Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
K
−
over
K
+
multiplicity
ratio
for
kaons
produced
in
DIS
with
a
large
fraction
of
the
virtual-photon
energy
.
The
COMPASS
Collaboration
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Articlehistory: Received26April2018
Receivedinrevisedform4September2018 Accepted26September2018
Availableonline9October2018 Editor: M.Doser
The K−overK+ multiplicityratioismeasuredindeep-inelasticscattering,forthefirsttimeforkaons carrying a large fraction z of the virtual-photon energy. The data were obtained by the COMPASS collaboration usinga160GeV muon beamandan isoscalar6LiDtarget.The regimeofdeep-inelastic
scatteringisensuredbyrequiringQ2>1(GeV/c)2forthephotonvirtualityand
W
>5 GeV/c2fortheinvariantmassoftheproducedhadronicsystem.Kaonsareidentifiedinthemomentumrangefrom12 GeV/c to 40GeV/c,therebyrestrictingtherangeinBjorken-x to0.01<x <0.40.The
z-dependence
of themultiplicityratioisstudiedforz
>0.75.Forverylargevaluesofz, i.e. z
>0.8,weobservethekaon multiplicityratiotofallbelowthelowerlimitsexpectedfromcalculationsbasedonleadingand next-to-leadingorderperturbativequantumchromodynamics.Also,thekaonmultiplicityratioshowsastrong dependence onthe missingmassofthesingle-kaonproductionprocess.Thissuggeststhatwithinthe perturbativequantumchromodynamicsformalismanadditionalcorrectionmayberequired,whichtakes intoaccountthephasespaceavailableforhadronisation.©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
Quark fragmentation into hadrons is a process of fundamen-talnature.Inperturbativequantum chromodynamics(pQCD),this processis effectivelydescribed by non-perturbativeobjects called fragmentationfunctions(FFs).Whilethesefunctionspresently can-not be predicted by theory,their scale evolution is described by the DGLAPequations [1]. Inleading order(LO) pQCD, the FF Dh q
represents a probability density,which describes the scaled mo-mentum distribution ofa hadron type h that is produced inthe fragmentationofaquarkwithflavour q.
ThecleanestwaytoaccessFFsistostudyhadronproductionin single-inclusiveannihilation,e+
+
e−→
h+
X ,wherethe remain-ing final state X is not analysed. These studies have two disad-vantages:i)
thatonlyinformationaboutDhq
+
Dhq¯ isaccessible,and ii)
withoutinvokingmodel-dependentalgorithmsforquark-flavour taggingonlylimitedflavour separationispossible.Incontrast,the analysisofsemi-inclusivemeasurements ofdeep-inelasticlepton– nucleonscattering(SIDIS)isadvantageousinthat qandq can¯
be accessedseparatelyandfullflavourseparationispossiblein prin-ciple.Here, thedisadvantageisthat inthepQCD descriptionofa SIDISmeasurementFFsappearconvolutedwithpartondistribution functions(PDFs).Recently, COMPASS reported results on charged-hadron, pion andkaonmultiplicitiesobtainedoverawidekinematicrange [2,3]. Theseresultsprovideimportantinputforphenomenological
analy-sesofFFs.Thepionmultiplicitieswerefoundtobewelldescribed bothinleading-order(LO) andnext-to-leadingorder(NLO)pQCD, while thiswasnot thecaseforkaon multiplicities.Theregion of large z appearstobeparticularlyproblematic forkaons,asitwas also observed insubsequent analyses [4] ofthe COMPASS multi-plicities.Here, z denotesthefractionofthevirtual-photonenergy carriedbytheproducedhadroninthetargetrestframe.
InthisLetter,wepresentresultsontheK− overK+ multiplic-ityratiointhelarge-z region,i.e. for z
>
0.
75.Insteadofstudying multiplicities for K− and K+ separately, their ratio RK isanal-ysed as inthiscase mostexperimental systematiceffects cancel. Similarly, the impactoftheoretical uncertainties, e.g. scale uncer-tainties, is largely reducedin the ratio.Also, while pQCD cannot predictvaluesofmultiplicities,limitsforcertainmultiplicityratios can be predicted.The Letter isorganisedasfollows: inSection 2
various predictionsfor RK are discussed.Theexperimental set-up
and the data selection are described in Section 3. The analysis method is presented in Section 4, followed by the discussion of thesystematicuncertaintiesinSection5.Theresultsarepresented anddiscussedinSection6.
2. Theoreticalframeworkandmodelexpectations
Hadrons oftype hproducedinaSIDISmeasurementare com-monlycharacterisedbytheir relativeabundance.Thehadron mul-tiplicity Mh is definedas theratio ofthe SIDIScross section for
https://doi.org/10.1016/j.physletb.2018.09.052
0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
hadrontype h to thecross section foran inclusivemeasurement ofthedeep-inelasticscatteringprocess:
dMh
(
x,
Q2,
z)
dz
=
d3
σ
h(
x,
Q2,
z)/
dxdQ2dzd2
σ
DIS(
x,
Q2)/
dxdQ2.
(1)Here, Q2 is the virtuality of the photon mediating the lepton–
nucleonscatteringprocessandx denotestheBjorkenscaling vari-able. Within the standard factorisation approach of pQCD [5,6],
σ
DIS can be written as a sum over parton types, in which fora givenparton type a therespective PDF is convoluted withthe lepton–parton hard-scattering cross section. For
σ
h in thecur-rentfragmentationregion,thesumcontainsanadditional convolu-tionwiththefragmentationfunctionoftheproducedparton. The rathercomplicatedNLOexpressionsforthesecrosssectionscanbe founde.g. inRef. [6].Below,wewilluseonlypQCDLOexpressions for the cross section, while later for the presentation of results alsomultiplicity calculationsobtainedusingNLO expressions will beshown.ItisimportanttonotethatintheSIDISfactorisation ap-proachtheonlyingredients that dependonthe nucleontype are thenucleonPDFs,whilethe fragmentationfunctionsdepend nei-theronthenucleontypenoronx.IntheLOapproximationforthe multiplicity,thesumoverpartonspeciesa
=
q,
q does¯
notcontain convolutionsbutonlysimpleproductsofPDFs fa(
x,
Q2)
,weighted bythe square oftheelectriccharge ea of thequark expressedin unitsofelementarycharge,andFFs Dha(
z,
Q2)
:dMh
(
x,
Q2,
z)
dz=
ae2afa
(
x,
Q2)
Dah(
z,
Q2)
ae2afa(
x,
Q2)
.
(2)For a deuteron target, the charged-kaon multiplicity ratio in LO pQCDreadsasfollows: RK
(
x,
Q2,
z)
=
dMK −(
x,
Q2,
z)/
dz dMK+(
x,
Q2,
z)/
dz=
4(
u¯
+ ¯
d)
Dfav+ (
5u+
5d+ ¯
u+ ¯
d+
2¯
s)
Dunf+
2sDstr 4(
u+
d)
Dfav+ (
5u¯
+
5d¯
+
u+
d+
2s)
Dunf+
2sD¯
str.
