• Non ci sono risultati.

Measurement of the electron charge asymmetry in inclusive W production in pp collisions at √s=7TeV


Academic year: 2021

Condividi "Measurement of the electron charge asymmetry in inclusive W production in pp collisions at √s=7TeV"


Testo completo


Measurement of the Electron Charge Asymmetry in Inclusive

W Production in pp

Collisions at




¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 12 June 2012; published 11 September 2012)

A measurement of the electron charge asymmetry in inclusive pp ! W þ X ! e þ X production at ffiffiffi

s p

¼ 7 TeV is presented based on data recorded by the CMS detector at the LHC and corresponding to an integrated luminosity of840 pb1. The electron charge asymmetry reflects the unequal production of Wþ and Wbosons in pp collisions. The electron charge asymmetry is measured in bins of the absolute value of electron pseudorapidity in the range ofjj < 2:4. The asymmetry rises from about 0.1 to 0.2 as a function of the pseudorapidity and is measured with a relative precision better than 7%. This measurement provides new stringent constraints for parton distribution functions.

DOI:10.1103/PhysRevLett.109.111806 PACS numbers: 14.70.Fm, 12.15.y, 13.85.Qk

The dominant mechanism for W boson production in pp collisions at the Large Hadron Collider (LHC) is the anni-hilation of a valence quark from one proton with a sea antiquark from the other. Because the proton contains two valence u quarks and one valence d quark, Wþbosons are produced more frequently than W bosons. The Compact Muon Solenoid (CMS) Collaboration measured the ratio of the inclusive Wffiffiffi þ and W production cross sections at

s p

¼ 7 TeV at the LHC [1] to be in good agreement with the prediction of the standard model based on various parton distribution functions (PDFs) [2–7]. In this Letter, we present a further investigation of inclusive Wþand W production in the W ! e decay channel. We measure the electron charge asymmetry, defined as

A ðÞ ¼d=dðWþ! eþÞ  d=dðW! eÞ d=dðWþ! eþÞ þ d=dðW! eÞ;

(1) where  is the electron pseudorapidity in the CMS lab frame [ ¼  lntanð=2Þ,  is the polar angle, measured from the anticlockwise beam direction], and d=d is the differential cross section for electrons from W boson de-cays. Within the CMS tracker acceptance (jj < 2:5), the asymmetry is expected to rise with increasingjj because the valence u quarks that produce the Wþ bosons tend to carry a higher fraction x of the proton momentum [8] than the valence d quarks that produce the W bosons. Measurements of the asymmetry provide constraints on the u, d, u, and d PDFs in the range 103< x < 101 and are complementary to measurements of deep inelastic scattering at HERA [4].

The lepton charge asymmetry and the W charge asym-metry have been studied in p p collisions by the CDF and D0 Collaborations at the Fermilab Tevatron collider [9,10]. The ATLAS and CMS Collaborations at the LHC reported measurements of the lepton charge asymmetry in the re-gion jj < 2:5 using the data collected during the 2010 LHC runs [11,12]. The LHCb Collaboration recently ex-tended the measurement of the lepton charge asymmetry at the LHC to the 2:0 <  < 4:5 region [13]. The NNPDF Collaboration estimated the impact of the CMS and ATLAS results on the PDFs [5]; the uncertainty on the light flavor and antiflavor distributions is reduced by 20% at x  103and by 10%–25% at larger x values.

The results presented in this Letter significantly improve the measurement of the electron charge asymmetry in inclusive pp ! W þ X ! e þ X production at pffiffiffis¼ 7 TeV and are based on a data sample corresponding to 840 pb1collected in spring 2011. This analysis uses the

portion of the 2011 data set for which the single-electron trigger threshold was relatively low. Compared to the analysis performed in 2010 [12], the threshold on the electron transverse momentum (pT) is increased from 25

to 35 GeV to match the higher trigger threshold for single electrons. The data sample is25 times larger than in 2010 and allows a reduction of many systematic uncertainties.

A detailed description of the CMS experiment can be found elsewhere [14]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, 13 m in length, providing an axial field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter (ECAL), and the brass-scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke of the solenoid. The most relevant subdetectors for this measurement are the ECAL and the tracking system. The electromagnetic calorimeter consists of nearly 76 000 lead tungstate crystals, which provide coverage in pseudorapidity jj < 1:48 in the barrel region and

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.


1:48 < jj < 3:00 in two end cap regions. A preshower detector consisting of two planes of silicon sensors inter-leaved with a total of3X0 of lead is located in front of the ECAL end caps. The energy resolution measured for elec-trons from Z decays varies across the acceptance of the ECAL. It is less than 2% in the central region of the ECAL barrel (jj < 1), 3% in the outer barrel, and approximately 4%–5% in the end caps.

The W ! e candidates are characterized by a high-pT

electron accompanied by missing transverse energy 6ET, due to the escaping neutrino. Experimentally,6ET is deter-mined as the magnitude of the negative vector sum of the transverse momenta of all particles reconstructed using a particle-flow algorithm [15] and, in this measurement, 6ET is used to separate signal from background on a statistical basis. The W ! e candidates used in this analysis were collected using a set of inclusive single-electron triggers that did not include 6ET requirements. Multijet and photonþ jet production (QCD backgrounds) can give rise to high-pT electron candidates and mimic W decays.

Other background sources include Drell-Yan (Z= ! ‘þ‘) and W !  production [electroweak (EW) back-grounds], as well as top-quark pair (tt) production.

Monte Carlo (MC) simulation samples are used to de-velop analysis techniques and estimate some of the back-ground contributions. The signal and the EW backback-grounds are simulated with the POWHEG [16] event generator interfaced with the CT10 [3] PDF model. The ttbackground is generated with theMADGRAPH [17] event generator in-terfaced with the CTEQ6L [18] PDF model. All generated events are passed through the CMS detector simulation usingGEANT4[19] and then processed with a reconstruction sequence identical to that used for collision data.

The selection criteria for electron identification are simi-lar to those used in the W and Z cross section measure-ments [1]. A brief summary is given here for completeness. Electrons are identified as clusters of energy deposited in the ECAL fiducial volume matched to tracks from the silicon tracker. The tracks are reconstructed using a Gaussian sum filter (GSF) algorithm [20] that takes into account possible energy loss due to bremsstrahlung in the tracker layers. Particles misidentified as electrons are sup-pressed by requiring that the shower shape of the ECAL cluster be consistent with an electron candidate, and that the  and  coordinates of the track trajectory extrapolated to the ECAL match those of the ECAL cluster. The azimu-thal angle  is measured in the plane perpendicular to the beam axis. Furthermore, electrons from W decay are ex-pected to be isolated from other activity in the event. We therefore require that little transverse energy be observed in the ECAL, hadron calorimeter, and silicon tracking system within a coneR < 0:3 around the electron direc-tion, where R ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2 and where the calo-rimeter energy deposits and the track associated with the electron candidate are excluded.

A large fraction of electrons radiate photons, owing to the substantial amount of material in front of the ECAL detector. These photons may convert close to the original electron trajectory, leading to a non-negligible charge mis-identification probability. Three different methods are used to determine the electron charge. First, the electron charge is determined by the signed curvature of the associated GSF track. Second, the charge is determined from the associated trajectory reconstructed in the silicon tracker using a Kalman filter algorithm [21]. Third, the electron charge is determined from the azimuthal angle between the vector joining the nominal interaction point and the ECAL cluster position and the vector joining the nominal inter-action point and the innermost hit of the GSF track. It is required that all three charge determinations from these methods agree. This procedure significantly reduces the charge misidentification probability to 0.01% in the ECAL barrel and to 0.3% in the ECAL end caps. The electron pseudorapidity is measured from the GSF track at the pp interaction point; the uncertainty on  is negligible for this analysis.

The W ! e candidates are selected by requiring electrons to have transverse momentum pT> 35 GeV,

jj < 2:4, and to be associated with one of the electron trigger candidates used to select the electron data set. The Drell-Yan production and tt backgrounds are suppressed by rejecting events that contain a second isolated electron or muon with pT > 15 GeV and jj < 2:4. According to

MC simulations, the data sample of selected electrons consists of about 16% QCD background events, about 7.4% EW background events, and about 0.4% tt back-ground events.

