• Non ci sono risultati.

Transitions to sustainable socio-technical regimes in organic agriculture

N/A
N/A
Protected

Academic year: 2021

Condividi "Transitions to sustainable socio-technical regimes in organic agriculture"

Copied!
149
0
0

Testo completo

(1)

University  of  “ROMA  TRE”    

   

Department  of  Economics      

School  of  Economics  and  Quantitative  Methods    

PhD  in  “Environmental  and  Development  Economics”   XXVI  Cycle  

   

Transitions  to  sustainable  socio-­‐technical  regimes  in  organic  

agriculture  

 

 

Candidate:  LIVIA  ORTOLANI                              

Supervisor:  Prof.ssa  Maria  Fonte      University  of  Neaples  “Federico  II”    

     

Phd  Programme  Coordinator:  Prof.  Luca  Salvatici  University  of  Roma  Tre         Academic  year       2014-­‐2015      

(2)

 

 

List  of  tables  ...  4  

List  of  figures  ...  4  

Summmary  ...  Errore.  Il  segnalibro  non  è  definito.   Introduction  ...  6  

Three  approaches  to  sustainability  of  agro-­‐food  systems  ...  7  

Agricultural  innovation  paradigms  and  sustainability  ...  9  

Hypothesis  and  methodology  ...  12  

1   Transition  theory  and  Network  approach  ...  15  

1.1   Introduction  ...  15  

1.2   The  multilevel  transition  theory  and  pathways  to  sustainability  ...  16  

1.3   The  shift  from  niche  to  regime  as  a  key  for  the  agro-­‐ecology  vision  ...  19  

1.4   Power  relations  and  networks  to  define  paths  from  niches  to  regime  ...  21  

1.5   The  network  structure  of  agricultural  innovation  systems  ...  23  

1.6   The  farm  as  a  system  and  the  farmer  ego  network  ...  25  

1.7   The  farm  autonomy  as  a  sustainability  goal  at  farm  level  ...  28  

2   Social  Network  Analysis  and  ego  networks  ...  30  

2.1   Introduction  ...  30  

2.2   Literature  review  ...  30  

2.3   Key  concepts  of  Social  Network  Analysis  ...  32  

2.4   Ego  networks  or  personal  networks  ...  34  

2.5   Ego-­‐Network  data  and  personal  network  research  design  (PNRD)  ...  35  

2.6   Directed  graphs  ...  37  

2.7   Types  of  nodes  in  directed  graphs  ...  39  

2.8   Centrality  measurements  in  ego  networks  ...  39  

3   Organic  farmers  between  niche  and  regime  ...  42  

3.1   Introduction  ...  42  

3.2   The  transition  from  niche  to  regime  of  organic  agriculture  ...  43  

3.3   Different  transition  trajectories  lead  to  the  choice  of  organic  farming  ...  46  

3.4   Innovative  approaches  to  breeding  in  organic  farming  and  the  FP7  SOLIBAM  project.  ...  48  

3.5   Farms  and  transition  pathways  by  country  ...  51  

3.5.1   Italy  ...  51  

3.5.2   France  ...  59  

3.5.3   Portugal  ...  67  

4   Analysis  of  six  organic  farmers’  ego  networks  ...  75  

4.1   Introduction  ...  75  

4.2   Participatory  mapping  exercise  for  data  collection  ...  75  

4.3   Methodology  for  ego-­‐network  analysis  ...  78  

4.4   Analysis  of  actors  in  farmers’  ego  networks  ...  79  

4.4.1   Territorial  approach  to  sustainability  (Scale)  ...  82  

4.4.2   Agricultural  Innovation  Systems  (AIS)  ...  83  

4.4.3   Multilevel  perspective  to  transition  theory  (MLP)  ...  84  

4.4.4   Actor  network  theory  (Role)  ...  86  

4.5   Analysis  of  the  farms  organizational  models  through  ego  networks  ...  88  

4.6   Analysis  of  farmers’  knowledge  networks  ...  95  

4.6.1   The  type  of  actors  in  key  position  in  the  farmers’  knowledge  networks  ...  100  

4.6.2   The  observation  of  the  farmers’  knowledge  networks  structure  ...  103  

4.7   Concluding  remarks  on  network  analysis  ...  104  

5   Three  trajectories  in  the  transition  to  sustainability  of  organic  farmers  ...  106  

(3)

5.2   Similarities  among  case  studies  ...  106  

5.2.1   Common  features  of  farmers  PT1  and  FR2  ...  106  

5.2.2   Common  features  of  farmers  FR1  and  IT1  ...  109  

5.2.3   The  farmer  PT2  and  the  farmer  IT2  ...  112  

5.3   The  actors  in  the  farmers’  ego  network  by  trajectory  ...  114  

5.3.1   Value  driven  trajectory  ...  114  

5.3.2   Quality  driven  trajectory  ...  116  

5.3.3   Policy  driven  trajectory  ...  118  

Conclusions  ...  120  

References  ...  124  

Annex  1  –  Semi  structured  questionnaire  ...  133  

Annex  II  -­‐    List  of  actors  and  attributes  ...  135  

Annex  2  –  Type  of  nodes  in  goods  and  money  networks  ...  143    

 

   

(4)

 

List  of  tables  

Table  1  -­‐  Sustainability  in  three  economic  approaches.   Table  2  –  Main  features  of  the  six  case  studies  

Table  3  –  Main  turning  points  in  the  transition  of  farm  IT1   Table  4  –  Main  turning  points  in  the  transition  of  farm  IT2   Table  5  –  Main  turning  points  in  the  transition  of  farm  FR1   Table  6  –  Main  turning  points  in  the  transition  of  farm  FR2   Table  7  –  Main  turning  points  in  the  transition  of  farm  PT1   Table  8  –  Main  turning  points  in  the  transition  of  farm  PT2  

Table  9  –  Distribution  of  attribute  AIS  in  the  six  farmers  ego  networks.    

