• Non ci sono risultati.

Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8TeV"

Copied!
17
0
0

Testo completo

(1)

Search for jet extinction in the inclusive jet-p

T

spectrum from proton-proton

collisions at

p

ffiffi

s

¼ 8 TeV

V. Khachatryan et al.* (CMS Collaboration)

(Received 29 May 2014; published 18 August 2014)

The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of10.7 fb−1of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale.

DOI:10.1103/PhysRevD.90.032005 PACS numbers: 13.85.Rm, 13.87.-a, 14.70.Kv

I. INTRODUCTION

The scattering of high-energy particles in theories of quantum gravity is fundamentally different from that expected by the local quantum field theories of the standard model (SM)[1]. The Planck scale, the threshold at which quantum gravity becomes strong, is therefore a fundamen-tal boundary beyond which some modification to the SM is required. The Planck scale differs from the electroweak scale by 16 orders of magnitude, creating what is com-monly known as the hierarchy problem. There are many models that propose a mechanism by which these two scales are related to one another through the hypothesized existence of extra spatial dimensions. Propagation of gravitons through these extra dimensions could explain the relative weakness of gravity compared to the strong and electroweak interactions. Depending on the model, a variety of striking signatures of physics beyond the SM may be observed. As a result, models that predict terascale gravity have been the subject of numerous searches at the CERN LHC[2–11]. Some of these searches are designed to look for effects such as resonant production and decay of new states, e.g. Randall-Sundrum gravitons[12], as well as for continuum enhancements to SM processes from both virtual and direct graviton production[13]. Direct searches for production of microscopic black holes consider events with high transverse momentum (pT) and multiple objects

from the decay of possible high-entropy intermediate states [1,14,15].

As of yet, no signal indicative of terascale gravity has been found. Nevertheless, it has been suggested that evidence of terascale gravity could also be found through more subtle effects on the jet-pT spectrum manifesting

themselves as a deviation from the predictions of quantum chromodynamics (QCD)[1,14,16,17]. While the produc-tion of black holes or particles indicative of nonperturbative quantum gravity can have a rapidly increasing total cross section beyond some energy scale, their decay to isolated jets or other low-multiplicity final states could be sup-pressed, leading to a full suppression of high-pT SM

scattering processes (jet extinction). Because jet production is the leading SM process at high pT, such effects would be

initially noticeable as a jet extinction signature[17]. In this sense, the search for jet extinction is complementary to searches for black holes in high-multiplicity final states. These final states arise in the asymptotic limit, where black holes are expected to behave classically[15]. The extinc-tion search explores an intermediate regime, where a high-multiplicity signature may not be readily observable.

There are several models that include extinction phe-nomena [16,17]. In this, the first search for extinction effects at the LHC, we consider a model with a large-width Veneziano form factor modification of QCD processes with an extinction mass scale M equivalent to the modified Planck scale[17]. This form factor is discussed in greater detail in Sec.3. Beyond the scale M, the predominance of intermediate entropy string states will suppress high-pT SM jet production. This search exploits techniques

developed for the measurement of the differential jet production cross section as a function of pT at the CMS

[18]experiment to search for a modification of the jet-pT

spectrum consistent with extinction phenomena, in which there are fewer high-pT jets than expected from the SM.

This analysis is especially sensitive to the correlations of * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

the systematic uncertainties between bins in jet-pT, so a

detailed evaluation of the systematic uncertainties associ-ated with the jet energy scale (JES) and the parton distribution functions (PDFs) is performed.

II. THE CMS DETECTOR

The central feature of the CMS detector [19] is a superconducting solenoid of 6 m internal diameter, provid-ing a field of 3.8 T. Within the field volume are silicon pixel and strip trackers, a lead-tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter (HCAL). Muons are measured in gas-ionization detectors embedded in the steel flux-return yoke.

The CMS experiment uses a right-handed coordinate system, with the origin at the nominal interaction point, the x axis pointing to the center of the LHC ring, the y axis pointing up (perpendicular to the plane of the LHC ring), and the z axis along the counterclockwise-beam direction. The polar angle θ is measured from the positive z axis and the azimuthal angleϕ is measured in the xy plane. The pseudorapidity is defined as η ¼ − ln½tanðθ=2Þ.

The first level of the CMS trigger system is composed of customized hardware and uses information from the cal-orimeters and muon detectors to select events of interest within a 4 μs interval following each beam crossing. The high-level trigger (HLT) [20] processor farm further decreases the event rate from about 100 kHz to about 400 Hz before the data are recorded for analysis.

III. MODELING OF THE SM AND EXTINCTION HYPOTHESES

The SM prediction for the jet-pT spectrum is calculated

at next-to-leading order (NLO) with the NLOJET++ pro-gram within theFASTNLO framework[21–23]. The CT10 PDF set[24]is used in this calculation. The renormaliza-tion and factorizarenormaliza-tion scales,μRandμF, are set equal to the jet-pT. The NLO jet spectra do not include nonperturbative

(NP) effects or any modeling of the detector response. The NP effects, which account for hadronization and multi-parton interactions, are incorporated as corrections deter-mined from the PYTHIA 6.424 [25] Monte Carlo (MC)

generator. The generator is used to simulate QCD events with and without NP effects. The corrections are derived from the ratio of the resulting pT spectra. The NP

correction decreases monotonically as a function of jet-pT, from 1.03 at 592 GeV to 1.01 at 2500 GeV. This

process is repeated using theHERWIG2.4.2[26]generator. The difference between the corrections derived from these generators is found to be negligible in the phase space of this analysis. The corrected NLO jet spectra are convolved with a function that models the jet energy resolution (JER) in the CMS detector [27]. These smeared spectra can be compared directly to the observed spectrum. The smeared NLO jet spectrum is referred to as dσQCD=dp

T;NLO.

This procedure is repeated to produce a smeared leading-order (LO) jet-pT spectrum, labeled as dσQCD=dpT;LO. The

predicted spectrum does not include weak radiative cor-rections [28], but the impact of these corrections on our sensitivity to an extinction signature is evaluated during the limit-setting procedure.

The effects of extinction at LO are also modeled using the PYTHIA MC generator. The matrix elements of each

color channel are modified by Veneziano-type form factors [17,29], which affect all2 → 2 scattering amplitudes. The input parameters for these form factors are the extinction mass scale M and a dimensionless width parameter related to the strength of the string coupling. For small values of the width parameter, these form factors are similar to those that describe string resonances[29,30]. This is referred to as the weak-coupling limit. The regime where the width parameter is close to unity is known as the strong-coupling limit. In this limit, extinction physics rapidly overwhelms LO SM processes as well as any resonant string production. Beyond the scale M, scattering processes are dominated by a continuum of high-entropy intermediate states, which results in suppression of SM jet production [17]. This search assumes a width parameter of one, the absolute strong-coupling limit of the string model. Values of the width above one represent a very different phenomenology where the form factors no longer monotonically decrease as a function of jet momentum. This range of the width parameter has not been studied in this analysis.

The effects of extinction are predominantly found in 2 → 2 scattering processes. Such processes are dominated by the LO calculation at a given pT scale. The signal is

approximated with a LO generator. The extinction process is assumed to have a very weak effect on higher-order interactions. A sigmoid function provides a good functional fit of the effect of the Veneziano form factors on the LO jet-pT spectrum [17]: FðpT; MÞ ¼ 1 1 þ exppT−pT;1=2ðMÞ pT;0ðMÞ : ð1Þ

Here, pT;1=2describes the pT threshold at which LO jet

production is reduced to half the SM expectation, while pT;0indicates how quickly the LO cross section

exponen-tially falls relative to the SM prediction. This relation yields the following equation for the jet-pT spectrum assuming

extinction at LO, where σExt is the jet production cross

section assuming extinction: dσExt dpT;LO ¼ dσQCD dpT;LO FðpT; MÞ ð2Þ and at NLO: dσExt dpT;NLO ¼ dσQCD dpT;NLO −dσQCD dpT;LO þ dσExt dpT;LO : ð3Þ

(3)

Several simulations of LO jet production are performed, assuming values of M between 2 and 5 TeV in increments of 500 GeV. The jet-pT spectrum is produced at NLO for

each sample using NP corrections and resolution smearing as described above. The values of pT;1=2ðMÞ and pT;0ðMÞ

are extracted from a fit of FðpT; MÞ to the expected pT

distribution for each value of M. The intermediate values of pT;1=2ðMÞ and pT;0ðMÞ are interpolated between these

fitted points. The fitted value of pT;0ðMÞ is nearly

inde-pendent of M and ranges between 260 and 330 GeV, while pT;1=2ðMÞ is about half of M. The systematic uncertainty

associated with the choice of fit is negligible.

For finite values of M, the predicted jet-pT spectrum is

suppressed in systems with an invariant mass above M. At very large values of M, the SM and extinction spectra become identical.

IV. EVENT RECONSTRUCTION AND SELECTION A particle-flow algorithm[31,32]is used to reconstruct the events. Jets are formed by clustering the reconstructed particle-flow objects using the anti-kTalgorithm[33]with a

distance parameter R of 0.7. This value is larger than the usual distance parameter of 0.5 used in most CMS analyses. The larger cluster size reduces the likelihood that jets will be lost because of detector effects. The jet transverse momentum resolution is typically 15% at pT ¼ 10 GeV,

8% at 100 GeV, and 4% at 1 TeV. Jet energy corrections are derived from simulation and are confirmed with measure-ments of energy balance in recorded dijet and photonþ jet events. The combined corrections are approximately 5%–10%, depending on the pseudorapidity and pT of the jet. To suppress spurious signals from detector noise[34], jets are required to satisfy stringent selection criteria [35]. Specifically, each jet must contain at least two particles, one of which is a charged hadron. Additionally, each of the jet energy fractions carried by neutral hadrons, photons, elec-trons, and muons must be less than 90%. This analysis is conducted in a regime where the purity and acceptance of the jets in data are both close to unity, and therefore no systematic uncertainty is attributed to the selection criteria. The data used in this analysis were collected from an HLT trigger that accepted events containing at least one jet with pT > 320 GeV. An offset is applied to

trigger-selected jets to subtract the energy deposited as a result of additional interactions per beam crossing (pileup); this offset does not affect the trigger efficiency. Events with objects originating from an interaction within an LHC beam crossing are selected by requiring the presence of at least one primary vertex within 24 cm of the detector center along the z axis. The primary event vertex is chosen from all reconstructed vertices by selecting the one with the largest sum of the p2T of all associated tracks. For the purpose of additional noise suppression, the missing trans-verse energy, defined as the magnitude of the vector sum pT

of all reconstructed particle-flow objects, must be less than

30% of the total transverse energy deposited in the detector. All jets in each event that pass the selection criteria are binned as a function of jet-pT, following a convention

adopted by other inclusive-jet analyses in CMS. The bin widths are variable, increasing with jet-pTand

correspond-ing approximately to the jet-pT resolution [18]. Jets are

required to have pT > 592 GeV and pseudorapidity

jηj < 1.5 to ensure that the trigger is at least 99% efficient in all pT bins used. This search is performed in 18 pT bins

between 592 and 2500 GeV.