As the forward and backward hemispheres are equiva-lent in pp collisions, the asymmetry results are presented as a function of the absolute value of the electron pseudor-apidity. The selected events are divided into bins of jj with bin width 0.2. The region ofjj between 1.4 and 1.6 is excluded because the cables and services in the transition region between the ECAL barrel and end caps cause a significant reduction in the efficiency and purity of the W selection. A total of 1 229 315 Wþ! eþ candidates and 991 256 W! e candidates are selected in the 11 bins ofjj.

A binned extended maximum-likelihood fit is performed to the 6ET distribution to estimate the W ! e signal yield for electrons (N) and positrons (Nþ) in each pseudorapidity bin. The signal 6ET shape is derived from MC simulations with an event-by-event correction to ac-count for differences in the energy scale and resolution between data and simulation inferred from the hadronic recoil energy distributions in Z=! eþeevents selected from data [22]. The shape of the QCD background is determined, for each charge, from a signal-free control sample obtained by inverting a subset of the electron iden-tification criteria [1]. The6ETshapes for other backgrounds


such as the Drell-Yan process, tt, and W !  are taken from MC simulations with a fixed normalization relative to the W ! e yields. The normalization factors are calcu-lated from the predicted values of the cross sections at next-to-leading order (NLO). The yield of the QCD background and the yield of the W ! e signal (N) are free parameters in the fit. The results of the fits to the data are shown for the

first (jj < 0:2) and the tenth (2:0 < jj < 2:2) pseudora-pidity bins in Fig.1. The uncertainty in each bin represents the systematic and statistical components associated with the N extraction procedure. The ratio of the QCD back-ground yields estimated from the fit to the6ET distributions for positive and negative electrons is consistent with unity. The EW background yield for positive electrons is larger than for negative electrons because of the contribution of W !  events. The charge asymmetry is obtained from theðNþ NÞ=ðNþþ NÞ ratio.

Two sources of systematic uncertainty are related to the signal6ET shape, the PDF used to generate the events, and the uncertainty on the correction from the hadronic recoil applied to the signal6ETshape. The PDF uncertainties and their effects on the measured asymmetries are evaluated using the prescription given by the PDF4LHC Working Group [23]. Uncertainties on the correction from the had-ronic recoil obtained from data are also propagated to the asymmetry measurements. The systematic uncertainty due to the QCD background shape is evaluated by studying samples from different QCD background control regions.

TABLE I. Summary of the systematic uncertainties on the asymmetry. All values are given in units of103.

jj bin Signal yield Energy scale and res. Charge MisId. Efficiency ratio 0:0 < jj < 0:2 1.8 0.6 <0:1 4.5 0:2 < jj < 0:4 2.5 0.6 <0:1 4.4 0:4 < jj < 0:6 2.7 0.3 <0:1 4.4 0:6 < jj < 0:8 2.5 0.3 <0:1 4.4 0:8 < jj < 1:0 1.9 0.6 0.1 4.4 1:0 < jj < 1:2 2.4 1.0 0.1 4.9 1:2 < jj < 1:4 2.6 0.8 0.1 5.4 1:6 < jj < 1:8 3.1 0.8 0.1 9.2 1:8 < jj < 2:0 2.0 1.6 0.2 8.7 2:0 < jj < 2:2 2.0 2.6 0.3 10.0 2:2 < jj < 2:4 2.9 2.4 0.3 12.5

TABLE II. Covariance matrix for the systematic uncertainties on the asymmetry. All values are given in units of106. The matrix is symmetric. jj bin [0.0, 0.2] [0.2, 0.4] [0.4, 0.6] [0.6, 0.8] [0.8, 1.0] [1.0, 1.2] [1.2, 1.4] [1.6, 1.8] [1.8, 2.0] [2.0, 2.2] [2.2, 2.4] [0.0, 0.2] 23.7 [0.2, 0.4] 2.6 26.2 [0.4, 0.6] 2.2 2.6 26.6 [0.6, 0.8] 2.5 2.9 2.6 25.6 [0.8, 1.0] 2.7 3.1 2.8 3.3 23.3 [1.0, 1.2] 2.9 3.3 2.9 3.4 3.9 30.8 [1.2, 1.4] 2.9 3.4 3.2 3.7 4.2 4.5 36.5 [1.6, 1.8] 2.9 3.2 2.9 3.3 3.7 4.1 4.3 94.9 [1.8, 2.0] 2.8 3.0 2.5 2.8 3.4 4.0 3.7 3.8 82.4 [2.0, 2.2] 3.1 3.9 3.3 3.7 4.6 5.7 5.8 5.1 6.2 110.7 [2.2, 2.4] 4.2 4.7 4.1 4.7 5.6 6.8 6.7 6.2 7.0 10.3 171.0 [GeV] T E 0 20 40 60 80 Entries / 2 GeV 0 1 2 3 4 5 6 7 3 10 × ν e → W t EW + t QCD data (e) | < 0.2 η | (e) > 35 GeV T p + e CMS [GeV] T E 0 20 40 60 80 ν e → W t EW + t QCD data (e) | < 0.2 η | (e) > 35 GeV T p -e = 7 TeV s at -1 840 pb [GeV] T E 0 20 40 60 80 Entries / 2 GeV 0 1 2 3 4 5 6 3 10 × ν e → W t EW + t QCD data (e) | < 2.2 η 2.0 < | (e) > 35 GeV T p + e CMS [GeV] T E 0 20 40 60 80 ν e → W t EW + t QCD data (e) | < 2.2 η 2.0 < | (e) > 35 GeV T p -e = 7 TeV s at -1 840 pb

FIG. 1 (color online). Signal plus background fit to data 6ET distributions for positrons (left) and electrons (right) in data. Results are shown for the first pseudorapidity bin (jj < 0:2, top) and for the tenth pseudorapidity bin (2:0 < jj < 2:2, bottom). The hatched area represents the statistical and systematic un-certainties associated with the fitting procedure.


The systematic uncertainty due to the modelling of Drell-Yan production, tt, and W !  is estimated by varying the relative normalization of the EW backgrounds to the W ! e yield by the uncertainty on the Drell-Yan production and tt cross sections, and the effect on the observed asymmetry is negligible. The values of Nfrom the fitting procedure are insensitive to the presence of pileup interactions because the 6ET distributions are ob-tained from data.

In order to compare our results directly to theoretical predictions, the observed charge asymmetry is corrected for three detector effects: (1) electron energy scale and resolution, (2) relative detection efficiency of positrons and electrons, and (3) electron charge misidentification.

The electron energy scale and resolution can bias the asymmetry because of the effect on electrons with trans-verse momentum close to the threshold value of 35 GeV. The electron energy scale and resolution are determined directly from the Z=! eþedata and are used to adjust the simulated electron energy at the generator level. The correction to the measured charge asymmetry is estimated in each pseudorapidity bin by comparing the charge asym-metry as determined in the simulation with the resulting asymmetry after smearing. The corrections for the electron energy scale and resolution are found to fall between 4:4  103 and 0:2  103. The uncertainties on the

energy scale and resolutions are taken as sources for sys-tematic uncertainties. The charge asymmetry is also cor-rected for final-state radiation, and the uncertainty on the correction is taken as an additional systematic uncertainty, which is summed in quadrature with the uncertainty on the electron energy scale and resolution.

Any efficiency difference between electrons and positrons would bias the measured charge asymmetry. The total electron efficiency (including electron reconstruction, identification, and trigger efficiencies) in each pseudorapidity bin is measured using the Z= ! eþe data, separately for e and eþ, using the tag-and-probe method [1]. The efficiency ratio is calculated and found to be between 0.96 and 1.03; the statistical uncertain-ties on the efficiency ratios (0.01–0.03) are treated as sys-tematic uncertainties. This is the dominant syssys-tematic uncertainty in all the pseudorapidity bins.

The true charge asymmetry A is diluted because of charge misidentification, resulting in an observed asym-metryAobs¼ Að1  2wÞ. The electron charge misiden-tification probability w is measured using Z=! eþe events in data. The observed electron charge asymmetry is corrected for the charge misidentification probability as a function of jj. The statistical uncertainty on the charge misidentification probability is taken as the systematic uncertainty.

