• Non ci sono risultati.

Search for dijet resonances in 7 TeV pp collisions at CMS

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for dijet resonances in 7 TeV pp collisions at CMS"

Copied!
14
0
0

Testo completo

(1)

Search for Dijet Resonances in 7 TeV pp Collisions at CMS

V. Khachatryan et al.*

(CMS Collaboration)

(Received 1 October 2010; published 17 November 2010; publisher error corrected 6 January 2011) A search for narrow resonances in the dijet mass spectrum is performed using data corresponding to an integrated luminosity of2:9 pb1collected by the CMS experiment at the Large Hadron Collider. Upper limits at the 95% confidence level are presented on the product of the resonance cross section, branching fraction into dijets, and acceptance, separately for decays into quark-quark, quark-gluon, or gluon-gluon pairs. The data exclude new particles predicted in the following models at the 95% confidence level: string resonances, with mass less than 2.50 TeV, excited quarks, with mass less than 1.58 TeV, and axigluons, colorons, and E6 diquarks, in specific mass intervals. This extends previously published limits on these models.

DOI:10.1103/PhysRevLett.105.211801 PACS numbers: 13.85.Rm, 13.87.Ce, 14.80.j

Two or more energetic jets arise in proton-proton colli-sions when partons are scattered with large transverse momenta pT. The invariant mass spectrum of the two jets with largest pT (dijets) falls steeply and smoothly, as predicted by quantum chromodynamics (QCD). Many ex-tensions of the standard model predict the existence of new massive objects that couple to quarks (q) and gluons (g), and result in resonant structures in the dijet mass. In this Letter we report a search for narrow resonances in the dijet mass spectrum, measured with the CMS detector [1] at the LHC, at a proton-proton collision energy ofpffiffiffis¼ 7 TeV. In addition to this generic search, we search for narrow s-channel dijet resonances from eight specific models. First, string resonances (S), which are Regge excitations of quarks and gluons in string theory, with multiple mass-degenerate spin states and quantum numbers [2,3]; string resonances with mass2 TeV are expected to decay pre-dominantly to qg (91%) with small amounts of gg (5.5%) and qq (3.5%). Second, mass-degenerate excited quarks (q), which decay to qg, predicted if quarks are composite [4]; the compositeness scale is set to be equal to the mass of the excited quark. Third, axial vector particles called ax-igluons (A), which decay to qq, predicted in a model where the symmetry groupSUð3Þ of QCD is replaced by the chiral symmetrySUð3ÞL SUð3ÞR[5]. Fourth, octet color-ons (C), also decaying to qq, predicted by the flavor-universal coloron model embedding theSUð3Þ symmetry of QCD in a larger gauge group [6]. Fifth, scalar diquarks (D), which decay to qq and q q , predicted by a grand unified theory based on the E6 gauge [7]. Sixth, Randall-Sundrum (RS) gravitons (G), which decay to qq and gg,

predicted in the RS model of extra dimensions [8]; the value of the dimensionless coupling = MPl is chosen to be 0.1. Seventh and eighth, new gauge bosons (W0and Z0), which decay to qq, predicted by models that propose new gauge symmetries [9]; the W0 and Z0 resonances are assumed to have standard-model-like couplings.

A detailed description of the CMS experiment can be found elsewhere [1]. The CMS coordinate system has the origin at the center of the detector. The z-axis points along the direction of the counterclockwise beam, with the trans-verse plane perpendicular to the beam;  is the azimuthal angle in radians,  is the polar angle, and the pseudora-pidity is   lnðtan½=2Þ. The central feature of the CMS apparatus is a superconducting solenoid of 6 m in-ternal diameter. Within the field volume are the silicon pixel and strip tracker (jj < 2:4), and the barrel and end cap calorimeters (jj < 3): a lead tungstate crystal elec-tromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter (HCAL). Outside the field volume, in the forward region, there is an iron-quartz fiber calorimeter (3 < jj < 5). The ECAL and HCAL cells are grouped into towers, projecting radially outward from the origin, for triggering purposes and to facilitate jet reconstruction. In the region jj < 1:74 these projective calorimeter towers have segmentation ¼  ¼ 0:087; the  and  width increases at higher values of . The energy depositions measured in the ECAL and the HCAL within each projec-tive tower are summed to find the calorimeter tower energy. The integrated luminosity of the data sample selected for this analysis is2:9  0:3 pb1[10]. A single-jet trigger is used in both the online hardware-level (L1) and the software-level (HLT) of the trigger system [1] to select an unprescaled sample of events with a nominal jet trans-verse energy threshold at the HLT of 50 GeV. The trigger efficiency for this analysis is measured from the data to be larger than 99.5% for dijet masses above 220 GeV.