Table  10  –  Actors  with  higher  betweenness  centrality  in  the  six  farmers’  knowledge  ego  network.   Table  11  –  Legend  for  the  attributes  of  the  actors  in  table  10  

Table  12  –  The  main  features  of  farmers’  ego  networks  by  category  

   

List  of  figures  

Figure  1  –  Multilevel  perspective  of  transitions         Figure  2  -­‐  Ego  network  graph  

Figure  3  –  Star  and  cycle  graphs  

Figure  4  -­‐  Location  of  selected  case  studies   Figure  5  –  Landscape  of  farm  IT1  

Figure  6  -­‐  Pasta  processing  plant  of  farm  IT1   Figure  7  –  Landscape  of  farm  IT2  

Figure  8  -­‐  Diversity  in  cereal  fields  of  farm  IT2   Figure  9  –  On  farm  trials  of  farm  FR1  

Figure  10  –  Traditional  machinery  used  in  farm  FR2   Figure  11  –  Mill  of  farm  FR2  

Figure  12  –  Bread  produced  on  farm  FR2   Figure  13  –  Landscape  of  farm  PT1  

Figure  14  -­‐  Distribution  of  the  six  case  studies  on  the  base  of  the  dominant  drivers  of  innovation   Figure  15  –  Data  collection  with  participatory  mapping  exercise  

Figure  16  -­‐  Graph  used  as  guide  line  to  generate  the  list  of  actor   Figure  17  -­‐  Example  of  participatory  map  

(5)

Figure  18  -­‐    Distribution  of  the  attribute  “Scale”  in  the  six  farmers’  ego  networks.    

Figure  19  -­‐    Distribution  of  the  attribute  “Multi  Level  Perspective”  in  the  six  farmers’  ego   Figure  20  -­‐  Distribution  of  the  attribute  “Role”  in  the  six  farmers’  ego  networks.    

Figure  21  -­‐  Goods  and  money  networks  of  farmer  IT1   Figure  22  -­‐  Goods  and  money  networks  of  farmer  IT2   Figure  23  -­‐  Goods  and  money  networks  of  farmer  FR1     Figure  24  -­‐  Goods  and  Money  network  of  farmer  FR2     Figure  25  -­‐  Goods  and  money  networks  of  farmer  PT1     Figure  26  -­‐  Goods  and  money  networks  of  farmer  PT2  

Figure  27  –All  degree  centrality  and  distribution  of  MLP  attribute  by  similarities    

   

(6)

Introduction  

 

The  debate  on  sustainable  development  has  made  apparent  to  all  the  serious  adverse  effects   and   the   ecological   risks   of   industrial   development.   Nonetheless,   even   if   sustainable   development   is   a   widely   accepted   scientific   and   political   concept,   its   definition   is   still   ambiguous   and   surrounded   by   complex   and   socially   contested   issues   (Barbier   and   Elzen   2012).   The   idea   of   sustainability   as   a   normative   notion   that   should   assure   justice   among   humans  of  present  and  future  generations  and  among  humans  and  nature  (Baumgartner  and   Quaas,   2009)   has   several   interpretations   depending   on   the   scientific   approach   and   the   political  and  economic  parties'  interests.      

 

Sustainability  is  a  moving  target  (Holling,  1993)  and  evolves  continuously  with  the  changing   interests  and  institutional  conditions,  both  locally  and  globally.  By  consequence,  a  successful   approach  to  sustainability  would  require  a  continual  modification,  updating  and  improvement   of   human   behaviour,   which   would   actually   increase   the   complexity   of   political   decisions.   In   this   perspective,   an   interdisciplinary   and   systemic   approach   to   science,   rather   then   a   reductionist  one,  is  the  more  relevant  and  appropriate  (Holling,  1993,  Kates  et  al.  2001,  Clark   and  Dickson,  2003,  Clark  2007).  

 

The   focus   of   sustainability   science   moved   from   the   original   definition   of   “maintaining   the  

global  resource  base  for  future  generation”  (OCED,  1987)  to  the  study  of  the  specific  forms  of  

development  in  different  local,  ecological  and  cultural  conditions.    The  main  challenge  of  the   sustainability  decision-­‐making  process  is  to  continuously  select  the  best  policy,  considering  a   set  of  possible  alternatives.    The  promotion  of  social  and  institutional  learning  for  sustainable   development  and  the  understanding  of  the  role  of  values  in  science  and  decision  making  for   sustainability  represent  today  key  issues  of  sustainability  science  (Miller  et  al.  2014).    

Network   analysis   represent   a   promising   methodology   in   this   sense   as   it   allow   to   have   an   holistic  approach  to  data  analysis,  considering  also  values  in  the  research  questions.  

 

(7)

 

 Three  approaches  to  sustainability  of  agro-­‐food  systems    

Since  the  1970s  environmental  and  resource  economics  has  been  established  as  a  discipline,   with   a   focus   on   natural   resource   scarcity   and   the     regulation   of   their   utilization   (Hotelling,   1931).  The  key  question  in  environmental  economics  is  how  to  value  changes  that  can  affect   environmental   quality   or   availability   of   resources.   The   main   aim   is   to   define   maximum   degradation  threshold  and  the  carrying  capacity  of  the  system.    

 

Agriculture,  such  as  all  other  economic  sectors,  can  have  positive  and  negative  externalities   on   the   economy.     However   being   a   land   base   activity   it   is   also   directly   affected   by   other   sectors   externalities.   The   presence   in   agriculture   of   a   large   number   of   farms   and   different   models  of  production  (industrial  farm,  entrepreneurship  farms,  peasant  farms,  Van  der  Ploeg,   2009)   makes   difficult   to   differentiate   environmental   damage   across   firms   (Weersink   et   al,   1998).    Furthermore  the  characterization  of  pollution  from  agriculture  as  a  non  point  source's   pollution  make  the  use  of  environmental  economic  models  difficult.    

