• Non ci sono risultati.

ORMOCER®s as protective coating materials for outdoor bronze objects: evaluation after 17 years of natural exposure.

N/A
N/A
Protected

Academic year: 2021

Condividi "ORMOCER®s as protective coating materials for outdoor bronze objects: evaluation after 17 years of natural exposure."

Copied!
88
0
0

Testo completo

(1)

Corso di Laurea magistrale in

Scienze e Tecnologie Chimiche per la

Conservazione ed il restauro

Tesi di Laurea

ORMOCER

®

s as protective coating materials

for outdoor bronze objects:

Evaluation after 17 years of natural exposure

Relatore

Prof. Emilio Francesco ORSEGA

Corelatore

Dr. Paul Bellendorf

Laureando

Cristian mazzon

Matricola 831226

Anno Accademico

2012 / 2013

(2)

C

ONTENTS

 

1.

I

NTRODUCTION                 1  

1.1. Phase  of  the  study  and  objectives           2  

1.2. Aim  of  the  thesis               3  

1.3. Bronze                   4  

1.3.1. The  bronze  alloys               5  

1.3.2. The  casting  process             6  

2.

B

ACKGROUND                   8  

2.1. A  new  coating  system               8  

2.2. The  test  substrate               10  

2.3. The  coating  application             11  

2.4. Initial  testing                 11  

2.5. Extended  test  program             12  

2.6. Long-­‐term  testing  by  outdoor  weathering         16  

3.

C

ORROSION                   19    

3.1. Mechanisms  of  corrosion               20  

3.1.1. Electrochemistry  of  corrosion           22  

3.1.2. The  potential  –  pH  diagram           24  

3.2. Atmosphere  and  corrosion             26  

3.2.1. Mechanisms  of  environmental  corrosion  of  metals     28  

3.2.2. Patina  components             29  

4.

C

OATINGS                   33  

4.1. Coatings                 33  

4.1.1. Traditional  protection  methods           34  

4.1.2. New  protection  methods             36  

4.2. The  sol  –  gel  reaction               36  

4.2.1. Hybrid  materials  by  the  sol  –  gel  process         38  

4.2.2. ORMOCER®s               40  

   

(3)

5.

M

ATERIALS  AND  METHODS               42  

5.1. The  samples                 42  

5.1.1. The  bronze  substrate             42  

5.1.2. Selected  ORMOCER  coating  variations  and  application     43  

5.2. The  techniques                 45  

5.2.1. Visual  overview               45  

5.2.2. Light  Optical  Microscope             45  

5.2.3. Coatings  thickness  measurement  instrument       46  

5.2.4. FT-­‐IR  spectroscopy  in  Attenuated  Total  Reflectance  (FT-­‐IR  ATR)   47   5.2.5. Scanning  Electron  Microscopy  (SEM-­‐EDX)         48  

5.2.6. X-­‐ray  Diffraction  (XRD)             49   6.

R

ESULTS  AND  DISCUSSION               50  

6.1. Visual  overview               50  

6.2. Light  Optical  Microscope             54  

6.2.1. Rolled  bronze  samples  –  NC           54   6.2.2. Cast  flat  bronze  samples  –  NM           59   6.2.3. Cast  shaped  bronze  samples  –  GGNM         63   6.3. Coatings  thickness  measurement  instrument         68   6.4. FT-­‐IR  spectroscopy  in  Attenuated  Total  Reflectance  (FT-­‐IR  ATR)   70   6.5. Scanning  Electron  Microscopy  (SEM-­‐EDX)         76  

6.6. X-­‐Ray  Diffraction  (XRD)             80  

7.

C

ONCLUSIONS                   82  

References                     83  

Annex    

(4)

1.

I

NTRODUCTION  

Works  of  art,  like  bronze  sculptures,  are  heavily  affected  by  degradation  through   corrosion.   They   are   mostly   exposed   outdoors   and   unsheltered   against   weathering   and  air  pollution.  Corrosion  is  a  natural  process  and  can  be  followed  by  observing   the   formation   of   a   corrosive   layer   –   patina1  on   the   metal’s   surface.   Different   environmental   conditions   (presence   and   concentration   of   corrosive   or   aggressive   agents)   will   determine   colour,   chemical   composition   and   amorphous   character   of   the  patina  (Römich,  1995)  

A  natural  patina  is  a  very  thin  conversion  coat  on  the  surface  of  the  bronze.  An   unprotected   bronze   surface   exposed   to   natural   weathering   conditions   loses   its   original  appearance  and  its  natural  (or  artificial)  protective  patina.  This  patina  may   slowly  become  green  (most  compounds:  brochantite2)  and  in  many  cases  this  coat   layer  has  a  protective  action  against  any  further  corrosion  process.    

Atmospheric   corrosion   is   becoming   harder   and   aggressive   and   results   from   an   increasing   production   of   corrodants.   These   corrodants   affect   various   materials   including  bronze  (G.  Bierwagen  et.  al.,  2003).    

Generally   pollutants   (sulphur   compounds),   acid   rain,   dirt   deposit   and   moisture   (condensation)  cause  a  rapid  corrosion  and  a  consequently  changing  of  the  original   artistic   intention   and   aesthetic   expression   (loss   of   original   patina   and   sculptural   detail).   This   process   produces   a   mottled,   streaked,   pitted   or   powdery   green/black   surface  and  during  the  rain  the  corrosion  products  are  easily  washed  away  and  leave   behind  a  new  surface  where  the  corrosions  process  can  start  again  (G.  Bierwagen,   2003;  Römich,  1995].  

Protection  from  bronze  corrosion  became  so  very  important.  Different  polymer   lacquers,   waxes   and   natural   resins   are   used   for   the   protection   against   corrosion.   Unfortunately  over  time  most  coating  systems  do  not  provide  adequate  protection  

1Patination   is   the   name   for   the   process   of   colouring   metals.   These   colours   arise   from   chemical  

interaction   between   elements   in   the   metals   and   various   chemicals   or   natural   interaction   between   the  elements  in  the  metals  and  the  environment.  

2Brochantite   is   a   sulphate   mineral.   Its   chemical   name   an   formula   is   cupric   sulphates   -­‐  

(5)

and   don’t   fulfil   the   requirement   of   long-­‐term   stability   (About   5   to   10   years)   (G.   Bierwagen,  2003).    