Jets are reconstructed using the anti-kT algorithm [11] with a distance parameter R¼ 0:7. The reconstructed jet

*Full author list given at the end of the article.

Published by The American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

energy E is defined as the scalar sum of the calorimeter tower energies inside the jet. The jet momentum ~p is the corresponding vector sum of the tower energies using the tower directions. The E and ~p of a reconstructed jet are corrected as a function of pT and  for the nonlinearity and inhomogeneity of the calorimeter response. The cor-rection is between 43% and 15% for jets with corrected pT between 0.1 and 1.0 TeV in the regionjj < 1:3. The jet energy corrections were determined and validated using simulations, test beam data, and collision data [12].

The dijet system is composed of the two jets with the highest pT in an event (leading jets). We require that the pseudorapidity separation of the two leading jets,  ¼ 1 2, satisfiesjj < 1:3, and that both jets be in the regionjj < 2:5. These  cuts maximize the search sensi-tivity for isotropic decays of dijet resonances in the pres-ence of QCD background. The dijet mass is given by m¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðE1þ E2Þ2 ð ~p1þ ~p2Þ2. We select events with m >220 GeV without any requirements on jet pT.

To remove possible instrumental and noncollision back-grounds in the selected sample, the following selections are made. Events are required to have a reconstructed primary vertex withinjzj < 24 cm. For jets, at least 1% of the jet energy must be detected in the ECAL, at most 98% can be measured in a single photodetection device of the HCAL readout, and at most 90% can be measured in a single cell. These criteria, which are fully efficient for dijets, remove 0.1% of the events passing the pseudorapidity constraints and the dijet mass threshold.

Figure1presents the inclusive dijet mass distribution for pp! 2 leading jets þ X, where X can be anything, in-cluding additional jets. We plot the measured differential cross section versus dijet mass in bins approximately equal to the dijet mass resolution. The data are compared to a QCD prediction fromPYTHIA[13], which includes a full GEANT simulation [14] of the CMS detector and the jet energy corrections. The prediction uses a renormalization scale ¼ pT and CTEQ6L1 parton distribution functions [15]. ThePYTHIAprediction agrees with the data within the jet energy scale uncertainty, which is the dominant system-atic uncertainty. To test the smoothness of our measured cross section as a function of dijet mass, we fit the data with the parametrization

d dm ¼

P0ð1  m=pffiffiffisÞP1

ðm=pffiffiffisÞP2þP3lnðm=pffiffisÞ; (1) with four free parameters P0, P1, P2 and P3. This func-tional form has been used by prior searches to describe both data and QCD predictions [16,17]. In Fig.1we show both the data and the fit, which has a 2 ¼ 32 for 31 degrees of freedom. In Fig.2 we show the ratio between the data and the fit. The data are well described by the smooth parametrization.