(3)Here,u, u,
¯
d, d,¯
s,s denote¯
thePDFs intheproton for differ-ent quark flavours.Their dependences on x and Q2 are omitted forbrevity. Thesymbols Dfav, Dunf and Dstr denotefavoured,un-favoured, andstrange-quark fragmentationfunctions respectively, whicharegivenbyDfav
=
DK+ u
=
DK − ¯ u ,Dunf=
DK + ¯ u=
DK + d=
DK + ¯ d=
DKs+ andtheircharge conjugate,and Dstr=
DK+
¯
s
=
D K−s .Their
de-pendenceson z and Q2 areomitted.Accordingly, alsothe depen-denceof RK on x, Q2 andz are omitted.Presently, existingdata
donot allow oneto distinguish betweendifferentfunctions Dunf
fordifferent quark flavours.However, it is expected that Dunf is
small in the large-z region, and this expectation is indeed con-firmedin pQCD fits alreadyat moderatevalues of z,i.e. z
≈
0.
5, seee.g.Refs. [7,8].Whenneglecting Dunf,Eq. (3) simplifiestoRK
=
4
(
u¯
+ ¯
d)
Dfav+
2sDstr 4(
u+
d)
Dfav+
2sD¯
str.
(4)Itisexpectedthat Dstr
>
Dfav>
0,andthereforethepositivetermssDstrand
¯
sDstrmaybeofsomeimportance.Still,inordertocalcu-latealower limitforRK,thesetermscan beneglectedunderthe
assumptionthats
= ¯
s,whichleadstoRK
>
¯
u+ ¯
du
+
d.
(5)Theanalysisdescribedbelowisperformedusingtwobinsin x, i.e. x
<
0.
05 with x=
0.
03, Q2=
1.
6(
GeV/
c)
2 and x>
0.
05 withx=
0.
094,Q2=
4.
8(
GeV/
c)
2.Wheneversufficient, only thefirstx-binisusedinthediscussion.The evaluationofEq. (5) forx
=
0.
03 and Q2=
1.
6(
GeV/
c)
2yieldsalowerlimitof0
.
469±
0.
015 whenusingtheMSTW08LO PDFs [9]. In NLO the limit given by Eq. (5) receives corrections on the level of∼
α
S/
2π
. Using the MMHT14 NLO PDF set [10], the ratio(
u¯
+ ¯
d)/(
u+
d)
is 0.
440±
0.
023, but according to our calculationthelowerlimitisabout15%lowerthanthislimit.1Wenotethatbecauseofthelargeuncertaintiesofs
,
¯
s andDstr,reasonableuncertaintiesarepresentlycalculableonlyforthelower limitsof RK, andnot for RK itself.Theseuncertaintiesamountto
about3% forLOandabout6% forNLOpredictions. Inboth cases the uncertainty of the
(
u¯
+ ¯
d)/(
u+
d)
ratio dominates, while in NLOalsouncertaintiesofthegluonPDFplaysomerole.Thechoice ofFFshasnegligibleimpactonLOorNLOcalculationsofthelower RKlimit.Theactualpredictionsfor RKbasedonDSS [7] atLOac-curacyandDEHSS17 [8] atNLOaccuracyarelargerthanthelower limits for RK, which is expected as in the above calculation of
lowerlimitsthestrange-quarkcontributiontokaonfragmentation was neglected. It was verified that when using morerecent PDF sets(e.g. NNPDF30atLOandNLOaccuracy [11]),theRKvalues
in-creasebyabout10%forallcasesthatwerediscussedabove.Hence
ourchoiceoftheMSTW08LOandMMHT14NLO PDFssetsleads
toaratherconservativeestimationofthelowerlimitonRK.
IntheLEPTOeventgenerator2[12] another factorisationansatz
isused dMh
(
x,
Q2,
z)
dz=
aea2fa(
x,
Q2)
Hah/N(
x,
z,
Q2)
ae2afa(
x,
Q2)
.
(6) Here, Hha/N
(
x,
z,
Q2)
describestheproductionofahadronhinthe hadronisation of astring that is formedby the struck quark and thetargetremnant.IncontrasttothepQCDapproach,this hadro-nisationfunctiondependsnotonlyonquarkandhadrontypesand on z but also on the type of the target nucleon and on x, see Ref. [14] formoredetails. Wenote thatinthisapproachalso the conservationoftheoverall quantumnumbersaswellas momen-tumconservationaretakenintoaccount,whichisnotthecasefor thepQCD approach.TheLEPTOpredictionforRK,about0.52, liesabovetheLOlimitgivenbyEq. (5).However,forz
>
0.
97 it under-shootsthislimit.Thisappearsplausibleasforz approachingunity K+ can be producedin theprocessμ
p→
μ
K+0,whilea simi-larprocesstoproduceK− isforbiddenbecauseofbaryonnumber conservation.
In recent years, severaltheory developments were performed that can potentially impact the theory predictions forthe high-z region.InRef. [15] forexample,theauthorsstudiedtheimpactof threshold-logarithmresummationsinthehigh-z regionandfound a largeimpact.Inthe caseof
π
− production,thepredictedcross section can be larger by a factor of two. When considering the1 Fromtheformalismgivenin[5],itfollowsthatintheNLOcross-section
for-mulaforhadronproduction,foreachquarkflavourtherearesixadditionalterms besidestheqDh
q term.Thesetermsinclude convolutionintegralsof PDF,FFsand
theso-calledcoefficientfunctions.Wefoundthatfourconvolutionintegralscan ef-fectivelybeneglectedathighz,andonlytwothatarerelatedtoconvolutionsof C1
qqandC1qghaveanimportantimpactonthefinalresults.ThetermrelatedtoCqq1
alonewouldleadtoanincreaseofRKabovethelimitgivenbyEq. (5).Incontrast,
thetermrelatedtoC1
qg,althoughappearinginasymmetricforminnumeratorand
denominator,isnegative,sothatthelowerlimitof RKfallsbelowthatgivenby
Eq. (5).WenotethatDfavoritsconvolutionappearsalwaysinallrelevantterms.
Itschoicehenceappearstoberatherirrelevantforthefinalresult,asitlargely can-celsinthepredictedlowerlimitforRKatNLO.
Fig. 1. Acceptance-uncorrected distributions of selected events in the ( Q2, x) plane and in the (ν, z) plane. lower limit for RK, the resummation corrections for K− and K+
are largely proportional to the PDF densities u
¯
+ ¯
d and u+
d, respectively.Therefore,the RK predictionsincludingtheseresum-mationcorrectionswouldbeevenclosertotheexpectationsgiven byEq. (5) thantheNLOpredictionsshownbelowwithout includ-ingthesecorrections.An interestingworkrelatedtohadron-mass corrections[16] was originally criticisedin Ref. [17], butthe dis-cussion is ongoing [18]. The approach discussed inthis work al-lowsonetoobtainavalueofRKbelowthelimitsdiscussedabove.