During   the   last   decades   transparent   protective   coatings   were   used   for   conservation   and   to   slow   down   corrosion   processes   of   outdoor   sculptures.   A   requirement  for  a  coating  system  is  the  effective  protection  from  further  corrosion   of  the  substrate,  good  adhesion  on  the  surface  and  good  penetration  of  the  pores  of   the   metal   and   the   patina.   An   efficient   coating   must   have   high   barrier   properties   against  water  vapour,  sun  light  (UV)  and  air  pollutants  (Römich,  1995).    

Another   important   factor   is   the   aspect   of   reversibility   of   the   treatment.   “Every   treatment   must   be   reversible”,   this   is   a   challenge   presented   by   the   conservation   community  because  for  the  conservator  a  good  adhesion  means  irreversibility.  The   applied   coatings   need   to   be   removable   without   damaging   or   changing   the   visible   appearance  of  the  sculpture  (G.  Bierwagen,  2003).    

The   coating   layer   should   be   removable   using   organic   solvents.   In   contrary   mechanical  methods  for  removal  bear  the  risk  to  remove  not  only  the  coating  but   also  the  patina  (natural  or  artificial)  (Römich,  1995).  

 

1.1. Phase  of  the  study  and  objective  (Römich,  1995)  

Within   a   two   year   European   research   project   (New   Conservation   Methods   for   Outdoor   Bronze   Conservation),   from   1993   to   1995,   some   chemical   variations   of   a   new   organic-­‐inorganic   copolymer   (ORMOCER®)   were   developed   as   protective   coatings   for   bronze   objects.   These   coatings   are   tested   in   the   laboratory   of   the   Fraunhofer-­‐Institute   for   Silicate   Research   (ISC),   member   of   the   Fraunhofer   Society   for  the  advancement  of  applied  research.  These  organic-­‐inorganic  copolymers  were   supposed  to  have  a  great  potential  because  they  can  be  adapted  to  any  substrate   situation  and  can  be  chemically  modified  to  satisfy  the  needs  of  conservators.    

At  the  end  of  the  project,  in  1995,  a  series  of  different  testing  substrates  were   coated  with  the  most  promising  six  ORMOCER®  variations,  according  to  the  results   obtained  in  the  laboratory  testing  phase.    

(6)

The  six  variations  classificated  as  optimistic  candidates  are  different  concerning   the   following   parameters:   diluition   rate,   kind   of   polymeric   additives   and   in   their   protective  concept.  Mono-­‐layers  consists  of  one  coating  material  of  the  ORMOCER®   lack  and  for  only  one  variation  the  coating  was  applied  with  several  applications  in   order  to  increase  the  coating  thickness  of  the  protective  layer.    Bi-­‐layers  consists  of   an  additional  organic  top  coat  (Paraloid®  B72)  applied  after  drying  the  mono-­‐layer.      

Each  test  series  of  bronze  substrates  (able  to  simulate  a  different  porosity  of  the   surfaces)   consists   of   ten   samples:   seven   coated   with   different   ORMOCER   coating   variations;  two  coated  with  Paraloid®  B72  and  Incralac®  (common  used  products  in   the  bronze  conservation)  chosen  as  reference  coating  materials  and  one  reference   sample  of  each  test  series  remained  untreated.  

In  order  to  study  the  protective  effect  of  this  conservation  method  under  natural   weathering   conditions,   an   extended   and   detailed   examination   program   during   a   long-­‐term   exposure   was   started.   All   investigated   samples   had   been   exposed   at   different  sites  in  Europe  and  on  the  roof  of  the  logistic  cottage  of  the  Fraunhofer   Institute  for  Silicate  Research,  in  the  rural  environment  of  Bronnbach.    

After  a  17  years  natural  weathering,  a  laboratory  investigation  started  to  analyse   and  evaluate  these  ORMOCER®  -­‐  coatings  in  comparison  to  commercial  products  on   different  test  specimen.  

 

1.2. Aim  of  the  thesis  

The  aim  of  this  master  thesis  is  a  second  evaluation  and  interim  ranking  of  the   effectiveness  protection  of  the  same  coatings  variations  on  the  bronze  sample  used   for  the  laboratory  testing  after  a  17  years  natural  weathering  (14  years  after  the  first   interim  ranking).    

The  detailed  laboratory  investigation  starts  first  with  an  optical  inspection  and  a   photo  documentation  (macro  photography  and  light  optical  microscopy)  to  obtain   an   overview   of   the   state   of   preservation   of   the   samples   after   the   exposure:   information   about   general   visual   appearance   of   the   coating   quality,   evaluation   of   the  weathering  resistance.    

(7)

According   to   the   first   interim   ranking,   the   analytical   methods   applied   on   the   coated  substrates  are:  

1) Coating  thickness:  to  obtain  information  about  the  thickness  variation  after   the  action  of  the  weathering.  

2) IR   spectroscopy   in   Attenuated   Total   Reflectance   (IR   –   ATR):   to   obtain   information  about  the  presence  of  the  coating  after  17  years  of  exposure  and   after  the  reversibility  test.  

3) Scanning  Electron  Microscopy  (SEM  –  EDX):  to  obtain  information  about  the   corrosion  products  developed  on  the  substrate.  

4) X  –  ray  Diffraction  (XRD):  to  obtain  information  about  the  crystal  structure   and  chemical  composition  of  the  different  corrosion  crystal.    

5) Reversibility  testing.  

The   evaluation   is   done   on   the   samples   exposed   at   Bronnbach,   a   rural   environment,   on   the   roof   of   the   logistic   cottage   of   the   Fraunhofer   –   Institute   for   Silicate   Research   (ISC).   The   samples   exposed   at   different   sites   in   Europe   are   to   evaluate  because  they’re  missing.    

 

1.3. Bronze  

Bronze  is  a  generic  name  for  all  copper  based  alloys  with  other  alloying  elements   except  zinc  (P.  Skočovský,  2000  –  2006).  There  are  many  different  kinds  of  bronze   for  different  applications  (O.  Duhamel,  2009  –  2011).  Bronze  is  an  alloy  consisting   primarily   of   copper   and   the   name   of   bronzes   is   defined   according   to   the   element   used   as   main   additive.   Elements   that   can   be   added   to   the   bronze   alloy   are:   zinc,   lead,  iron,  phosphor,  aluminium,  nickel,  silicon,  etc  (R.  F.  Schmidt,  D.  G.  Schmidt  &   Sahoo,  1988).  