We search for narrow resonances, for which the natural resonance width is negligible compared to the CMS dijet

mass resolution. Figures1and2present the predicted dijet mass distribution for string resonances and excited quarks using the PYTHIA Monte Carlo and the CMS detector simulation. The predicted mass distributions exhibit a Gaussian core from jet energy resolution and a tail toward low masses from QCD radiation. This can be seen in Fig.3, which shows examples of the predicted dijet mass distri-bution of resonances from three different parton pairings:

Dijet Mass (GeV)

500 1000 1500 2000 /dm (pb/GeV)σ d -4 10 -3 10 -2 10 -1 10 1 10 2 10 3 10 4 10 CMS Data (2.9 pb-1) Fit 10% JES Uncertainty QCD Pythia + CMS Simulation Excited Quark String s = 7 TeV | < 1.3 η ∆ | < 2.5 & | η | q* (0.5 TeV) S (1 TeV) q* (1.5 TeV) S (2 TeV)

FIG. 1 (color online). Dijet mass spectrum (points) compared to a smooth fit (solid) and to predictions [13] including detector simulation of QCD (short-dashed), excited quark signals (dot-dashed), and string resonance signals (long-dashed). The errors are statistical only. The shaded band shows the effect of a 10% systematic uncertainty in the jet energy scale (JES).

Dijet Mass (GeV)

500 1000 1500 2000 Data / Fit 1 10 q* (0.5 TeV) S (1 TeV) q* (1.5 TeV) S (2 TeV) ) -1 CMS Data (2.9 pb = 7 TeV s | < 1.3 η ∆ | < 2.5 & | η |

FIG. 2 (color online). Ratio (points) between the dijet mass data and the smooth fit, compared to the simulated ratios for excited quark signals (dot-dashed) and string resonance signals (long-dashed) in the CMS detector. The errors are statistical only.

(3)

qq (or qq) resonances from the process G ! q q [8], qg resonances from q! qg [4], and gg resonances from G! gg [8]. For resonance masses between 0.5 and 2.5 TeV, the dijet mass resolution varies from 8% to 5% for qq, 10% to 6% for qg, and 16% to 10% for gg, respectively. The increase of the width of the measured mass shape and the shift of the mass distribution toward lower masses are enhanced when the number of gluons in the final state is larger, because QCD radiation is larger for gluons than for quarks. The latter also implies that the detector response is lower to gluon jets than to quark jets [18] ( jet energy corrections, applied both to data and to simulations, are for the mixture of quark and gluon jets expected in QCD). The distributions in Fig.3are generi-cally valid for other resonances with the same parton content and with a natural width small compared to the dijet mass resolution. There is no indication of narrow resonances in our data as shown in Figs.1and2.

We use the dijet mass data points, the background (QCD) parametrization, and the dijet resonance shapes to set specific limits on new particles decaying to the parton pairs qq (or qq), qg, and gg. For setting upper limits, before accounting for systematic uncertainties, we use a Bayesian formalism with a uniform prior for the signal cross section. We calculate the posterior probability den-sity as a function of resonance cross section, independently at 22 different values of the resonance mass from 0.5 to 2.6 TeV in steps of 0.1 TeV. From this we find initial 95% confidence level (CL) upper limits on the cross section, including only statistical uncertainties. The dominant sources of systematic uncertainty are the jet energy scale

(10%), the jet energy resolution (10%), the integrated luminosity (11%), and the background parametrization choice (included by using a different parametrization [19] that also describes the data). The jet energy scale and resolution uncertainties are conservative estimates, consistent with those measured using collision data [12]. To incorporate systematic uncertainties, we then use an approximate technique, which in our application is generally more conservative than a fully Bayesian treat-ment. The posterior probability density for the cross sec-tion is broadened by convoluting it, for each resonance mass, with a Gaussian systematic uncertainty [19]. As a result, the cross section limits including systematic uncer-tainties increase by 17%–49% depending on the resonance mass and type. TableIlists the generic upper limits at the 95% CL on  BR  A, the product of cross section (), branching fraction (BR), and acceptance (A) for the kine-matic requirementsjj < 1:3 and jj < 2:5, for qq, qg, and gg resonances. The acceptance for isotropic decays is A 0:6 independent of resonance mass.