TableI summarizes the systematic uncertainties in all the electron pseudorapidity bins. The full systematic co-variance matrix is given in TableII.

The measured charge asymmetry results are summa-rized in Table IIIwith both statistical and systematic un-certainties shown. The statistical unun-certainties in the various pseudorapidity bins are uncorrelated.

The experimental results are compared in TableIIIand in Fig.2to theoretical predictions obtained with the NLO MCFM [24] generator interfaced with CT10 [3], HERAPDF [4], NNPDF [5], and MSTW2008NLO [2] PDF models. The theoretical errors are estimated using the PDF reweighting technique [25]. The experimental data are in agreement with the predictions from CT10, NNPDF, and HERAPDF, while the predictions from

| η Electron Pseudorapidity | 0 1 2 Electron Charge Asymmetry 0.05 0.1 0.15 0.2 0.25 CMS 840 pb-1 at s = 7 TeV ν e → W MCFM: theory bands: 68% CL CT10 HERAPDF1.5 MSTW2008NLO NNPDF2.2 (NLO) (e) > 35 GeV T p

FIG. 2 (color online). Comparison of the measured electron asymmetry to the predictions of different PDF models for the electron pT> 35 GeV. The error bars include both statistical and systematic uncertainties. The data points are placed in the center of thejj bins. The PDF uncertainty bands are estimated using the PDF reweighting technique and correspond to a 68% confidence level.

TABLE III. Summary of the measured charge asymmetry re-sults. The first uncertainty is statistical and the second is system-atic. The theoretical predictions are obtained using MCFM

interfaced with four different PDF models. The PDF uncertain-ties are estimated using the PDF reweighting technique. All values are in units of103.

jj bin Measured Theoretical predictions AsymmetryA CT10 HERAPDF MSTW NNPDF [0.0, 0.2] 102  3  5 109  5 106þ48 87þ35 107  5 [0.2, 0.4] 111  3  5 114  5 110þ48 89þ35 110  5 [0.4, 0.6] 116  3  5 119  5 115þ48 98þ35 116  5 [0.6, 0.8] 123  3  5 126  5 122þ48 103þ35 123  5 [0.8, 1.0] 133  3  5 138þ56 132þ48 115þ45 134  5 [1.0, 1.2] 136  3  6 146  6 140þ58 128þ45 145  5 [1.2, 1.4] 156  3  6 164þ67 153þ57 144  5 158  5 [1.6, 1.8] 166  3  10 195þ89 181  5 179  5 190  4 [1.8, 2.0] 197  3  9 207þ810 196þ43 200þ65 206  4 [2.0, 2.2] 224  3  11 224þ811 211þ53 213þ65 219  4 [2.2, 2.4] 210  4  13 241þ812 225þ94 231þ65 231  5


MSTW are systematically lower than the observed asym-metry in the regionjj < 1:4.

In summary, we have measured the electron charge asymmetry in the W ! e channel in a sample of proton-proton collisions at 7 TeV, corresponding to an integrated luminosity of 840 pb1. The measured asymmetry rises from about 0.1 to 0.2 as a function of the pseudorapidity, with an uncertainty that ranges from 0.006 in the central region to 0.014 in the ECAL end caps. This precise measurement of the electron charge asymmetry in inclusive W production at the LHC provides stringent constraints for parton distribution functions.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge sup-port from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and

CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (U.K.); DOE and NSF (U.S.).

[1] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 10 (2011) 132.

[2] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C 63, 189 (2009).

[3] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan, Phys. Rev. D 82, 074024 (2010).

[4] F. D. Aaron et al. (H1 and ZEUS Collaborations),J. High Energy Phys. 01 (2010) 109.

[5] R. D. Ball, V. Bertone, F. Cerutti, L. Del Debbio, S. Forte, A. Guffanti, N. P. Hartland, J. I. Latorre, J. Rojo, and M. Ubiali,Nucl. Phys. B855, 608 (2012).

[6] S. Alekhin, J. Blumlein, S. Klein, and S. Moch,Phys. Rev. D 81, 014032 (2010).

[7] P. Jimenez-Delgado and E. Reya,Phys. Rev. D 79, 074023 (2009).

[8] J. D. Bjorken and E. A. Paschos, Phys. Rev. 185, 1975 (1969).

[9] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 102, 181801 (2009).

[10] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 101, 211801 (2008).

[11] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 701, 31 (2011).

[12] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 04 (2011) 050.

[13] R. Aaij et al. (LHCb Collaboration),J. High Energy Phys. 06 (2012) 058.

[14] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[15] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-003, 2010, http://cdsweb.-cern.ch/record/1279347.

[16] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys., 11 (2007) 070.

[17] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[18] J. Pumplin, D. R. Stump, J. Huston, H. L. Lai, P. M. Nadolsky and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.

[19] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [20] W. Adam, R. Fru¨hwirth, A. Strandlie, and T. Todorov,

CMS Note Report No. 2005/001, 2005, http://cdsweb.-cern.ch/record/815410.

[21] V. Khachatryan et al. (CMS Collaboration),Eur. Phys. J. C 70, 1165 (2010).

[22] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-005, 2010, http://cdsweb.-cern.ch/record/1294501.

[23] M. Botje, J. Butterworth, A. Cooper-Sarkar, A. de Roeck, and J. Feltesse et al.,arXiv:1101.0538.

[24] J. M. Campbell and R. K. Ellis,Phys. Rev. D 62, 114012 (2000).

[25] D. Bourilkov, R. C. Group, and M. R. Whalley, arXiv:hep-ph/0605240.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2,b W. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bD. Liko,2I. Mikulec,2M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2

H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4T. Cornelis,4E. A. De Wolf,4 X. Janssen,4S. Luyckx,4T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4 Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5


P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6 T. Hreus,6A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7

K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7 J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7 P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8A. Caudron,8 L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8

O. Militaru,8C. Nuttens,8D. Pagano,8L. Perrini,8A. Pin,8K. Piotrzkowski,8N. Schul,8J. M. Vizan Garcia,8 N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10 D. De Jesus Damiao,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11 A. Custo´dio,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11 C. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12 P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13

S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15 D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15

Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16 H. Teng,16S. Wang,16B. Zhu,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17

J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19 V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,i A. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Raidal,24 L. Rebane,24A. Tiko,24V. Azzolini,25P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26 V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26

P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26 L. Wendland,26K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28 M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,n

C. Broutin,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29 M. Haguenauer,29P. Mine´,29C. Mironov,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29

Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30 M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,oC. Ferro,30J.-C. Fontaine,30,oD. Gele´,30 U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32N. Beaupere,32 O. Bondu,32G. Boudoul,32H. Brun,32J. Chasserat,32R. Chierici,32,fD. Contardo,32P. Depasse,32H. El Mamouni,32

J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32S. Perries,32 V. Sordini,32S. Tosi,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,pG. Anagnostou,34S. Beranek,34

M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,q M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35

C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35J. Lingemann,35C. Magass,35M. Merschmeyer,35 A. Meyer,35M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35 J. Steggemann,35D. Teyssier,35M. Weber,35M. Bontenackels,36V. Cherepanov,36G. Flu¨gge,36H. Geenen,36 M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Nowack,36L. Perchalla,36 O. Pooth,36J. Rennefeld,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37,rA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37 F. Costanza,37D. Dammann,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37P. Gunnellini,37

S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37,fM. Kasemann,37P. Katsas,37C. Kleinwort,37H. Kluge,37 A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37W. Lohmann,37,rB. Lutz,37R. Mankel,37

I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37 S. Naumann-Emme,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37


C. Riedl,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,rT. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37 M. Stein,37R. Walsh,37C. Wissing,37C. Autermann,38V. Blobel,38S. Bobrovskyi,38J. Draeger,38H. Enderle,38

J. Erfle,38U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38 H. Kirschenmann,38R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38N. Pietsch,38D. Rathjens,38 C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38

H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38C. Barth,39J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39 A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,fC. Hackstein,39F. Hartmann,39T. Hauth,39,f M. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39I. Katkov,39,qJ. R. Komaragiri,39D. Martschei,39 S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39