     

(8)

1.3.1. The  bronze  alloys  

Initially   bronze   was   made   out   of   copper   mixed   with   arsenic   because   the   alloy   became  more  stronger  and  malleable.  Arsenic  was  than  replaced  by  tin  to  obtain  a   superior   alloy   composition.   The   process   itself   can   more   easily   be   controlled,   the   alloy   is   stronger   and   easier   to   cast.   Tin   on   the   contrary   of   arsenic   is   not   toxic   (G.   Thomas,  1996)    

The   main   metal   in   the   bronze   is   always   copper.   Tin   is   added   in   variable   ratio,   usually  from  5%  to  10%  (over  25%  the  alloy  became  overly  fragile).  Modern  statuary   bronze  is  90%  copper  and  10%  tin.  The  result  of  alloying  copper  with  tin  is:  

• An  improved  hardness;  

• A  high  resistance  against  corrosion;  

• A  more  fusibility  and  an  easier  casting  of  the  bronze.   The  more  complex  alloys  contain  besides  copper:    

• Lead:  decrease  the  melting  point  of  the  metal,  improved  fusibility,  an  easier   casting  and  improved  the  plasticity  of  the  alloy  

• Zinc:   the   alloy   copper   –   zinc   is   also   called   brasses.   The   addition   of   zinc   increases  mechanical   properties   and   corrosion   resistance.   Small   amount   of   other   elements   like   lead,   tin,   aluminium,   silicon   or   nickel   improves   the   materials  workability,  resistance  against  corrosion  and  ductility.  

• Phosphor:   the   addition   of   a   small   amount   of   this   metal   (1   –   2%)   improved   the  bronze  in  hardness  and  strength.  Is  added  as  a  deoxidizing  agent  during   melting.  

• Aluminium   bronze:   contains   from   4%   to   10%   aluminium   and   other   alloying   agents  such  as  iron,  nickel,  manganese  and  silicon  are  also  sometimes  added   to  the  bronze.  These  kinds  of  bronzes  are  important  for  their  higher  strength,   higher  corrosion  resistance  and  low  melting  point  compared  to  the  ordinary   alloys.  

• Silicon   bronze:   contains   about   3%   of   silicon   and   these   alloys   are   very   resistant   against   corrosion.   It   has  mechanic   quality   just   like   steel   and   high   fusibility.  In  the  20th  century,  the  introduction  of  silicon  as  primary  alloying  

(9)

element   creates   a   bronze   with   wide   application   in   the   industry   and   in   contemporary   sculpture.   Due   to,   the   high   resistance   against   acids,   some   alkalis   and   their   good   mechanical,   chemical   and   wear   properties   the   tin   bronze  has  been  replaced  from  the  silicon  bronze.    

• Nickel:  improves  strength,  the  resistance  against  corrosion,  stress  corrosion   and  wear  of  the  alloy.  The  addition  of  iron  and  manganese  improve  markedly   the  corrosion  resistance  of  the  alloy  in  seawater.  

 

1.3.2. The  casting  process  

Generally,   casting   is   the   process   of   pouring   a   liquid   material   into   an   empty   mould,  letting  it  set,  cure,  freeze  or  otherwise  solidify  and  then  opening  or  breaking   the  mould  to  reveal  a  solid  reproduction.  In  the  case  of  metal,  it  must  first  be  melted   in  its  liquid  form  before  it  can  be  poured  into  a  mould  (O.  Duhamel  2009  –  2011).    

To   obtain   good   quality   product   results   the   casting   processes   are   the   most   important  factor  (P.  Skočovský,  2000  –  2006).  There  are  many  types  of  copper  and   its  alloys  casting  (G.  Thomas,  1996),  such  as:  

1) The  main  technique  for  casting  bronze,  since  ancient  times,  is  the  lost  –  wax  

casting.  Today  this  process  is  call  investment  method  but  carries  on  the  same  

technique.  

To  resume  the  process  in  few  words,  a  sculpture  made  in  wax  is  first  encased   in  clay.  During  the  baking  process,  the  wax  melts  away  and  the  clay  becomes   the   mould   where   the   melted   bronze   can   be   poured   into   and   fill   the   empty   cavity.  After  the  bronze  cools  down,  the  clay  mould  is  broken  to  reveal  the   solid  bronze  cast.  The  bronze  then  has  to  be  worked  on  to  remove  any  casting   defects.  

The  investment  casting,  based  on  lost  –  wax  casting,  is  an  industrial  process   where  the  use  of  high  –  technology  (such  as  waxes,  refractory  materials  and   alloy)   allow   the   production   of   components   with   accuracy   in   a   variety   of   metals  and  high  –  performance  alloys.  

These  types  of  casting  processes  can  be  performed  in  two  ways:  

(10)

• The   indirect   methods,   where   a   wax   copy   of   a   model   made   of   clay,   wood,   plastic,   steel   or   another   material   is   used.   This   method,   contrariwise  ,  allows  a  mass  production.  

2) The  ceramic  shell  method  consists  in  a  process  of  dipping  the  wax  sculpture   into  a  ceramic  mixture  to  build  up  a  thin  layer  or  shell.  During  the  baking  in   the  kiln  the  ceramic  coating  becomes  very  hard.  The  wax  is  again  burnt  out   and   lost   (like   the   investment   method)   and   the   empty   cavity   is   filled   with   melted  bronze.  

3) The   sand   casting   is   a   process   characterized   by   using   sand   as   the   mould   material.  In  addition,  clay  is  mixed  to  the  sand  and  moistened  with  water  to   obtain   a   plasticity   mixture   good   for   moulding.   The   sand   is   contained   in   a   mould  box  divided  in  two  halves.    

The  process  is  to  bury  an  object,  made  of  wood  or  metal,  half  –  way  in  one   half  of  the  box  and  freeze  the  sand  with  CO2  gas.  The  second  part  of  the  box   is   attached   and   the   sand   packed   into   the   second   half   and   frozen.   The   following  split  of  the  two  halves  and  the  removal  of  the  object  leave  an  empty   cavity  in  the  sand.  This  cavity  can  now  be  filled  with  molten  bronze.  

This  technique  allows  a  large  production  of  exemplars,  it  is  cheaper  than  the   lost  –  wax  casting  and  is  the  quickest  method  for  casting  bronze,  but  it  only   suits  geometrical  forms.  