In Fig. 4we compare these upper limits to the model predictions as a function of resonance mass. The predic-tions are from lowest order calculapredic-tions of the product  BR  A using the CTEQ6L1 parton distributions [15]. New particles are excluded at the 95% CL in mass regions for which the theory curve lies above our upper limit for the appropriate pair of partons. We also determine the expected lower limit on the mass of each new particle, for a smooth background in the absence of signal. For string resonances the expected mass limit is 2.40 TeV, and we use the limits on qg resonances to exclude the mass range 0:50 < MðSÞ < 2:50 TeV. For comparison, previous measurements [16] imply a limit on string reso-nances of about 1.4 TeV. For excited quarks the expected

TABLE I. Upper limits at the 95% CL on  BR  A, as a function of the new particle mass, for narrow resonances decay-ing to dijets with partons of type quark-quark (qq), quark-gluon (qg), and gluon-gluon (gg). The limits apply to the kine-matic range where both jets have pseudorapidity jj < 2:5 and jj < 1:3.

Mass Upper limit (pb) Mass Upper limit (pb)

(TeV) qq qg gg (TeV) qq qg gg 0.5 118 134 206 1.6 3.05 3.72 6.71 0.6 182 229 339 1.7 3.13 3.64 5.88 0.7 90.7 134 281 1.8 2.92 3.41 5.37 0.8 70.8 93.5 177 1.9 2.73 3.15 4.78 0.9 52.7 71.6 142 2.0 2.71 3.02 4.39 1.0 20.3 29.0 71.4 2.1 2.50 2.84 4.15 1.1 17.0 20.1 35.1 2.2 2.20 2.55 3.69 1.2 17.0 20.4 32.5 2.3 1.96 2.28 3.32 1.3 10.5 12.9 22.8 2.4 1.79 2.08 2.94 1.4 6.77 8.71 16.4 2.5 1.67 1.93 2.74 1.5 3.71 5.02 10.3 2.6 1.55 1.80 2.50

Dijet Mass (GeV)

400 600 800 1000 1200 1400 1600 Probability 0.05 0.1 0.15 0.2 0.25 Gluon-Gluon Quark-Gluon Quark-Quark CMS Simulation = 1.2 TeV Res M | < 1.3 η ∆ | < 2.5 & | η |

FIG. 3 (color online). Simulation of the expected dijet mass distributions in the CMS detector from a narrow 1.2 TeV reso-nance of type quark-quark (dot-dashed), quark-gluon (dotted), and gluon-gluon (dashed).

(4)

mass limit is 1.32 TeV, and we exclude the mass range 0:50 < MðqÞ < 1:58 TeV, extending the previous exclu-sion of MðqÞ < 1:26 TeV [16,17,19–22]. For axigluons or colorons the expected mass limit is 1.23 TeV, and we use the limits on qq resonances to exclude the mass intervals 0:50 < MðAÞ < 1:17 TeV and 1:47 < MðAÞ < 1:52 TeV, extending the previous exclusion of 0:11 < MðAÞ < 1:25 TeV [16,19,21,23–25]. For E6 diquarks the expected mass limit is 1.05 TeV, and we exclude the mass intervals 0:50 < MðDÞ < 0:58 TeV, and 0:97 < MðDÞ < 1:08 TeV, and1:45 < MðDÞ < 1:60 TeV, extending the previous ex-clusion of0:29 < MðDÞ < 0:63 TeV [16,19]. For W0, Z0, and RS gravitons we do not expect any mass limit, and do not exclude any mass intervals with the present data. The systematic uncertainties included in this analysis reduce the excluded upper masses by roughly 0.1 TeV for each type of new particle.

In conclusion, the measured dijet mass spectrum is a smoothly falling distribution as expected within the stan-dard model. We see no evidence for new particle produc-tion. Thus we present generic upper limits on  BR  A that can be applied to any model of dijet resonances, and set specific mass limits on string resonances, excited quarks, axigluons, flavor-universal colorons, and E6 di-quarks, all of which extend previous exclusions.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of

the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania);

CINVESTAV, CONACYT, SEP, and UASLP-FAI

(Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (U.S.).

[1] CMS Collaboration,JINST3, S08004 (2008).

