(1994)337.

[4]V.I.Tatarskii,WavesRandomMedia3(1993)127.

[5]V.I.Tatarskii,V.V.Tatarskii,WavesRandomMedia4(1994)19. [6]S.T.McDaniel,WavesRandomMedia5(1995)201.

[7]C.D.Fosco,F.C.Lombardo,F.D.Mazzitelli,Phys.Rev.D84(2011)105031. [8]G.Bimonte,T.Emig,R.L.Jaffe,M.Kardar,Europhys.Lett.97(2012)50001. [9]G.Bimonte,T.Emig,M.Kardar,Appl.Phys.Lett.100(2012)074110. [10]G.Bimonte,T.Emig,M.Kardar,Phys.Rev.D90(2014),081702(R). [11]G.Bimonte,T.Emig,M.Kardar,Phys.Rev.D92(2015)025028. [12]G.Bimonte,T.Emig,R.L.Jaffe,M.Kardar,arXiv:1606.04641.

[13]C.D.Fosco,F.C.Lombardo,F.D.Mazzitelli,Phys.Rev.A89(2014)062120. [14]E.M.Lifshitz,L.P.Pitaevskii,StatisticalPhysics,Part2,Pergamon,Oxford,1991.

Riferimenti

Documenti correlati

system of adiponectin (ADN), an insulin-sensitizing and anti- inflammatory adipokine, in tissues known to be the target of chronic diseases associated to obesity

Stock solutions were prepared by dissolving weighed amounts of solid in water; the concentration of copper stock solution was evaluated by titrating with EDTA..

Differences with respect to the mean values of UBLX coordinates estimated with MILA base station and Bernese [baseline: PROV-UBLX (2.8 km), rate: 1 s]: (a) the daily E adjusted

The shock-wave model of an earthquake is based on quantum entanglement of protons in hydrogen bonds of the lithosphere material.. It is obvious that aftershocks are quantum

Results: Among the IL-1 family cytokines tested total IL-18, its endogenous inhibitor IL-18BP, and the active form of the cytokine (free IL-18) were significantly higher in the

The results showing a significant effect of density, indicate that different structures of assemblages depends on the density of early colonizers, and they also suggest a facilitative

Moreover, different coatings consisting of blends of the amphiphilic fluorinated block copolymers with a thermoplastic elastomer SEBS were prepared with a bilayer strategy

As the alchemical prima materia, that represents the turning point of the opus alchymicum, so the scene that portrays the shipwreck in The Winter’s Tale, occurring precisely in