                       

(11)

2. BACKGROUND  (Römich,  1995)  

2.1. A  new  coating  system  

The   main   task   of   the   Fraunhofer-­‐Institute   for   Silicate   research   (ISC)   within   the   project   team3  was   to   develop   an   ORMOCER®   based   material   for   a   new   protective   coating  system  for  outdoor  bronze  sculptures.  As  mentioned  before  there  is  a  need   for   alternative   conservation   materials   because   conventional   materials,   like   waxes   and  Incralac®,  have    only  a  short  lifetime,  which  is  not  very  satisfying.  

The   sol-­‐gel   technique   provides   a   method   suitable   for   preparing   hybrid   coating   materials  with  properties  of  organic  and  inorganic  polymers  (Pilz  M.  and  Romich  H.,   1997).   So,   it   is   possible   to   prepare   coating   materials   with   properties   varying   between   these   two   extremes.   The   crosslinking   of   these   copolymers   can   be   controlled   by   modifying   the   starting   compounds   and   the   reaction   conditions   (Brinker  C.J.  and  Scherer  G.W.,  1990).    

Three  kinds  of  starting  compound  can  be  used  for  the  preparation  of  ORMOCER®:   1. Reactive  organometallic  precursors  like  alkoxides,  Si(OR)4  (where  R  is  an  

alkyl  group,  CxH2x  +  1)  build  up  the  inorganic  backbone  of  the  polymer  by  a   sequence  of  hydrolysis  and  condensation  reactions.  

2. The   organic-­‐polymeric   network   derives   from   crosslinkable   functional   groups   (R´)   of   organo-­‐functionalized   alkoxides   of   the   general   formula   R´nSi(OR)4-­‐n  were  R´  is  a  vinyl  or  epoxy  group  (these  group  can  build  up  an   additional  organic  network).  

3. Alkoxides   with   non-­‐reactive   organic   groups,   R´nSi(RO)4-­‐n,   with   R´   like   phenyl   or   alkyl,   that   gives   the   polymer   specific   properties   like   hydrophobicity,  elasticity,  etc.  

       

3  The   members   of   the   team   are   experts   in   surface   coating   technology,   metal   corrosion   and  

bronze  conservation  from  research  institutes:  Danish  Technological  Institute  (DTI),  INCERTRANS   (INC),   Institute   of   Inorganic   Chemistry   (IIC);   museums:   National   Museum   of   Denmark   (NM),  

(12)

The  staring  compounds  that  were  tested  are  listed  in  the  table  below.    

Table  1:  Starting  components  for  sol-­‐gel  derived  lacquers  used  for  bronze  conservation  (Pilz  M.  and  

Romich  H.,  1997)   Network  formers   (no  functionalities)  

Network  formers  

(with  crosslinkable  organic  groups)  

Network  modifiers   (no  crosslinkable  organic  

groups)   Tetraalkoxysilanes   3-­‐Glycidoxypropyltrimethoxysilane  

(epoxy  functionalized  silane,  Glymo)  

Propyl-­‐   Methyl   Phenyl-­‐   Diphenyl-­‐   alkoxy-­‐  or   hydroxysilanes   Tetraalkoxyzirconates     γ-­‐Methacryloxyprpyltrimethoxysilane   (methacrylate  functionalized,  Memo)  

 

The  epoxy  functionalized  silane  (Glymo)  or  the  methacrylate  functionalized  silane   (Memo)   were   always   used   as   the   main   component;   further   characterization   and   testing  in  the  laboratory  summarized  in  these  paper  proved  that  the  two  component   lacquer   GDiphenyl   based   on   Glymo   modified   with   Diphenylsilandiol   (an   hydroxysilane)  are  the  most  promising  one.  

A  total  number  of  13  lacquers  had  been  synthesized  and  each  of  these  different   multi-­‐component   systems   were   used   as   base   material   for   several   types   of  

monolayer   coating   systems.   Variations   can   be   made   concerning   the   hardener,   the  

organic   solvent,   the   dilution   rate,   the   curing   conditions   and   the   possibility   to   use   organic   oligomer   as   additives.   The   organic   oligomer   was   also   applied   as   a   second   layer  on  the  top  of  the  first  layer  based  on  ORMOCER®  to  create  a  bilayer  coating  

system.  

The  ORMOCER®  lacquers  were  characterized  by  measurements  viscosity4,  water   and  epoxy  contents5  after  a  storage  period  of  30  days  to  determine  their  stability.   Infrared   spectroscopy   (IR)   and   gel   permeation   chromatography   (GPC)   gave   additional  information  about  the  molecular  structure  of  the  precondensate  before   the  application  of  the  test  substrate.  

   

4  According  to  Ubbelohde  

(13)

2.2. The  Test  Substrate  (Holm  et.  al.,  1995)  

The  development  of  new  conservation  coatings  needs  an  extensive  tests  program   on  test  specimen  or  model  samples  that  are  easy  to  evaluate  and  comparable  with   original   substrates.   Therefore,   the   new   coatings   were   first   tested   on   very   simple   bronze   substrates   with   reproducible   surface   conditions   to   investigate   the   general   qualities  of  the  lacquers.  

Non-­‐corroded   rolled   bronze   sheets   –   NC   (Sn   bronze   90/10)   were   used   as   test   samples   for   the   evaluation   of   the   general   performance   of   the   new   conservation   materials.  Approximately  1300  samples  of  10%  tin  rolled  bronze  (nomenclature:  90-­‐

10)  were  prepared  and  distributed  by  the  private  company  Naylor  Conservation  in  

order  to  evaluate  the  protective  effect  of  the  coatings.  

After  this  first  phase,  the  most  promising  coating  systems  were  tested  on  another   different  test  samples  like  cast  bronzes  to  simulate  the  porous  surface  structure,  the   alloys   and   the   patina   of   the   metal   sculptures.   The   samples   were   prepared   by   specialists   from   the   National   Museum   of   Denmark.   Different   alloys   corrode   differently  and  often  the  addition  of  alloying  elements  to  a  pure  metal  will  increase   the  corrosion  rate,  cause  the  formation  of  local  galvanic  cells.  Two  different  alloys  

90-­‐10   and   RG9   according   to   Swedish   standards6  were   used   and   two   different   cast   forms,  shaped  cast  bronze  –  GGNM  and  flat  cast  bronze  –  NM  are  prepared  for  the   first  test  series  (Table  2).  