[2] L. A. Anchordoqui, H. Goldberg, D. Lu¨st, S. Nawata, S. Stieberger, and T. R. Taylor,Phys. Rev. Lett.101, 241803 (2008).

[3] S. Cullen, M. Perelstein, and M. E. Peskin,Phys. Rev. D 62, 055012 (2000).

[4] U. Baur, I. Hinchliffe, and D. Zeppenfeld, Int. J. Mod. Phys. A2, 1285 (1987).

[5] P. H. Frampton and S. L. Glashow,Phys. Lett. B190, 157 (1987).

[6] E. H. Simmons,Phys. Rev. D55, 1678 (1997).

[7] J. L. Hewett and T. G. Rizzo,Phys. Rep.183, 193 (1989). [8] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690

(1999).

[9] E. Eichten, I. Hinchliffe, K. Lane, and C. Quigg, Rev. Mod. Phys.56, 579 (1984).

[10] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EWK-10-004, 2010,http://cdsweb .cern.ch/record/1279145?ln=en.

[11] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[12] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-003, 2010, http://cdsweb .cern.ch/record/1279362?ln=en.

[13] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).

[14] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A506, 250 (2003). [15] J. Pumplin et al.,J. High Energy Phys. 07 (2002) 012. [16] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. D79,

112002 (2009).

[17] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett. 105, 161801 (2010).

[18] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-07-002, 2007.

[19] F. Abe et al. (CDF Collaboration),Phys. Rev. D55, R5263 (1997).

Resonance Mass (GeV)

500 1000 1500 2000 2500 A (pb)× BR × σ -2 10 -1 10 1 10 2 10 3 10 4 10 5 10 CMS Data (2.9 pb-1) = 7 TeV s | < 1.3 η ∆ | < 2.5 & | η | String Excited Quark Axigluon/Coloron Diquark 6 E W´ Z´ RS Graviton Gluon-Gluon Quark-Gluon Quark-Quark Resonance Models 95% CL Upper Limit

FIG. 4 (color online). 95% CL upper limits on  BR  A for dijet resonances of type gluon-gluon (open circles), quark-gluon (solid circles), and quark-quark (open boxes), compared to theoretical predictions for string resonances [2], excited quarks [4], axigluons [5], colorons [6], E6 diquarks [7], new gauge bosons W0and Z0[9], and Randall-Sundrum gravitons [8].

(5)

[20] J. Alitti et al. (UA2 Collaboration), Nucl. Phys.B400, 3 (1993).

[21] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett. 74, 3538 (1995).

[22] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. D69, 111101 (2004).

[23] C. Albajar et al. (UA1 Collaboration),Phys. Lett. B209, 127 (1988).

[24] F. Abe et al. (CDF Collaboration),Phys. Rev. D41, 1722 (1990).

[25] F. Abe et al. (CDF Collaboration), Phys. Rev. Lett.71, 2542 (1993).

V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2C. Fabjan,2 M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2C. Hartl,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2

M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2 V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4L. Ceard,4E. A. De Wolf,4X. Janssen,4T. Maes,4

L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4V. Adler,5S. Beauceron,5S. Blyweert,5J. D’Hondt,5O. Devroede,5A. Kalogeropoulos,5J. Maes,5 M. Maes,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5I. Villella,5E. C. Chabert,6O. Charaf,6B. Clerbaux,6 G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6

P. Vanlaer,6J. Wickens,6S. Costantini,7M. Grunewald,7B. Klein,7A. Marinov,7D. Ryckbosch,7F. Thyssen,7 M. Tytgat,7L. Vanelderen,7P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8

J. De Favereau De Jeneret,8C. Delaere,8P. Demin,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8 V. Lemaitre,8O. Militaru,8S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8,bL. Quertenmont,8N. Schul,8N. Beliy,9

T. Caebergs,9E. Daubie,9G. A. Alves,10D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11 E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11