A comparison between the observed inclusive jet-pT

spectrum and the spectrum predicted at NLO with the CT10 PDF set is shown in Figs.1and2. The predicted spectrum includes nonperturbative corrections and smearing by the detector response and is normalized to the total number of jets in data that pass all selection criteria. However, in the comparison of the model to the data as described in Sec.5, the SM distribution is instead normalized to the number of jets expected given an integrated luminosity of10.7 fb−1. The number of jets observed in data is 3% lower than the number expected assuming the CT10 PDF set at NLO. This discrepancy is attributed to uncertainty in the PDF param-eters, scale variations in the cross section calculation, or

[GeV] T Inclusive jet p 1000 1500 2000 2500 ] -1 [GeV T /dp jets dN -2 10 -1 10 1 10 2 10 3 10 4 10 CMS L = 10.7 fb-1, jets, R = 0.7 T Anti-k | < 1.5 η | T = p R µ = F µ = 8 TeV s Observed Systematic uncertainty

NLO QCD (CT10 normalized to data) Extinction scale M = 4 TeV Extinction scale M = 3 TeV Extinction scale M = 2 TeV

FIG. 1 (color online). Inclusive jet-pT spectrum (points) for jηj < 1.5, as observed in data. The SM NLO simulation with nonperturbative corrections, convolved with the detector re-sponse and normalized to the total number of jets observed in data, is shown by the solid line. The spectra predicted by the extinction model are defined relative to the SM prediction as described by Eq.(3)for the values of M ¼ 2, 3, and 4 TeV and shown by the dashed lines. The colored band shows the magnitude of the sources of systematic uncertainty added in quadrature. These sources include the JES, JER, PDFs, and scale variations. An additional source of systematic uncertainty is attributed to the integrated luminosity during all formal compar-isons between the data and models but has little impact on the sensitivity to an extinction signature. The renormalization scale (μR) and factorization scale (μF) are set to the pT of the hard-scattered parton.

(4)

uncertainty in the total integrated luminosity. As the search for an extinction signature is only concerned with the shape of the jet-pT spectrum, a small shift in the absolute

normalization has little impact on the sensitivity. In Figs.1 and2the data and the extinction model are compared after any differences in the normalization have been resolved. In these figures, the quadratic sum of all sources of systematic uncertainty is shown. The total systematic uncertainty includes contributions from both theoretical and experi-mental sources. The theoretical uncertainty is composed of the uncertainty from the PDFs as well as the uncertainty obtained by varying the renormalization and factorization scales. The experimental uncertainty is derived from the uncertainties in the JES and JER. During the formal comparison of the model to data where the predicted spectrum is not normalized to the number of jets observed, an additional source of uncertainty is attributed to the integrated luminosity. Figure 2 shows the ratio of the inclusive spectrum to the SM NLO expectation and includes the predicted spectra from the extinction model for three different values of the extinction mass scale M.

V. STATISTICAL METHOD AND SYSTEMATIC UNCERTAINTIES

To distinguish between SM NLO jet production and the alternative hypothesis (jet extinction), a profile-likelihood ratio test statistic [36] is constructed as a function of a signal strength parameter, β ≡ M−2. The variable β is chosen so that as β → 0 the extinction model approaches the SM prediction.

We set limits using the modified-frequentist criterion

CLs [37,38]. All sources of systematic uncertainty are

treated as nuisance parameters with log-normal prior constraints and are constructed in the likelihood to have the same value across all jet-pT bins. This construction

implicitly assumes that the systematic uncertainties are completely correlated in jet-pT.

To account for correlations in the JES and PDF uncer-tainties between pT bins, the uncertainties are subdivided

into their underlying components. These individual com-ponents are strongly correlated across all pT bins and tend

to be dominant at different values of jet-pT. As an example,

uncertainties in the gluon PDF will be dominant at low pT

compared to uncertainties in the quark PDFs. The JES uncertainty is decomposed into each of its orthogonal sources. For the PDF uncertainty, the contributions from each of the eigenvectors in the CT10 [24] PDF set are evaluated separately. As a cross-check, the search is repeated with respect to the MSTW2008 [39] PDF set. Among the PDF sets in common use, the CT10 set predicts the highest inclusive jet cross section at high pT, while the

MSTW2008 set gives one of the lowest. The results derived with respect to these two PDF sets serve as bounds on the result expected when using other sets, including those which are used in comparison to dedicated measurements of the inclusive jet production cross section[18], such as NNPDF[40], HERA [41], or ABKM[42].

The CT10 PDF set comprises a central prediction and 26 eigenvectors. The central prediction assumes all PDF input parameters are set to their central values. Each eigenvector pair corresponds to the upward and downward uncertainty in one of those input parameters. The difference between the predictions of each eigenvector pair and the central prediction is taken as a source of systematic uncertainty at 1σ. A source of systematic uncertainty is defined as nontrivial if, at one standard deviation in either direction, it produces a shift in any pT bin greater than 1%

of the occupancy given by the central prediction. Under this definition, 15 of the 26 CT10 eigenvectors are found to be nontrivial.

The relative uncertainty described by the combined variation of these eigenvector sets in quadrature and the scale variations are shown in Fig.3as a function of jet-pT.

The uncertainties associated with the renormalization and factorization scales are computed by varying the scales coherently up and down by a factor of 2. As the effect of extinction on the jet-pT spectrum is expressed relative to

the SM prediction, by construction the PDF variations do not affect any of the extinction parameters.

Given the exponentially falling nature of the inclusive jet-pT spectrum, the JES is one of the dominant sources of

systematic uncertainty. The JES uncertainty is composed of 19 orthogonal sources. Of these, seven are found to be nontrivial according to the criterion defined above: the absolute pT scale; the single pion response in the ECAL;

[GeV] T Inclusive jet p 1000 1500 2000 2500 QCD /N jets N 0 0.5 1 1.5 2CMS , -1 L = 10.7 fb jets, R = 0.7 T Anti-k | < 1.5 η | = 8 TeV s T = p R µ = F µ Observed

NLO QCD (CT10 normalized to data) Systematic uncertainty Extinction scale M = 4 TeV Extinction scale M = 3 TeV Extinction scale M = 2 TeV

FIG. 2 (color online). The ratio of the inclusive jet-pTspectrum to the NLO QCD prediction with nonperturbative corrections and convolved with the detector resolution. The horizontal bars on the data indicate the width of each bin in pT. The colored band shows the quadratic sum of the sources of systematic uncertainty, including JES, JER, PDFs, and scale variations. The uncertainty in the integrated luminosity is excluded, as the model predictions have been normalized to the number of jets observed in data. The dashed lines indicate the effects of extinction at three different values of the extinction mass scale, M ¼ 2, 3, and 4 TeV.

(5)

the single pion response in the HCAL; the flavor compo-sition correction; the time dependence; the pileup pTscale;

and the extrapolation of the absolute scale into the high-pT

regime [27]. The effects of JER are also included as nuisance parameters. The uncertainty in luminosity is taken as a constant scale factor with a 2.6% relative uncertainty

[43]. The relative uncertainty of all nontrivial detector-related sources of systematic uncertainty (JES, JER, and integrated luminosity) is shown in Fig.4as a function of jet-pT.

Including systematic uncertainties, the best-fit value ofβ isð0.008  0.033Þ TeV−2, which is consistent with the SM expectation.

The dependence of CLson the parameterβ is shown in Fig.5. The observed upper limit on β is 0.090 TeV−2 at 95% confidence level (C.L.), translating to an observed lower limit on M of 3.3 TeV. The expected upper limit on β is0.088 TeV−2at 95% C.L., corresponding to an expected lower limit on M of 3.4 TeV. These relatively close expected and observed values reflect good agreement between the observed data and the null hypothesis.

As an additional check, the limit-setting procedure is repeated using the MSTW2008 PDF set[39] to derive the SM hypothesis. The limits obtained using the CT10 and MSTW2008 PDFs agree to within 10%. As the MSTW2008 PDFs predict a lower cross section at very high jet-pT

compared to CT10, the limit produced in this check is less conservative.

Finally, the limits have been calculated including weak radiative corrections to the SM prediction, with a decrease of less than 100 GeV to the exclusion region.