 

Table  2:  Element  composition  in  %  of  the  two  different  alloys  (Holm  et.  al.,  1995)  

  Sn   Zn   Pb   Cu  

RG9   9   2   3   86  

90-­‐10   10   0   0   90  

 

Later  was  decided  to  use  only  the  RG9  alloy  for  further  specimen  for  tests  of  the   ORMOCER®   coatings   development.   Part   of   the   cast   flat   samples   was   artificially   patinated,  using  traditional  patination  methods  or  experimenting  with  new  ones.    

(14)

Moreover,  Danish  and  Swedish  copper  roofs  with  natural  patina  were  included  in   the  test  programme.  In  addition,  some  special  samples  –  RO  for  outdoor  long-­‐term   exposition  were  prepared  by  metal  spraying  with  an  electric  arc  from  INCERTRANS   (INC).   Metallization   is   a   technical   procedure,   which   makes   it   possible   to   deposit   metal   coatings   on   a   support   by   melting   the   spraying   material   on   the   surface   by   means  of  compressed  air.  The  samples  for  testing  ORMOCER®s  consisted  of  a  steel   support  covered  with  Bz  Al  10  (10  –  11%  Al,  0.5  –  1.5%  Mn,  0.5  –  1%  Fe,  rest  Cu),   deposited  with  the  procedure  described  above.    

 

2.3. Application  methods    

The   multi-­‐component   ORMOCER®   lacquer   systems   were   used   in   high   dilution   with  organic  solvents  (up  to  a  ratio  of  1:6  wt.  %  with  butoxyethanol)  to  reduce  the   viscosity   of   the   lacquer   and   to   improve   the   impregnation   behaviour   on   porous   bronze  surfaces,  both  on  patinated  and  none-­‐patinated  one.  

In  the  beginning  of  the  project  the  coatings  were  applied  by  a  brush  technique.   Later,  the  application  of  the  coatings  was  carried  out  using  spray  equipment  (spray   gun  “sata  jet”).    Multilayers  were  applied  after  allowing  the  previous  layer  to  dry  for   several   hours   at   ambient   temperatures.   To   speed   up   the   curing   process   a   moderately  warming  up  to  50°C  or  IR  treatments  were  used.    

 

2.4. Initial  testing  

During  the  initial  test  phase  about  400  coating  variations  (basing  on  the  initial  13   multi-­‐component   ORMOCER®   lacquers)   were   synthesized   and   tested   by   using   different:    

• hardeners,     • solvents,     • additives,    

• curing  conditions  or     • application  techniques.  

(15)

The  performance  of  the  applications  on  rolled  bronze  sheets,  were  investigated   by  methods  like:    

• coating  thickness  (an  inductive  method),     • adhesion  properties  (crosscut  test7)  and    

• resistance   against   weathering:   at   the   ISC   the   stability   of   the   coating   materials  was  studied  by  a  short-­‐term  exposition  (48  hours  up  to  14  days)   to   accelerated   weathering   conditions.   The   corrosive   test   atmosphere   in   the  climatic  chamber  included  changes  in  humidity  (from  30%  to  98%),  in   temperature  (-­‐20°C  to  +40°C)  and  a  high  concentration  of  polluting  gas  (5   ppm  SO2,  15  times  higher  than  the  concentration  in  an  industrial  city).   At  the  DTI  a  different  weathering  procedure  was  carried  out  for  an  extended  test   programme  (the  total  time  of  exposure  varied  between  30  and  64  days).  This  cycle   included   resistance   to   humidity 8  (changes   in   humidity   and   temperature),   freeze/thaw  (cycle  of  temperature/humidity  changes  between  -­‐20°C  and  40°C/30%   and   98%   r.h.),   UV-­‐light/water   spray   (fluorescent   UV-­‐light   cycle   and   heat   at   60°C,   interval  water-­‐spray  and  condensation  at  50°C  in  QUV-­‐apparatus9)  and  a  corrosive   test   (surface   treatment   with   a   kaoline   slurry   of   copper(II)nitrate,   iron(III)chloride,   ammonium  chloride  and  water  containing  5%  sulphur  dioxide10).  

 

2.5. Extended  test  programme  

A   total   number   of   16   most   promising   monolayer   or   bilayer   coatings   were   selected   for   the   second   extensive   testing   phase.   These   ORMOCER®   coatings   are   listed  and  described  in  the  table  below.  

 

Table  3:  Overview  on  selected  ORMOCER®  coatings  (Römich,  1995)  

Coating  

System   Starting  components   Additives   Curing   Application  

OR  1   GDiphenyl   (Glymo  +  Diphenylsilanediol)   Paraloid  B72®   20%,   hardener   room   temperature   monolayer   (sprayed)  

7  According  to  DIN  53151     8  According  to  DIN  50017  KFW   9  According  to  ASTM  G  53-­‐88  modified  

(16)

Coating  

System   Starting  components   Additives   Curing   Application   OR  2   GDiphenylT   (Glymo  +  Diphenylsilanediol   +  Tetraethoxysilane)   Paraloid  B72®   20%,   hardener   room   temperature   bilayer11   1.  sprayed   2.  brushed   OR  3   MDiphenyl   (Memo  +  Diphenylsilanediol)    

-­‐  

room   temperature   monolayer   (sprayed)   OR  4   GDiphenylDT   (Glymo  +  Diphenylsilanediol   +  Dimethyldiethoxysilane)  

-­‐

  room   temperature   monolayer   (sprayed)   OR  5   GDiphenyl   (Glymo  +  Diphenylsilanediol)   Paraloid  B72®   20%,   hardener   room   temperature   bilayer   1.  sprayed   2.  brushed   OR  6   GDiphenyl   (Glymo  +  Diphenylsilanediol)   Paraloid  B72®   20%,   hardener   room   temperature   monolayer   (brushed)   OR  7   GDiphenyl   (Glymo  +  Diphenylsilanediol)   Paraloid  B72®   20%,   hardener   one  day   dried  at  50°C   monolayer   (sprayed)   OR  8   GDiphenyl  

(Glymo  +  Diphenylsilanediol)   hardener  

room   temperature   bilayer   1.  sprayed   2.  brushed   OR  9   MDiphenylZr   (Memo  +  Diphenylsilanediol   +  Zirconiumtetraisopropylate)   Paraloid  B72®   10%   two  hour   dried  at  100°C   monolayer   (sprayed)   OR  10   GDiphenylTH  