 

Contrary   to   the   neoclassical   economics,   the   ecological   economic   approach   (Boulding,   1966,   Daly   1973,   Munda,   1997)   considers   economy   as   a   system   subject   to   transformation   that   cannot  be  corrected  with  incentive  and  policies  (Smulders,  1995).  The  main  objective  is  not  so   much  to  internalize  negative  externalities,  as  to  improve  the  management  of  energy,  matter   and   information,   considering   the   long-­‐term   impacts.   The   consideration   of   costs   should   be   enlarged   with   the   concept   of   “performance”   which   includes   costs   and   benefits   in   the   long   term.  The  use  of  money  as  measure  unit  is  just  a  convention,  which  is  not  sufficient  to  reach  a   strong   sustainability   objective   (Daly,   1974;   Turner,   Pearce,   Bateman,   1994).   This   approach   leads   to   the   long   debate   on   sustainability   indicators   that   integrate   various   dimensions.   Several   multi   criteria   analysis   models   have   been   developed   to   measure   sustainability   of   agricultural   systems   combining   appropriate   indicators   (Reid,   1997,   Martinez-­‐Alier,   2002,   Giampietro,  2010,  FAO,  2012).  

     

(8)

Table  1  -­‐  Sustainability  in  three  economic  approaches.  

Economic  approach       Objectives    Modelling  types  

Environmental  economics   To   measure   the   externalities   and   to   define   policies   that   allow   to   internalize  them.      

Linear  optimization  models  

Ecological  economics   Mediation   among   values   and   priorities.   Defining   the   trade   off   among   three   dimensions   of   sustainability.    

Multicriteria  analysis  

Local  development   Local   diversity   as   a   key   of   competition.     Looking   at   local   learning   capacity   and   systems   of   relations.        

Network  models  

 Source:  own  elaboration  

 

The  two  economic  approaches,  that  see  sustainability  as  a  reduction  of  negative  externalities   or   an   improvement   of   environmental   performances,   lead   to   expert-­‐dominated   discourses.   However  fixed  rules  and  thresholds  developed  just  on  the  base  of  scientific  evidence  are  more   likely   to   block,   than   to   promote   rural   development,   excluding   rural   actors   and   their   (local,   tacit)  knowledge  from  the  transition  to  sustainability  (Fonte,  2008).    

 

Environmental  quality  cannot  be  optimized  without  considering  the  effects  of  any  economic   intervention  on  local  population  and  people's  basic  needs.  The  role  of  communities  in  defining   and   sustaining   sustainable   policy   strategies   is   central.   Sustainability   becomes   a   question   of   governance:   how   to   favor   a   positive   change   in   the   relationships   between   local   actors,   communities  and  their  natural  contexts  (Stayeart  and  Jiggins,  2007)  in  a  process  that  support   local  development,  policy  integration  and  participatory  planning  (Rubino,  2014).    

 

According  to  Van  der  Ploeg  (2006)  the  key  for  sustainability  is  to  base  food  production  in  its   agro-­‐ecological   settings.   The   conservation   and   valorization   of   biological   and   socio-­‐cultural   diversities  is  the  path  towards  the  sustainability  of  agro-­‐food  systems.  The  integrated  policy   approach  used  in  the  last  decades  by  rural  development  policies  at  European  level  fostered   innovative   practices   in   rural   areas   such   as   organic   farming,   multifunctional   agriculture   and   the  creation  of  alternative  food  networks.  The  comprehensive  assessment  of  innovative  rural  

(9)

practices   can   help   to   promote   rural   sustainable   development   (Berkes,   Colding   and   Folke,   2003;  Goodman,  2004,  Bruckmeier  and  Tovey,  2009).    

 

Environmental   and   sustainability   issues   should   directly   be   linked   to   diversification   and   innovation  policies,  with  a  specific  focus  on  agro-­‐food  systems  and  their  effect  on  humans  and   nature.  A  continuous  change  in  society  is  required  to  move  towards  sustainability.  Innovation   needs  policy  support.  Assessment  and  measurements  of  sustainability  should  combine  several   methodologies   and   tools,   with   two   main   goals:   improving   the   sustainability   of   innovative   practices   adopted   by   brokers;   the   promotion   of   practices   able   to   support   the   transition   to     sustainability.      

 

In  the  transition  to  sustainability  the  role  of  innovation  is  crucial,  as  technological  changes  are   needed  to  meet  sustainability  challenges.  However  such  changes  need  to  be  integrated  with   changes  in  rules,  behaviors  of  individual  stakeholders,  culture,  institutions  and  science.  The   contribution  of  innovation  to  the  transition  towards  sustainability  depends  on  several  factors   because   system   innovations   are   multi-­‐factor,   multi-­‐actor   and   multi-­‐level   processes.   The   understanding  of  historical  co-­‐evolutionary  processes  that  link  up  such  elements  is  a  key  to   define   the   contribution   of   a   specific   innovation   to   the   specific   transition   towards   sustainability  (Barbier  and  Elzen  2012).  

   

 Agricultural  innovation  paradigms  and  sustainability    

Different  innovation  paradigms  originate  different  roadmaps  to  sustainable  agriculture.  The   choice  of  the  dominant  paradigm  clearly  influences  the  direction  of  the  transition  pathway.     The   dominant   paradigm   of   the   EU   innovation   policies,   the   Knowledge   Based   Bio   Economy   (KBBE)   strongly   relies   on   technical   innovation,   with   little   attention   on   behavioral   and   institutional   changes   (Levidow   et   al.,   2013).   A   reductionist   approach   to   science   is   used   to   promote  the  role  of  life  sciences  with  the  aim  of  increasing  efficiency  in  the  use  of  renewable   resources.   This   approach   is   based   on   a   specific   definition   of   sustainability   as   more   efficient   inputs   and   processing   methods   for   using   renewable   resources,   to   develop   capital-­‐intensive   technologies  based  on  the  life  science  knowledge.  That  allows  a  sequence  of  small  incremental   improvement   of   the   dominant   production   process,   without   considering   the   effect   on   the  

(10)

whole  system,  potential  conflicts  and  network  changes.  There  is  a  need  to  take  into  account   the  long-­‐term  effects  that  a  specific  innovation  can  generate  (eg.  plastic,  GMO).    The  KBBE  can   lead   to   interesting   innovation   that   could   contribute   to   the   transition   to   sustainability   but   it   could   also   potentially   turn   agriculture   into   a   factory-­‐like   production   structure   (Barbier   and   Elzen   2012)   for   the   conversion   of   biomass   or   renewable   raw   materials   (the   so   called   “flex-­‐ crops”)  in    food,  health,  fibers,  energy  and  other  industrial  products.    

