• Non ci sono risultati.

Wave-scattering from a gently curved surface

N/A
N/A
Protected

Academic year: 2021

Condividi "Wave-scattering from a gently curved surface"

Copied!
4
0
0

Testo completo

(1)

Physics Letters B 760 (2016) 149–152

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Wave-scattering

from

a

gently

curved

surface

Giuseppe Bimonte

a

,

b

,

aDipartimento di Fisica E. Pancini, Università di Napoli Federico II, Complesso Universitario di Monte S. Angelo, Via Cintia, I-80126 Napoli, Italy bINFN Sezione di Napoli, I-80126 Napoli, Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Article history:

Received16May2016

Receivedinrevisedform21June2016 Accepted24June2016

Availableonline29June2016 Editor:M.Cvetiˇc

We studywavescatteringfromagentlycurvedsurface.Weshowthat therecursiverelations,implied byshiftinvariance,amongthecoefficientsoftheperturbativeseriesforthescatteringamplitudeallow to perform an infinite resummationof the perturbative seriesto all orders in the amplitude of the corrugation.Theresummedseriesprovidesaderivativeexpansionofthescatteringamplitudeinpowers ofderivatives ofthe heightprofile,whichis expectedtobecome exactin thelimitof quasi-specular scattering.Wediscusstherelationofourresultswiththeso-calledsmall-slopeapproximationintroduced sometimeagobyVoronovich.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Theproblemofwave scatteringatroughinterfaceshasalways attractedmuch attention, due to its importance in diverseareas ofphysicsrangingfromoptics,toacoustics,communications, geo-physics, etc. Its difficulty is universally acknowledged, and even withpresentlyavailablecomputersitrepresentsaformidable chal-lenge in realistic situations. Despiteimpressive progress madein numerical methods, approximate analytical approaches are still much valuable as the only ones capable of providing an insight intogeneralphysicalfeaturesofwavescattering. Itisnot surpris-ing then that a number of diverseapproximation schemes, with differentranges ofvalidity, have been developed over the years. Forareview,weaddressthereadertothemonograph[1]ortothe recentreview [2].Historically,the first andperhaps mostwidely knownapproximatetheory of scatteringbyrough surfaces isthe

smallperturbationmethod (SPM) originally developed by Rayleigh tostudyscatteringofsoundwavesbysinusoidallycorrugated sur-faces of small amplitude, and later generalized by several other authorstoelectromagneticscattering.Anotherclassicapproximate schemeistheKirchhoffapproximation (KA),alsoknownasthe tan-gentplane approximation(TPA), whichrepresents a valid approx-imationfor locallysmooth surfaces withlarge radii ofcurvature. A schemeaimingatreconcilingSPMandKAwasproposedtwenty years ago by Voronovich [1,3], i.e. the small-slopeapproximation

(SSA).It consistsof an ingeniousansatz for the scattering

ampli-*

Correspondenceto:DipartimentodiFisicaE.Pancini,UniversitàdiNapoli Fed-ericoII,ComplessoUniversitariodiMonteS.Angelo,ViaCintia,I-80126Napoli,Italy.

E-mail address:[email protected].

tude(SA),thatmanagestocapturetheleadingcurvaturecorrection to theKA.The ansatz involves unknowncoefficients thatare de-termined aposteriori by matching theSSA withthe SPM intheir commonregionofvalidity. Numericalinvestigationsrevealedthat withinitsdomainofvaliditytheSSAisindeedremarkablyaccurate

[2].Severalauthorshaveattemptedtoproviderigorous mathemat-icalderivationsoftheSSA,utilizingtheextinctiontheorem[4,5]or theMeecham–Lysanovmethod[6].