J. M. Otalora Goicochea,11W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11 F. Torres Da Silva De Araujo,11F. A. Dias,12M. A. F. Dias,12T. R. Fernandez Perez Tomei,12E. M. Gregores,12 F. Marinho,12S. F. Novaes,12Sandra S. Padula,12N. Darmenov,13,bL. Dimitrov,13V. Genchev,13,bP. Iaydjiev,13,b

S. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13I. Vankov,13 M. Dyulendarova,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14E. Marinova,14M. Mateev,14B. Pavlov,14 P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15J. Wang,15J. Wang,15 X. Wang,15Z. Wang,15M. Yang,15J. Zang,15Z. Zhang,15Y. Ban,16S. Guo,16Z. Hu,16W. Li,16Y. Mao,16S. J. Qian,16

H. Teng,16B. Zhu,16A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18K. Lelas,18R. Plestina,18,cD. Polic,18I. Puljak,18Z. Antunovic,19

M. Dzelalija,19V. Brigljevic,20S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21R. Fereos,21M. Galanti,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21H. Rykaczewski,21A. Abdel-basit,22,dY. Assran,22,e

M. A. Mahmoud,22,fA. Hektor,23M. Kadastik,23K. Kannike,23M. Mu¨ntel,23M. Raidal,23L. Rebane,23 V. Azzolini,24P. Eerola,24S. Czellar,25J. Ha¨rko¨nen,25A. Heikkinen,25V. Karima¨ki,25R. Kinnunen,25J. Klem,25

M. J. Kortelainen,25T. Lampe´n,25K. Lassila-Perini,25S. Lehti,25T. Linde´n,25P. Luukka,25T. Ma¨enpa¨a¨,25 E. Tuominen,25J. Tuominiemi,25E. Tuovinen,25D. Ungaro,25L. Wendland,25K. Banzuzi,26A. Korpela,26 T. Tuuva,26D. Sillou,27M. Besancon,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28 S. Ganjour,28F. X. Gentit,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28 J. Malcles,28M. Marionneau,28L. Millischer,28J. Rander,28A. Rosowsky,28M. Titov,28P. Verrecchia,28

S. Baffioni,29L. Bianchini,29M. Bluj,29,gC. Broutin,29P. Busson,29C. Charlot,29L. Dobrzynski,29 R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29C. Ochando,29P. Paganini,29D. Sabes,29

R. Salerno,29Y. Sirois,29C. Thiebaux,29A. Zabi,29J.-L. Agram,30A. Besson,30D. Bloch,30D. Bodin,30 J.-M. Brom,30M. Cardaci,30E. Conte,30F. Drouhin,30C. Ferro,30J.-C. Fontaine,30D. Gele´,30U. Goerlach,30 S. Greder,30P. Juillot,30M. Karim,30A.-C. Le Bihan,30Y. Mikami,30P. Van Hove,30F. Fassi,31D. Mercier,31 C. Baty,32N. Beaupere,32M. Bedjidian,32O. Bondu,32G. Boudoul,32D. Boumediene,32H. Brun,32N. Chanon,32

R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32A. Falkiewicz,32J. Fay,32S. Gascon,32B. Ille,32 T. Kurca,32T. Le Grand,32M. Lethuillier,32L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32 P. Verdier,32H. Xiao,32V. Roinishvili,33G. Anagnostou,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34 R. Jussen,34K. Klein,34J. Merz,34N. Mohr,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34 D. Sprenger,34H. Weber,34M. Weber,34B. Wittmer,34M. Ata,35W. Bender,35M. Erdmann,35J. Frangenheim,35

(6)

T. Hebbeker,35A. Hinzmann,35K. Hoepfner,35C. Hof,35T. Klimkovich,35D. Klingebiel,35P. Kreuzer,35,b D. Lanske,35,aC. Magass,35G. Masetti,35M. Merschmeyer,35A. Meyer,35P. Papacz,35H. Pieta,35H. Reithler,35 S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35M. Bontenackels,36M. Davids,36M. Duda,36