 

In   opposition   to   the   dominant   'life   science'   paradigm,   agro-­‐ecology   proposes   the   design   of   agricultural   systems   that   minimize   the   need   for   external   inputs   and   rely   on   ecological   interactions   (Levidow   et   al.   2013).     Levidow   characterizes   the   first   as   based   on   the   'decomposability   of   qualities'   and   agroecology   as   the   integral   product   identity   quality   (Levidow  et  al,  2013,  Allaire  and  Woolf,  2004),  with  consumers  having  an  important  role  in   defining  the  quality  of  the  product.    

With   respect   to   innovation   management   the   Knowledge   Based   Bio   Economy   innovation   is   research  driven  and  based  on  scientific  knowledge  and  intellectual  property  rights,  defining   specific   policies   for   dissemination   of   science   and   transfer   of   innovation   (Pfau   et   al.   2014),   while   the   agro-­‐ecology   vision   supports   the   development   of   Agricultural   Knowledge   and   Innovation  Systems  (AKIS)  that  considers  innovation  as  a  process  of  networking  and  iterative   learning  among  an  heterogeneous  set  of  actors  (Leewis,  2004,  Hall  et  al.  2006).    

 

The   agro-­‐ecological   vision   is   more   appropriate   than   the   one   of   life   science   to   deal   with   the   ambiguity  and  the  difference  of  sustainability  goals  depending  on  local  conditions.  The  rely  on   ecological  interactions,  the  consideration  of  integral  product  identity  and  the  involvement  of  a   variety  of  stakeholders  in  the  development  of  innovation  and  research  allow  to  identify  the   best  solution  at  local  level  during  the  process  of  innovation  itself.  The  two  opposite  visions   (life   science   and   agro-­‐ecology)   see   the   transition   towards   sustainability   respectively   as   a   system  optimization  or  as  a  system  innovation  (Barbier  and  Elzen  2012).    

 

The  life  science  vision  of  the  KBBE  paradigm  heavily  relies  on  technological  changes  and  an   anthropocentric   vision   of   sustainability   that   attempts   to   remedy   specific   problems   within   existing  systems  using  add-­‐on  solutions.  The  agro-­‐ecological  vision,  by  contrast,  looks  at  the   possibility   to   redesign   the   existing   system   developing   organizational   and   institutional   changes   to   improve   the   sustainability   of   the   system   as   a   whole.   The   non-­‐technical   changes   (I.e.  Social)  can  be  much  more  radical  than  the  technical  ones:  new  markets,  new  practices,  

(11)

new   regulations,   new   infrastructures   and   new   values   and   cultural   meanings   have   a   strong   effect   on   sustainability   and   their   potential   to   improve   sustainability   performance   is   much   greater  (Weterings  et  al.  1997).    However  system  optimization  is  easier  to  achieve  and  to  be   demonstrated  and  fewer  changes  are  needed  to  have  results  in  the  short  term.  Policies  should   put   more   emphasis   on   the   marginal   vision   described   by   Levidow   et   al.   (2013)   and   on   the   agro-­‐ecology  paradigm  of  innovation  in  agriculture  to  assure  sustainability  of  agriculture  in   the  long  term.  

 

Looking   at   sustainability   as   a   frontier   that   is   continuously   moving   leads   to   two   types   of   sustainability  policies.  Static  policies  that  give  a  premium  to  individual  or  collective  actors  for   incremental   improvements;   dynamics   polices   encouraging       institutional   learning   processes   and  investments  in  institutional  and  organizational  changes.  Static  policies  look  at  innovation   consequent   from   a   KBBE   paradigm   while   dynamic   ones   consider   the   agro-­‐ecological   vision   and  the  agricultural  innovation  systems  as  models.    

 

The   opposite   visions   are   reflected   not   only   in   European   agriculture   policies,   but   also   in   different  models  of  agricultural  practices.  Different  farm  strategies  depend  on  the  dominant   paradigm   of   the   innovation   system   in   which   the   farmer   is   embedded.   The   KBBE   paradigm   supports  an  industrial  structure  of  agricultural  enterprise  with  the  global  market  as  reference   and  technical  innovations  as  corrective  practices  of  environmental  impact,  required  to  access   public  subsidies.  The  agro-­‐ecology  vision  looks  at  the  best  combination  of  resources  available   on   farm   to   define   models   of   production   and   pursuing   farm   autonomy   as   a   goal   that   allow   reducing  the  dependence  on  external  inputs  and  technologies.    

 

Transitions   to   sustainability   at   micro   (i.e.   farm)   level   follow   different   innovation   models.   Relations   among   different   actors   should   be   rebuilt   in   order   to   develop   micro-­‐policies   of   endogenous   sustainable   development   at   local   level   (Magnaghi,   2000).   The   capacity   of   each   context   to   produce   and   access   innovation   largely   depends   on   interactions   between   local   actors,  which  have  an  intrinsic  unique  and  dynamic  nature  (Morgan,  2004).  Local  innovation   systems  should  have  strong  internal  interconnections  but  also  be  opened  to  external  linkages   that  can  be  used  to  generate  new  knowledge.  The  study  of  the  relationships  with  actors  that   the   farmer   perceive   as   relevant   for   innovation   development   can   provide   interesting   information  on  the  direction  of  his  transition  pathways.    