However, thisapproach seemsto gobeyondthestandard factori-sationtheorem andcorrectionsto Dhq are needed, whichdepend onthetype oftargetnucleonandproducedhadronh.Therewere alsoother developments,e.g. Refs. [19–21],whicharevery impor-tantforabetterunderstanding ofthe hadronisationprocess.Still, theyappeartonoteffectivelyimpactthepredictionsforRKinthe
high-z regionatCOMPASSkinematics. 3. Experimentalset-upanddataselection
The data were taken in 2006using a
μ
+ beam delivered bythe M2 beam line of the CERN SPS. The beam momentum was
160 GeV
/
c withaspreadof±
5%.Thesolid-state6LiDtargetiscon-sideredto bepurely isoscalar, neglecting the0.2% excessof neu-tronsoverprotonsduetothepresenceofadditionalmaterialinthe target(3Heand7Li).Thetargetwaslongitudinallypolarisedbutin
thepresentanalysisthedata areaveraged overthetarget polari-sation, whichleads toan effectively vanishing target polarisation ona levelofbetter than1%. TheCOMPASS two-stage spectrome-terhasapolarangleacceptanceof
±
180mrad,anditiscapable ofdetectingchargedparticleswithmomentaabove0.5GeV/c.The ring-imaging Cherenkovdetector (RICH) was used to identify pi-ons,kaons andprotons.Its radiatorvolumewas filledwithC4F10leading toa thresholdforpion,kaonandprotonidentification of about3 GeV/c,9 GeV/c and 18GeV/c respectively. Efficient pion andkaonseparationispossiblewithhighpurityformomenta
be-tween 12 GeV/c and 40 GeV/c. Two trigger types were used in
theanalysis. The“inclusive”triggerwas basedona signalfroma combinationof hodoscope signalsfrom the scattered muon. The “semi-inclusive” trigger required an energy deposition in one of the hadron calorimeters.The experimental set-up isdescribed in moredetailinRef. [22].
Thedataselectioncriteriaarekeptsimilartothoseusedinthe recentlypublished analysis[3], wheneverpossible.Thekinematic domain Q2
>
1(
GeV/
c)
2 andW>
5 GeV/
c2 isselected,thereby restricting the analysis to the region of deep inelastic scattering wherepQCDcanbeapplied.Forsmallvaluesof y,i.e. thefraction of theincoming muon energy carried by the virtual photon, the momentumresolutionisdegraded.Inordertoexcludethisregion, y is required to have a minimum value of 0.1. The aim of thisanalysisistostudykaonproductioninSIDISforkaons carryinga largefractionz of thevirtual-photonenergy,henceitisrestricted to z
>
0.
75.Using theabove givenmomentumrangeforefficient kaon identification together with the large-z requirement inthis analysisleadstoaneffectiveupperlimitfory of0.35.The kaonmultiplicities MK(x, Q2, z) aredetermined fromthe
kaonyields NKnormalisedbythenumberofDISevents,NDIS,and
dividedbytheacceptancecorrection AK
(
x,
Q2,
z)
:dMK
(
x,
Q2,
z)
dz=
1 NDIS(
x,
Q2)
dNK(
x,
Q2,
z)
dz 1 AK(
x,
Q2,
z)
.
(7)Note that in this work “semi-inclusive” triggers can be used be-causeabiasfreedeterminationofNDISisnotneeded,asthelatter cancelsinRK.
Alldatatakenin2006areusedintheanalysis;altogetherabout 64000chargedkaonsareavailableintheregionz
>
0.
75.Examples ofacceptance-uncorrecteddistributionsofselectedeventsare pre-sented in Fig. 1in the (x, Q2) and (ν
, z) planes.Here,ν
is the energyofthevirtualphotoninthelaboratoryframe.4. Analysismethod
The analysis is performed in two x-bins, below and above
x
=
0.
05, as already mentioned in Section 2. In each x-bin, five bins are used in the reconstructed z variable(zrec) withthe binlimits0.75,0.80,0.85,0.90,0.95,1.05.SincetheRICHperformance dependuponthemomentumoftheidentifiedkaon,wealsostudy RKinbinsofthisvariableusingthebinlimits12GeV/c,16GeV/c,
20 GeV/c, 25GeV/c, 30GeV/c, 35 GeV/c,40 GeV/c.Note that in thiswaythe
ν
dependenceofRKisstudiedimplicitlyandthattheresultsarealsogivenasafunctionof
ν
inthesekaon-momentum bins.In order to determine the multiplicity ratio RK from the raw
yield ofK− andK+ mesons,severalcorrection factorshaveto be taken into account. First, the number of identified kaons is cor-rected for the RICH efficiencies. Based on studies of
φ
→
K+K− decays,wheretheφ
mesonwasproducedinaDISprocess,the ef-ficiencyratioforthetwochargesisfoundtobe1.
002±
0.
012.Such a simple “unfolding” procedure can be followed because a strict selection ofkaons is made, so that the probabilities of misiden-tification of pionandprotonaskaon canbe assumedto be zero (possibleremainingmisidentificationprobabilitiesarediscussedin Section5).Theacceptancecorrectionfactors AK forthetwokaoncharges
are determined using Monte Carlo simulations. In the previous COMPASSanalysis[3],asimpleunfoldingmethodwasusedto de-termine these factors. For a given kinematic bin in
(
x,
y,
z)
, the acceptance was calculated as the ratio of the number ofrecon-Fig. 2. Left:TheK−overK+acceptanceratiointhefirstx-bin,i.e. x<0.05,asafunctionofthereconstructedz variable,asobtainedfromaMonteCarlosimulation.Right: Thecharged-kaonmultiplicityratiointhefirstx-bin,asafunctionofthelowerlimitoftheRICHlikelihoodratioforkaonswithmomentabetween35GeV/c and40GeV/c. Thearrowmarksthevalueusedintheanalysis(seetextformoredetails).
structed events to that of generatedones. Fora given event, re-constructedvariableswereusedtocountreconstructedeventsand generatedvariablestocountgeneratedevents.Inordertoaccount forthestrong z-dependence ofthemultiplicity inthelarge-z re-gion,inthisanalysistheacceptanceisunfolded asinRef. [3] for x and Q2 butnotforz.Variousmethodsforz unfoldingwere in-vestigatedindetailedstudies,seeappendixAforan example.The resultspresentedinthisLetterareobtainedusingthesimplest ver-sionof z unfolding, i.e. unfoldingonly the dependenceof RK on zcorr.Here,zcorr denotesthereconstructedvalueofz inthe
exper-iment,correctedbytheaverage differencebetweenthegenerated andreconstructedvaluesofz,wherethelatteraredeterminedby MonteCarlosimulations. In the left panel of Fig.2, the K− over K+ acceptanceratioobtainedfromx and Q2 unfoldingisshown
asa functionof thereconstructed z-variableinthe first x-bin. It appearstobeindependentofz withinstatisticaluncertaintiesand hasavalue of0
.
921±
0.
004 inthe firstx-binand0.
969±
0.
010 inthesecond x-bin.Thecontaminationby decayproductsofdiffractivelyproduced vector mesons is estimated using HEPGEN [23] and found to be negligible,seeFig. 2in[3].Only
φ
decaysaresimulatedtheresince heaviervector mesons have crosssections smaller by a factorof about10anddecaymostlyinmulti-bodychannels, whichresults inevensmallerprobabilitiestoproducekaonsatlargez.Themeasuredcrosssectionshavetobecorrectedforradiative effects inorder to obtain
σ
DIS andσ
h. Since, y<
0.