VI. SUMMARY

The first search for the extinction of jet production has been performed at the LHC using proton-proton collision [GeV] T Inclusive jet p 1000 1500 2000 2500 Fractional uncertainty -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 Variations in CT10 PDF eigenvalues Scale variations in CT10 CMS Simulation s = 8 TeV

FIG. 3 (color online). Uncertainty at 1 standard deviation described by the combined variations of all CT10 PDF eigen-vectors added in quadrature (solid lines), as well as the scale variations (dotted lines). The uncertainty is expressed as a fraction of the central occupancy of each pT bin. For the fit of the model to data and the limit-setting procedure, the PDF uncertainty is subdivided into individual sources for each eigenvector pair. [GeV] T Inclusive jet p 1000 1500 2000 2500 Fractional uncertainty -0.1 -0.05 0 0.05 0.1 0.15 0.2

0.25 JES high pT extrapolation

JES single pion response in ECAL JES single pion response in HCAL

scale

T

JES absolute p JES flavor correction JES time dependence JER lumi dependence T JES pileup p CMS Simulation s = 8 TeV

FIG. 4 (color online). Systematic uncertainty from all exper-imental sources at1 standard deviation, expressed as a fraction of the central occupancy of each pT bin. The luminosity uncertainty is constant in jet-pT, while the JES and JER uncertainties are modeled as transfer matrices between all pT bins. The seven nontrivial sources of JES uncertainty are shown (out of 19 total). ] -2 [TeV β 0.07 0.08 0.09 0.1 0.11 0.12 )β (s CL -1 10 1 CMS L = 10.7 fb-1,s = 8 TeV M [TeV] 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4 s Observed CL s Expected CL σ +/- 1 s Expected CL σ +/- 2 s Expected CL

FIG. 5 (color online). The results of a CLsscan in the extinction mass scale,β ¼ M−2. The observed dependence of CLs onβ is shown by the solid line. The observed upper limit on β is 0.090 TeV−2 at 95% C.L. (indicated by the horizontal dotted line), corresponding to a lower limit of 3.3 TeV on the extinction mass scale M. The dashed line indicates the expected median of results for the SM hypothesis, while the green (dark) and yellow (light) bands indicate the quantiles, which contain 68% and 95% of the expected results, respectively.

(6)

data at pffiffiffis¼ 8 TeV collected by the CMS detector and corresponding to an integrated luminosity of 10.7 fb−1. The extinction model studied in this analysis is motivated by the search for signatures of terascale gravity at the LHC and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts suppression of high-pT jet production beyond an extinction

mass scale M. A detailed comparison between the mea-sured pT spectrum and the theoretical prediction is

con-ducted. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale M.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWFW and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN;

CAS, MoST, and NSFC (China); COLCIENCIAS

(Colombia); MSES and CSF (Croatia); RPF (Cyprus); MoER, ERC IUT and ERDF (Estonia); Academy of

Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and EPLANET (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the

Agentschap voor Innovatie door Wetenschap en

Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Council of Science and Industrial Research, India; the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional

Development Fund; the Compagnia di San Paolo

(Torino); and the Thalis and Aristeia programs cofinanced by EU-ESF and the Greek NSRF.

[1] T. Banks and W. Fischler,arXiv:hep-th/9906038.

[2] CMS Collaboration,J. High Energy Phys. 04 (2012) 061. [3] CMS Collaboration,J. High Energy Phys. 07 (2013) 178. [4] CMS Collaboration,Phys. Rev. Lett.108, 111801 (2012). [5] CMS Collaboration,Phys. Lett. B704, 123 (2011). [6] CMS Collaboration,J. High Energy Phys. 05 (2011) 093. [7] ATLAS Collaboration,Phys. Lett. B709, 322 (2012). [8] ATLAS Collaboration,Phys. Lett. B710, 538 (2012). [9] ATLAS Collaboration,Phys. Lett. B712, 331 (2012). [10] CMS Collaboration,J. High Energy Phys. 09 (2012) 094. [11] CMS Collaboration,Phys. Rev. Lett.108, 261803 (2012). [12] L. Randall and R. Sundrum,Phys. Rev. Lett.83, 3370 (1999). [13] N. Arkani-Hamed, S. Dimopoulos, and G. Dvali,Phys. Rev.

D59, 086004 (1999).

[14] S. B. Giddings and S. D. Thomas,Phys. Rev. D65, 056010 (2002).

[15] S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).

[16] P. Meade and L. Randall,J. High Energy Phys. 05 (2008) 003. [17] C. Kilic, A. Lath, K. Rose, and S. Thomas,Phys. Rev. D89,

016003 (2014).

[18] CMS Collaboration,Phys. Rev. Lett.107, 132001 (2011). [19] CMS Collaboration,J. Instrum. 3, S08004 (2008). [20] CMS Collaboration,Eur. Phys. J. C46, 605 (2006). [21] Z. Nagy,Phys. Rev. Lett.88, 122003 (2002). [22] Z. Nagy,Phys. Rev. D68, 094002 (2003).

[23] D. Britzger, K. Rabbertz, F. Stober, and M. Wobisch (unpublished).

[24] P. M. Nadolsky, H.-L. Lai, Q.-H. Cao, J. Huston, J. Pumplin, D. Stump, W.-K. Tung, and C.-P. Yuan,Phys. Rev. D78, 013004 (2008).

[25] T. Sjöstrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[26] M. Bähr, S. Gieseke, M. A. Gigg, D. Grellscheid, K. Hamilton, O. Latunde-Dada, S. Plätzer, P. Richardson, M. H. Seymour, A. Sherstnev, and B. R. Webber,Eur. Phys. J. C58, 639 (2008).

[27] CMS Collaboration,J. Instrum. 6, P11002 (2011). [28] S. Dittmaier, A. Huss, and C. Speckner,J. High Energy

Phys. 11 (2012) 095.

[29] D. Lust, S. Stieberger, and T. R. Taylor,Nucl. Phys.B808, 1 (2009).

(7)

[30] E. A. Mirabelli, M. Perelstein, and M. E. Peskin,Phys. Rev. Lett.82, 2236 (1999).

[31] CMS Collaboration, CMS Physics Analysis Summary No. CMS-PAS-PFT-09-001, 2009, http://cdsweb.cern.ch/ record/1194487.

[32] CMS Collaboration, CMS Physics Analysis Summary No. CMS-PAS-PFT-10-001, 2010, http://cdsweb.cern.ch/ record/1247373.

[33] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[34] CMS Collaboration,J. Instrum.5, T03014 (2010). [35] CMS Collaboration, CMS Physics Analysis Summary

No. CMS-PAS-JME-09-008, 2010, http://cdsweb.cern.ch/ record/1259924.

[36] G. Cowan, K. Cranmer, E. Gross, and O. Vitells,Eur. Phys. J. C71, 1554 (2011).

[37] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A434, 435 (1999).

[38] A. L. Read,J. Phys. G28, 2693 (2002).

[39] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt,Eur. Phys. J. C63, 189 (2009).

[40] R. D. Ball, L. Del Debbio, S. Forte, A. Guffanti, J. I. Latorre, J. Rojo, and M. Ubiali (NNPDF Collaboration),Nucl. Phys. B838, 136 (2010).

[41] F. D. Aaron et al. (H1 and ZEUS Collaboration),J. High Energy Phys. 01 (2010) 109.

[42] S. Alekhin, J. Blümlein, S. Klein, and S. Moch,Phys. Rev. D81, 014032 (2010).

[43] CMS Collaboration, CMS Physics Analysis Summary No. CMS-PAS-LUM-13-001, 2012, http://cdsweb.cern.ch/ record/1598864.

V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2T. Bergauer,2M. Dragicevic,2 J. Erö,2 C. Fabjan,2,b M. Friedl,2R. Frühwirth,2,bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knünz,2

M. Krammer,2,bI. Krätschmer,2D. Liko,2I. Mikulec,2 D. Rabady,2,c B. Rahbaran,2 H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,bV. Mossolov,3 N. Shumeiko,3 J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4A. Knutsson,4

S. Luyckx,4 S. Ochesanu,4 B. Roland,4 R. Rougny,4 M. Van De Klundert,4 H. Van Haevermaet,4 P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 N. Daci,5 N. Heracleous,5 A. Kalogeropoulos,5J. Keaveney,5T. J. Kim,5S. Lowette,5M. Maes,5A. Olbrechts,5Q. Python,5D. Strom,5S. Tavernier,5 W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5C. Caillol,6B. Clerbaux,6G. De Lentdecker,6D. Dobur,6 L. Favart,6A. P. R. Gay,6A. Grebenyuk,6 A. Léonard,6 A. Mohammadi,6 L. Perniè,6,cT. Reis,6 T. Seva,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6J. Wang,6 V. Adler,7K. Beernaert,7L. Benucci,7A. Cimmino,7S. Costantini,7S. Crucy,7 S. Dildick,7 A. Fagot,7 G. Garcia,7 B. Klein,7 J. Mccartin,7A. A. Ocampo Rios,7 D. Ryckbosch,7 S. Salva Diblen,7 M. Sigamani,7N. Strobbe,7F. Thyssen,7 M. Tytgat,7E. Yazgan,7N. Zaganidis,7 S. Basegmez,8C. Beluffi,8,dG. Bruno,8

R. Castello,8 A. Caudron,8L. Ceard,8G. G. Da Silveira,8 C. Delaere,8 T. du Pree,8D. Favart,8 L. Forthomme,8 A. Giammanco,8,eJ. Hollar,8P. Jez,8M. Komm,8V. Lemaitre,8J. Liao,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8 A. Popov,8,fL. Quertenmont,8M. Selvaggi,8M. Vidal Marono,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9 G. H. Hammad,9 G. A. Alves,10M. Correa Martins Junior,10T. Dos Reis Martins,10M. E. Pol,10 W. L. Aldá Júnior,11 W. Carvalho,11J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11 C. De Oliveira Martins,11

S. Fonseca De Souza,11H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11 W. L. Prado Da Silva,11 J. Santaolalla,11A. Santoro,11A. Sznajder,11E. J. Tonelli Manganote,11,gA. Vilela Pereira,11 C. A. Bernardes,12bF. A. Dias,12a,hT. R. Fernandez Perez Tomei,12aE. M. Gregores,12bP. G. Mercadante,12bS. F. Novaes,12a S. S. Padula,12aA. Aleksandrov,13V. Genchev,13,cP. Iaydjiev,13A. Marinov,13S. Piperov,13M. Rodozov,13G. Sultanov,13

M. Vutova,13A. Dimitrov,14I. Glushkov,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14 B. Pavlov,14 P. Petkov,14 J. G. Bian,15G. M. Chen,15H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15D. Liang,15S. Liang,15R. Plestina,15,iJ. Tao,15 X. Wang,15Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16 D. Wang,16L. Zhang,16W. Zou,16C. Avila,17L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17B. Gomez Moreno,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18D. Polic,18I. Puljak,18Z. Antunovic,19M. Kovac,19V. Brigljevic,20K. Kadija,20 J. Luetic,20D. Mekterovic,20L. Sudic,20A. Attikis,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21M. Bodlak,22M. Finger,22M. Finger Jr.,22Y. Assran,23,jS. Elgammal,23,kM. A. Mahmoud,23,lA. Radi,23,k,m