F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39 F. M. Stober,39D. Troendle,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40

T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40 C. Mavrommatis,40E. Ntomari,40L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41 I. Evangelou,42C. Foudas,42,fP. Kokkas,42N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43,f

P. Hidas,43D. Horvath,43,sF. Sikler,43V. Veszpremi,43G. Vesztergombi,43,tN. Beni,44S. Czellar,44J. Molnar,44 J. Palinkas,44Z. Szillasi,44J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46 N. Dhingra,46R. Gupta,46M. Jindal,46M. Kaur,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46

S. Ahuja,47A. Bhardwaj,47B. C. Choudhary,47A. Kumar,47A. Kumar,47S. Malhotra,47M. Naimuddin,47 K. Ranjan,47V. Sharma,47R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48

Sh. Jain,48R. Khurana,48S. Sarkar,48M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49 V. Kumar,49P. Mehta,49A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,u M. Maity,50,vG. Majumder,50K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50

S. Banerjee,51S. Dugad,51H. Arfaei,52H. Bakhshiansohi,52,wS. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52 A. Jafari,52,wM. Khakzad,52A. Mohammadi,52,yM. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52 B. Safarzadeh,52,zM. Zeinali,52,xM. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53b

A. Colaleo,53aD. Creanza,53a,53cN. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53c L. Lusito,53a,53bG. Maggi,53a,53cM. Maggi,53aB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53b

A. Pompili,53a,53bG. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53aG. Zito,53a G. Abbiendi,54aA. C. Benvenuti,54aD. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54b

P. Capiluppi,54a,54bA. Castro,54a,54bF. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54a A. Fanfani,54a,54bD. Fasanella,54a,54b,fP. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54a

G. Masetti,54aM. Meneghelli,54a,54b,fA. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54a F. Primavera,54a,54bA. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55b

G. Cappello,55a,55bM. Chiorboli,55a,55bS. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55b G. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56a

S. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,fL. Benussi,57S. Bianco,57 S. Colafranceschi,57,aaF. Fabbri,57D. Piccolo,57P. Fabbricatore,58R. Musenich,58A. Benaglia,59a,59b,f F. De Guio,59a,59bL. Di Matteo,59a,59b,fS. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59a R. A. Manzoni,59a,59bA. Martelli,59a,59bA. Massironi,59a,59b,fD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59b

D. Pedrini,59aS. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60a C. A. Carrillo Montoya,60a,fN. Cavallo,60a,bbA. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,bb A. O. M. Iorio,60aL. Lista,60aS. Meola,60a,ccM. Merola,60a,60bP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,f D. Bisello,61a,61bA. Branca,61a,fR. Carlin,61a,61bP. Checchia,61aT. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61b U. Gasparini,61a,61bA. Gozzelino,61aK. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61b

A. T. Meneguzzo,61a,61bJ. Pazzini,61aN. Pozzobon,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61a M. Tosi,61a,61b,fS. Vanini,61a,61bP. Zotto,61a,61bA. Zucchetta,61aG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62b C. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63b

A. Lucaroni,63a,63b,fG. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63bA. Saha,63a A. Santocchia,63a,63bS. Taroni,63a,63b,fP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64c R. Castaldi,64aR. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64a F. Ligabue,64a,64cT. Lomtadze,64aL. Martini,64a,ddA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,ee


P. Spagnolo,64aP. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64a,fP. G. Verdini,64a L. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65b,fM. Diemoz,65aM. Grassi,65a,65b,fE. Longo,65a,65b P. Meridiani,65a,fF. Micheli,65a,65bS. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65b

M. Sigamani,65aL. Soffi,65a,65bN. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66c C. Biino,66aC. Botta,66a,66bN. Cartiglia,66aM. Costa,66a,66bN. Demaria,66aA. Graziano,66a,66bC. Mariotti,66a,f

S. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66bM. Musich,66a,fM. M. Obertino,66a,66cN. Pastrone,66a M. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66bM. Ruspa,66a,66cR. Sacchi,66a,66bV. Sola,66a,66b

A. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67bF. Cossutti,67a G. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67aA. Schizzi,67a,67b S. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69J. Chung,69D. H. Kim,69G. N. Kim,69D. J. Kong,69H. Park,69 S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70H. Y. Jo,71S. Choi,72D. Gyun,72B. Hong,72 M. Jo,72H. Kim,72T. J. Kim,72K. S. Lee,72D. H. Moon,72S. K. Park,72M. Choi,73S. Kang,73J. H. Kim,73C. Park,73 I. C. Park,73S. Park,73G. Ryu,73Y. Cho,74Y. Choi,74Y. K. Choi,74J. Goh,74M. S. Kim,74E. Kwon,74B. Lee,74

J. Lee,74S. Lee,74H. Seo,74I. Yu,74M. J. Bilinskas,75I. Grigelionis,75M. Janulis,75A. Juodagalvis,75 H. Castilla-Valdez,76E. De La Cruz-Burelo,76I. Heredia-de La Cruz,76R. Lopez-Fernandez,76R. Magan˜a Villalba,76

J. Martı´nez-Ortega,76A. Sa´nchez-Herna´ndez,76L. M. Villasenor-Cendejas,76S. Carrillo Moreno,77 F. Vazquez Valencia,77H. A. Salazar Ibarguen,78E. Casimiro Linares,79A. Morelos Pineda,79M. A. Reyes-Santos,79

D. Krofcheck,80A. J. Bell,81P. H. Butler,81R. Doesburg,81S. Reucroft,81H. Silverwood,81M. Ahmad,82 M. I. Asghar,82H. R. Hoorani,82S. Khalid,82W. A. Khan,82T. Khurshid,82S. Qazi,82M. A. Shah,82M. Shoaib,82

G. Brona,83K. Bunkowski,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83 J. Krolikowski,83H. Bialkowska,84B. Boimska,84T. Frueboes,84R. Gokieli,84M. Go´rski,84M. Kazana,84

K. Nawrocki,84K. Romanowska-Rybinska,84M. Szleper,84G. Wrochna,84P. Zalewski,84N. Almeida,85 P. Bargassa,85A. David,85P. Faccioli,85M. Fernandes,85P. G. Ferreira Parracho,85M. Gallinaro,85J. Seixas,85 J. Varela,85P. Vischia,85I. Belotelov,86P. Bunin,86M. Gavrilenko,86I. Golutvin,86I. Gorbunov,86A. Kamenev,86 V. Karjavin,86G. Kozlov,86A. Lanev,86A. Malakhov,86P. Moisenz,86V. Palichik,86V. Perelygin,86S. Shmatov,86 V. Smirnov,86A. Volodko,86A. Zarubin,86S. Evstyukhin,87V. Golovtsov,87Y. Ivanov,87V. Kim,87P. Levchenko,87 V. Murzin,87V. Oreshkin,87I. Smirnov,87V. Sulimov,87L. Uvarov,87S. Vavilov,87A. Vorobyev,87An. Vorobyev,87

Yu. Andreev,88A. Dermenev,88S. Gninenko,88N. Golubev,88M. Kirsanov,88N. Krasnikov,88V. Matveev,88 A. Pashenkov,88D. Tlisov,88A. Toropin,88V. Epshteyn,89M. Erofeeva,89V. Gavrilov,89M. Kossov,89,f N. Lychkovskaya,89V. Popov,89G. Safronov,89S. Semenov,89V. Stolin,89E. Vlasov,89A. Zhokin,89A. Belyaev,90

E. Boos,90M. Dubinin,90,eL. Dudko,90A. Ershov,90A. Gribushin,90V. Klyukhin,90O. Kodolova,90I. Lokhtin,90 A. Markina,90S. Obraztsov,90M. Perfilov,90S. Petrushanko,90A. Popov,90L. Sarycheva,90,aV. Savrin,90