35 holds asexplainedabove,thesizeofradiativecorrectionsisexpectedtobe small.Inanycase,
σ
DIS cancelsinRK andintheTERADcode[24]
usedinCOMPASS analyses the relativeradiative correction isthe sameforK+andK−,sothatitalsocancelsintheratio.
5. Systematicstudies
Thecharged-kaon multiplicity ratiosmeasured inthisanalysis are found to agree with the results of the previous analysis [3] inthe overlapregion ofthe z-ranges usedin thesetwo analyses
(
0.
75<
z<
0.
85)
. Results derived from data that were obtained usingdifferenttriggersarefoundtoagreewithoneanotherwithin 2%.ThemostimportantcorrectionfactoristheK−overK+ accep-tanceratio,whichforthefirstx-binis0
.
921±
0.
004,asobtained usingMonteCarlodata.TheCOMPASSspectrometerisdesignedto bealmost charge symmetric.In thecaseofpions,theacceptance ratioobtainedfromMonteCarlosimulationsis0.
991±
0.
003,i.e. veryclosetounity. Incontrast,theacceptanceratioofkaons ob-tainedfromMonteCarloisfoundto besignificantly belowunity. Thisdifference betweenK− andK+ yields iscaused bythenon-negligible thickness of the COMPASS target, which amounts to
about50% of a hadron interaction length, combinedwith a con-siderably larger absorptioncross section forinteractions of nega-tive kaons compared to positive ones, see e.g. the results on the K±-deuteroncrosssection inRef. [25].Dependingonthe longitu-dinalpositionoftheprimaryinteractionpoint Zvtx,theproduced
kaonstraverseavaryingthicknessofthematerialcontainedinthe 120cmlongtarget.Asaresult,morenegativethanpositivekaons areabsorbedwhenthe interactiontookplace atthebeginning of thetarget ascompared toaninteraction attheendofthetarget. Itisverifiedthat oncetheacceptancecorrectionwasapplied,the obtainedRK ratioisflatasafunctionof Zvtx.FortheK−overK+
acceptanceratioa2% systematicuncertaintyisused;thisvalueis dominated by possibletrigger-dependent variations of the multi-plicitiesmentionedinthepreviousparagraph.
ThestabilityofRKistestedondatausingseveralvariablesthat
aredefinedinthespectrometercoordinatesystem.Themost sen-sitive one is the azimuthal angle
φ
of the produced kaon. The directionφ
=
0 lies in the bending plane of the dipole magnets andpoints towardsthe side,to whichpositive particlesare bent. Correspondingly,the directionφ
=
π
/
2 pointstowardsthetop of the spectrometer. In certain cases the charged-kaon multiplicity ratio is found to vary by up to 25%, withparticularly small val-uesclosetoa peakatφ
=
0.Thisobservationisaccountedforby a systematic uncertainty that is takenas the difference between themultiplicity ratiomeasured overthefullφ
-rangeandtheone measured for|φ|
>
0.
5. Typically,the relativeuncertainty related tothisφ
-dependencerangesbetween3%and11%,whichmakesit thedominantsystematicuncertainty. Notethatthe valuesofthis systematic uncertainty fordifferent bins in z are strongly corre-lated,withacorrelationcoefficientofabout0.8.FurthersystematicuncertaintiesmayarisefromtheRICH iden-tification procedure.The K− over K+ efficiencyratio is expected to be closeto unitysince theRICH detector issituatedbehind a dipolemagnetofrelativelyweakbendingpower.Additionalstudies wereperformedondataconcerningmisidentificationprobabilities ofpionsandprotonsbeingidentifiedaskaonsby varyingthe ra-tioofthekaonlikelihood,whichisthelargestofalllikelihoodsin the selected sample, to the next-to-largest likelihood hypothesis, LK
/
L2nd.Thebehaviour of RK asafunction ofthelowerlimit for LK/
L2nd is shownin therightpanel ofFig.2forkaon candidateswith momenta between 35 GeV/c and 40 GeV/c. The constraint
LK
/
L2nd>
1.
5 is used in the present analysis. From thesestud-ies,thesystematicuncertaintyoftheRICHunfoldingprocedureof about3%. It corresponds to the difference in RK calculated from
thefinal sample andtheone,inwhich anon-zero
π
contamina-tionisdetected.Table 1
ExtractedvaluesofRK,binlimitsofz(zmin, zmax),andtheaveragesvaluesofx,Q2,zrecandzcorrinfirst
(upperpart)andsecond(lowerpart)x-bin. Bin x Q2(GeV/c)2 z
min zmax zrec zcorr RK± δRK,stat.± δRK,syst.
1 0.030 1.7 0.75 0.80 0.774 0.771 0.401±0.007±0.019 2 0.030 1.6 0.80 0.85 0.824 0.817 0.350±0.008±0.018 3 0.031 1.6 0.85 0.90 0.873 0.860 0.287±0.008±0.015 4 0.031 1.6 0.90 0.95 0.923 0.900 0.228±0.009±0.015 5 0.032 1.5 0.95 1.05 0.982 0.934 0.150±0.009±0.017 1 0.094 5.1 0.75 0.80 0.774 0.771 0.235±0.007±0.009 2 0.094 4.8 0.80 0.85 0.824 0.817 0.204±0.007±0.011 3 0.093 4.6 0.85 0.90 0.873 0.860 0.177±0.008±0.010 4 0.093 4.4 0.90 0.95 0.923 0.900 0.136±0.008±0.016 5 0.093 4.2 0.95 1.05 0.982 0.934 0.090±0.008±0.010
As the COMPASS muon beam is (naturally) polarised with an
average polarisationof
−
0.
80±
0.
04, a spin-dependent contribu-tiontothetotallepton–nucleoncrosssection cannotbeneglected apriori.Thiscontributionisproportionaltosinφ
handexpectedtobe smallerthan the spin-independent one, whichis proportional to cos
φ
h andcos 2φ
h [26]. Here,φ
h denotes the azimuthal anglebetween the lepton-scattering plane and the hadron-production plane inthecentre-of-mass frameofvirtual photon andnucleon. Studies performed for previous COMPASS measurements [2,3] showthattheseeffectscanbeneglectedwhenusing
φ
h-integratedmultiplicities,asitisdoneinthisanalysis.
Altogether, the total relative systematic uncertainty on RK is
found to range between5% and 12% depending upon the z-bin.
The systematicuncertainties in different z-binsare highly corre-lated, i.e. thecorrelation coefficient is estimatedtovary between 0.7and0.8.
6. Resultsanddiscussion
In Table 1, the results on the charged-kaon multiplicity ra-tio RK are presented in bins of the reconstructed z variable for
the two x-bins. The measured z-dependence of RK can be
fit-ted in both x-bins by simple functional forms, e.g.
∝ (
1−
z)
β,β
=
0.
71±
0.
03.Dividingineveryz-binthevalueoftheratio mea-suredinthefirstx-binbytheonemeasuredinthesecondx-bin,a “doubleratio”DK=
RK(
x<
0.
05)/
RK(
x>
0.