Inrecentyearsithasbeenshown[7–9]that curvature correc-tions to the Casimir interaction between two gently curved sur-faces can be estimatedusing a derivative expansion (DE) of the Casimir-energy functional, in powers of derivativesof the height profiles ofthesurfaces.TheDE hasbeenlaterusedto study cur-vatureeffects intheCasimir–Polder interactionofa particlewith a gentlycurvedsurface [10,11].The samemethodhasbeenused veryrecentlytoestimatetheshiftsoftherotationallevelsofa di-atomicmoleculeduetoitsvanderWaalsinteractionwithacurved dielectricsurface[12].Animportantinsightintothenatureofthe DE wasachievedin[13] (see also[10]) whereit wasshownthat the derivative expansion amounts to an infinite resummation of theperturbative seriesfortheCasimirenergytoallorders inthe amplitude of the corrugation, forsmall in-plane momenta of the electromagneticfield.Thesemethodscanindeedbeadaptedtothe problemof wave scattering by a rough surface. In this letterwe demonstratethat theinfiniterecursiverelationsamongthe coeffi-cientsoftheperturbativeseriesfortheSA,engenderedbyitsexact invarianceunderverticalandhorizontal shiftsofthesurface,allow toperformaninfinite resummationoftheperturbativeseries,toall ordersintheamplitudeofthecorrugation.Theresummation pro-cedure resultsintoa DEoftheSAinpowersofderivativesofthe

http://dx.doi.org/10.1016/j.physletb.2016.06.058

0370-2693/©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

150 G. Bimonte / Physics Letters B 760 (2016) 149–152

height profile,whichis expectedto becomeexact inthe limit of quasi-specularscattering.WeshowthatourDEoftheSAisindeed equivalenttoVoronovich’sSSAansatz,thusprovidingaformal jus-tificationforit.

2. PerturbativeexpansionoftheSA

We consider a surface



separating two media of different (optical or acoustical) properties. A cartesian coordinate system

(

x

,

y

,

z

)

is chosen such that the z-axis is directed upwards in the direction going from medium 2 towards medium 1, while

(

x

,

y

)

span a reference plane orthogonal to the z-axis. It is as-sumedthatthesurface



canberepresentedby a(single-valued)

smooth height profile of equation z

=

h

(

x

)

=

h

(

x

,

y

)

. A down-wardpropagating (electromagnetic oracoustic)wave E(αin0)

(

x

,

z

)

=

E(α00)

/

q0 exp

[

i

(

k0

·

x

q0z

)

]

with wave vector K0

= (

k0

,

q0

)

, wavenumber K0

=

2

π/λ

01 is incident on the surface. The index

α

0takesvaluesinadiscretesetconsistingofoneortwoelements, dependingonwhetheranacousticorelectromagneticwaveis con-sidered.ThescatteredfieldE(sc)

(

r

,

z

)

atpointsaboveandfarfrom



canbeexpressedthroughtheSASαα0

(

k

,

k0

)

asasuperpositions

ofupwardspropagatingwaveswithwavevectorK

= (

k

,

q

)

as:

E(αsc)

(

x

,

z

)

=



d2k 4

π

2 1

qei(k·x+qz)Sαα0

(

k

,

k0

)

E (0) α0

.

(1)

TheSAsatisfiestwogeneralproperties.Thefirstoneisreciprocity:

Sαα0

(

k

,

k0

)

=

0α

(

k0

,

k

) ,

(2)

whichfollowsfrommicroscopicreversibility[14].Thesecond gen-eralpropertysatisfiedbytheSAisshiftinvariance,whichamounts tothe following transformationproperty oftheSA undera hori-zontalandverticaldisplacementofthesurface



:

Sαα0

(

k

,

k0

)

|h

(x−a)b

=

e

i[(k0−k)·a−(q0+q)b]S

αα0

(

k

,

k0

)

|h

(x)

.

(3)

According to the SPM, we postulate that for sufficiently small heightprofilesh theSAcanbeexpandedasapowerseriesinthe heightprofile: Sαα0

(

k

,

k0

)

=



n≥0 1 n

!



d2x1

· · ·



d2xn

×

G(ααn)0

(

x1

, . . . ,

xn;k

,

k0

)

h

(

x1

) . . .

h

(

xn

) ,

(4)

wherethe kernels G(μνn)

(

x1

,

. . . ,

xn

;

k

,

k0

)

are symmetric functions of

(

x1

. . .

xn

)

.In momentumspace, the perturbative expansion of

theSAreads: Sαα0

(

k

,

k0

)

=



n≥0 1 n

!



d2k1

(

2

π

)

2

· · ·



d2kn

(

2

π

)

2

× ¯

G(ααn)0

(

k1

, . . . ,

kn;k

,

k0

) ˜

h

(

k1

) . . . ˜

h

(

kn

) .