(Glymo  +  Diphenylsilanediol)   hardener  

room   temperature   bilayer   1.  sprayed   2.  brushed   OR  11   MDiphenylV   (Memo  +  Diphenylsilanediol   +  Vinyltrimethoxysilane)   Paraloid  B72®   10%   dried  at   sunlight   monolayer   (sprayed)   OR  12   GDiphenyl   (Glymo  +  Diphenylsilanediol)   epoxy  oligomer   10%,   hardener   room   temperature   monolayer   (sprayed)   OR  13   GDiphenyl   (Glymo  +  Diphenylsilanediol)   epoxy  oligomer   20%,   solvent  mixture,   hardener   one  day   dried  at  50°C   monolayer   (sprayed)  

11  In  the  bilayer  system  an  acrylic  resin  coating  (Paraloid  B72®)  is  applied  as  a  second  layer  on  

(17)

Coating  

System   Starting  components   Additives   Curing   Application  

OR  14   GDiphenyl   (Glymo  +  Diphenylsilanediol)   polyacrylate  20%,   lower  dilution,   hardener   one  day   dried  at  50°C   monolayer   (sprayed)   OR  15   GDiphenylT   (Glymo  +  Diphenylsilanediol   +  Tetraethoxysilane)   epoxy  oligomer   10%,   hardener   room   temperature   bilayer   1.  sprayed   2.  sprayed   OR  16   GDiphenyl   (Glymo  +  Diphenylsilanediol)   lower  dilution,   hardener   room   temperature   bilayer   1.  sprayed   2.  sprayed    

In  addition  and  for  comparison  issues  microcrystalline  wax,  Incralac®  or  Paraloid   B72®  coating  are  applied  as  commercial  references  used  as  references  to  evaluate   the  protective  effectiveness  of  the  ORMOCER®  coating  system  OR1  to  OR16.  

The   following   analytical   methods   had   been   applied   for   the   evaluation   of   the   coated  substrates:  

1. Coating   thickness:   to   obtain   information   about   influence   of   solvent,   dilution  rate,  storage  time  and  application  method  of  the  lacquer.  

2. IR   spectroscopy:   to   obtain   information   about   reversibility   and   the   impregnation  depth  of  the  coating  on  patinated  copper  surface.  

3. Adhesion  crosscut  (coating  quality):  to  obtain  information  about  influence   of  hardener,  additives,  curing  conditions,  influence  of  layer  and  influence   of  corrosion  inhibitor  BTA.  

4. Water,   SO2   and   Radon   permeation   rate:   to   obtain   information   about  

barrier  properties  against  water,  SO2  and  water/SO2.  

5. Contact  angle  measurement:  to  obtain  information  about  hydrophobicity   (water  repellent  effect).  

6. Electron  microscopy  (SEM):  to  obtain  information  about  coating  thickness   and  impregnation  of  patina.  

7. Radiometric   emanation   method:   to   obtain   information   about   process   of   hardening  and  sequence  of  layers.  

8. Microscopy   and   visual   inspection:   to   obtain   information   about   general   visual   appearance   of   the   coating   quality,   evaluation   of   the   weathering  

(18)

resistance  after  the  ISC-­‐  and  DTI-­‐cycle,  condensed  moisture  and  the  drop   test  with  acids  or  H2O2.    

To  summarize  the  important  results  of  the  extended  test  program  it  can  be  said   that:  

• The   thickness   of   the   coatings   is   decisive   for   their   protective   effect.   The   spray  application  gives  coating  thickness  of  about  4  –  8  µm  for  monolayer   and  10  –  12  µm  for  bilayer.  The  thickness  is  influenced  by  the  solvent,  the   dilution   rate,   the   degree   of   condensation   of   the   lacquer   and   the   application  technique.  A  thicker  coating  have  a  better  barrier  proprieties   bat  a  worse  adhesion  qualities  [3].  

• Test   showed   that   the   reversibility   of   the   coatings   is   good   when   the   lacquers  contain  minor  amounts  of  organic  fillers.  Coating  systems  like  OR  

1  can  easily  be  removed  with  organic  solvents.  The  coatings  without  these  

additives   are   extremely   crosslinked   and   they   can   be   removed   only   through   stronger   measure   treatments   like   aggressive   solvents   and   mechanical  methods.  It  needs  to  hold  in  consideration  that  for  patinated   surfaces  the  reversibility  is  limited.    

• The   sulphur   dioxide   permeability   is   one   of   the   important   properties   for   the  protective  effect  of  a  coating.  The  selected  ORMOCER®  system  OR  14,   with   a   polyacrylate   as   additive,   show   the   better   sulphur   dioxide   permeability  then  the  monolayer  ORMOCER®  OR1,  with  Paraloid  B72®  as   additive,  and  the  bilayer  ORMOCER®  OR16,  with  Paraloid  B72  on  top.  With   Paraloid   B72®,   Incralac®   has   also   a   relatively   low   resistance   to   the   permeability  of  sulphur  dioxide.  The  OR10  coating  has  the  best  resistance   against  H2O2  [3].    

• Contact  angle  measurements  indicated  that  these  new  protective  coatings   reduce  the  wetting  of  the  surface  compared  with  Incralac®  and  uncoated   surface.  The  properties  of  monolayer  coatings  changed  during  weathering   –  water  drops  are  absorbed  on  the  surface  [3].  

• The   accelerated   weathering   program   give   the   best   valuable   basis   for   evaluate   the   protective   effect   of   the   coatings.   On   unpatinated   bronze  

(19)

sheets   the   bilayer   systems   give   in   general   a   better   protection   than   monolayer.  The  coatings  OR15  and  OR16  give  the  best  results  amongst  all   bilayer  and  OR1  amongst  all  monolayer.  

• After  exposure  of  coated  samples  to  condensed  moisture  it  was  possible   to   appreciate   the   adhesion   qualities   to   the   bronze   surface   of   both   ORMOCER®  coating  system,  mono-­‐  and  belayer.    

 

2.6. Long-­‐term  testing  by  outdoor  weathering  

The  outdoor  exposition  program  of  coated  samples  was  the  next  step  after  the   two   years   development   and   evaluation   of   a   new   material   for   outdoor   bronze   sculptures.  Samples  were  exposed  on  four  different  places  under  different  natural   weathering   conditions   in   Europe12.   It   was   expected   that   a   different   environment   must  have  a  different  impact  on  the  bronze  surface  and  on  the  protective  effect  of   the  chosen  variations  coating.  