M. Kadastik,24M. Murumaa,24 M. Raidal,24 A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26 V. Karimäki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26 T. Mäenpää,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27M. Besancon,28 F. Couderc,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28C. Favaro,28F. Ferri,28S. Ganjour,28A. Givernaud,28

(8)

P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28 A. Nayak,28J. Rander,28A. Rosowsky,28 M. Titov,28S. Baffioni,29F. Beaudette,29P. Busson,29C. Charlot,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29 N. Filipovic,29A. Florent,29 R. Granier de Cassagnac,29L. Mastrolorenzo,29P. Miné,29 C. Mironov,29I. N. Naranjo,29 M. Nguyen,29C. Ochando,29P. Paganini,29R. Salerno,29J. B. Sauvan,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29

J.-L. Agram,30,nJ. Andrea,30A. Aubin,30D. Bloch,30 J.-M. Brom,30 E. C. Chabert,30C. Collard,30E. Conte,30,n J.-C. Fontaine,30,nD. Gelé,30U. Goerlach,30C. Goetzmann,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32

N. Beaupere,32G. Boudoul,32,cS. Brochet,32C. A. Carrillo Montoya,32J. Chasserat,32R. Chierici,32D. Contardo,32,c P. Depasse,32H. El Mamouni,32J. Fan,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32 L. Mirabito,32S. Perries,32J. D. Ruiz Alvarez,32D. Sabes,32L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32 S. Viret,32H. Xiao,32Z. Tsamalaidze,33,oC. Autermann,34S. Beranek,34M. Bontenackels,34B. Calpas,34M. Edelhoff,34 L. Feld,34O. Hindrichs,34K. Klein,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34 H. Weber,34B. Wittmer,34V. Zhukov,34,fM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35

R. Fischer,35A. Güth,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35 S. Knutzen,35 P. Kreuzer,35 M. Merschmeyer,35 A. Meyer,35M. Olschewski,35K. Padeken,35P. Papacz,35H. Reithler,35S. A. Schmitz,35 L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35V. Cherepanov,36Y. Erdogan,36G. Flügge,36H. Geenen,36

M. Geisler,36W. Haj Ahmad,36 F. Hoehle,36 B. Kargoll,36T. Kress,36Y. Kuessel,36J. Lingemann,36,c A. Nowack,36 I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36I. Asin,37N. Bartosik,37J. Behr,37W. Behrenhoff,37U. Behrens,37

A. J. Bell,37M. Bergholz,37,pA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37 A. Campbell,37 S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37T. Dorland,37G. Eckerlin,37D. Eckstein,37T. Eichhorn,37 G. Flucke,37J. Garay Garcia,37A. Geiser,37P. Gunnellini,37J. Hauk,37G. Hellwig,37M. Hempel,37D. Horton,37H. Jung,37

M. Kasemann,37P. Katsas,37J. Kieseler,37C. Kleinwort,37D. Krücker,37 W. Lange,37 J. Leonard,37K. Lipka,37 A. Lobanov,37W. Lohmann,37,pB. Lutz,37R. Mankel,37I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37 A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37F. Nowak,37E. Ntomari,37H. Perrey,37D. Pitzl,37R. Placakyte,37 A. Raspereza,37P. M. Ribeiro Cipriano,37E. Ron,37M. O. Sahin,37 J. Salfeld-Nebgen,37P. Saxena,37R. Schmidt,37,p

T. Schoerner-Sadenius,37M. Schröder,37S. Spannagel,37 A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37 M. Aldaya Martin,38V. Blobel,38M. Centis Vignali,38J. Erfle,38E. Garutti,38K. Goebel,38M. Görner,38M. Gosselink,38 J. Haller,38R. S. Höing,38H. Kirschenmann,38R. Klanner,38R. Kogler,38J. Lange,38T. Lapsien,38T. Lenz,38I. Marchesini,38 J. Ott,38T. Peiffer,38N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38 M. Seidel,38J. Sibille,38,qV. Sola,38 H. Stadie,38G. Steinbrück,38D. Troendle,38E. Usai,38L. Vanelderen,38C. Barth,39 C. Baus,39J. Berger,39C. Böser,39E. Butz,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39

F. Hartmann,39,c T. Hauth,39,c U. Husemann,39I. Katkov,39,fA. Kornmayer,39,cE. Kuznetsova,39P. Lobelle Pardo,39 M. U. Mozer,39T. Müller,39A. Nürnberg,39G. Quast,39K. Rabbertz,39F. Ratnikov,39 S. Röcker,39H. J. Simonis,39 F. M. Stober,39R. Ulrich,39J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39R. Wolf,39G. Anagnostou,40 G. Daskalakis,40

T. Geralis,40V. A. Giakoumopoulou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40A. Psallidas,40 I. Topsis-Giotis,40L. Gouskos,41A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41X. Aslanoglou,42I. Evangelou,42 G. Flouris,42C. Foudas,42P. Kokkas,42N. Manthos,42I. Papadopoulos,42E. Paradas,42G. Bencze,43C. Hajdu,43P. Hidas,43 D. Horvath,43,r F. Sikler,43V. Veszpremi,43G. Vesztergombi,43,sA. J. Zsigmond,43N. Beni,44S. Czellar,44J. Karancsi,44,t J. Molnar,44J. Palinkas,44Z. Szillasi,44P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. K. Swain,46S. B. Beri,47V. Bhatnagar,47 N. Dhingra,47R. Gupta,47 A. K. Kalsi,47M. Kaur,47M. Mittal,47N. Nishu,47J. B. Singh,47A. Kumar,48A. Kumar,48 S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48V. Sharma,48 S. Banerjee,49S. Bhattacharya,49K. Chatterjee,49S. Dutta,49B. Gomber,49S. Jain,49S. Jain,49R. Khurana,49A. Modak,49

S. Mukherjee,49D. Roy,49S. Sarkar,49M. Sharan,49A. Abdulsalam,50D. Dutta,50S. Kailas,50V. Kumar,50 A. K. Mohanty,50,cL. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51S. Banerjee,51R. M. Chatterjee,51R. K. Dewanjee,51 S. Dugad,51S. Ganguly,51S. Ghosh,51M. Guchait,51A. Gurtu,51,uG. Kole,51S. Kumar,51M. Maity,51,v G. Majumder,51 K. Mazumdar,51G. B. Mohanty,51B. Parida,51K. Sudhakar,51N. Wickramage,51,wH. Bakhshiansohi,52H. Behnamian,52 S. M. Etesami,52,xA. Fahim,52,yR. Goldouzian,52A. Jafari,52M. Khakzad,52M. Mohammadi Najafabadi,52M. Naseri,52

S. Paktinat Mehdiabadi,52B. Safarzadeh,52,zM. Zeinali,52M. Felcini,53M. Grunewald,53 M. Abbrescia,54a,54b L. Barbone,54a,54bC. Calabria,54a,54b S. S. Chhibra,54a,54b A. Colaleo,54a D. Creanza,54a,54c N. De Filippis,54a,54c M. De Palma,54a,54bL. Fiore,54aG. Iaselli,54a,54cG. Maggi,54a,54cM. Maggi,54aS. My,54a,54cS. Nuzzo,54a,54bA. Pompili,54a,54b

(9)

G. Pugliese,54a,54cR. Radogna,54a,54b,cG. Selvaggi,54a,54bL. Silvestris,54a,cG. Singh,54a,54bR. Venditti,54a,54bP. Verwilligen,54a G. Zito,54a G. Abbiendi,55aA. C. Benvenuti,55aD. Bonacorsi,55a,55b S. Braibant-Giacomelli,55a,55b L. Brigliadori,55a,55b

R. Campanini,55a,55bP. Capiluppi,55a,55b A. Castro,55a,55bF. R. Cavallo,55a G. Codispoti,55a,55b M. Cuffiani,55a,55b G. M. Dallavalle,55a F. Fabbri,55a A. Fanfani,55a,55b D. Fasanella,55a,55bP. Giacomelli,55a C. Grandi,55a L. Guiducci,55a,55b S. Marcellini,55aG. Masetti,55a,cA. Montanari,55aF. L. Navarria,55a,55bA. Perrotta,55aF. Primavera,55a,55bA. M. Rossi,55a,55b T. Rovelli,55a,55bG. P. Siroli,55a,55bN. Tosi,55a,55bR. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56aM. Chiorboli,56a,56b

S. Costa,56a,56b F. Giordano,56a,56c,c R. Potenza,56a,56bA. Tricomi,56a,56b C. Tuve,56a,56bG. Barbagli,57aV. Ciulli,57a,57b C. Civinini,57aR. D’Alessandro,57a,57bE. Focardi,57a,57b E. Gallo,57a S. Gonzi,57a,57b V. Gori,57a,57b,cP. Lenzi,57a,57b M. Meschini,57a S. Paoletti,57a G. Sguazzoni,57a A. Tropiano,57a,57b L. Benussi,58S. Bianco,58F. Fabbri,58D. Piccolo,58

F. Ferro,59a M. Lo Vetere,59a,59bE. Robutti,59aS. Tosi,59a,59bM. E. Dinardo,60a,60bS. Fiorendi,60a,60b,c S. Gennai,60a,c R. Gerosa,60a,c A. Ghezzi,60a,60bP. Govoni,60a,60b M. T. Lucchini,60a,60b,c S. Malvezzi,60a R. A. Manzoni,60a,60b A. Martelli,60a,60bB. Marzocchi,60aD. Menasce,60a L. Moroni,60a M. Paganoni,60a,60bD. Pedrini,60a S. Ragazzi,60a,60b