(12)

 

   Hypothesis  and  methodology    

The  main  hypothesis  of  this  research  is  that  the  innovation  paradigm,  which  drive  transitions   at   micro   level,   directly   influence   the   approach   to   sustainability   followed   by   individual   enterprises  and  their  sustainability  goals.  The  transition  theory  approach  is  integrated  with   actor  network  theory  and  social  network  analysis  to  conduct  and  in-­‐depth  analysis  of  six  case   studies   of   entrepreneurs   in   three   EU   countries.   The   focus   is   on   the   social   environment   surrounding   individuals.   Personal   contacts   and   social   circles   in   which   individual   entrepreneurs  are  embedded  can  give  important  information  on  the  trajectories  of  transition   to   sustainability   at   micro   level.   Actors   and   practices   are   influenced   by   the   context   and   the   shared   meanings   of   their   knowledge   network   determine   their   approaches   to   sustainability;   however,   they   can   also   contribute   to   determine   the   trajectory   of   the   local   transition   to   sustainability,  towards  their  capacity  to  develop  innovation.    From  a  methodological  point  of   view,   this   work   will   explore   the   potential   of   network   analysis   and   of   ego   networks   in   particular,   to   understand   the   trajectories   of   transition   at   farm   level.   The   visualization   of   an   actor  through  the  networks  of  his  relationships  can  contribute  in  describing  the  actor  position   in   the   power   relations   that   determine   the   local   context.   The   analysis   of   transition   at   micro   level,  through  the  identification  of  turning  points  (Wilson,  2008)  give  important  information   on  the  dynamics  of  individual  trajectories.  The  integration  of  such  analysis  with  the  network   analysis   should   give   some   insights   on   how   different   drivers   of   innovations   influence   the   structure   of   the   knowledge   ego   network   of   individual   entrepreneurs.   At   the   same   time,   the   analysis  of  the  actors  in  the  network  could  provide  indications  to  transition  studies  on  which   is  the  context  that  support  innovation  development,  or  more  precisely,  which  context  support   which   type   of   innovation.   Working   on   six   original   case   studies,   this   research   will   give   a   contribution  to  the  literature  already  working  on  the  vision  of  the  farm  as  a  network  and  on   the   integration   of   transition   theory   with   network   theories.   A   literature   review   on   the   integration   of   transition   and   network   theories   in   agriculture   will   be   available   in   chapter   1;   while  chapter  2  will  present  the  tools  of  social  network  analysis  and  ego  networks  that  will  be   used   in   this   research.   In   the   next   paragraph   I   will   present   the   methodology   used   in   this   research.    

(13)

Organic   farming   is   used   as   an   example   of   radical   innovation   in   agriculture   that   had   a   long   term  and  diversified  shift  from  niche  innovation  to  regime  practice.  Smith  (2007)  considers   organic  farming  an  interesting  example  of  deviation  from  the  original  innovative  trajectories   in  the  process  of  scaling  up  that  is  worth  understanding  more  in  details.  Organic  farmers  are   everyday   facing   the   trade   off   between   the   dimensions   of   sustainability   in   the   process   of   defining   farm   strategies.   An   analysis   of   the   literature   on   recent   development   of   the   organic   sector   will   allow   to   understand   the   possibility   of   having   different   drivers   of   innovation   in   organic  farms.    In  particular,  the  analysis  will  focus  on  innovative  approaches  to  breeding  in   organic   farming.   Six   organic   farmers   involved   in   the   FP7   SOLIBAM   project  1are   the   case  

studies  of  this  research.  They  represent  farmers  with  original  systems  of  practice  that  are  of   interest  in  the  search  for  innovative  systems.  They  are  all  organic  farmers  that  are  involved  in   Participatory   Plant   Breeding   programmes   in   three   different   EU   countries   (Italy,   France   and   Portugal).   Their   direct   involvement   in   on   farm   innovation   development,   their   interest   and   availability  to  be  involved  in  research  projects  and  their  contact  with  researchers  make  them   interesting   case   studies   to   test   the   relation   between   innovation   models   and   sustainability   approaches.   The   six   case   studies   represent   diversity   in   food   systems   following   organic   standards  and  different  stages  and  transition  pathways  to  sustainability.  

 

After  a  long-­‐term  observation  of  the  farms  thanks  to  the  SOLIBAM  EU  project  started  in  2010,     primary  data  collection  took  place  in  the  six  farms  during  the  year  2013/2014.  An  open  ended   interview  aims  to  collect  data  about  farm  transitions  through  the  farmer  open  description  of   his   farm   and   food   chain   organisation.   Last   ten   years   investments   have   been   taken   into   consideration   to   see   the   path   of   innovation   at   farm   level.   Additional   quantitative   data   on   structural   characteristics   of   the   six   farms   have   been   derived   from   researchers   that   made   quantitative  assessment  of  the  same  farms  in  the  framework  of  the  SOLIBAM  FP7  project.  The   farm-­‐level  sustainability  pathways  of  the  six  case  studies  have  been  conceptualised  focusing   on   the   decision   making   process   at   farm   level.     Chapter   3   will   present   the   analysis   of   the   organic   sector   transition   from   niche   to   regime   (Smith,   2007)   and   the   recent   transitions   of   individual  farms.    The  focus  is  on  person  based  processes  that  influence  transition  pathways   of  individual  agricultural  stakeholders  (Wilson,  2008).    

 

                                                                                                               

(14)

Primary   data   on   ego   networks   have   been   collected   following   a   personal   network   research   design  (PNRD).  The  use  of  personal  network  research  design  allows  the  comparison  of  data   collected   from   unrelated   entrepreneurs   in   different   countries.   Ego   networks   describe   and   index  the  variation  across  individuals  in  the  way  they  are  embedded  in  local  social  structures   allowing   to   understand   variation   in   their   behaviour.   Farmers   have   been   asked   to   describe   their   relational   networks   using   an   innovative   approach   to   data   collection.   The   use   of   participatory   mapping   exercise   is   tested   as   innovative   methodology   for   network   data   collection   in   rural   context.   The   data   collected   with   the   participatory   mapping   exercise   resulted  in  paper  maps  done  with  markers  and  post-­‐it  (Fig.  …).    Each  network  map  have  been   transferred  into  a  matrix  with  the  list  of  actors  in  row  and  columns.  A  number,  1  or  0,  have   been  used  to  determine  the  presence  or  absence  of  relationship  between  two  actors.  A  total  of   18  matrices  have  been  created  and  imported  in  the  Pajek2  software.  The  actors  listed  by  each  

farmer  have  been  described  using  8  different  attributes.  Chapter  4  will  presents  the  analysis   of  the  farmers’  ego  networks.    