(5)

Shiftinvariance under a horizontal translation of the profile h

(

x

)

implies that the kernels G

˜

(ααn)0

(

k1

,

. . . ,

kn

;

k

,

k0

)

must be of the

form:

¯

G(ααn)0

(

k1

, . . . ,

kn;k

,

k0

)

= (

2

π

)

2

δ

(2)

(

k1

+ . . .

kn

+

k0

k

)

× ˜

G(ααn)0

(

k1

, . . . ,

kn;k

,

k0

) ,

(6)

where G

˜

(ααn)0

(

k1

,

· · · ,

kn

;

k

,

k0

)

are symmetricfunctionsof the in-plane momentak1

,

. . . ,

k2,whichare definedonly onthe hyper-plane

P

(n)

≡ {

k1

+ . . .

kn

+

k0

k

=

0

}

.Ofcourse

1 WefollowthenormalizationofwavesadoptedbyVoronovich[3].

¯

G(αα0)0

(

k

,

k0

)

= (

2

π

)

2

δ

(2)

(

k

0

k

)

Rαα0

(

k0

) ,

(7)

where Rαα0

(

k0

)

arethefamiliarreflectioncoefficientsforaplanar

surface.ByinsertingEq.(6)intoEq.(5),theperturbativeseriescan berewrittenas: Sαα0

(

k

,

k0

)

=



n≥0 1 n

!



d2k 1

(

2

π

)

2

· · ·



d2k n

(

2

π

)

2 h

˜

(

k1

) . . . ˜

h

(

kn

)

× (

2

π

)

2

δ

(2)

(

k1

+ . . .

kn

+

k0

k

) ˜

G(ααn)0

(

k1

, . . . ,

kn;k

,

k0

) .

(8)

Nextweshow thattheperturbativekernels havetosatisfy an in-finite set of relations, asa result ofthe shift invariance under a

vertical shift of theprofile. Toderive theserelations we note the identitythatfollowsfromEq.(3):

ei(q0+q)b S

αα0

(

k

,

k0

)

|h

(x)b

=

Sαα0

(

k

,

k0

)

|h

(x)

.

(9)

Upontaking p derivativesofbothsidesoftheaboverelationwith respecttotheshiftb,weobtaintheidentities:

dp d bp



ei(q0+q)bS αα0

(

k

,

k0

)

|h

(x)b





b=0

A(ααp)0

(

k

,

k0

)

|h

(x)

=

0 (10)

that have to be satisfiedfor any profile h.By making useof the perturbative expansion of the SA Eq. (4) into the l.h.s. of the above identities,oneobtains thefollowingexpansion forthe ker-nels A(ααp)0

(

k

,

k0

)

|

h(x): A(ααp)0

(

k

,

k0

)

|h

(x)

=



n≥0 1 n

!



d2x1

· · ·



d2xn

×

Aαα(p,0n)

(

x1

, . . . ,

xn;k

,

k0

)

h

(

x1

) . . .

h

(

xn

)

=

0

,

(11) with: A(ααp,n0)

(

x1

, . . . ,

xn;k

,

k0

)

=

p



k=0

(

1

)

k p

!

k

!(

p

k

)

!

[

i

(

q0

+

q

)

]

pk

×



d2xn+1

. . .



d2xn+kG(ααn+0k)

(

x1

, . . . ,

xn+k;k

,

k0

) .

(12)

SincetheidentitiesinEq.(10)mustbesatisfiedforarbitrary pro-filesh,itfollowsthat allthekernels Aαα(p,0n)

(

x1

,

. . . ,

xn

;

k

,

k0

)

must

vanishidentically:

A(ααp,n0)

(

x1

, . . . ,

xn;k

,

k0

)

=

0

,

n

0

,

p

>

0

.

(13) Whenexpressedinmomentumspace,theseconditionsread:

(

2

π

)

2

δ

(2)

(

k1

+ . . .

kn

+

k0

k

)

p



k=0

(

1

)

k p

!

k

!(

p

k

)

!

× [

i

(

q0

+

q

)

]

pkG

˜

(ααn+0k)

(

k1

, . . . ,

kn

,

0

, . . . ,

0

)

=

0

.