A. Snigirev,90V. Andreev,91M. Azarkin,91I. Dremin,91M. Kirakosyan,91A. Leonidov,91G. Mesyats,91 S. V. Rusakov,91A. Vinogradov,91I. Azhgirey,92I. Bayshev,92S. Bitioukov,92V. Grishin,92,fV. Kachanov,92 D. Konstantinov,92A. Korablev,92V. Krychkine,92V. Petrov,92R. Ryutin,92A. Sobol,92L. Tourtchanovitch,92 S. Troshin,92N. Tyurin,92A. Uzunian,92A. Volkov,92P. Adzic,93,ffM. Djordjevic,93M. Ekmedzic,93D. Krpic,93,ff

J. Milosevic,93M. Aguilar-Benitez,94J. Alcaraz Maestre,94P. Arce,94C. Battilana,94E. Calvo,94M. Cerrada,94 M. Chamizo Llatas,94N. Colino,94B. De La Cruz,94A. Delgado Peris,94C. Diez Pardos,94D. Domı´nguez Va´zquez,94

C. Fernandez Bedoya,94J. P. Ferna´ndez Ramos,94A. Ferrando,94J. Flix,94M. C. Fouz,94P. Garcia-Abia,94 O. Gonzalez Lopez,94S. Goy Lopez,94J. M. Hernandez,94M. I. Josa,94G. Merino,94J. Puerta Pelayo,94 A. Quintario Olmeda,94I. Redondo,94L. Romero,94J. Santaolalla,94M. S. Soares,94C. Willmott,94C. Albajar,95 G. Codispoti,95J. F. de Troco´niz,95J. Cuevas,96J. Fernandez Menendez,96S. Folgueras,96I. Gonzalez Caballero,96 L. Lloret Iglesias,96J. Piedra Gomez,96,ggJ. A. Brochero Cifuentes,97I. J. Cabrillo,97A. Calderon,97S. H. Chuang,97

J. Duarte Campderros,97M. Felcini,97,hhM. Fernandez,97G. Gomez,97J. Gonzalez Sanchez,97C. Jorda,97 P. Lobelle Pardo,97A. Lopez Virto,97J. Marco,97R. Marco,97C. Martinez Rivero,97F. Matorras,97 F. J. Munoz Sanchez,97T. Rodrigo,97A. Y. Rodrı´guez-Marrero,97A. Ruiz-Jimeno,97L. Scodellaro,97 M. Sobron Sanudo,97I. Vila,97R. Vilar Cortabitarte,97D. Abbaneo,98E. Auffray,98G. Auzinger,98P. Baillon,98

A. H. Ball,98D. Barney,98C. Bernet,98,gG. Bianchi,98P. Bloch,98A. Bocci,98A. Bonato,98H. Breuker,98 T. Camporesi,98G. Cerminara,98T. Christiansen,98J. A. Coarasa Perez,98D. D’Enterria,98A. Dabrowski,98 A. De Roeck,98S. Di Guida,98M. Dobson,98N. Dupont-Sagorin,98A. Elliott-Peisert,98B. Frisch,98W. Funk,98


R. Gomez-Reino Garrido,98P. Govoni,98S. Gowdy,98R. Guida,98M. Hansen,98P. Harris,98C. Hartl,98J. Harvey,98 B. Hegner,98A. Hinzmann,98V. Innocente,98P. Janot,98K. Kaadze,98E. Karavakis,98K. Kousouris,98P. Lecoq,98

Y.-J. Lee,98P. Lenzi,98C. Lourenc¸o,98T. Ma¨ki,98M. Malberti,98L. Malgeri,98M. Mannelli,98L. Masetti,98 F. Meijers,98S. Mersi,98E. Meschi,98R. Moser,98M. U. Mozer,98M. Mulders,98P. Musella,98E. Nesvold,98 T. Orimoto,98L. Orsini,98E. Palencia Cortezon,98E. Perez,98L. Perrozzi,98A. Petrilli,98A. Pfeiffer,98M. Pierini,98

M. Pimia¨,98D. Piparo,98G. Polese,98L. Quertenmont,98A. Racz,98W. Reece,98J. Rodrigues Antunes,98 G. Rolandi,98,iiT. Rommerskirchen,98C. Rovelli,98,jjM. Rovere,98H. Sakulin,98F. Santanastasio,98C. Scha¨fer,98

C. Schwick,98I. Segoni,98S. Sekmen,98A. Sharma,98P. Siegrist,98P. Silva,98M. Simon,98P. Sphicas,98,kk D. Spiga,98M. Spiropulu,98,eM. Stoye,98A. Tsirou,98G. I. Veres,98,tJ. R. Vlimant,98H. K. Wo¨hri,98S. D. Worm,98,ll

W. D. Zeuner,98W. Bertl,99K. Deiters,99W. Erdmann,99K. Gabathuler,99R. Horisberger,99Q. Ingram,99 H. C. Kaestli,99S. Ko¨nig,99D. Kotlinski,99U. Langenegger,99F. Meier,99D. Renker,99T. Rohe,99J. Sibille,99,mm

L. Ba¨ni,100P. Bortignon,100M. A. Buchmann,100B. Casal,100N. Chanon,100A. Deisher,100G. Dissertori,100 M. Dittmar,100M. Du¨nser,100J. Eugster,100K. Freudenreich,100C. Grab,100D. Hits,100P. Lecomte,100 W. Lustermann,100A. C. Marini,100P. Martinez Ruiz del Arbol,100N. Mohr,100F. Moortgat,100C. Na¨geli,100,nn P. Nef,100F. Nessi-Tedaldi,100F. Pandolfi,100L. Pape,100F. Pauss,100M. Peruzzi,100F. J. Ronga,100M. Rossini,100

L. Sala,100A. K. Sanchez,100A. Starodumov,100,ooB. Stieger,100M. Takahashi,100L. Tauscher,100,aA. Thea,100 K. Theofilatos,100D. Treille,100C. Urscheler,100R. Wallny,100H. A. Weber,100L. Wehrli,100E. Aguilo,101

C. Amsler,101V. Chiochia,101S. De Visscher,101C. Favaro,101M. Ivova Rikova,101B. Millan Mejias,101 P. Otiougova,101P. Robmann,101H. Snoek,101S. Tupputi,101M. Verzetti,101Y. H. Chang,102K. H. Chen,102 C. M. Kuo,102S. W. Li,102W. Lin,102Z. K. Liu,102Y. J. Lu,102D. Mekterovic,102A. P. Singh,102R. Volpe,102 S. S. Yu,102P. Bartalini,103P. Chang,103Y. H. Chang,103Y. W. Chang,103Y. Chao,103K. F. Chen,103C. Dietz,103 U. Grundler,103W.-S. Hou,103Y. Hsiung,103K. Y. Kao,103Y. J. Lei,103R.-S. Lu,103D. Majumder,103E. Petrakou,103 X. Shi,103J. G. Shiu,103Y. M. Tzeng,103X. Wan,103M. Wang,103A. Adiguzel,104M. N. Bakirci,104,ppS. Cerci,104,qq C. Dozen,104I. Dumanoglu,104E. Eskut,104S. Girgis,104G. Gokbulut,104E. Gurpinar,104I. Hos,104E. E. Kangal,104 G. Karapinar,104A. Kayis Topaksu,104G. Onengut,104K. Ozdemir,104S. Ozturk,104,rrA. Polatoz,104K. Sogut,104,ss

D. Sunar Cerci,104,qqB. Tali,104,qqH. Topakli,104,ppL. N. Vergili,104M. Vergili,104I. V. Akin,105T. Aliev,105 B. Bilin,105S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105 R. Sever,105U. E. Surat,105M. Yalvac,105E. Yildirim,105M. Zeyrek,105E. Gu¨lmez,106B. Isildak,106,ttM. Kaya,106,uu

O. Kaya,106,uuS. Ozkorucuklu,106,vvN. Sonmez,106,wwK. Cankocak,107L. Levchuk,108F. Bostock,109 J. J. Brooke,109E. Clement,109D. Cussans,109H. Flacher,109R. Frazier,109J. Goldstein,109M. Grimes,109 G. P. Heath,109H. F. Heath,109L. Kreczko,109S. Metson,109D. M. Newbold,109,llK. Nirunpong,109A. Poll,109

S. Senkin,109V. J. Smith,109T. Williams,109L. Basso,110,xxK. W. Bell,110A. Belyaev,110,xxC. Brew,110 R. M. Brown,110D. J. A. Cockerill,110J. A. Coughlan,110K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110