05)
isformedthatap-pearsto be constant over all themeasured z-range witha value DK
=
1.
68±
0.
04stat.±
0.
06syst.. It is interesting to note that themeasuredvalueagreeswithinuncertaintieswithDKcalculated
us-ingtheLOMSTW08LPDFset,i.e. 1
.
56±
0.
07.InFig.3,RKisshownasafunctionof zcorr forthetwo x-bins,aswell asDK in the
in-setofthefigure.AsbothdataandLOpQCDcalculationexhibitthe samez-dependence whencomparing thecharged-kaon multiplic-ityratiosin thetwo x-bins,inwhat followswe concentrateonly onthe firstx-bin, i.e. x
<
0.
05.Still,theconclusions presentedin theremainingpartoftheLetterarevalidforbothx-bins.InFig.4,thepresentresultson RK inthefirst x-binare
com-paredwiththeexpectations fromLOandNLO pQCD calculations andwiththe predictionsobtainedusingtheLEPTOevent genera-tor, whichwere all discussed inSection 2. Forcompleteness, we notethatinthesecond x-binthetypical RKpredictionsareabout
1.5–1.6 times smaller than in the first x-bin. It is observed that withincreasing z thevaluesof RK are increasinglyundershooting
the expectations from LO andNLO calculations. The discrepancy
between the COMPASS results and the NLO predictions reaches
a factor of about2.5 atthe largest value of z. As the difference betweenthelowerlimit inLOandtheNLODEHSSprediction ob-tainedundertheassumptionDstr
=
0 isneverlargerthan20%,itisveryunlikelythatanypredictionobtainedatNNLOwouldbeable toaccountforsuchalargediscrepancy.
Fig. 3. ResultsonRKasafunctionofzcorrforthetwox-bins.Theinsertshowsthe
doubleratioDKthatistheratioofRKinthefirstx-binover RK inthesecond x-bin.Statisticaluncertaintiesareshownbyerrorbars,systematicuncertaintiesby theshadedbandsatthebottom.
Fig. 4. ComparisonofRKinthefirstx-binwithpredictionsdiscussedinSection2.
Thesystematicuncertaintiesofthedatapointsareindicatedbytheshadedbandat thebottomofthefigure.Theshadedbandsaroundthe(N)LOlowerlimitsindicate theiruncertainties.
As alreadymentioned in Sect.2, thepresented pQCD calcula-tions rely on the factorisation ansatz d3
σ
h(
x,
Q2,
z)/
dxdQ2dz∝
aea2fa
(
x,
Q2)
Dah(
z,
Q2)
. If this ansatz would not be applicable atCOMPASSenergies forlargevaluesofz,itmaybeincapableto describethebehaviour ofkaonmultiplicitiesinthiskinematic re-gion.ThispQCDansatzdoesnotincludehigher-twistterms,which areproportionaltopowers1/
Q2,sothattherespectivecorrection should be smallerby a factorofaboutthree inthe second x-bincompared to the first x-bin. However, the discrepancy between
Fig. 5. TheK− overK+ multiplicityratioasafunctionofνinbinsofz,shownforthefirstbininx.Thesystematicuncertaintiesofthedatapointsareindicatedbythe shadedbandatthebottomofeachpanel.Theshadedbandsaroundthe(N)LOlowerlimitsindicatetheiruncertainties.
bethesameinthe twox-bins withinexperimental uncertainties. The observed discrepancy cannot be explained by the threshold resummationsfromRef. [15],asdiscussedinSection2.Theusage ofDSSfragmentationfunctions[7] intheLOansatz presentedin Ref. [16] leadstoadecreaseofthe RKpredictionbyabout25%in
thelast z bin.It is thus not enoughto account forthe observed discrepancy.However, largerchangescould beobtainedifFFs de-creaseto zerofasterthanexpectedintheDSS parametrisation.It isworth notingthat intheLEPTOeventgeneratoradifferent fac-torisationapproachisused,whichisbasedonstringhadronisation. However,itdoesnotdescribethedataathighz,inspiteofits con-siderably higher flexibility in comparisonto the pQCD approach. Perhapsa special tuning ofcertain string fragmentation parame-ters,for examplethose governing low-mass string hadronisation, wouldleadtoabetterdescriptionofthedata.
Inthe analysis we assume that there is no contamination by decayproducts ofvector mesonsor bypions that were misiden-tified as kaons. Note that if these assumptions should not hold, thecorrected RK values wouldbefurther decreasedwithrespect
tothe results presentedin thisLetter, i.e. the disagreement with pQCDexpectationswouldbeevenstronger.
InFig. 5,the dependence of RK onthe virtual-photonenergy
ν
in bins of the reconstructed z variable is shown for the first x-bin. Aclearν
-dependenceof RK isobserved forall z-bins,ex-ceptthelastone.Withinexperimentaluncertainties,theobserved dependence on
ν
is linear and in the last bin a constant. Note that atmost15% of theobserved variation of RK withν
can beexplainedby the fact that in a given z-bin events atdifferent
ν
havesomewhatdifferentvaluesofx and Q2.Theobservedstrong
ν
dependencesuggeststhatforlargervalues ofν
theratio RK isclosertothe lower limitexpected frompQCD thanit isthe case forsmallervaluesof
ν
.Numericalvaluesfortheν
dependenceof RK inbinsofzrecaregivenforbothx-binsinRef. [27].Inthisanalysis,thelargestdiscrepancybetweenpQCD expecta-tionsandexperimentalresultsisobservedintheregionoflargez andsmall y,i.e. small
ν
. Asexactly inthisregion thepreviously published COMPASS data [3] hadshownthe largest tensionwith the NLO pQCD fits ofFFs, see Section 1, the presentresults pro-videadditionalevidencethatthistensionisofphysicalorigin.The observed violation of the pQCD expectations for the
charged-kaon multiplicity ratio at large values of z may be in-terpretedasfollows.Iftheproducedkaoncarriesalargefractionz ofthevirtual-photonenergy,thereisonly asmallamountof en-ergy left to fulfil conservation laws as e.g. those for strangeness numberandbaryonnumber,whichare nottakenintoaccount in the pQCD expressions for the SIDIScross section. The larger the valueofz,thesmalleristhenumberofpossiblefinalstatesinthe process understudy.The naturalvariableto studythe “exclusivi-ty”ofaprocessisthemissingmass,whichisapproximatelygiven byMX
=
M2p
+
2Mpν
(
1−
z)
−
Q2(
1−
z)
2.Asthefactorν
(
1−
z)
appears inthemissingmassdefinition,boththe z andthe
ν
de-pendenceofRK maybedescribedsimultaneouslybythisvariable.Fig.6showsthat RKasafunctionof MX followsarathersmooth
behaviour.ThedisagreementbetweenourdataandthepQCD pre-dictionssuggests thata correction within thepQCD formalismis neededinordertotakeintoaccountthephasespaceavailablefor thehadronisationofthetargetremnant.Weobservethatourdata can bereconciled withthepQCD NLO prediction(RK larger than
about0.4)onlyabovetheratherhighMX valueofabout4GeV/c2, whichis rathersurprising(see e.g. Ref. [28]).Since thedominant term in MX is
∝
√
ν
(
1−
z)
, this observation also suggests that forexperimentswithaccessible valuesofν
smallerthan thoseat COMPASS, thedisagreement withpQCD calculationsand possible deviations from these expectations may already be observed at smallervaluesofz.Fig. 6. TheK−overK+multiplicityratiopresentedasafunctionofMX.Seetextfor
details. 7. Summary
Inthis Letter, the K− over K+ multiplicity ratio RK measured
indeep-inelastickaonleptoproductionatlargevaluesofz is pre-sented for the first time. It is observed that the RK values fall
belowthelower limitscalculated atLOandNLO accuracyinthe pQCDformalism. Inaddition,we observethat thekaon multiplic-ityratio RK strongly dependsonthe missingmassinthe
single-inclusive kaon production process. Altogether, our observations suggest that moretheory effort may be requiredin orderto un-derstandkaonproductionathighz.Inparticular,withinthepQCD formalismanadditionalcorrectionmayberequiredthattakesinto accountthephasespaceavailableforhadronisation.