(14)

Foranyfixedn,theaboverelationscanbesolvediteratively lead-ingto:

˜

G(ααn+0m)

(

k1

, . . . ,

kn

,

0

, . . . ,

0

;

k

,

k0

)

= [

i

(

q0

+

q

)

]

mG

˜

αα(n)0

(

k1

, . . . ,

kn;k

,

k0

) .

(15)

Werecallthat theseidentitiesholdon

P

(n).Equation(15)

consti-tutes a very importantresult, andin next Section we show that withtheir helpit ispossibletoperform aninfinite re-summation

(3)

G. Bimonte / Physics Letters B 760 (2016) 149–152 151

3. Resummationoftheperturbativeseries

Nowwe considera surface



whoselocal radiusofcurvature is everywhere large compared to the wavelength of the incom-ingwave. For sucha gently curvedprofile, theFouriertransform

˜

h

(

k

)

of theheight profileissignificantly differentfromzeroonly for small in-plane wave vectors k. For quasi specular-scattering, i.e. for k



k0, it is therefore legitimate to Taylor-expand the kernels G

˜

(ααn)0

(

k1

,

. . . ,

kn

;

k

,

k0

)

around k1

= · · · =

kn

=

0.

Exis-tence of this Taylor expansion is not guaranteed a priori, but hasto be checkedcaseby case. Withrespect to thisquestion, it is important to observe that by virtue of the iterative relations Eq.(15) existenceofthe Taylorexpansionofordern for the ker-nel G

˜

(ααn)0

(

k1

,

. . . ,

kn

;

k

,

k0

)

automatically implies existence of the

Taylorexpansion tothesameordern forall higherorderkernels

˜

G(ααn+0m)

(

k1

,

. . . ,

kn+m

;

k

,

k0

)

, m

=

1

,

2

,

. . .

. Let usassume that the

perturbativekernelscanbeTaylor-expandedtosecondorderinthe wavevectors2:

˜

G(n)

(

k1

, . . . ,

kn;k

,

k0

)

=

A(n)

(

k

,

k0

)

+

Bμ(n)

(

k

,

k0

)(

k1

+ · · · +

kn

)

μ

+

C(μνn)

(

k

,

k0

)

n



i=1 kiμkνi

Dμν(n)

(

k

,

k0

)



i<j kμi kνj

+

o

(

k2

) ,

(16) where Greek indices take values

(

1

,

2

)

, and for brevity we sup-pressed all polarization indices.Since then-point Green function is defined only on the hyperplanes

P

(n), we are free to add to

˜

G(n)

(

k

1

,

· · · ,

kn

;

k

,

k0

)

anyfunction f(n)

(

k1

,

· · · ,

kn

;

k

,

k0

)

vanish-ingon

P

(n)oftheform

f(n)

(

k1

, . . . ,

kn;k

,

k0

)

= (

k1

+ . . .

kn

+

k0

k

)

μ

×

gμ(n)

(

k1

, . . . ,

kn;k

,

k0

)

(17) whereg(μn)

(

k1

,

· · · ,

kn

;

k

,

k0

)

arearbitrarysmoothsymmetric func-tionsofk1

,

· · · ,

kn.Letustake

gμ(n)

= ˆ

Aμ(n)

(

k

,

k0

)

+ ˆ

Bμν(n)

(

k

,

k0

)(

k1

+ · · · +

kn

)

ν

.

(18)

It iseasy toverify that the coefficients A

ˆ

μ(n)

,

B

ˆ

(μν cann) always be

chosensuchthataddition of f(n)

(

k

1

,

· · · ,

kn

;

k

,

k0

)

toG

˜

(n)

(

k1

,

· · · ,

kn

;

k

,

k0

)

removes from Eq. (16) the terms proportional to B(μn)

and C(μν .n) Without loss ofgenerality, the second order Taylor ex-pansion of the kernels G

˜

(n)

(

k

1

,

· · · ,

kn

;

k

,

k0

)

around k1

= · · · =

kn

=

0 canthusbeassumedtobeoftheform:

˜

G(n)

(

k1

,

· · · ,

kn;k

,

k0

)

=

A(n)

(

k

,

k0

)

D(μνn)

(

k

,

k0

)



i<j kμikνj

+

o

(

k2

) .