N. Redaelli,60a T. Tabarelli de Fatis,60a,60bS. Buontempo,61a N. Cavallo,61a,61cS. Di Guida,61a,61d,cF. Fabozzi,61a,61c A. O. M. Iorio,61a,61bL. Lista,61aS. Meola,61a,61d,cM. Merola,61aP. Paolucci,61a,cP. Azzi,62aN. Bacchetta,62aD. Bisello,62a,62b A. Branca,62a,62bR. Carlin,62a,62bM. Dall’Osso,62a,62bT. Dorigo,62aM. Galanti,62a,62bF. Gasparini,62a,62bP. Giubilato,62a,62b A. Gozzelino,62aK. Kanishchev,62a,62c S. Lacaprara,62a M. Margoni,62a,62bA. T. Meneguzzo,62a,62b F. Montecassiano,62a M. Passaseo,62a J. Pazzini,62a,62bN. Pozzobon,62a,62bP. Ronchese,62a,62b F. Simonetto,62a,62bE. Torassa,62a M. Tosi,62a,62b S. Vanini,62a,62b P. Zotto,62a,62bA. Zucchetta,62a,62bG. Zumerle,62a,62bM. Gabusi,63a,63bS. P. Ratti,63a,63bC. Riccardi,63a,63b

P. Salvini,63a P. Vitulo,63a,63bM. Biasini,64a,64b G. M. Bilei,64a D. Ciangottini,64a,64b L. Fanò,64a,64bP. Lariccia,64a,64b G. Mantovani,64a,64bM. Menichelli,64aF. Romeo,64a,64bA. Saha,64aA. Santocchia,64a,64bA. Spiezia,64a,64b,cK. Androsov,65a,aa

P. Azzurri,65a G. Bagliesi,65a J. Bernardini,65a T. Boccali,65a G. Broccolo,65a,65cR. Castaldi,65a M. A. Ciocci,65a,aa R. Dell’Orso,65a S. Donato,65a,65c F. Fiori,65a,65c L. Foà,65a,65cA. Giassi,65a M. T. Grippo,65a,aa F. Ligabue,65a,65c T. Lomtadze,65aL. Martini,65a,65bA. Messineo,65a,65bC. S. Moon,65a,bbF. Palla,65a,cA. Rizzi,65a,65bA. Savoy-Navarro,65a,cc

A. T. Serban,65a P. Spagnolo,65a P. Squillacioti,65a,aa R. Tenchini,65a G. Tonelli,65a,65bA. Venturi,65a P. G. Verdini,65a C. Vernieri,65a,65c,c L. Barone,66a,66b F. Cavallari,66a D. Del Re,66a,66bM. Diemoz,66aM. Grassi,66a,66b C. Jorda,66a

E. Longo,66a,66bF. Margaroli,66a,66b P. Meridiani,66a F. Micheli,66a,66b,c S. Nourbakhsh,66a,66b G. Organtini,66a,66b R. Paramatti,66aS. Rahatlou,66a,66bC. Rovelli,66aF. Santanastasio,66a,66bL. Soffi,66a,66b,cP. Traczyk,66a,66bN. Amapane,67a,67b R. Arcidiacono,67a,67c S. Argiro,67a,67b,cM. Arneodo,67a,67cR. Bellan,67a,67bC. Biino,67aN. Cartiglia,67a S. Casasso,67a,67b,c

M. Costa,67a,67b A. Degano,67a,67bN. Demaria,67a L. Finco,67a,67b C. Mariotti,67a S. Maselli,67a E. Migliore,67a,67b V. Monaco,67a,67bM. Musich,67aM. M. Obertino,67a,67c,cG. Ortona,67a,67bL. Pacher,67a,67bN. Pastrone,67aM. Pelliccioni,67a

G. L. Pinna Angioni,67a,67bA. Potenza,67a,67bA. Romero,67a,67b M. Ruspa,67a,67c R. Sacchi,67a,67b A. Solano,67a,67b A. Staiano,67a U. Tamponi,67a S. Belforte,68aV. Candelise,68a,68b M. Casarsa,68a F. Cossutti,68a G. Della Ricca,68a,68b B. Gobbo,68aC. La Licata,68a,68bM. Marone,68a,68bD. Montanino,68a,68bA. Schizzi,68a,68b,c T. Umer,68a,68bA. Zanetti,68a S. Chang,69A. Kropivnitskaya,69S. K. Nam,69D. H. Kim,70G. N. Kim,70M. S. Kim,70D. J. Kong,70S. Lee,70Y. D. Oh,70 H. Park,70A. Sakharov,70D. C. Son,70J. Y. Kim,71S. Song,71S. Choi,72D. Gyun,72B. Hong,72M. Jo,72H. Kim,72Y. Kim,72 B. Lee,72K. S. Lee,72S. K. Park,72 Y. Roh,72M. Choi,73 J. H. Kim,73 I. C. Park,73S. Park,73G. Ryu,73M. S. Ryu,73

Y. Choi,74Y. K. Choi,74J. Goh,74E. Kwon,74J. Lee,74H. Seo,74I. Yu,74 A. Juodagalvis,75J. R. Komaragiri,76 H. Castilla-Valdez,77E. De La Cruz-Burelo,77I. Heredia-de La Cruz,77,ddR. Lopez-Fernandez,77A. Sanchez-Hernandez,77

S. Carrillo Moreno,78F. Vazquez Valencia,78I. Pedraza,79H. A. Salazar Ibarguen,79 E. Casimiro Linares,80 A. Morelos Pineda,80D. Krofcheck,81P. H. Butler,82S. Reucroft,82A. Ahmad,83M. Ahmad,83Q. Hassan,83H. R. Hoorani,83

S. Khalid,83W. A. Khan,83T. Khurshid,83M. A. Shah,83M. Shoaib,83H. Bialkowska,84M. Bluj,84B. Boimska,84 T. Frueboes,84M. Górski,84M. Kazana,84K. Nawrocki,84K. Romanowska-Rybinska,84M. Szleper,84P. Zalewski,84 G. Brona,85K. Bunkowski,85M. Cwiok,85W. Dominik,85K. Doroba,85A. Kalinowski,85M. Konecki,85J. Krolikowski,85

M. Misiura,85M. Olszewski,85W. Wolszczak,85P. Bargassa,86C. Beirão Da Cruz E Silva,86P. Faccioli,86 P. G. Ferreira Parracho,86M. Gallinaro,86F. Nguyen,86J. Rodrigues Antunes,86J. Seixas,86J. Varela,86P. Vischia,86 S. Afanasiev,87P. Bunin,87M. Gavrilenko,87I. Golutvin,87V. Karjavin,87V. Konoplyanikov,87A. Lanev,87A. Malakhov,87

V. Matveev,87,ee P. Moisenz,87V. Palichik,87V. Perelygin,87M. Savina,87S. Shmatov,87S. Shulha,87N. Skatchkov,87 V. Smirnov,87 A. Zarubin,87V. Golovtsov,88Y. Ivanov,88V. Kim,88,ff P. Levchenko,88V. Murzin,88V. Oreshkin,88 I. Smirnov,88V. Sulimov,88L. Uvarov,88S. Vavilov,88A. Vorobyev,88A. Vorobyev,88Y. Andreev,89A. Dermenev,89

(10)

S. Gninenko,89N. Golubev,89M. Kirsanov,89N. Krasnikov,89A. Pashenkov,89D. Tlisov,89A. Toropin,89V. Epshteyn,90 V. Gavrilov,90N. Lychkovskaya,90V. Popov,90G. Safronov,90S. Semenov,90A. Spiridonov,90V. Stolin,90E. Vlasov,90 A. Zhokin,90V. Andreev,91M. Azarkin,91I. Dremin,91M. Kirakosyan,91A. Leonidov,91G. Mesyats,91S. V. Rusakov,91

A. Vinogradov,91A. Belyaev,92 E. Boos,92M. Dubinin,92,h L. Dudko,92A. Ershov,92A. Gribushin,92V. Klyukhin,92 O. Kodolova,92I. Lokhtin,92S. Obraztsov,92S. Petrushanko,92V. Savrin,92A. Snigirev,92I. Azhgirey,93 I. Bayshev,93 S. Bitioukov,93V. Kachanov,93A. Kalinin,93D. Konstantinov,93V. Krychkine,93V. Petrov,93R. Ryutin,93 A. Sobol,93 L. Tourtchanovitch,93S. Troshin,93N. Tyurin,93A. Uzunian,93A. Volkov,93P. Adzic,94,ggM. Dordevic,94M. Ekmedzic,94

J. Milosevic,94J. Alcaraz Maestre,95C. Battilana,95E. Calvo,95M. Cerrada,95 M. Chamizo Llatas,95,c N. Colino,95 B. De La Cruz,95A. Delgado Peris,95D. Domínguez Vázquez,95A. Escalante Del Valle,95C. Fernandez Bedoya,95

J. P. Fernández Ramos,95J. Flix,95M. C. Fouz,95P. Garcia-Abia,95O. Gonzalez Lopez,95S. Goy Lopez,95 J. M. Hernandez,95M. I. Josa,95G. Merino,95E. Navarro De Martino,95A. Pérez-Calero Yzquierdo,95J. Puerta Pelayo,95

A. Quintario Olmeda,95I. Redondo,95L. Romero,95M. S. Soares,95C. Albajar,96J. F. de Trocóniz,96 M. Missiroli,96 H. Brun,97J. Cuevas,97J. Fernandez Menendez,97 S. Folgueras,97I. Gonzalez Caballero,97L. Lloret Iglesias,97 J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98J. Duarte Campderros,98 M. Fernandez,98G. Gomez,98 A. Graziano,98A. Lopez Virto,98 J. Marco,98R. Marco,98C. Martinez Rivero,98F. Matorras,98F. J. Munoz Sanchez,98

J. Piedra Gomez,98T. Rodrigo,98A. Y. Rodríguez-Marrero,98A. Ruiz-Jimeno,98 L. Scodellaro,98I. Vila,98 R. Vilar Cortabitarte,98D. Abbaneo,99E. Auffray,99G. Auzinger,99M. Bachtis,99P. Baillon,99A. H. Ball,99D. Barney,99 A. Benaglia,99J. Bendavid,99L. Benhabib,99J. F. Benitez,99C. Bernet,99,iG. Bianchi,99P. Bloch,99A. Bocci,99A. Bonato,99