Acknowledgements
WewouldliketothankD.Stamenovforusefuldiscussions.We gratefullyacknowledgethesupportoftheCERNmanagement and staffandtheskillandeffortofthetechniciansofourcollaborating institutes.Thisworkwasmadepossiblebythefinancialsupportof ourfundingagencies.
Appendix A. Procedureforz-unfolding
A typical unfolding procedure produces a covariance matrix with non-negligible off-diagonal matrix elements. These correla-tions areimportantandinmanycasescannot be neglected,asit isalsoemphasisedinRef. [29].Incertainphenomenological analy-sesofpublishedmultiplicitydata,however,theseimportantpieces ofinformationare erroneouslyneglected, whichmaylead to im-properdatatreatment andthus toincorrectconclusions.In order topreventsuchproblems,wechoseasimpleunfoldingmethodin ourmain analysis. We note that anycorrectlyperformed unfold-ing procedure can only decrease the value of RK measured at a
givenvalue ofzrec, sothat thechoiceof theunfoldingprocedure
cannotpossibly explainthediscrepancyobservedbetweenpQCD predictionsandCOMPASSresults.
As an exampleofa moresophisticated z-unfoldingmethod,a procedureispresentedthatassuresasmoothbehaviourofthe re-sultingcharged-kaonmultiplicityratio.BasedonMCdataa smear-ingmatrixiscreated,inwhichtheprobabilitiesarestoredthatthe kaonwitha generated value z that belongsto a certain zgen-bin
is reconstructed in a certain zrec-bin. The widthof the z-binsis
chosen to be 0.05 andvalues of zrec up to 1.10are studied.The
obtainedsmearingmatrixisgiveninRef. [27] assupplemental ma-terial.Inthenextstep,afunctionalformfortheK±multiplicities
Table A.1
The z-unfolded RK defined as zzminmax
dMK− dz dz/ zmax zmin dMK+ dz dz,
wherezmin(max)denotebinlimitsinz.Thedatabelow(above)
x=0.05 arepresentedinthetop(bottom)partofthetable. Bin zmin zmax RK± δRK,stat.± δRK,syst.
1 0.75 0.80 0.416±0.009±0.018 2 0.80 0.85 0.360±0.010±0.017 3 0.85 0.90 0.289±0.009±0.014 4 0.90 0.95 0.200±0.014±0.011 5 0.95 1.00 0.085±0.022±0.007 1 0.75 0.80 0.237±0.006±0.011 2 0.80 0.85 0.202±0.006±0.010 3 0.85 0.90 0.165±0.006±0.009 4 0.90 0.95 0.123±0.009±0.007 5 0.95 1.00 0.068±0.016±0.005 Table A.2
Thecorrelation matrixrelatedtototaluncertaintiesofthedata presentedinTableA.1.
Bin 1() 2() 3() 4() 5() 1 1.00 0.99 0.89 0.39 −0.18 2 0.99 1.00 0.94 0.47 −0.12 3 0.89 0.94 1.00 0.74 0.21 4 0.39 0.47 0.74 1.00 0.81 5 −0.18 −0.12 0.21 0.81 1.00 1 1.00 0.98 0.84 0.37 −0.15 2 0.98 1.00 0.93 0.50 −0.04 3 0.84 0.93 1.00 0.78 0.30 4 0.37 0.50 0.78 1.00 0.82 5 −0.15 −0.04 0.30 0.82 1.00
is assumedinthe‘true’ phase spacefordata,whichforMC data corresponds tothephase spaceofgeneratedvariables.Forthefit of therealdata,the functionalform
α
·
exp(β
z)(
1−
z)
γ isused. Thisfunctionisintegratedinbinsofzgen,whicharedefinedbythesmearingmatrix.Inthisway,avectorofexpectationvaluesis ob-tained in the‘true’ phase space. Thisvector ismultiplied by the smearingmatrix,resultinginexpectationvaluesforkaonyieldsin the reconstructed phase space. The yield predictions obtained in this wayare directly compared withthe experimental valuesby calculatinga
χ
2 value.Thisvalueisminimisedtofindoptimalpa-rametersforthefittingfunction.Inordertoobtaintheuncertainty oftheunfoldedratio,thebootstrapmethodisusedwith400 repli-cas ofourdata[30].At agivenvalueof z,theuncertaintyofthe ratioistakenasRootMeanSquarefromthereplicasdistribution. The effectofunfoldingis rathersmallforall binsexceptthelast one.TheobtainedresultsaresummarisedinTableA.1andthe cor-relationmatrixisgiveninTableA.2.
References
[1]V.N.Gribov,L.N.Lipatov,Sov.J.Nucl.Phys.15(1972)438; L.N.Lipatov,Sov.J.Nucl.Phys.20(1975)95;
G.Altarelli,G.Parisi,Nucl.Phys.B126(1977)298; Yu.L.Dokshitzer,Sov.Phys.JETP46(1977)641.
[2]COMPASSCollaboration,C.Adolph,etal.,Phys.Lett.B764(2017)1. [3]COMPASSCollaboration,C.Adolph,etal.,Phys.Lett.B767(2017)133. [4] D.Stamenov,privatecommunication,2017.
[5]W.Furmanski,R.Petronzio,Z.Phys.C11(1982)293.
[6]D.de Florian,M.Stratmann,W.Vogelsang,Phys.Rev.D57(1998)5811. [7]D.deFlorian,R.Sassot,M.Stratmann,Phys.Rev.D75(2007)114010. [8]D.deFlorian,etal.,Phys.Rev.D95(2017)094019.
[9]A.D.Martin,W.J.Stirling,R.S.Thorne,G.Watt,Eur.Phys.J.C64(2009)653. [10]L.A.Harland-Lang,A.D.Martin, P.Motylinski, R.S.Thorne, Eur.Phys. J.C75
(2015)204.
[11]NNPDFCollaboration,R.D.Ball,etal.,J.HighEnergyPhys.04(2015)040. [12]G.Ingelman,A.Edin,J.Rathsman,Comput.Phys.Commun.101(1997)108.