(19)

Aftertheabove small-k expansion issubstituted intothe pertur-bativeseriesEq.(8),onefinds:

2 Byanexplicitperturbativecomputation tosecond orderinthe height pro-file, it is possible to verify that the perturbative kernels G˜αα(1)0(k1;k,k0) and

˜

G(αα2)0(k1,k2;k,k0)doadmitasecond-orderTaylor-expansionasperEq.(16),for

bothascalarwavesatisfyingDirichletorNeumannboundaryconditionsonthe sur-face, aswellasfor thescatteringofanelectromagneticwavebyadielectric surface.Explicitformulaefortherelevantperturbativekernelsinthe electromag-neticcaseareprovidedin[3].

S

(

k

,

k0

)

=



n≥0 1 n

!



d2k 1

(

2

π

)

2

· · ·



d2k n

(

2

π

)

2h

˜

(

k1

) . . . ˜

h

(

kn

)

× (

2

π

)

2

δ

(2)

(

k1

+ . . .

kn

+

k0

k

)

× [

A(n)

(

k

,

k0

)

D(μνn)

(

k

,

k0

)



i<j kμi kνj

]

= (

2

π

)

2

δ

(2)

(

k0

k

)

R

(

k0

)

+

A(1)

(

k

,

k0

) ˜

h

(

k

k0

)

+



n≥2



d2x ei(k0−k)·x



1 n

!

A (n)

(

k

,

k 0

)

hn

(

x

)

+

hn−2

(

x

)

2

(

n

2

)

!

D (n) μν

(

k

,

k0

)∂

μh

(

x

)∂

νh

(

x

)



.

(20)

However, theidentities Eq.(15) satisfiedbythe perturbative ker-nelsforn

=

0

,

1

,

2 implyatonce:

A(m)

(

k0

,

k0

)

= (

2 i q0

)

mR

(

k0

) ,

(21)

A(m+1)

(

k

,

k0

)

= [

i

(

q0

+

q

)

]

mA(1)

(

k

,

k0

) ,

(22)

A(m+2)

(

k

,

k0

)

= [

i

(

q0

+

q

)

]

mA(2)

(

k

,

k0

) ,

(23)

D(μνm+2)

(

k

,

k0

)

= [

i

(

q0

+

q

)

]

m Dμν(2)

(

k

,

k0

) .

(24) Bymaking use intoEq. (20)ofthe above identities,it iseasy to performtheinfinitesumsinther.h.s.ofEq.(20):

S

(

k

,

k0

)

= (

2

π

)

2

δ

(2)

(

k0

k

)

R

(

k0

)

A(1)

(

k0

,

k0

)

2iq0

+



d2x ei(k0−k)·x

A(1)

(

k

,

k0

)

i

(

q0

+

q

)

+

1 2D (2) μν

(

k

,

k0

)∂

μh

(

x

)∂

νh

(

x

)

 

n≥0 1 n

!

[

i

(

q

+

q0

)

h

(

x

)

]

n

=



d2x ei[(k0−k)·x+(q+q0)h(x)]

A(1)

(

k

,

k 0

)

i

(

q0

+

q

)

+

1 2D (2) μν

(

k

,

k0

) ∂

μh

(

x

)∂

νh

(

x

)



.

(25)

The above formula forthe SA representsour main result. As we see,thecontributionproportionaltoA(1)

(

k

,

k0

)

reproducesthe KA, whilethesecondtermoforder

(

h

)

2 providestheleading curva-ture correction to theKA. Bearing inmind Eq.(19),we seethat the coefficients A(1)

(

k

,

k0

)

and Dμν(2)

(

k

,

k0

)

occurring in this for-mula can be extracted from the second order Taylor expansion oftheperturbativekernelsG

˜

(αα1)0

(

k1

;

k

,

k0

)

andG

˜

(2)

αα0

(

k1

,

k2

;

k

,

k0

)

,

respectively.Wenow provethatourEq.(25)isindeedequivalent (toorder

(

h

)

2)totheSSAansatzmadebyVoronovich[3]twenty yearsago.