 

The  combination  of  transition  analysis  and  network  analysis  allow  to  have  a  dynamic  vision  of   the   process   that   lead   to   a   specific   knowledge   network.   For   each   farm   the   main   drivers   of   innovation  development  will  be  identified  on  the  base  of  the  actors  in  the  farmer  knowledge   network  and  the  turning  point  of  his  transition.  The  presence  of  niche  and  regime  actors  in   key  position  of  the  farmers’  knowledge  ego  network  will  give  an  indication  of  the  trajectory   towards   sustainability   of   each   farm.   The   interaction   between   niche-­‐knowledge   and   regime-­‐ knowledge   can   determine   a   hybridization   of   networks   that   lead   to   the   development   of   knowledge   between   tradition   and   modernity   (Sautereau,   2010).   Finally   three   possible   trajectories   of   transition   towards   sustainability   of   organic   farmers   will   be   described   on   the   base   of   the   structure   of   their   knowledge   network   and   the   type   of   actors   involved.   This   discussion  of  the  two  analysis  of  the  six  case  studies  will  be  done  in  chapter  5.    

   

                                                                                                               

2 Pajek: (Slovene word for spider) is a program for analysis and visualisation of large networks. Is is freely available,

for noncommercial use. Pajek is developed by Vladimir Batagelj and Andrej Mrvar. A detailed introduction to Pajek is given in the book De Nooy et al. 2011.

(15)

1  Transition  theory  and  Network  approach  

 

 

1.1 Introduction    

This  chapter  introduce  the  theoretical  framework  of  this  research  based  on  the  integration  of   transition   and   network   theories   in   agriculture.   The   first   section   will   present   a   literature   review  on  transition  theory  with  a  focus  on  the  multilevel  perspective  and  in  particular  on  the   shift  from  niche  to  regime.  The  next  section  introduces  the  actor  network  theory  to  explain   how  the  relationships  in  which  an  actor  is  embedded  influence  his  decision-­‐making  process;   while   at   the   same   time   the   actor   choices   determine   the   context.   The   two   theories   are   then   applied   to   the   agricultural   context.   The   literature   on   agricultural   innovation   systems   underline  the  importance  to  look  at  farmers  knowledge  networks  with  the  aim  of  exploring   the  learning  process  that  generate  shared  meanings  among  actors  of  the  same  network.  The   hypothesis  that  the  existence  of  powerful  and  effective  knowledge  network  could  support  the   shift  from  niche  to  regime  of  innovative  practices  developed  by  individual  actors  justify  the   integration   of   the   two   theories.   However,   the   farmer   is   not   embedded   only   in   knowledge   networks,   but   other   actors   are   also   influencing   his   everyday   decision-­‐making   process.   Each   farmer   can   be   seen   as   a   network   itself   where   several   actors   interact   among   each   other   determining  the  farm  structure.  The  concept  of  farm  autonomy,  proposed  by  Van  der  Ploeg   (2008)   is,   finally,   presented   as   shared   meaning   on   sustainability   based   on   relationships   management  at  farm  level.    

This   theoretical   framework   will   support   the   analysis   presented   in   the   next   chapters   of   this   thesis.  The  transition  theory  will  be  at  the  base  of  the  analysis  of  farm  transition  presented  in   chapter  3.  The  actor  network  theory  and  the  literature  on  agricultural  knowledge  systems  will   support   the   ego-­‐network   analysis   of   farmers’   knowledge   networks,   while   the   vision   of   the   farm   as   a   system   and   the   farm   autonomy   model   will   give   indication   to   discuss   the   organizational  model  of  the  six  case  studies  presented  in  chapter  4.  Focusing  on  six  original   case   studies   of   innovative   organic   farms,   this   research   want   to   give   a   contribution   to   the   literature  that  see  the  farm  as  a  system.    

     

(16)

1.2 The  multilevel  transition  theory  and  pathways  to  sustainability    

Even  if  most  governments  agree  on  the  necessity  to  make  sustainability  a  guiding  principle  of   their   policies,   it   is   not   clear   how   to   achieve   it   (Barbier   and   Elzen   2012).   The   ‘multilevel   transition’   theory   can   help   in   defining   the   governance   of   the   process   that   should   lead   to   sustainability.    

The   conceptual   sources   of   transition   theory   derive   from   several   disciplines,   such   as   innovation  studies,  evolutionary  economics,  sociology  of  technology  and  governance  studies.     Its   main   objective   is   to   use   an   interdisciplinary   approach   and   narrative   explanations   to   illustrate   the   process   of   scaling   up   of   a   specific   innovation   and   to   learn   from   historical   examples   of   transitions   such   as   energy   and   transport   systems   (Verbong   and   Geels   2007;   Geels,  2012).  Environmental  sustainability  offers  an  interesting  application  field  of  the  theory   (Kemp,   1994,   Geels,   1999,   Geels   and   Kemp,   2000).   Several   authors   utilise   case   studies   to   shows   how   transitions   often   depends   on   the   interaction   among   different   levels   of   analysis,   that  can  change  in  time  and  nature  (Rotmans  et  al.  2001;  Geels,  2002;  Van  der  Ploeg,  2003;   Elzen  et  al.  2004,  Geels,  2005).      

 

Geels   and   Schott   (2007),   distinguish   three   levels   at   which   correspond   three   analytical   concepts:   niche   innovations,   socio-­‐technical   regimes,   socio-­‐technical   landscapes.   The   socio-­‐ technical  regime  is  defined  as  the  shared  cognitive  routines  among  scientists,  policy  makers,   users   and   special   interest   groups   that   contribute   to   define   the   pattern   of   technological   development   in   a   given   sector   (e.g.   the   agro-­‐food   system).   Each   socio-­‐technical   regime   is   embedded  in  society  and  linked  with  a  wide  variety  of  social  actors  and  rules,  which  justify   the  term  ‘socio-­‐technical’.  Existing  trajectories  of  innovation  stabilise  with  the  diffusion  of  a   specific  socio-­‐technical  regime.  An  innovation  reach  the  status  of  ‘regime’  when  citizens  adapt   their   life   style   to   technical   systems   and   enterprises   make   sunk   investments   in   machines,   infrastructure  and  competencies  required  by  the  specific  innovation.  Policy  and  science  can   influence  this  process  through  the  definition  of  standards  and  regulation  and  the  diffusion  of   cognitive  routines  that  are  used  as  a  base  for  the  research  agenda.    