E. Olaiya,110D. Petyt,110B. C. Radburn-Smith,110C. H. Shepherd-Themistocleous,110I. R. Tomalin,110 W. J. Womersley,110R. Bainbridge,111G. Ball,111R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111

M. Cutajar,111P. Dauncey,111G. Davies,111M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111 A. Gilbert,111A. Guneratne Bryer,111G. Hall,111Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111 G. Karapostoli,111L. Lyons,111A.-M. Magnan,111J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111

A. Nikitenko,111,ooA. Papageorgiou,111J. Pela,111,fM. Pesaresi,111K. Petridis,111M. Pioppi,111,yy

D. M. Raymond,111S. Rogerson,111A. Rose,111M. J. Ryan,111C. Seez,111P. Sharp,111,aA. Sparrow,111A. Tapper,111 M. Vazquez Acosta,111T. Virdee,111S. Wakefield,111N. Wardle,111T. Whyntie,111M. Chadwick,112J. E. Cole,112 P. R. Hobson,112A. Khan,112P. Kyberd,112D. Leggat,112D. Leslie,112W. Martin,112I. D. Reid,112P. Symonds,112 L. Teodorescu,112M. Turner,112K. Hatakeyama,113H. Liu,113T. Scarborough,113C. Henderson,114P. Rumerio,114 A. Avetisyan,115T. Bose,115C. Fantasia,115A. Heister,115J. St. John,115P. Lawson,115D. Lazic,115J. Rohlf,115

D. Sperka,115L. Sulak,115J. Alimena,116S. Bhattacharya,116D. Cutts,116A. Ferapontov,116U. Heintz,116 S. Jabeen,116G. Kukartsev,116E. Laird,116G. Landsberg,116M. Luk,116M. Narain,116D. Nguyen,116M. Segala,116 T. Sinthuprasith,116T. Speer,116K. V. Tsang,116R. Breedon,117G. Breto,117M. Calderon De La Barca Sanchez,117 S. Chauhan,117M. Chertok,117J. Conway,117R. Conway,117P. T. Cox,117J. Dolen,117R. Erbacher,117M. Gardner,117 R. Houtz,117W. Ko,117A. Kopecky,117R. Lander,117T. Miceli,117D. Pellett,117B. Rutherford,117M. Searle,117

J. Smith,117M. Squires,117M. Tripathi,117R. Vasquez Sierra,117V. Andreev,118D. Cline,118R. Cousins,118 J. Duris,118S. Erhan,118P. Everaerts,118C. Farrell,118J. Hauser,118M. Ignatenko,118C. Jarvis,118C. Plager,118


G. Rakness,118P. Schlein,118,aJ. Tucker,118V. Valuev,118M. Weber,118J. Babb,119R. Clare,119M. E. Dinardo,119 J. Ellison,119J. W. Gary,119F. Giordano,119G. Hanson,119G. Y. Jeng,119,zzH. Liu,119O. R. Long,119A. Luthra,119 H. Nguyen,119S. Paramesvaran,119J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119W. Andrews,120

J. G. Branson,120G. B. Cerati,120S. Cittolin,120D. Evans,120F. Golf,120A. Holzner,120R. Kelley,120 M. Lebourgeois,120J. Letts,120I. Macneill,120B. Mangano,120S. Padhi,120C. Palmer,120G. Petrucciani,120

M. Pieri,120M. Sani,120V. Sharma,120S. Simon,120E. Sudano,120M. Tadel,120Y. Tu,120A. Vartak,120 S. Wasserbaech,120,aaaF. Wu¨rthwein,120A. Yagil,120J. Yoo,120D. Barge,121R. Bellan,121C. Campagnari,121

M. D’Alfonso,121T. Danielson,121K. Flowers,121P. Geffert,121J. Incandela,121C. Justus,121P. Kalavase,121 S. A. Koay,121D. Kovalskyi,121V. Krutelyov,121S. Lowette,121N. Mccoll,121V. Pavlunin,121F. Rebassoo,121 J. Ribnik,121J. Richman,121R. Rossin,121D. Stuart,121W. To,121C. West,121A. Apresyan,122A. Bornheim,122 Y. Chen,122E. Di Marco,122J. Duarte,122M. Gataullin,122Y. Ma,122A. Mott,122H. B. Newman,122C. Rogan,122 V. Timciuc,122P. Traczyk,122J. Veverka,122R. Wilkinson,122Y. Yang,122R. Y. Zhu,122B. Akgun,123R. Carroll,123 T. Ferguson,123Y. Iiyama,123D. W. Jang,123Y. F. Liu,123M. Paulini,123H. Vogel,123I. Vorobiev,123J. P. Cumalat,124 B. R. Drell,124C. J. Edelmaier,124W. T. Ford,124A. Gaz,124B. Heyburn,124E. Luiggi Lopez,124J. G. Smith,124 K. Stenson,124K. A. Ulmer,124S. R. Wagner,124J. Alexander,125A. Chatterjee,125N. Eggert,125L. K. Gibbons,125

B. Heltsley,125A. Khukhunaishvili,125B. Kreis,125N. Mirman,125G. Nicolas Kaufman,125J. R. Patterson,125 A. Ryd,125E. Salvati,125W. Sun,125W. D. Teo,125J. Thom,125J. Thompson,125J. Vaughan,125Y. Weng,125 L. Winstrom,125P. Wittich,125D. Winn,126S. Abdullin,127M. Albrow,127J. Anderson,127L. A. T. Bauerdick,127

A. Beretvas,127J. Berryhill,127P. C. Bhat,127I. Bloch,127K. Burkett,127J. N. Butler,127V. Chetluru,127 H. W. K. Cheung,127F. Chlebana,127V. D. Elvira,127I. Fisk,127J. Freeman,127Y. Gao,127D. Green,127O. Gutsche,127

J. Hanlon,127R. M. Harris,127J. Hirschauer,127B. Hooberman,127S. Jindariani,127M. Johnson,127U. Joshi,127 B. Kilminster,127B. Klima,127S. Kunori,127S. Kwan,127C. Leonidopoulos,127D. Lincoln,127R. Lipton,127 J. Lykken,127K. Maeshima,127J. M. Marraffino,127S. Maruyama,127D. Mason,127P. McBride,127K. Mishra,127 S. Mrenna,127Y. Musienko,127,bbbC. Newman-Holmes,127V. O’Dell,127O. Prokofyev,127E. Sexton-Kennedy,127 S. Sharma,127W. J. Spalding,127L. Spiegel,127P. Tan,127L. Taylor,127S. Tkaczyk,127N. V. Tran,127L. Uplegger,127 E. W. Vaandering,127R. Vidal,127J. Whitmore,127W. Wu,127F. Yang,127F. Yumiceva,127J. C. Yun,127D. Acosta,128

P. Avery,128D. Bourilkov,128M. Chen,128S. Das,128M. De Gruttola,128G. P. Di Giovanni,128D. Dobur,128 A. Drozdetskiy,128R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128J. Gartner,128J. Hugon,128B. Kim,128

J. Konigsberg,128A. Korytov,128A. Kropivnitskaya,128T. Kypreos,128J. F. Low,128K. Matchev,128 P. Milenovic,128,cccG. Mitselmakher,128L. Muniz,128R. Remington,128A. Rinkevicius,128P. Sellers,128 N. Skhirtladze,128M. Snowball,128J. Yelton,128M. Zakaria,128V. Gaultney,129L. M. Lebolo,129S. Linn,129 P. Markowitz,129G. Martinez,129J. L. Rodriguez,129J. R. Adams,130T. Adams,130A. Askew,130J. Bochenek,130

J. Chen,130B. Diamond,130S. V. Gleyzer,130J. Haas,130S. Hagopian,130V. Hagopian,130M. Jenkins,130 K. F. Johnson,130H. Prosper,130V. Veeraraghavan,130M. Weinberg,130M. M. Baarmand,131B. Dorney,131 M. Hohlmann,131H. Kalakhety,131I. Vodopiyanov,131M. R. Adams,132I. M. Anghel,132L. Apanasevich,132 Y. Bai,132V. E. Bazterra,132R. R. Betts,132I. Bucinskaite,132J. Callner,132R. Cavanaugh,132C. Dragoiu,132 O. Evdokimov,132L. Gauthier,132C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132F. Lacroix,132M. Malek,132