4. ComparisonwithVoronovich’ssmall-slopeapproximation

In Ref. [3]Voronovich postulated the following ansatz for the SSAvalidtoorder

(

h

)

2:

S

(

k

,

k0

)

=

2

qq0 q

+

q0



d2x ei[(k0−k)·x+(q+q0)h(x)]

×



B11

(

k

,

k0

)

i 4



d2k1M11

(

k

,

k0

;

k1

) ˜

h

(

k1

)

eikx



,

(26) where

(4)

152 G. Bimonte / Physics Letters B 760 (2016) 149–152

M11

(

k

,

k0

;

k1

)

=

B112

(

k

,

k0

;

k

k1

)

+

B112

(

k

,

k0

;

k0

+

k1

)

+

2

(

q

+

q0

)

B11

(

k

,

k0

) ,

(27) andforbrevitywesuppressedallpolarizationindices.The pertur-bativekernelsoccurringintheaboveEquationsarerelatedtoours bythefollowingrelations:

˜

G(1)

(

k

k0

;

k

,

k0

)

=

A(1)

(

k

,

k0

)

=

2i

qq0B11

(

k

,

k0

) ,

(28) and

˜

G(n+1)

(

k

k1

,

k2

, . . . ,

kn

,

kn

k0

;

k

,

k0

)

= (

n

+

1

)

!

qq0

(

Bn+1

)

11

(

k

,

k0

;

k1

, . . . ,

kn

) ,

n

=

1

,

2

, . . .

(29)

Inview of Eq.(28),itis clearthat thefirsttermbetweenthe squarebracketsinEq.(26)reproducesthefirsttermbetweenthe square bracketsofEq.(25).Byan explicitcomputation, itis pos-sibleto verifythatthesecond termsbetweenthesquare brackets ofEqs.(26)and(25)coincideaswell.InviewofEq.(29),and us-ing thesecond orderTaylorexpansionof G

˜

(2)

(

k1

,

k2

;

k

,

k0

)

given inEq.(19),wefind:

qq0

(

B112

(

k

,

k0

;

k

k1

)

+

B112

(

k

,

k0

;

k0

+

k1

))

=

1 2

[ ˜

G (2)

(

k 1

,

k

k0

k1

;

k

,

k0

)

+ ˜

G(2)

(

k

k0

k1

,

k1

;

k

,

k0

)

]

= ˜

G(2)

(

k1

,

k

k0

k1

;

k

,

k0

)

=

A(2)

(

k

,

k0

)

D(μν2)

(

k

,

k0

)

kμ1

(

k

k0

k1

)

ν

.

(30) Therefore

qq0M11

(

k

,

k0

;

k1

)

=

A(2)

(

k

,

k0

)

i

(

q

+

q0

)

A(1)

(

k

,

k0

)

D(μν2)

(

k

,

k0

)

kμ1

(

k

k0

k1

)

ν

= −D

(2) μν

(

k

,

k0

)

kμ1

(

k

k0

k1

)

ν

,

(31) whereinthelast passagewe usedtherecursive relationEq.(22)

tocancelthefirsttwotermsintheintermediateexpression.Then:

qq0



d2k1M11

(

k

,

k0

;

k1

) ˜

h

(

k1

)

eikx

= −D

(2) μν

(

k

,

k0

)



d2k1eikxkμ1

(

k

k0

k1

)

νh

˜

(

k1

)

eikx

=

i D(μν2)

(

k

,

k0

)(

k

k0

+

i

∂)

ν

μh

(

x

) .

(32)

Usingtheaboveformula,weseethatthetermofEq.(26)involving thek1 integralcanberecastas:

i

qq 0 2

(

q

+

q0

)



d2x ei[(k0−k)·x+(q+q0)h(x)]

×



d2k1M11

(

k

,

k0

;

k1

) ˜

h

(

k1

)

eik1·x

=

D (2) μν

(

k

,

k0

)

2

(

q

+

q0

)



d2x ei[(k0−k)·x+(q+q0)h(x)]

× (

k

k0

+

i

∂)

ν

μh

(

x

)

=

1 2D (2) μν

(

k

,

k0

)



d2x ei[(k0−k)·x+(q+q0)h(x)]

μh

(

x

)∂

νh

(

x

) ,

(33)

where in the last passage we performedan integration by parts on the term involving second derivatives of h. Comparison with Eq.(25)showsthattheabovetermcoincideswiththesecondterm onther.h.s. ofEq.(25).