O. Bondu,99C. Botta,99H. Breuker,99T. Camporesi,99 G. Cerminara,99T. Christiansen,99 S. Colafranceschi,99,hh M. D’Alfonso,99D. d’Enterria,99A. Dabrowski,99A. David,99F. De Guio,99A. De Roeck,99S. De Visscher,99M. Dobson,99

N. Dupont-Sagorin,99A. Elliott-Peisert,99J. Eugster,99G. Franzoni,99W. Funk,99M. Giffels,99D. Gigi,99 K. Gill,99 D. Giordano,99M. Girone,99F. Glege,99R. Guida,99S. Gundacker,99M. Guthoff,99J. Hammer,99M. Hansen,99P. Harris,99

J. Hegeman,99V. Innocente,99P. Janot,99 K. Kousouris,99K. Krajczar,99P. Lecoq,99C. Lourenço,99N. Magini,99 L. Malgeri,99M. Mannelli,99L. Masetti,99F. Meijers,99S. Mersi,99E. Meschi,99F. Moortgat,99S. Morovic,99M. Mulders,99

P. Musella,99L. Orsini,99L. Pape,99E. Perez,99 L. Perrozzi,99A. Petrilli,99G. Petrucciani,99A. Pfeiffer,99M. Pierini,99 M. Pimiä,99D. Piparo,99M. Plagge,99A. Racz,99G. Rolandi,99,iiM. Rovere,99H. Sakulin,99C. Schäfer,99C. Schwick,99 S. Sekmen,99A. Sharma,99P. Siegrist,99P. Silva,99M. Simon,99P. Sphicas,99,jj D. Spiga,99J. Steggemann,99B. Stieger,99

M. Stoye,99D. Treille,99A. Tsirou,99G. I. Veres,99,sJ. R. Vlimant,99N. Wardle,99H. K. Wöhri,99W. D. Zeuner,99 W. Bertl,100K. Deiters,100W. Erdmann,100R. Horisberger,100Q. Ingram,100H. C. Kaestli,100S. König,100D. Kotlinski,100

U. Langenegger,100 D. Renker,100T. Rohe,100 F. Bachmair,101 L. Bäni,101 L. Bianchini,101 P. Bortignon,101 M. A. Buchmann,101B. Casal,101N. Chanon,101A. Deisher,101G. Dissertori,101M. Dittmar,101M. Donegà,101M. Dünser,101

P. Eller,101C. Grab,101D. Hits,101W. Lustermann,101B. Mangano,101A. C. Marini,101 P. Martinez Ruiz del Arbol,101 D. Meister,101N. Mohr,101 C. Nägeli,101,kk P. Nef,101 F. Nessi-Tedaldi,101F. Pandolfi,101F. Pauss,101 M. Peruzzi,101 M. Quittnat,101 L. Rebane,101F. J. Ronga,101 M. Rossini,101A. Starodumov,101,ll M. Takahashi,101 K. Theofilatos,101 R. Wallny,101H. A. Weber,101C. Amsler,102,mmM. F. Canelli,102V. Chiochia,102A. De Cosa,102A. Hinzmann,102T. Hreus,102

M. Ivova Rikova,102B. Kilminster,102B. Millan Mejias,102 J. Ngadiuba,102P. Robmann,102H. Snoek,102S. Taroni,102 M. Verzetti,102Y. Yang,102M. Cardaci,103K. H. Chen,103C. Ferro,103C. M. Kuo,103W. Lin,103Y. J. Lu,103R. Volpe,103

S. S. Yu,103P. Chang,104 Y. H. Chang,104 Y. W. Chang,104 Y. Chao,104 K. F. Chen,104P. H. Chen,104 C. Dietz,104 U. Grundler,104W.-S. Hou,104K. Y. Kao,104Y. J. Lei,104Y. F. Liu,104R.-S. Lu,104D. Majumder,104E. Petrakou,104X. Shi,104

Y. M. Tzeng,104 R. Wilken,104B. Asavapibhop,105N. Srimanobhas,105N. Suwonjandee,105A. Adiguzel,106 M. N. Bakirci,106,nnS. Cerci,106,ooC. Dozen,106I. Dumanoglu,106E. Eskut,106S. Girgis,106G. Gokbulut,106E. Gurpinar,106

I. Hos,106 E. E. Kangal,106A. Kayis Topaksu,106 G. Onengut,106,pp K. Ozdemir,106S. Ozturk,106,nn A. Polatoz,106 K. Sogut,106,qq D. Sunar Cerci,106,oo B. Tali,106,oo H. Topakli,106,nn M. Vergili,106 I. V. Akin,107 B. Bilin,107 S. Bilmis,107 H. Gamsizkan,107G. Karapinar,107,rrK. Ocalan,107U. E. Surat,107M. Yalvac,107M. Zeyrek,107E. Gülmez,108B. Isildak,108,ss M. Kaya,108,ttO. Kaya,108,tt H. Bahtiyar,109,uu E. Barlas,109K. Cankocak,109 F. I. Vardarlı,109M. Yücel,109L. Levchuk,110 P. Sorokin,110 J. J. Brooke,111E. Clement,111D. Cussans,111 H. Flacher,111 R. Frazier,111J. Goldstein,111 M. Grimes,111 G. P. Heath,111H. F. Heath,111J. Jacob,111L. Kreczko,111C. Lucas,111Z. Meng,111D. M. Newbold,111,vvS. Paramesvaran,111 A. Poll,111S. Senkin,111V. J. Smith,111 T. Williams,111K. W. Bell,112A. Belyaev,112,wwC. Brew,112 R. M. Brown,112

(11)

C. H. Shepherd-Themistocleous,112A. Thea,112I. R. Tomalin,112 W. J. Womersley,112 S. D. Worm,112 M. Baber,113 R. Bainbridge,113O. Buchmuller,113D. Burton,113D. Colling,113N. Cripps,113M. Cutajar,113P. Dauncey,113G. Davies,113 M. Della Negra,113P. Dunne,113W. Ferguson,113J. Fulcher,113D. Futyan,113A. Gilbert,113G. Hall,113G. Iles,113M. Jarvis,113 G. Karapostoli,113M. Kenzie,113R. Lane,113R. Lucas,113,vvL. Lyons,113A.-M. Magnan,113S. Malik,113J. Marrouche,113 B. Mathias,113J. Nash,113A. Nikitenko,113,llJ. Pela,113M. Pesaresi,113K. Petridis,113D. M. Raymond,113S. Rogerson,113 A. Rose,113 C. Seez,113P. Sharp,113,a A. Tapper,113M. Vazquez Acosta,113 T. Virdee,113J. E. Cole,114 P. R. Hobson,114

A. Khan,114 P. Kyberd,114D. Leggat,114D. Leslie,114W. Martin,114 I. D. Reid,114 P. Symonds,114 L. Teodorescu,114 M. Turner,114J. Dittmann,115K. Hatakeyama,115A. Kasmi,115H. Liu,115T. Scarborough,115O. Charaf,116S. I. Cooper,116 C. Henderson,116P. Rumerio,116A. Avetisyan,117T. Bose,117C. Fantasia,117A. Heister,117P. Lawson,117C. Richardson,117 J. Rohlf,117 D. Sperka,117J. St. John,117L. Sulak,117J. Alimena,118S. Bhattacharya,118 G. Christopher,118D. Cutts,118

Z. Demiragli,118A. Ferapontov,118A. Garabedian,118U. Heintz,118 S. Jabeen,118 G. Kukartsev,118E. Laird,118 G. Landsberg,118M. Luk,118M. Narain,118M. Segala,118T. Sinthuprasith,118T. Speer,118 J. Swanson,118 R. Breedon,119 G. Breto,119M. Calderon De La Barca Sanchez,119S. Chauhan,119M. Chertok,119J. Conway,119R. Conway,119P. T. Cox,119

R. Erbacher,119M. Gardner,119 W. Ko,119R. Lander,119T. Miceli,119 M. Mulhearn,119D. Pellett,119 J. Pilot,119 F. Ricci-Tam,119 M. Searle,119S. Shalhout,119J. Smith,119M. Squires,119 D. Stolp,119 M. Tripathi,119 S. Wilbur,119 R. Yohay,119 R. Cousins,120 P. Everaerts,120 C. Farrell,120J. Hauser,120 M. Ignatenko,120 G. Rakness,120 E. Takasugi,120 V. Valuev,120 M. Weber,120J. Babb,121R. Clare,121J. Ellison,121J. W. Gary,121G. Hanson,121J. Heilman,121 P. Jandir,121

E. Kennedy,121 F. Lacroix,121 H. Liu,121O. R. Long,121 A. Luthra,121M. Malberti,121H. Nguyen,121 A. Shrinivas,121 J. Sturdy,121 S. Sumowidagdo,121S. Wimpenny,121 W. Andrews,122 J. G. Branson,122 G. B. Cerati,122S. Cittolin,122 R. T. D’Agnolo,122D. Evans,122A. Holzner,122R. Kelley,122M. Lebourgeois,122J. Letts,122I. Macneill,122D. Olivito,122

S. Padhi,122C. Palmer,122 M. Pieri,122 M. Sani,122V. Sharma,122 S. Simon,122E. Sudano,122M. Tadel,122Y. Tu,122 A. Vartak,122F. Würthwein,122A. Yagil,122J. Yoo,122D. Barge,123J. Bradmiller-Feld,123C. Campagnari,123T. Danielson,123

A. Dishaw,123 K. Flowers,123 M. Franco Sevilla,123 P. Geffert,123 C. George,123 F. Golf,123 J. Incandela,123C. Justus,123 N. Mccoll,123J. Richman,123D. Stuart,123W. To,123C. West,123A. Apresyan,124A. Bornheim,124J. Bunn,124Y. Chen,124

E. Di Marco,124J. Duarte,124A. Mott,124 H. B. Newman,124 C. Pena,124C. Rogan,124 M. Spiropulu,124 V. Timciuc,124 R. Wilkinson,124 S. Xie,124 R. Y. Zhu,124 V. Azzolini,125 A. Calamba,125R. Carroll,125T. Ferguson,125Y. Iiyama,125