C. O’Brien,132C. Silkworth,132D. Strom,132N. Varelas,132U. Akgun,133E. A. Albayrak,133B. Bilki,133,ddd W. Clarida,133F. Duru,133S. Griffiths,133J.-P. Merlo,133H. Mermerkaya,133,eeeA. Mestvirishvili,133A. Moeller,133

J. Nachtman,133C. R. Newsom,133E. Norbeck,133Y. Onel,133F. Ozok,133S. Sen,133E. Tiras,133J. Wetzel,133 T. Yetkin,133K. Yi,133B. A. Barnett,134B. Blumenfeld,134S. Bolognesi,134D. Fehling,134G. Giurgiu,134 A. V. Gritsan,134Z. J. Guo,134G. Hu,134P. Maksimovic,134S. Rappoccio,134M. Swartz,134A. Whitbeck,134

P. Baringer,135A. Bean,135G. Benelli,135O. Grachov,135R. P. Kenny Iii,135M. Murray,135D. Noonan,135 S. Sanders,135R. Stringer,135G. Tinti,135J. S. Wood,135V. Zhukova,135A. F. Barfuss,136T. Bolton,136 I. Chakaberia,136A. Ivanov,136S. Khalil,136M. Makouski,136Y. Maravin,136S. Shrestha,136I. Svintradze,136

J. Gronberg,137D. Lange,137D. Wright,137A. Baden,138M. Boutemeur,138B. Calvert,138S. C. Eno,138 J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138M. Kirn,138T. Kolberg,138Y. Lu,138M. Marionneau,138 A. C. Mignerey,138K. Pedro,138A. Peterman,138A. Skuja,138J. Temple,138M. B. Tonjes,138S. C. Tonwar,138

E. Twedt,138G. Bauer,139J. Bendavid,139W. Busza,139E. Butz,139I. A. Cali,139M. Chan,139V. Dutta,139 G. Gomez Ceballos,139M. Goncharov,139K. A. Hahn,139Y. Kim,139M. Klute,139K. Krajczar,139,fffW. Li,139


G. S. F. Stephans,139F. Sto¨ckli,139K. Sumorok,139K. Sung,139D. Velicanu,139E. A. Wenger,139R. Wolf,139 B. Wyslouch,139S. Xie,139M. Yang,139Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139S. I. Cooper,140B. Dahmes,140

A. De Benedetti,140G. Franzoni,140A. Gude,140S. C. Kao,140K. Klapoetke,140Y. Kubota,140J. Mans,140 N. Pastika,140R. Rusack,140M. Sasseville,140A. Singovsky,140N. Tambe,140J. Turkewitz,140L. M. Cremaldi,141

R. Kroeger,141L. Perera,141R. Rahmat,141D. A. Sanders,141E. Avdeeva,142K. Bloom,142S. Bose,142J. Butt,142 D. R. Claes,142A. Dominguez,142M. Eads,142J. Keller,142I. Kravchenko,142J. Lazo-Flores,142H. Malbouisson,142

S. Malik,142G. R. Snow,142U. Baur,143A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143A. Kumar,143 S. P. Shipkowski,143K. Smith,143G. Alverson,144E. Barberis,144D. Baumgartel,144M. Chasco,144J. Haley,144 D. Nash,144D. Trocino,144D. Wood,144J. Zhang,144A. Anastassov,145A. Kubik,145N. Mucia,145N. Odell,145 R. A. Ofierzynski,145B. Pollack,145A. Pozdnyakov,145M. Schmitt,145S. Stoynev,145M. Velasco,145S. Won,145

L. Antonelli,146D. Berry,146A. Brinkerhoff,146M. Hildreth,146C. Jessop,146D. J. Karmgard,146J. Kolb,146 K. Lannon,146W. Luo,146S. Lynch,146N. Marinelli,146D. M. Morse,146T. Pearson,146R. Ruchti,146J. Slaunwhite,146

N. Valls,146M. Wayne,146M. Wolf,146B. Bylsma,147L. S. Durkin,147A. Hart,147C. Hill,147R. Hughes,147 K. Kotov,147T. Y. Ling,147D. Puigh,147M. Rodenburg,147C. Vuosalo,147G. Williams,147B. L. Winer,147 N. Adam,148E. Berry,148P. Elmer,148D. Gerbaudo,148V. Halyo,148P. Hebda,148J. Hegeman,148A. Hunt,148 P. Jindal,148D. Lopes Pegna,148P. Lujan,148D. Marlow,148T. Medvedeva,148M. Mooney,148J. Olsen,148P. Piroue´,148

X. Quan,148A. Raval,148H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148A. Zuranski,148J. G. Acosta,149 E. Brownson,149X. T. Huang,149A. Lopez,149H. Mendez,149S. Oliveros,149J. E. Ramirez Vargas,149 A. Zatserklyaniy,149E. Alagoz,150V. E. Barnes,150D. Benedetti,150G. Bolla,150D. Bortoletto,150M. De Mattia,150

A. Everett,150Z. Hu,150M. Jones,150O. Koybasi,150M. Kress,150A. T. Laasanen,150N. Leonardo,150 V. Maroussov,150P. Merkel,150D. H. Miller,150N. Neumeister,150I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150

M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150S. Guragain,151N. Parashar,151A. Adair,152 C. Boulahouache,152K. M. Ecklund,152F. J. M. Geurts,152B. P. Padley,152R. Redjimi,152J. Roberts,152J. Zabel,152

B. Betchart,153A. Bodek,153Y. S. Chung,153R. Covarelli,153P. de Barbaro,153R. Demina,153Y. Eshaq,153 A. Garcia-Bellido,153P. Goldenzweig,153J. Han,153A. Harel,153D. C. Miner,153D. Vishnevskiy,153M. Zielinski,153

A. Bhatti,154R. Ciesielski,154L. Demortier,154K. Goulianos,154G. Lungu,154S. Malik,154C. Mesropian,154 S. Arora,155A. Barker,155J. P. Chou,155C. Contreras-Campana,155E. Contreras-Campana,155D. Duggan,155 D. Ferencek,155Y. Gershtein,155R. Gray,155E. Halkiadakis,155D. Hidas,155A. Lath,155S. Panwalkar,155M. Park,155

R. Patel,155V. Rekovic,155J. Robles,155K. Rose,155S. Salur,155S. Schnetzer,155C. Seitz,155S. Somalwar,155 R. Stone,155S. Thomas,155G. Cerizza,156M. Hollingsworth,156S. Spanier,156Z. C. Yang,156A. York,156 R. Eusebi,157W. Flanagan,157J. Gilmore,157T. Kamon,157,gggV. Khotilovich,157R. Montalvo,157I. Osipenkov,157 Y. Pakhotin,157A. Perloff,157J. Roe,157A. Safonov,157T. Sakuma,157S. Sengupta,157I. Suarez,157A. Tatarinov,157

D. Toback,157N. Akchurin,158J. Damgov,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158 T. Libeiro,158Y. Roh,158I. Volobouev,158E. Appelt,159C. Florez,159S. Greene,159A. Gurrola,159W. Johns,159 C. Johnston,159P. Kurt,159C. Maguire,159A. Melo,159P. Sheldon,159B. Snook,159S. Tuo,159J. Velkovska,159

M. W. Arenton,160M. Balazs,160S. Boutle,160B. Cox,160B. Francis,160J. Goodell,160R. Hirosky,160 A. Ledovskoy,160C. Lin,160C. Neu,160J. Wood,160R. Yohay,160S. Gollapinni,161R. Harr,161P. E. Karchin,161

C. Kottachchi Kankanamge Don,161P. Lamichhane,161A. Sakharov,161M. Anderson,162M. Bachtis,162 D. Belknap,162L. Borrello,162D. Carlsmith,162M. Cepeda,162S. Dasu,162L. Gray,162K. S. Grogg,162M. Grothe,162