5. Conclusions

Wehaveshownthat theSAdescribingscatteringofawave by agentlycurvedsurfaceadmitsaderivativeexpansioninpowersof derivatives ofthe height profile. Thisderivative expansion of the SA hasbeenderived herebyperforming an infiniteresummation of the perturbative seriesfor the SA, to all orders inthe ampli-tude of the corrugation. Based on this formal derivation it can be expectedthat the derivative expansionis asymptotically exact in thelimit of quasi-specularscattering. In theleading order the derivative expansion coincides with the classic KA, while in the next orderitprovides theleadingcurvaturecorrection tothe KA. We have also shown that the derivative expansion is equivalent totheorder

(

h

)

2 totheSSAansatz,proposed sometimeago by Voronovich to describe wave scattering by a rough surface. The resummation of the perturbative series performed here to order

(

h

)

2,can beeasily generalizedtohigherorders in

h,provided onlythattheperturbativekernelsforthescatteringamplitude ad-mitaTaylorexpansionofsufficientlyhighorderforsmallin-plane wavevectors.

Acknowledgements

TheauthorthanksT. Emig,N. Graham,M. Kruger,R.L. Jaffeand M. Kardar for valuable discussions while the manuscript was in preparation.

References

[1]A.Voronovich,WaveScatteringfromRoughSurfaces,Springer-Verlag,Berlin, Heidelberg,1999.

[2]T.M.Elfouhaily,C.-A.Guérin,WavesRandomMedia14(2004)R1–R40. [3]A.Voronovich,WavesRandomMedia4(1994)337.

[4]V.I.Tatarskii,WavesRandomMedia3(1993)127.

[5]V.I.Tatarskii,V.V.Tatarskii,WavesRandomMedia4(1994)19. [6]S.T.McDaniel,WavesRandomMedia5(1995)201.

[7]C.D.Fosco,F.C.Lombardo,F.D.Mazzitelli,Phys.Rev.D84(2011)105031. [8]G.Bimonte,T.Emig,R.L.Jaffe,M.Kardar,Europhys.Lett.97(2012)50001. [9]G.Bimonte,T.Emig,M.Kardar,Appl.Phys.Lett.100(2012)074110. [10]G.Bimonte,T.Emig,M.Kardar,Phys.Rev.D90(2014),081702(R). [11]G.Bimonte,T.Emig,M.Kardar,Phys.Rev.D92(2015)025028. [12]G.Bimonte,T.Emig,R.L.Jaffe,M.Kardar,arXiv:1606.04641.

[13]C.D.Fosco,F.C.Lombardo,F.D.Mazzitelli,Phys.Rev.A89(2014)062120. [14]E.M.Lifshitz,L.P.Pitaevskii,StatisticalPhysics,Part2,Pergamon,Oxford,1991.

Riferimenti

Documenti correlati

As the alchemical prima materia, that represents the turning point of the opus alchymicum, so the scene that portrays the shipwreck in The Winter’s Tale, occurring precisely in

The results showing a significant effect of density, indicate that different structures of assemblages depends on the density of early colonizers, and they also suggest a facilitative

Moreover, different coatings consisting of blends of the amphiphilic fluorinated block copolymers with a thermoplastic elastomer SEBS were prepared with a bilayer strategy

system of adiponectin (ADN), an insulin-sensitizing and anti- inflammatory adipokine, in tissues known to be the target of chronic diseases associated to obesity

Stock solutions were prepared by dissolving weighed amounts of solid in water; the concentration of copper stock solution was evaluated by titrating with EDTA..

Results: Among the IL-1 family cytokines tested total IL-18, its endogenous inhibitor IL-18BP, and the active form of the cytokine (free IL-18) were significantly higher in the

The shock-wave model of an earthquake is based on quantum entanglement of protons in hydrogen bonds of the lithosphere material.. It is obvious that aftershocks are quantum

Differences with respect to the mean values of UBLX coordinates estimated with MILA base station and Bernese [baseline: PROV-UBLX (2.8 km), rate: 1 s]: (a) the daily E adjusted