M. Paulini,125 J. Russ,125H. Vogel,125I. Vorobiev,125 J. P. Cumalat,126B. R. Drell,126W. T. Ford,126A. Gaz,126 E. Luiggi Lopez,126U. Nauenberg,126 J. G. Smith,126 K. Stenson,126K. A. Ulmer,126S. R. Wagner,126J. Alexander,127 A. Chatterjee,127J. Chu,127S. Dittmer,127N. Eggert,127W. Hopkins,127B. Kreis,127N. Mirman,127G. Nicolas Kaufman,127 J. R. Patterson,127A. Ryd,127E. Salvati,127L. Skinnari,127W. Sun,127W. D. Teo,127J. Thom,127J. Thompson,127J. Tucker,127 Y. Weng,127 L. Winstrom,127P. Wittich,127 D. Winn,128S. Abdullin,129M. Albrow,129J. Anderson,129G. Apollinari,129 L. A. T. Bauerdick,129A. Beretvas,129 J. Berryhill,129P. C. Bhat,129 K. Burkett,129 J. N. Butler,129 H. W. K. Cheung,129

F. Chlebana,129S. Cihangir,129 V. D. Elvira,129I. Fisk,129J. Freeman,129E. Gottschalk,129L. Gray,129 D. Green,129 S. Grünendahl,129 O. Gutsche,129J. Hanlon,129 D. Hare,129R. M. Harris,129 J. Hirschauer,129B. Hooberman,129 S. Jindariani,129 M. Johnson,129 U. Joshi,129K. Kaadze,129 B. Klima,129S. Kwan,129 J. Linacre,129D. Lincoln,129 R. Lipton,129T. Liu,129J. Lykken,129K. Maeshima,129J. M. Marraffino,129V. I. Martinez Outschoorn,129S. Maruyama,129

D. Mason,129 P. McBride,129K. Mishra,129S. Mrenna,129Y. Musienko,129,eeS. Nahn,129C. Newman-Holmes,129 V. O’Dell,129

O. Prokofyev,129E. Sexton-Kennedy,129 S. Sharma,129 A. Soha,129W. J. Spalding,129 L. Spiegel,129 L. Taylor,129S. Tkaczyk,129N. V. Tran,129L. Uplegger,129E. W. Vaandering,129R. Vidal,129A. Whitbeck,129J. Whitmore,129 F. Yang,129D. Acosta,130P. Avery,130D. Bourilkov,130M. Carver,130T. Cheng,130D. Curry,130S. Das,130M. De Gruttola,130 G. P. Di Giovanni,130R. D. Field,130M. Fisher,130I. K. Furic,130J. Hugon,130J. Konigsberg,130A. Korytov,130T. Kypreos,130 J. F. Low,130K. Matchev,130 P. Milenovic,130,xx G. Mitselmakher,130 L. Muniz,130 A. Rinkevicius,130L. Shchutska,130

N. Skhirtladze,130M. Snowball,130J. Yelton,130M. Zakaria,130V. Gaultney,131S. Hewamanage,131S. Linn,131 P. Markowitz,131G. Martinez,131J. L. Rodriguez,131T. Adams,132A. Askew,132J. Bochenek,132B. Diamond,132J. Haas,132 S. Hagopian,132V. Hagopian,132K. F. Johnson,132H. Prosper,132V. Veeraraghavan,132M. Weinberg,132M. M. Baarmand,133 M. Hohlmann,133 H. Kalakhety,133F. Yumiceva,133M. R. Adams,134 L. Apanasevich,134V. E. Bazterra,134D. Berry,134 R. R. Betts,134I. Bucinskaite,134 R. Cavanaugh,134 O. Evdokimov,134 L. Gauthier,134C. E. Gerber,134 D. J. Hofman,134 S. Khalatyan,134P. Kurt,134D. H. Moon,134C. O’Brien,134C. Silkworth,134P. Turner,134N. Varelas,134E. A. Albayrak,135,uu

(12)

A. Mestvirishvili,135 A. Moeller,135 J. Nachtman,135H. Ogul,135 Y. Onel,135F. Ozok,135,uu A. Penzo,135R. Rahmat,135 S. Sen,135P. Tan,135E. Tiras,135J. Wetzel,135T. Yetkin,135,aaaK. Yi,135B. A. Barnett,136B. Blumenfeld,136S. Bolognesi,136 D. Fehling,136 A. V. Gritsan,136P. Maksimovic,136 C. Martin,136M. Swartz,136 P. Baringer,137A. Bean,137 G. Benelli,137 C. Bruner,137 J. Gray,137 R. P. Kenny III,137 M. Murray,137D. Noonan,137 S. Sanders,137 J. Sekaric,137R. Stringer,137 Q. Wang,137J. S. Wood,137A. F. Barfuss,138I. Chakaberia,138A. Ivanov,138S. Khalil,138M. Makouski,138Y. Maravin,138

L. K. Saini,138 S. Shrestha,138 I. Svintradze,138 J. Gronberg,139D. Lange,139 F. Rebassoo,139 D. Wright,139A. Baden,140 B. Calvert,140S. C. Eno,140J. A. Gomez,140N. J. Hadley,140R. G. Kellogg,140T. Kolberg,140Y. Lu,140M. Marionneau,140 A. C. Mignerey,140K. Pedro,140A. Skuja,140M. B. Tonjes,140S. C. Tonwar,140A. Apyan,141R. Barbieri,141G. Bauer,141 W. Busza,141I. A. Cali,141M. Chan,141L. Di Matteo,141V. Dutta,141G. Gomez Ceballos,141M. Goncharov,141D. Gulhan,141 M. Klute,141Y. S. Lai,141Y.-J. Lee,141 A. Levin,141 P. D. Luckey,141T. Ma,141C. Paus,141 D. Ralph,141C. Roland,141 G. Roland,141G. S. F. Stephans,141F. Stöckli,141K. Sumorok,141D. Velicanu,141J. Veverka,141B. Wyslouch,141M. Yang,141 M. Zanetti,141V. Zhukova,141B. Dahmes,142A. De Benedetti,142A. Gude,142S. C. Kao,142K. Klapoetke,142Y. Kubota,142 J. Mans,142N. Pastika,142R. Rusack,142A. Singovsky,142N. Tambe,142 J. Turkewitz,142J. G. Acosta,143S. Oliveros,143

E. Avdeeva,144 K. Bloom,144 S. Bose,144D. R. Claes,144A. Dominguez,144R. Gonzalez Suarez,144 J. Keller,144 D. Knowlton,144I. Kravchenko,144J. Lazo-Flores,144S. Malik,144F. Meier,144G. R. Snow,144J. Dolen,145A. Godshalk,145

I. Iashvili,145A. Kharchilava,145 A. Kumar,145 S. Rappoccio,145G. Alverson,146E. Barberis,146 D. Baumgartel,146 M. Chasco,146 J. Haley,146 A. Massironi,146D. M. Morse,146D. Nash,146 T. Orimoto,146D. Trocino,146D. Wood,146 J. Zhang,146K. A. Hahn,147A. Kubik,147N. Mucia,147N. Odell,147 B. Pollack,147 A. Pozdnyakov,147M. Schmitt,147 S. Stoynev,147K. Sung,147M. Velasco,147S. Won,147A. Brinkerhoff,148K. M. Chan,148A. Drozdetskiy,148M. Hildreth,148

C. Jessop,148 D. J. Karmgard,148N. Kellams,148 K. Lannon,148 W. Luo,148S. Lynch,148 N. Marinelli,148 T. Pearson,148 M. Planer,148 R. Ruchti,148 N. Valls,148 M. Wayne,148 M. Wolf,148A. Woodard,148L. Antonelli,149J. Brinson,149

B. Bylsma,149L. S. Durkin,149 S. Flowers,149C. Hill,149 R. Hughes,149 K. Kotov,149T. Y. Ling,149 D. Puigh,149 M. Rodenburg,149G. Smith,149 C. Vuosalo,149 B. L. Winer,149 H. Wolfe,149 H. W. Wulsin,149E. Berry,150 O. Driga,150 P. Elmer,150P. Hebda,150A. Hunt,150S. A. Koay,150P. Lujan,150D. Marlow,150T. Medvedeva,150M. Mooney,150J. Olsen,150

P. Piroué,150X. Quan,150H. Saka,150 D. Stickland,150,c C. Tully,150J. S. Werner,150S. C. Zenz,150 A. Zuranski,150 E. Brownson,151H. Mendez,151J. E. Ramirez Vargas,151 E. Alagoz,152 V. E. Barnes,152D. Benedetti,152G. Bolla,152

D. Bortoletto,152M. De Mattia,152 A. Everett,152 Z. Hu,152M. K. Jha,152M. Jones,152 K. Jung,152 M. Kress,152 N. Leonardo,152D. Lopes Pegna,152 V. Maroussov,152P. Merkel,152D. H. Miller,152N. Neumeister,152

B. C. Radburn-Smith,152I. Shipsey,152D. Silvers,152A. Svyatkovskiy,152F. Wang,152W. Xie,152L. Xu,152H. D. Yoo,152 J. Zablocki,152Y. Zheng,152N. Parashar,153J. Stupak,153A. Adair,154B. Akgun,154K. M. Ecklund,154F. J. M. Geurts,154 W. Li,154B. Michlin,154B. P. Padley,154R. Redjimi,154J. Roberts,154J. Zabel,154B. Betchart,155A. Bodek,155R. Covarelli,155 P. de Barbaro,155R. Demina,155Y. Eshaq,155T. Ferbel,155A. Garcia-Bellido,155P. Goldenzweig,155J. Han,155A. Harel,155 A. Khukhunaishvili,155D. C. Miner,155G. Petrillo,155D. Vishnevskiy,155R. Ciesielski,156L. Demortier,156K. Goulianos,156 G. Lungu,156C. Mesropian,156S. Arora,157A. Barker,157J. P. Chou,157C. Contreras-Campana,157E. Contreras-Campana,157 D. Duggan,157D. Ferencek,157Y. Gershtein,157 R. Gray,157E. Halkiadakis,157 D. Hidas,157A. Lath,157 S. Panwalkar,157 M. Park,157R. Patel,157V. Rekovic,157S. Salur,157S. Schnetzer,157C. Seitz,157S. Somalwar,157R. Stone,157S. Thomas,157 P. Thomassen,157M. Walker,157 K. Rose,158S. Spanier,158 A. York,158O. Bouhali,159,bbbR. Eusebi,159W. Flanagan,159