R. Hall-Wilton,162M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162A. Lanaro,162C. Lazaridis,162 J. Leonard,162R. Loveless,162A. Mohapatra,162I. Ojalvo,162F. Palmonari,162G. A. Pierro,162I. Ross,162A. Savin,162

W. H. Smith,162and J. Swanson162

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium


8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China 16

State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research - EHEP, Mumbai, India 51Tata Institute of Fundamental Research - HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran


INFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy 57

INFN Laboratori Nazionali di Frascati, Frascati, Italy 58INFN Sezione di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy


60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy 61aINFN Sezione di Padova, Padova, Italy

61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64a

INFN Sezione di Pisa, Pisa, Italy 64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Konkuk University, Seoul, Korea

72Korea University, Seoul, Korea 73University of Seoul, Seoul, Korea 74

Sungkyunkwan University, Suwon, Korea 75Vilnius University, Vilnius, Lithuania

76Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 77Universidad Iberoamericana, Mexico City, Mexico

78Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 79Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

80University of Auckland, Auckland, New Zealand 81University of Canterbury, Christchurch, New Zealand

82National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

84Soltan Institute for Nuclear Studies, Warsaw, Poland

85Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 86Joint Institute for Nuclear Research, Dubna, Russia

87Petersburg Nuclear Physics Institute, Gatchina (St Petersburg), Russia 88Institute for Nuclear Research, Moscow, Russia

89Institute for Theoretical and Experimental Physics, Moscow, Russia 90Moscow State University, Moscow, Russia

91P.N. Lebedev Physical Institute, Moscow, Russia

92State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 93University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

94Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 95Universidad Auto´noma de Madrid, Madrid, Spain

96Universidad de Oviedo, Oviedo, Spain 97

Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 98CERN, European Organization for Nuclear Research, Geneva, Switzerland

99Paul Scherrer Institut, Villigen, Switzerland

100Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 101Universita¨t Zu¨rich, Zurich, Switzerland

102National Central University, Chung-Li, Taiwan 103National Taiwan University (NTU), Taipei, Taiwan

104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106

Bogazici University, Istanbul, Turkey 107Istanbul Technical University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109University of Bristol, Bristol, United Kingdom


111Imperial College, London, United Kingdom 112Brunel University, Uxbridge, United Kingdom

113Baylor University, Waco, Texas, USA

114The University of Alabama, Tuscaloosa, Alabama, USA 115Boston University, Boston, Massachusetts, USA 116Brown University, Providence, Rhode Island, USA 117University of California, Davis, Davis, California, USA 118University of California, Los Angeles, Los Angeles, California, USA


University of California, Riverside, Riverside, California, USA 120University of California, San Diego, La Jolla, California, USA 121University of California, Santa Barbara, Santa Barbara,California, USA

122California Institute of Technology, Pasadena, California, USA 123Carnegie Mellon University, Pittsburgh, Philadelphia, USA 124University of Colorado at Boulder, Boulder, Colorado, USA

125Cornell University, Ithaca, New York, USA 126Fairfield University, Fairfield, Connecticut, USA 127Fermi National Accelerator Laboratory, Batavia, Illinois, USA

128University of Florida, Gainesville, USA 129Florida International University, Miami, Florida, USA

130Florida State University, Tallahassee, Florida, USA 131Florida Institute of Technology, Melbourne, Florida, USA 132University of Illinois at Chicago (UIC), Chicago, Illinois, USA

133The University of Iowa, Iowa City, Iowa, USA 134Johns Hopkins University, Baltimore, maryland, USA


The University of Kansas, Lawrence, Kansas, USA 136Kansas State University, Manhattan, Kansas, USA

137Lawrence Livermore National Laboratory, Livermore, California, USA 138University of Maryland, College Park, Maryland, USA 139Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

140University of Minnesota, Minneapolis, Minnesota, USA 141University of Mississippi, University, Mississippi, USA 142University of Nebraska-Lincoln, Lincoln, Nebraska, USA 143State University of New York at Buffalo, Buffalo, New York, USA

144Northeastern University, Boston, Massachusetts, USA 145Northwestern University, Evanston, Illinois, USA 146University of Notre Dame, Notre Dame, Indiana, USA

147The Ohio State University, Columbus, Ohio, USA 148Princeton University, Princeton, New Jersey, USA 149University of Puerto Rico, Mayaguez, Puerto Rico 150Purdue University, West Lafayette, Indiana, USA 151Purdue University Calumet, Indiana, Hammond, USA

152Rice University, Houston, Texas, USA 153University of Rochester, Rochester, New York, USA 154The Rockefeller University, New York, New York, USA

155Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 156University of Tennessee, Knoxville, Tennessee, USA

157Texas A&M University, College Station, Texas. USA 158

Texas Tech University, Lubbock, Texas, USA 159Vanderbilt University, Nashville, Tennessee, USA 160University of Virginia, Charlottesville, Virginia, USA

161Wayne State University, Detroit, Michigan, USA 162University of Wisconsin, Madison, Wisconsin, USA


bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, CA, USA.

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.


hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at Ain Shams University, Cairo, Egypt. mNow at British University, Cairo, Egypt.

nAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland. oAlso at Universite´ de Haute-Alsace, Mulhouse, France. pNow at Joint Institute for Nuclear Research, Dubna, Russia. qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. tAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. v

Also at University of Visva-Bharati, Santiniketan, India.

wAlso at Sharif University of Technology, Tehran, Iran. xAlso at Isfahan University of Technology, Isfahan, Iran. yAlso at Shiraz University, Shiraz, Iran.

zAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran. aaAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

bbAlso at Universita` della Basilicata, Potenza, Italy.

ccAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ddAlso at Universita` degli studi di Siena, Siena, Italy.

eeAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ffAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

ggAlso at University of Florida, Gainesville, FL, USA.

hhAlso at University of California, Los Angeles, Los Angeles, CA, USA. iiAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

jjAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy. kk

Also at University of Athens, Athens, Greece.

llAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. mmAlso at The University of Kansas, Lawrence, KS, USA.

nnAlso at Paul Scherrer Institut, Villigen, Switzerland.

ooAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ppAlso at Gaziosmanpasa University, Tokat, Turkey.

qqAlso at Adiyaman University, Adiyaman, Turkey. rrAlso at The University of Iowa, Iowa City, IA, USA. ssAlso at Mersin University, Mersin, Turkey.

ttAlso at Ozyegin University, Istanbul, Turkey. uuAlso at Kafkas University, Kars, Turkey.

vvAlso at Suleyman Demirel University, Isparta, Turkey. wwAlso at Ege University, Izmir, Turkey.

xxAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. yy

Also at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

zzAlso at University of Sydney, Sydney, Australia. aaaAlso at Utah Valley University, Orem, UT. USA. bbbAlso at Institute for Nuclear Research, Moscow, Russia.

cccAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbi.a dddAlso at Argonne National Laboratory, Argonne, IL, USA.

eeeAlso at Erzincan University, Erzincan, Turkey.

fffAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. gggAlso at Kyungpook National University, Daegu, Korea.


TABLE I. Summary of the systematic uncertainties on the asymmetry. All values are given in units of 10 3 .
Table I summarizes the systematic uncertainties in all the electron pseudorapidity bins


Documenti correlati

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Nella ricerca etnografica sono state coinvolte alcune delle ospiti e beneficiarie 29 che hanno deciso di partecipare alla ricerca, le volon- tarie 30 e gli operatori, pur prendendo

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

Nicola Barbuti, ha curato sia la progettazione e realizzazione del tracciato in open data utilizzato per indicizzare e pubblicare on line una selezione di volumi a stampa

La prima si lega all’analisi dei bisogni formativi degli insegnanti della rete scolastica partecipante (bisogni espressi e manifestati sia in fase di primo con- tatto con

Significant results are reported also with respect to the perceived maternal care received by subjects during infancy and reported through self-report questionnaires

Keywords: Endocrine disruptor, humic substances, natural organic matter, organic contaminant, phytoremediation,

RNA-seq of AML-amp cases identi fied 12,468 and 58,032 raw chimeric transcripts by CS and FM, respectively, among which 38 and 429 involved 8q24-ampli fied genes (Supplementary