 

Technological   niches   are   the   micro-­‐level   where   radical   novelties   emerge   and   radical   innovations   are   developed.   Niches   are   protected   spaces   that   offer   the   opportunity   to   experiment   technology,   user   preferences,   practices   and   regulations   while   minimizing   risks.  

(17)

Niche  innovations  are  carried  on  and  developed  by  small  networks  of  dedicated  actors,  often   outsiders  and  fringe  actors  that  use  a  protected  environment  to  progress  price/performance   improvements,  to  ask  for  support  from  powerful  groups  and  to  develop  learning  processes.    

The   socio-­‐technical   landscape   represents   the   exogenous   environment   that   cannot   easily   be   influenced   by   the   niche   and   regime   actors.   Macroeconomics,   deep   cultural   patterns   and   macro-­‐political   development   influence   not   only   the   regime   of   the   sector   under   analysis   but   also  many  other  regimes.  Changes  in  landscape  take  place  slowly  and  needs  decades  to  have   effect   on   a   specific   regime;   however,   they   should   be   taken   into   consideration   as   they   can   change  the  direction  of  a  specific  transition  pathway  both  directly  and  indirectly.    

The   three   concepts   are   related   to   each   other   through   a   nested   hierarchy:   regimes   are   embedded  within  landscapes,  niches  within  different  regimes  (Geels,  2002).    Changes  in  the   landscape   create   pressures   in   the   regime   that   can   lead   to   a   destabilisation   and   opening   of   windows  of  opportunities  for  niche  innovations.  The  multiple  possible  interactions  between   the  three  levels  are  shown  in  the  popular  figure  of  Geels  and  Schot  (2007).    

 

Figure  1  –  Multilevel  perspective  of  transitions  

 

(18)

The  hypothesis  that  we  take  into  consideration  in  this  work  is  that  transition  to  sustainability   requires   changes   in   the   dominant   regime.   Regime   changes   are   due   to   two   main   types   of   processes:  1)  pressures  -­‐  at  landscape  level,  internal  to  the  socio-­‐technical  regime  or  at  niche   level   –   bring   into   evidence   and   emphasize   conflicts   or   the   regime’s   incapacity   to   answer   to   new   society   demands   and   challenges;   2)   the   capacity   of   the   regime   to   coordinate   available   resources  inside  and  outside  the  regime  to  face  new  challenges.  The  pressure  on  the  regime   can   be   related   to   broad   political,   social   and   economic   landscape   development   such   as   demographic   shifts,   rise   of   a   new   consumer   culture,   neoliberal   model   of   globalisation,   or   economic  pressures  such  as  competition,  taxes,  charges,  regulations  etc.  However,  it  can  also   emerges  from  below,  from  innovative  niches  that  are  ready  for  stabilization.  Berkhout  et  al.   (2004)   assume   that   some   pressures   are   always   present.   The   capacity   of   adapt   to   such   pressures  depends  on  the  regime  availability  of  resources  (factor  endowments,  capabilities,   knowledge)  and  the  degree  of  coordination  of  resource  deployment.    

 

Using   the   MLP   model,   Barbier   and   Elzen   (2012)   illustrate   two   different   pathways   of   innovation   influencing   the   transition   to   sustainability.   One   is   based   on   a   strategy   of   optimization:  according  to  the  KBBE  (Knowledge-­‐Based  Bio  Economy)  innovation  paradigm,   in   presence   of   landscape   pressure,   the   regime   gradually   leads   to   the   development   of   innovative   activities.   Technical   and   societal   or   behavioural   changes   of   incremental   nature   take  place  in  the  regime  improving  its  performance.  The  role  of  niches  is  not  relevant  or  is   minor  in  the  system  optimization  process  and  they  remain  marginal  experiences  (incremental   optimization  of  the  regime).  

The  second  is  more  radical  in  nature  and  leads  to  the  reconfiguration  of  the  dominant  regime.   In  this  case,  the  regime  actors  resist  to  pressures  exerted,  considering  the  required  changes  as   “unrealistics”.  At  the  same  time  outside  actors  see  the  landscape  pressure  as  an  opportunity   for  niche  innovations.    Solutions  that  are  more  radical  are  developed  in  a  variety  of  niches  and   outside  actors  learn  how  they  can  support  the  scaling  up  process,  through  technical  aspects   but  also  consumers’  requirements,  markets,  regulations  etc.  If  this  process  is  successful,  the   niche   innovation   can   link   up   with   existing   regimes   through   symbiotic   or   competitive   relationships  and  gradually  change  or  replace  it.    

 

The   multilevel   perspective   has   been   used   to   describe,   reconstruct   and   analyse   a   variety   of   historical  cases  of  system  innovation  such  as  the  transition  from  sailing  ship  to  stream  ships   (Geels,  2002),  the  field  of  transport  studies  (Geels,  2012)  and  the  transition  of  energy  systems  

(19)

(Verbong   and   Geels,   2007).   The   transition   to   low   carbon   economy   (Geels,   2014)   has   been   studied  more  recently  with  this  perspective  with  a  focus  on  care  farming  (Hassink  et  al,  2013),   organic  farming  and  eco  housing  (Smith,  2007),  carbon  trust  (Kern,  2012).    

   

1.3    The  shift  from  niche  to  regime  as  a  key  for  the  agro-­‐ecology  vision    

The   interrelations   between   niches   and   regimes   are   key   to   understand   changes   required   by   the  sustainable  development  agenda.  The  processes  by  which  niches  and  regimes  interact  and   are   interdependent   are   called   ‘socio-­‐technical   translations’.   Niches   may   be   sources   of   innovative   ideas,   functional   to   solve   regime   tensions   and   bottlenecks.   They   may   lead   to   transformations  or  reconfigurations  of  the  dominant  regime.    