J. Gilmore,159 T. Kamon,159,cccV. Khotilovich,159V. Krutelyov,159R. Montalvo,159I. Osipenkov,159 Y. Pakhotin,159 A. Perloff,159J. Roe,159 A. Rose,159 A. Safonov,159T. Sakuma,159I. Suarez,159 A. Tatarinov,159 N. Akchurin,160 C. Cowden,160J. Damgov,160C. Dragoiu,160P. R. Dudero,160J. Faulkner,160K. Kovitanggoon,160S. Kunori,160S. W. Lee,160 T. Libeiro,160I. Volobouev,160E. Appelt,161A. G. Delannoy,161S. Greene,161A. Gurrola,161 W. Johns,161C. Maguire,161 Y. Mao,161A. Melo,161M. Sharma,161P. Sheldon,161B. Snook,161S. Tuo,161J. Velkovska,161M. W. Arenton,162S. Boutle,162

B. Cox,162 B. Francis,162 J. Goodell,162R. Hirosky,162A. Ledovskoy,162H. Li,162 C. Lin,162 C. Neu,162J. Wood,162 S. Gollapinni,163R. Harr,163P. E. Karchin,163C. Kottachchi Kankanamge Don,163 P. Lamichhane,163 D. A. Belknap,164

D. Carlsmith,164M. Cepeda,164S. Dasu,164 S. Duric,164 E. Friis,164R. Hall-Wilton,164 M. Herndon,164A. Hervé,164 P. Klabbers,164J. Klukas,164A. Lanaro,164C. Lazaridis,164A. Levine,164R. Loveless,164 A. Mohapatra,164I. Ojalvo,164

T. Perry,164 G. A. Pierro,164 G. Polese,164I. Ross,164 T. Sarangi,164A. Savin,164 W. H. Smith164and N. Woods164 (CMS Collaboration)

(13)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4

Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6

Université Libre de Bruxelles, Bruxelles, Belgium 7Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium 9Université de Mons, Mons, Belgium

10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12a

Universidade Estadual Paulista, São Paulo, Brazil 12bUniversidade Federal do ABC, São Paulo, Brazil 13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15

Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia 18Technical University of Split, Split, Croatia

19

University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21

University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26

Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France 31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32

Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 33

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37

Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41

University of Athens, Athens, Greece 42University of Ioánnina, Ioánnina, Greece 43

Wigner Research Centre for Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45

University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47

Panjab University, Chandigarh, India 48University of Delhi, Delhi, India 49

Saha Institute of Nuclear Physics, Kolkata, India 50Bhabha Atomic Research Centre, Mumbai, India 51

Tata Institute of Fundamental Research, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53

University College Dublin, Dublin, Ireland 54aINFN Sezione di Bari, Bari, Italy

(14)

54bUniversità di Bari, Bari, Italy 54c

Politecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55b

Università di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Italy

56b

Università di Catania, Italy 56cCSFNSM, Italy 57a

INFN Sezione di Firenze, Firenze, Italy 57bUniversità di Firenze, Firenze, Italy 58

INFN Laboratori Nazionali di Frascati, Frascati, Italy 59aINFN Sezione di Genova, Genova, Italy

59b

Università di Genova, Genova, Italy 60aINFN Sezione di Milano-Bicocca, Milano, Italy

60b

Università di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61b

Università di Napoli‘Federico II’, Napoli, Italy 61cUniversità della Basilicata (Potenza), Napoli, Italy

61d

Università G. Marconi (Roma), Napoli, Italy 62aINFN Sezione di Padova, Padova, Italy

62b

Università di Padova, Padova, Italy 62cUniversità di Trento (Trento), Padova, Italy

63a

INFN Sezione di Pavia, Pavia, Italy 63bUniversità di Pavia, Pavia, Italy 64a

INFN Sezione di Perugia, Perugia, Italy 64bUniversità di Perugia, Perugia, Italy

65a

INFN Sezione di Pisa, Pisa, Italy 65bUniversità di Pisa, Pisa, Italy 65c

Scuola Normale Superiore di Pisa, Pisa, Italy 66aINFN Sezione di Roma, Roma, Italy

66b

Università di Roma, Roma, Italy 67aINFN Sezione di Torino, Torino, Italy

67b

Università di Torino, Torino, Italy

67cUniversità del Piemonte Orientale (Novara), Torino, Italy 68a

INFN Sezione di Trieste, Trieste, Italy 68bUniversità di Trieste, Trieste, Italy 69

Kangwon National University, Chunchon, Korea 70Kyungpook National University, Daegu, Korea 71

Institute for Universe and Elementary Particles, Chonnam National University, Kwangju, Korea 72Korea University, Seoul, Korea

73

University of Seoul, Seoul, Korea 74Sungkyunkwan University, Suwon, Korea

75

Vilnius University, Vilnius, Lithuania

76National Centre for Particle Physics, Universiti Malaya, Kuala Lumpur, Malaysia 77

Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 78Universidad Iberoamericana, Mexico City, Mexico

79

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 80Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

81

University of Auckland, Auckland, New Zealand 82University of Canterbury, Christchurch, New Zealand 83

National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 84National Centre for Nuclear Research, Swierk, Poland

85

Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 86Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

87

Joint Institute for Nuclear Research, Dubna, Russia

88Petersburg Nuclear Physics Institute, Gatchina (Saint Petersburg), Russia 89

Institute for Nuclear Research, Moscow, Russia

90Institute for Theoretical and Experimental Physics, Moscow, Russia 91

P.N. Lebedev Physical Institute, Moscow, Russia

92Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia 93

(15)

94Faculty of Physics and Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade, Serbia 95

Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 96Universidad Autónoma de Madrid, Madrid, Spain

97

Universidad de Oviedo, Oviedo, Spain

98Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 99

CERN, European Organization for Nuclear Research, Geneva, Switzerland 100Paul Scherrer Institut, Villigen, Switzerland

101

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 102Universität Zürich, Zurich, Switzerland

103

National Central University, Chung-Li, Taiwan 104National Taiwan University (NTU), Taipei, Taiwan

105

Chulalongkorn University, Bangkok, Thailand 106Cukurova University, Adana, Turkey 107

Physics Department, Middle East Technical University, Ankara, Turkey 108Bogazici University, Istanbul, Turkey

109

Istanbul Technical University, Istanbul, Turkey

110National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 111

University of Bristol, Bristol, United Kingdom 112Rutherford Appleton Laboratory, Didcot, United Kingdom

113

Imperial College, London, United Kingdom 114Brunel University, Uxbridge, United Kingdom

115

Baylor University, Waco, USA 116The University of Alabama, Tuscaloosa, USA

117

Boston University, Boston, USA 118Brown University, Providence, USA 119

University of California, Davis, Davis, USA 120University of California, Los Angeles, USA 121

University of California, Riverside, Riverside, USA 122University of California, San Diego, La Jolla, USA 123

University of California, Santa Barbara, Santa Barbara, USA 124California Institute of Technology, Pasadena, USA

125

Carnegie Mellon University, Pittsburgh, USA 126University of Colorado at Boulder, Boulder, USA

127

Cornell University, Ithaca, USA 128Fairfield University, Fairfield, USA 129

Fermi National Accelerator Laboratory, Batavia, USA 130University of Florida, Gainesville, USA 131

Florida International University, Miami, USA 132Florida State University, Tallahassee, USA 133

Florida Institute of Technology, Melbourne, USA 134University of Illinois at Chicago (UIC), Chicago, USA

135

The University of Iowa, Iowa City, USA 136Johns Hopkins University, Baltimore, USA 137

The University of Kansas, Lawrence, USA 138Kansas State University, Manhattan, USA 139

Lawrence Livermore National Laboratory, Livermore, USA 140University of Maryland, College Park, USA 141

Massachusetts Institute of Technology, Cambridge, USA 142University of Minnesota, Minneapolis, USA

143

University of Mississippi, Oxford, USA 144University of Nebraska-Lincoln, Lincoln, USA 145

State University of New York at Buffalo, Buffalo, USA 146Northeastern University, Boston, USA 147

Northwestern University, Evanston, USA 148University of Notre Dame, Notre Dame, USA

149

The Ohio State University, Columbus, USA 150Princeton University, Princeton, USA 151

University of Puerto Rico, Mayaguez, USA 152Purdue University, West Lafayette, USA 153

Figura

FIG. 1 (color online). Inclusive jet-p T spectrum (points) for jηj &lt; 1.5, as observed in data
FIG. 2 (color online). The ratio of the inclusive jet-p T spectrum to the NLO QCD prediction with nonperturbative corrections and convolved with the detector resolution
FIG. 5 (color online). The results of a CL s scan in the extinction mass scale, β ¼ M −2

Riferimenti

Documenti correlati

Cerebrospinal Fluid Abacavir Concentrations in HIV-positive Patients Following Once-daily Administration2. Published version: DOI:10.1111/bcp.13552 Terms

[r]

sufficient conditions (similar to the conditions by Podest`a-Spiro) for the existence of invariant K¨ ahler-Einstein metrics in terms of an inter- val in the T -Weyl chamber

In the left-hand panel of the figure the individual and luminosity binned Planck SZ signal measured at the location of MCXC clusters are shown as a function of luminosity together

This new information could be channeled to address what seem to be the three major hallmarks for the immune control of cancer progression: effective procedures to activate

corresponding anilines via aqueous oxidative chlorination of S-aryl O-ethyl dithiocarbonates intermediates, or aryl methyl sulfides, or from arenethiols.. Key words:

1ES 1959 +650 during the 9.5 yr period. The X-ray flares were sometimes not accompanied with an increasing activity in the γ -ray part of the spectrum and vice versa. In some cases,

(2014) and Planck Collaboration XXXIX (2016) who noted that the sub-mm flux densities of proto-cluster candidates measured by Planck are about 2 to 3 times larger than the