[13]COMPASSCollaboration,C.Adolph,etal.,Eur.Phys.J.C77(2017)209. [14]A.Kotzinian,Eur.Phys.J.C44(2005)211.
[15]D.P.Anderle,F.Ringer,W.Vogelsang,Phys.Rev.D87(2013)034014. [16]J.V.Guerrero,etal.,J.HighEnergyPhys.1509(2015)169. [17]E.Christova,E.Leader,Phys.Rev.D94(2016)096001. [18]J.V.Guerrero,A.Accardi,Phys.Rev.D97(2018)114012.
[19]D.P.Anderle,M.Stratmann,F.Ringer,Phys.Rev.D92(2015)114017. [20]D.P.Anderle,T. Kaufmann,M. Stratmann, F.Ringer, Phys. Rev.D95(2017)
054003.
[21]M.Epele,C.G.Canal,R.Sassot,Phys.Rev.D94(2016)034037.
[22]COMPASSCollaboration,P.Abbon,etal.,Nucl.Instrum.MethodsA577(2007) 455.
[23]A.Sandacz,P.Sznajder,arXiv:1207.0333.
[24]A.A. Akhundov,D.Yu.Bardin,L. Kalinovskaya,T.Riemann,Fortschr.Phys. 44 (1996)373.
[25]ParticleDataGroup,C.Patrignani,etal.,Chin.Phys.C40(2016)100001. [26]COMPASSCollaboration,C.Adolph,etal.,Nucl.Phys.B886(2014)1046. [27] TheDurhamHEPDataProject,https://www.hepdata.net.
[28]M.Diehl,W.Kugler,A.Schafer,C.Weiss,Phys.Rev.D72(2005)034034; Erra-tum:Phys.Rev.D72(2005)059902.
[29]HERMESCollaboration,A.Airapetian,etal.,Phys.Rev.D87(2013)074029. [30]B.Efron,TheJackknife,theBootstrap,andOtherResamplingPlans,Societyfor
Industrial and AppliedMathematics, Philadelphia,PA,ISBN 9781611970319, 1982.
TheCOMPASSCollaboration
R. Akhunzyanov
g,
M.G. Alexeev
y,
G.D. Alexeev
g,
A. Amoroso
y,
z,
V. Andrieux
ab,
t,
N.V. Anfimov
g,
V. Anosov
g,
A. Antoshkin
g,
K. Augsten
g,
r,
W. Augustyniak
ac,
A. Austregesilo
o,
C.D.R. Azevedo
a,
B. Badełek
ad,
F. Balestra
y,
z,
M. Ball
c,
J. Barth
d,
R. Beck
c,
Y. Bedfer
t,
J. Bernhard
l,
i,
K. Bicker
o,
i,
E.R. Bielert
i,
R. Birsa
x,
M. Bodlak
q,
P. Bordalo
k,
1,
F. Bradamante
w,
x,
A. Bressan
w,
x,
M. Büchele
h,
V.E. Burtsev
aa,
L. Capozza
t,
W.-C. Chang
u,
C. Chatterjee
f,
M. Chiosso
y,
z,
A.G. Chumakov
aa,
S.-U. Chung
o,
2,
A. Cicuttin
x,
3,
M.L. Crespo
x,
3,
Q. Curiel
t,
S. Dalla Torre
x,
S.S. Dasgupta
f,
S. Dasgupta
w,
x,
O.Yu. Denisov
z,
∗
,
L. Dhara
f,
S.V. Donskov
s,
N. Doshita
af,
Ch. Dreisbach
o,
W. Dünnweber
4,
R.R. Dusaev
aa,
M. Dziewiecki
ae,
A. Efremov
g,
18,
P.D. Eversheim
c,
M. Faessler
4,
A. Ferrero
t,
M. Finger
q,
M. Finger jr.
q,
H. Fischer
h,
C. Franco
k,
N. du Fresne von Hohenesche
l,
i,
J.M. Friedrich
o,
∗
,
V. Frolov
g,
i,
F. Gautheron
b,
O.P. Gavrichtchouk
g,
S. Gerassimov
n,
o,
J. Giarra
l,
I. Gnesi
y,
z,
M. Gorzellik
h,
13,
A. Grasso
y,
z,
A. Gridin
g,
M. Grosse Perdekamp
ab,
B. Grube
o,
A. Guskov
g,
D. Hahne
d,
G. Hamar
x,
D. von Harrach
l,
R. Heitz
ab,
F. Herrmann
h,
N. Horikawa
p,
5,
N. d’Hose
t,
C.-Y. Hsieh
u,
6,
S. Huber
o,
S. Ishimoto
af,
7,
A. Ivanov
y,
z,
T. Iwata
af,
V. Jary
r,
R. Joosten
c,
P. Jörg
h,
E. Kabuß
l,
A. Kerbizi
w,
x,
B. Ketzer
c,
G.V. Khaustov
s,
Yu.A. Khokhlov
s,
8,
Yu. Kisselev
g,
F. Klein
d,
J.H. Koivuniemi
b,
ab,
V.N. Kolosov
s,
K. Kondo
af,
I. Konorov
n,
o,
V.F. Konstantinov
s,
A.M. Kotzinian
z,
10,
O.M. Kouznetsov
g,
Z. Kral
r,
M. Krämer
o,
F. Krinner
o,
Z.V. Kroumchtein
g,
†,
Y. Kulinich
ab,
F. Kunne
t,
K. Kurek
ac,
R.P. Kurjata
ae,
I.I. Kuznetsov
aa,
A. Kveton
r,
A.A. Lednev
s,
†,
E.A. Levchenko
aa,
S. Levorato
x,
Y.-S. Lian
u,
11,
J. Lichtenstadt
v,
R. Longo
y,
z,
V.E. Lyubovitskij
aa,
A. Maggiora
z,
A. Magnon
ab,
N. Makins
ab,
N. Makke
x,
3,
G.K. Mallot
i,
S.A. Mamon
aa,
C. Marchand
t,
B. Marianski
ac,
A. Martin
w,
x,
J. Marzec
ae,
J. Matoušek
w,
x,
q,
H. Matsuda
af,
T. Matsuda
m,
G.V. Meshcheryakov
g,
M. Meyer
ab,
t,
W. Meyer
b,
Yu.V. Mikhailov
s,
M. Mikhasenko
c,
E. Mitrofanov
g,
N. Mitrofanov
g,
Y. Miyachi
af,
A. Moretti
w,
A. Nagaytsev
g,
F. Nerling
l,
D. Neyret
t,
J. Nový
r,
i,
W.-D. Nowak
l,
G. Nukazuka
af,
A.S. Nunes
k,
A.G. Olshevsky
g,
I. Orlov
g,
M. Ostrick
l,
D. Panzieri
z,
12,
B. Parsamyan
y,
z,
S. Paul
o,
J.-C. Peng
ab,
F. Pereira
a,
G. Pesaro
w,
x,
M. Pešek
q,
M. Pešková
q,
D.V. Peshekhonov
g,
N. Pierre
l,
t,
S. Platchkov
t,
J. Pochodzalla
l,
V.A. Polyakov
s,
J. Pretz
d,
9,
M. Quaresma
k,
C. Quintans
k,
S. Ramos
k,
1,
C. Regali
h,
G. Reicherz
b,
C. Riedl
ab,
D.I. Ryabchikov
s,
o,
A. Rybnikov
g,
A. Rychter
ae,
R. Salac
r,
V.D. Samoylenko
s,
A. Sandacz
ac,
S. Sarkar
f,
I.A. Savin
g,
18,
T. Sawada
u,
G. Sbrizzai
w,
x,
P. Schiavon
w,
x,
H. Schmieden
d,
E. Seder
t,
A. Selyunin
g,
L. Silva
k,
L. Sinha
f,
S. Sirtl
h,
M. Slunecka
g,
F. Sozzi
x,
J. Smolik
g,
A. Srnka
e,
D. Steffen
i,
o,
M. Stolarski
k,
∗
,