 

In   particular   green   niches   have   been   increasingly   studied   by   innovation   literature   as   they   represent   significant   sites   of   learning   and   network   building   for   sustainable   technologies.   Strategic  niche  management  (SNM)  becomes  a  specific  field  of  study  looking  at  dynamics  of   niche   development.   Niches   represent   essential   sources   of   systemic   changes   if   processes   at   other   levels   of   the   system   are   supportive   (Loorbach   and   Rotmans,   2006).   If   the   regime   is   under  pressure  to  become  more  sustainable,  as  in  the  present  context,  green  niches  are  more   likely  to  displace  incumbent  “socio-­‐technical”  regimes  and  diffuse  into  the  mainstream.  The   study   of   strategic   niche   management   makes   an   important   contribution   in   the   analysis   of   radical  shifts  in  technological  regimes  required  by  the  ecological  restructuring  of  production   and   consumption   patterns   (Hoogma,   2000).   Changes   in   consumption   patterns,   user   preferences,  regulations  and  artifacts  can  be  experimented  at  niche  level  before  scaling  up.      

A   variety   of   mutually   reinforcing   social,   economic   and   institutional   and   technological   processes   sustain   existing   trajectories   of   development.   The   “socio-­‐technical”   regime   defines   these   complex   structures   and   the   web   of   interdependencies   between   artifacts,   institutions   and   agents.   The   concept   of   socio-­‐technical   regime   underlines   the   social   nature   of   all   technological   entities   and   the   difficulty   to   make   a   distinction   between   social   and   technical   elements,  institutions,  actors  and  sphere  of  activity  (Smith,  2007).    User  practices  may  shift   between  niche  and  regime  starting  from  very  different  socio-­‐technical  situations.  However,  as   historical   experience   suggest,   radical   changes   begin   within   networks   of   pioneering   organizations,   technologies   and   users   on   the   margins   of   the   regime.   These   actors   create  

(20)

exemplars   in   the   protected   space   that,   if   successful,   become   sufficiently   robust   to   develop   markets   and   attract   wider   interests   from   the   mainstream   (Schot   et   al.   1994).   The   new   innovation   makes   pressure   for   a   widespread   change   that   allows   the   development   of   more   sustainable  technologies.    

 

The  study  of  strategic  niche  management  focus  on  two  main  aspects:  the  quality  of  learning  

and   the   quality   of   institutional   embedding   (Kemp   et   al.1998).   Learning   should   consider  

different  features:  from  the  narrowly  technical  performance  of  the  innovation  to  the  needs  of   specific  infrastructures.  The  user  context,  the  meanings  users  give  to  a  niche  practice  and  the   economic  performance  need  also  to  be  explored,  as  well  as  institutional  and  policy  changes   needed  to  stimulate  further  niche  growth.    

 

Institutional  embedding  relates  to  the  support  that  the  niche  have  at  technical,  market,  social   and  institutional  level.  This  includes  the  need  for  complementary  technologies  and  necessary   infrastructures   and   the   development   of   widely   shared   expectations   about   future   niche   development.   Finally   there   is   a   need   for   a   broad   network   of   supportive   actors   of   the   niche   socio-­‐technical  practices  and  of  the  future  regimes  it  prefigures  (Smith  2007).  The  network  of   users   and   outsiders   embedded   in   a   specific   niche   and   their   contribution   to   the   learning   process   determines   the   robustness   of   a   specific   niche   and   shows   its   growth   potential   (Hoogma  et  al.  2002).  The  actors’  preferences  and  meanings  are  influenced  by  experiences  on   one   side   and   norms   from   the   regime   on   the   other   side   and   have   a   direct   impact   on   actors’   individual  engagement  with  the  niche  and  its  institutional  embedding.    

 

Niches   alone   are   unlikely   to   transform   the   regime.   According   to   Smith   (2007)   their   compatibility   with   the   regime   is   the   variable   that   most   influences   their   success.   Radical   niches,  that  imply  major  structural  changes,  such  as  developing  sustainable  innovations,  will   require   an   adaptation   to   the   dominant   regime   in   order   to   scale   up.   In   fact   regulations,   infrastructure,   user   practices   and   maintenance   networks   are   aligned   with   the   existing   technologies  in  the  regime  and  radically  new  technologies  do  not  easy  break  through  (Geels,   2002).   For   this   reason   Smith   (2007)   stress   the   need   of   strategic   niche   management.   Understanding  of  the  regime  tensions  that  provide  opportunities  for  niches  are  crucial  in  the   up-­‐scaling   process   of   niche   innovations   and   may   provide   important   policy   suggestions   in   order   to   push   development   along   a   new   trajectory.   Transformation   dynamics   depends   on  

Figura

Figure	
  1	
  –	
  Multilevel	
  perspective	
  of	
  transitions	
  
Figure	
  3	
  –	
  Star	
  and	
  cycle	
  graphs	
  
Figure	
  5	
  –	
  Landscape	
  of	
  farm	
  IT1	
  
Table	
  3	
  –	
  Main	
  turning	
  points	
  in	
  the	
  transition	
  of	
  farm	
  IT1	
  
+7

Riferimenti

Documenti correlati

For each unvisited node u, u.d is the shortest distance via visited nodes only, from source to u (if such a path exists, otherwise infinity);.. Proof

For the intended application, it is important to study and characterize the absorption characteristics of the material in water and in saline solutions with different ionic

In this study we evaluated the in vivo effect of DAS, NIL, and IM on intracellular calcium concentration, oxidative stress, and apoptosis in peripheral blood leukocytes of 45

Uno studio condotto dal Groupe d’Etudes des Lymphomes de l’Adulte (GELA) ed uno condotto dall’US Intergroup hanno dimostrato che l’aggiunta dell’anticorpo monoclonale anti-CD20,

A tale scopo è stata svolta una ricerca elettronica usando MEDLINE, Embase, il sito web clinicaltrials.gov, la Cochrane Schizophrenia Group e la Cochrane Database of Systematic

of the tangent bundle w;th the fibre of dimens;on n... l) ho1d in the more genera1 situation of an almost mu1tifo1iated riemannian structures on a manifo1d, l.e.. are not

The research is devoted to good practice and the five realities described encourage confidence for the future: learning that the agricultural cooperative

If all edge weights w in a graph G D .V; E/ are nonnegative, we can find short- est paths between all pairs of vertices by running Dijkstra’s algorithm once from each vertex; with