A   series   of   different   test   substrates   were   coated   with   the   most   promising   ORMOCER®  variations  in  according  to  the  results  obtained  from  the  laboratory  test   phase   (Table   4).   Finally,   six   ORMOCER®   variations   were   chosen   for   these   more   extended  and  detailed  examination  during  a  long-­‐term  exposure.  

Table   4:   Promising   ORMOCER®   coating   variations   selected   for   the   outdoor   exposure   program   on   bronze  test  substrates  (Römich,  1995).  

ORMOCER®   coatings   variations   ORMOCER®  systems   Protective   concept   ORMOCER®,  

dilution  with  solvent   Additives  

uncoated     reference  

OR1,  usual13  

GDiphenyl,  1:6  in  BE14   20%  Paraloid  B72®   mono-­‐layer  

OR1,  thick   mono-­‐layer  

12  The   coated   test   substrates   were   sanded   and   exposed   at   the   project   partner’s   sites:   Telford  

(Great  Britain),  Copenhagen  (Denmark),  Bucharest  (Romania)  and  in  Bronnbach  (Germany)  as   well.  

13  In  order  to  increase  the  coating  thickness  of  the  protective  layer  the  surface  was  coated  with  a  

(20)

ORMOCER®   coatings   variations   ORMOCER®  systems   Protective   concept   ORMOCER®,  

dilution  with  solvent   Additives  

OR5   GDiphenyl,  1:6  in  BE   20%  Paraloid  B72®   bi-­‐layer15  

OR14   GDiphenyl,  1:4  in  BE   20%  Poly  acrylate   mono-­‐layer  

OR15   GDiphenylT,  1:6  in  BE   10%  Araldite  GY260   bi-­‐layer  

OR16   GDiphenyl,  1:4  in  BE  

-­‐  

bi-­‐layer  

Paraloid  B72®   Acrylic  resin  (co-­‐polymer)   reference  

Incralac®   Acrylic  resin  (co-­‐polymer)  with  BTA16  (corrosion  inhibitor)   reference  

OR8   GDiphenyl,  1:6  in  BE  

-­‐  

bi-­‐layer  

 

The  different  kinds  of  substrates  with  different  porosity  were  selected:   • rolled  bronze  sheets  (NC),    

• cast  flat  bronzes  (NM)  and   in  addition    

• cast  shaped  bronze  samples  (GGNM)  and  

• bronze  samples  prepared  by  metallization  (RO),  coated  as  a  separate  test   series.  

The  size  of  the  samples  is  5x5  cm2  (NC),  6x10  cm2  (NM  and  GGNM)  and  3x5  cm2   (RO);  each  test  series  consists  of  ten  samples  coated  with  the  six  different  coatings   variation   (see   previously),   the   two   reference   coatings   (Paraloid   and   Incralac)   and   one  reference  sample  untreated.  

The   natural   weathering   programme   started   in   1995   and   the   first   interim   evaluation   of   the   performance   of   the   new   protective   treatments   under   natural   condition   was   made   after   about   three   years.   The   evaluation   had   as   objective   to   exanimate  the  differences  between  the  weathered  coatings  on  the  samples  and  the  

15  The  bi-­‐layer  protection  system  consist  of  an  additional  organic  top  coat  (applied  after  drying  

of   the   mono-­‐layers)   to   increase   the   protective   effect   and   as   victim   coat   (serve   as   protective   coating  for  the  basic  ORMOCER®  system).      

16  Benzotriazole:   a   heterocyclic   compound   with   the   chemical   formula   C6H5N3.   Is   an   effective  

(21)

original   objects17  to   ranking   it.   The   detailed   laboratory   investigations   were   performed  on  the  whole  variety  of  coated  samples  exposed  at  Bronnbach  and  on  a   part   of   the   test   series   (return   temporary   to   the   ISC)   exposed   in   Telford   (Great   Britain),  Copenhagen  (Denmark)  and  Bucharest  (Romania).  

 

Table   5:   Overview   of   the   evaluated   coatings   and   test   substrates   exposed   at   different   sites   during   the   first   interim  

evaluation  (Vogel  and  Pilz,  1999).  

ORMOCER®  

coatings   variations  

Germany  

Bronnbach   Denmark  Copenhagen   Great  Britain  Telford   Romania  Bucharest  

NC   NM   GGNM   RO   GGNM   GGNM   RO  

uncoated  

x  

x  

x  

x  

X  

missing  

x  

OR1,  usual  

x  

x  

x  

x  

X  

missing  

x  

OR1,  thick  

x  

x  

x  

x  

X  

missing  

x  

OR5  

x  

x  

x  

x  

X  

missing  

x  

OR14  

x  

x  

x  

x  

X  

missing  

x  

OR15  

x  

x  

x  

x  

X  

missing   missing  

OR16  

x  

x  

x  

x  

X  

missing   missing  

Paraloid  B72®  

x  

x  

x  

x  

X  

missing  

x  

Incralac®  

x  

x  

x  

x  

X  

missing   missing  

OR8  

x  

x  

x  

x  

X  

missing  

x  

                 

(22)

3. CORROSION    

Metals   are   present   in   the   earth’s   crust   in   form   of   compounds   (called   minerals)   such  as  oxides,  sulphates,  sulphides,  carbonates,  nitrates,  chlorides  with  a  complex   and  stable  structure.  However,  after  several  metal-­‐  extraction  processes  from  these   abovementioned   compounds,   the   final   products   have   an   unstable   form.   Consequently,  a  corrosion  process  “encourages”  metals  to  reduce  their  energy  via   spontaneous   reactions   with   a   formation   of   compounds   having   a   greater   thermodynamic  stability  (Bradford,  1993).    

As  far  as  the  present  work  is  concerned,  bronze  is  the  most  common  alloy  used   for   outdoor   sculpture   and   consists   of   a   mixture   of   three   different   metals,   such   as   copper,   tin   and   lead   (American   Institute   for   Conservation   of   Historic   and   Artistic   Works,  1993).  However,  alteration  of  copper  properties  due  to  the  formation  of  this   alloy  can  occur  and  the  well  known  anti–corrosion  copper  features  can  dramatically   decrease  (Xiao  et.  al.,  2012).    