O. Subrt
i,
r,
M. Sulc
j,
H. Suzuki
af,
5,
A. Szabelski
w,
x,
ac,
T. Szameitat
h,
13,
P. Sznajder
ac,
M. Tasevsky
g,
S. Tessaro
x,
F. Tessarotto
x,
A. Thiel
c,
J. Tomsa
q,
F. Tosello
z,
V. Tskhay
n,
S. Uhl
o,
B.I. Vasilishin
aa,
A. Vauth
i,
B.M. Veit
l,
J. Veloso
a,
A. Vidon
t,
M. Virius
r,
S. Wallner
o,
M. Wilfert
l,
R. Windmolders
d,
K. Zaremba
ae,
P. Zavada
g,
M. Zavertyaev
n,
E. Zemlyanichkina
g,
18,
M. Ziembicki
ae,
aUniversityofAveiro,Dept.ofPhysics,3810-193Aveiro,Portugal
bUniversitätBochum,InstitutfürExperimentalphysik,44780Bochum,Germany14,15 cUniversitätBonn,Helmholtz-InstitutfürStrahlen- undKernphysik,53115Bonn,Germany14 dUniversitätBonn,PhysikalischesInstitut,53115Bonn,Germany14
eInstituteofScientificInstruments,ASCR,61264Brno,CzechRepublic16
fMatrivaniInstituteofExperimentalResearch&Education,Calcutta-700030,India17 gJointInstituteforNuclearResearch,141980Dubna,Moscowregion,Russia18 hUniversitätFreiburg,PhysikalischesInstitut,79104Freiburg,Germany14,15 iCERN,1211Geneva23,Switzerland
jTechnicalUniversityinLiberec,46117Liberec,CzechRepublic16 kLIP,1000-149Lisbon,Portugal19
lUniversitätMainz,InstitutfürKernphysik,55099Mainz,Germany14 mUniversityofMiyazaki,Miyazaki889-2192,Japan20
nLebedevPhysicalInstitute,119991Moscow,Russia
oTechnischeUniversitätMünchen,PhysikDept.,85748Garching,Germany14,4 pNagoyaUniversity,464Nagoya,Japan20
qCharlesUniversityinPrague,FacultyofMathematicsandPhysics,18000Prague,CzechRepublic16 rCzechTechnicalUniversityinPrague,16636Prague,CzechRepublic16
sStateScientificCenterInstituteforHighEnergyPhysicsofNationalResearchCenter‘KurchatovInstitute’,142281Protvino,Russia tIRFU,CEA,UniversitéParis-Saclay,91191Gif-sur-Yvette,France15
uAcademiaSinica,InstituteofPhysics,Taipei11529,Taiwan21
vTelAvivUniversity,SchoolofPhysicsandAstronomy,69978TelAviv,Israel22 wUniversityofTrieste,Dept.ofPhysics,34127Trieste,Italy
xTriesteSectionofINFN,34127Trieste,Italy yUniversityofTurin,Dept.ofPhysics,10125Turin,Italy zTorinoSectionofINFN,10125Turin,Italy
aaTomskPolytechnicUniversity,634050Tomsk,Russia23
abUniversityofIllinoisatUrbana-Champaign,Dept.ofPhysics,Urbana,IL61801-3080,USA24 acNationalCentreforNuclearResearch,00-681Warsaw,Poland25
adUniversityofWarsaw,FacultyofPhysics,02-093Warsaw,Poland25
aeWarsawUniversityofTechnology,InstituteofRadioelectronics,00-665Warsaw,Poland25 afYamagataUniversity,Yamagata 992-8510,Japan20
*
Correspondingauthors.E-mailaddresses:[email protected](O.Yu. Denisov),[email protected](J.M. Friedrich),[email protected](M. Stolarski).
† Deceased.
1 AlsoatInstitutoSuperiorTécnico,UniversidadedeLisboa,Lisbon,Portugal.
2 AlsoatDept.ofPhysics,PusanNationalUniversity,Busan609-735,RepublicofKoreaandatPhysicsDept.,BrookhavenNationalLaboratory,Upton,NY11973,USA. 3 AlsoatAbdusSalamICTP,34151Trieste,Italy.
4 SupportedbytheDFGclusterofexcellence‘OriginandStructureoftheUniverse’(www.universe-cluster.de)(Germany). 5 AlsoatChubuUniversity,Kasugai,Aichi487-8501,Japan.
6 AlsoatDept.ofPhysics,NationalCentralUniversity,300JhongdaRoad,Jhongli32001,Taiwan. 7 AlsoatKEK,1-1Oho,Tsukuba,Ibaraki305-0801,Japan.
8 AlsoatMoscowInstituteofPhysicsandTechnology,MoscowRegion,141700,Russia. 9 Presentaddress:RWTHAachenUniversity,III.PhysikalischesInstitut,52056Aachen,Germany. 10 AlsoatYerevanPhysicsInstitute,AlikhanianBr.Street,Yerevan,Armenia,0036.
11 AlsoatDept.ofPhysics,NationalKaohsiungNormalUniversity,KaohsiungCounty824,Taiwan. 12 AlsoatUniversityofEasternPiedmont,15100Alessandria,Italy.
13 SupportedbytheDFGResearchTrainingGroupProgrammes1102and2044(Germany). 14 SupportedbyBMBF–BundesministeriumfürBildungundForschung(Germany). 15 SupportedbyFP7,HadronPhysics3,Grant283286(EuropeanUnion).
16 SupportedbyMEYS,GrantLG13031(CzechRepublic). 17 SupportedbyB.Senfund(India).
18 SupportedbyCERN-RFBRGrant12-02-91500.
19 SupportedbyFCT–FundaçãoparaaCiênciaeTecnologia,COMPETEandQREN,GrantsCERN/FP116376/2010,123600/2011andCERN/FIS-NUC/0017/2015(Portugal). 20 SupportedbyMEXTandJSPS,Grants18002006,20540299,18540281and26247032,theDaikoandYamadaFoundations(Japan).
21 SupportedbytheMinistryofScienceandTechnology(Taiwan). 22 SupportedbytheIsraelAcademyofSciencesandHumanities(Israel).
23 SupportedbytheRussianFederationprogram“Nauka”(ContractNo.0.1764.GZB.2017)(Russia). 24 SupportedbytheNationalScienceFoundation,Grantno.PHY-1506416(USA).