Copper  and  its  alloys  exposed  to  the  atmosphere  form  a  typical  thin  layer  known   as   “patina”,   as   a   consequence   of   the   alteration   products   of   the   metal   surface   corrosion   (Gradel   et.   al.,   1987).   However,   a   better   explanation   of   these   alteration   products   needs   to   be   carried   out.   Patina   consists   in   a   thin   compact   layer   that   protects  the  sculptural  shape  and  details.  Corrosion  is  a  kind  of  mineral  deposit  that   attacks  this  layer,  with  a  subsequent  aggression  process  on  the  metal  surface  (Scott,   2002).  

Bronze  patinas  are  chemically  complex  structures  and  their  compositions  are  well   known  and  related  to  the  species  present  in  the  atmosphere  (Gradel  et.  al.,  1987).  

The   degradation   speed   is   increasing   along   the   years   following   the   raise   of   aggressive  chemical  agents  in  the  atmosphere.  Chemical  agents  present  in  the  rain   (mostly  acid),  sulphate  radicals  originating  from  the  burning  of  fossil  fuel  and  nitrate   radicals   from   combustion   engines   are   the   main   causes   of   degradation   process   of   cultural  heritage,  especially  in  the  case  of  bronze.  The  corrosion  depletes  the  bronze   surface  to  completely  destroy  it  (Riederer,  1995).    

(23)

The  protection  of  the  bronze  surface  is  an  important  aim  for  the  conservation  of   the  bronze  handworks.  Nevertheless,  the  protective  materials  available  today  didn’t   give  always  satisfactory  results.  A  better  protection  could  be  obtained  through  the   application  of  new  materials  and  processes  (Riederer,  1995).  

 

3.1. Mechanisms  of  corrosion    

Before   discussing   about   corrosion   products,   it   is   necessary   introduce   several   principles  of  corrosion  and  minerals  composition.  

The   limited   studies   about   corrosion   processes   are   based   on   models   not   always   applicable   to   a   single   and   particular   event   (Scott,   2002).   Metallic   materials   are   subjected   to   deterioration   through   a   series   of   physical   and   chemical   interactions   and  biological  activity.  In  addition,  to  the  environmental  impact  of  the  atmospheric   pollutants  accelerate  the  damage  and  increase  the  weathering  effect  (Moncmanová,   2007).    

Further   studies   on   the   concepts   included   on   Pourbaix   diagrams   (Sheir   et.   al.,   2000)   kinetic   and   thermodynamic   principles   and   chemical   background   knowledge   are   essential   for   a   better   comprehension   of   the   final   corrosion   products.   The   corroded   material   is   chemically   altered   or   completely   dissolved   to   form   a   new   material  very  different  from  the  original  one  (Scott,  2002).  

Mainly  chemical  and  electrochemical  reactions  are  involved  in  the  formation  of   corrosion   products.   The   first   one   it   is   a   reaction   that   doesn’t   involve   water   or,   in   general,   aqueous   solutions   (dry   corrosion).   It   involves   an   electric   charge   transfer   that   takes   place   only   locally,   e.g.   between   metal   (iron,   copper,   etc.)   and   oxygen   (Shreir  et.  al.,  1994).  Corrosion  in  an  aqueous  environment  (wet  corrosion)  and  in  an   atmospheric  environment  (which  involves  also  thin  aqueous  layer  or  moisture)  is  an   electrochemical  process  with  transfer  of  electrons  between  a  metal  surface  and  an   aqueous   electrolyte   solution.   Most   of   the   corrosion   processes   are   primarily   electrochemical  because  they  involve  an  anodic  and  a  cathodic  site.  The  reaction  is   controlled  by  a  potential  gap.  This  leads  to  a  flow  of  ionic  species  from  one  region  or   surface  to  another  one  (Scott,  2002).    

(24)

Corrosion  can  affect  metal  in  a  variety  of  ways,  which  depend  on  the  metal  type   and  on  the  particular  environmental  conditions.  A  broad  classification  of  the  various   forms  of  corrosion,  in  which  five  main  types  have  been  identified,  are  show  in  Table   6.    

 

Table  6:  Types  of  corrosion  (Shreir  et.  al.,  1994)  

Corrosion  pattern   Features   Examples  

Uniform   (or   almost  

uniform)  

All   metal   areas   corrode   at   the  same  (or  similar)  rate  

• Oxidation  and  tarnishing:   • Active  dissolution  in  acids;   • anodic  oxidation  and  passivity;   • chemical   and   electrochemical  

polishing;    

• atmospheric   and   immersed   corrosion  (in  some  cases)  

Localised   Some  areas  of  the  metal   surface  corrode  at  higher   rates  than  others,  due  to   heterogeneities  of  metal  or   environmental  interaction,   or  to  the  geometry  of  the   whole  structure.  Attack  can   range  from  slight  

localisation  to  pitting  

• Crevice  corrosion;     • filiform  corrosion;     • deposit  attack;     • bimetallic  corrosion;   • intergranular  corrosion;     • weld  decay  

Pitting   Highly   localised   attacks   at   specific   areas   cause   small   pits   that   penetrate   into   the   metal   and   may   lead   to   perforation  

• Pitting   of   passive   metals   such   as   the   stainless   steels,   alluminium   alloy,   copper   alloys,   etc.,   in   the   presence   of   specific   ions,   e.   g.   Cl-­‐   ions  

Selective  dissolution   One   component   of   an   alloy   (usually   the   most   active)   is   selectively  removed  from  it  

• denzincification;   • dealuminification;     • detinification  

Joint  action  of  corrosion   and  a  mechanical  factor  

Localised   attack   or   fracture   due   tot   a   synergistic   action   of   a   mechanical   factor   and   corrosion  

• Erosion   –   corrosion,   fretting   corrosion,   impingment   attack,   cavitation  damage;    

• stress  corrosion  cracking,  hydrogen   cracking,  corrosion  fatigue  

               

Riferimenti

Documenti correlati

Il laureato deve essere in possesso di una adeguata cultura scientifica ad ampio spettro, di una solida preparazione nelle discipline matematiche e fisiche e nelle attività

Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Piano didattico per gli immatricolati

Piano didattico per gli immatricolati nell’A.A...

Piano didattico per gli immatricolati nell’A.A... Piano didattico per gli

Piano didattico per gli immatricolati nell’A.A... Piano didattico per gli

Piano didattico per gli immatricolati nell’A.A... Piano didattico per gli

Piano didattico per gli immatricolati nell’A.A... Piano didattico per gli

Il  laureato  in  Scienze  e  Tecnologie  Chimiche  e  dei  Materiali  deve  essere  in  grado  di  esporre