G. Flu¨gge,36H. Geenen,36M. Giffels,36W. Haj Ahmad,36D. Heydhausen,36T. Kress,36Y. Kuessel,36A. Linn,36 A. Nowack,36L. Perchalla,36O. Pooth,36J. Rennefeld,36P. Sauerland,36A. Stahl,36M. Thomas,36D. Tornier,36 M. H. Zoeller,36M. Aldaya Martin,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,hK. Borras,37A. Campbell,37

E. Castro,37D. Dammann,37G. Eckerlin,37A. Flossdorf,37G. Flucke,37A. Geiser,37I. Glushkov,37J. Hauk,37 H. Jung,37M. Kasemann,37I. Katkov,37P. Katsas,37C. Kleinwort,37H. Kluge,37A. Knutsson,37D. Kru¨cker,37

E. Kuznetsova,37W. Lange,37W. Lohmann,37,hR. Mankel,37M. Marienfeld,37I.-A. Melzer-Pellmann,37 A. B. Meyer,37J. Mnich,37A. Mussgiller,37J. Olzem,37A. Parenti,37A. Raspereza,37A. Raval,37R. Schmidt,37,h

T. Schoerner-Sadenius,37N. Sen,37M. Stein,37J. Tomaszewska,37D. Volyanskyy,37R. Walsh,37C. Wissing,37 C. Autermann,38S. Bobrovskyi,38J. Draeger,38D. Eckstein,38H. Enderle,38U. Gebbert,38K. Kaschube,38 G. Kaussen,38R. Klanner,38B. Mura,38S. Naumann-Emme,38F. Nowak,38N. Pietsch,38C. Sander,38H. Schettler,38

P. Schleper,38M. Schro¨der,38T. Schum,38J. Schwandt,38A. K. Srivastava,38H. Stadie,38G. Steinbru¨ck,38 J. Thomsen,38R. Wolf,38J. Bauer,39V. Buege,39A. Cakir,39T. Chwalek,39D. Daeuwel,39W. De Boer,39 A. Dierlamm,39G. Dirkes,39M. Feindt,39J. Gruschke,39C. Hackstein,39F. Hartmann,39M. Heinrich,39H. Held,39 K. H. Hoffmann,39S. Honc,39T. Kuhr,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. B. Neuland,39M. Niegel,39 O. Oberst,39A. Oehler,39J. Ott,39T. Peiffer,39D. Piparo,39G. Quast,39K. Rabbertz,39F. Ratnikov,39M. Renz,39

A. Sabellek,39C. Saout,39A. Scheurer,39P. Schieferdecker,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39 F. M. Stober,39D. Troendle,39J. Wagner-Kuhr,39M. Zeise,39V. Zhukov,39,iE. B. Ziebarth,39G. Daskalakis,40

T. Geralis,40S. Kesisoglou,40A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40 C. Mavrommatis,40E. Petrakou,40L. Gouskos,41T. Mertzimekis,41A. Panagiotou,41,bI. Evangelou,42P. Kokkas,42

N. Manthos,42I. Papadopoulos,42V. Patras,42F. A. Triantis,42A. Aranyi,43G. Bencze,43L. Boldizsar,43 G. Debreczeni,43C. Hajdu,43,bD. Horvath,43,jA. Kapusi,43K. Krajczar,43,kF. Sikler,43G. Vesztergombi,43,k N. Beni,44J. Molnar,44J. Palinkas,44Z. Szillasi,44V. Veszpremi,44P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45 S. Bansal,46S. B. Beri,46V. Bhatnagar,46M. Jindal,46M. Kaur,46J. M. Kohli,46M. Z. Mehta,46N. Nishu,46 L. K. Saini,46A. Sharma,46R. Sharma,46A. P. Singh,46J. B. Singh,46S. P. Singh,46S. Ahuja,47S. Bhattacharya,47 S. Chauhan,47B. C. Choudhary,47P. Gupta,47S. Jain,47S. Jain,47A. Kumar,47R. K. Shivpuri,47R. K. Choudhury,48 D. Dutta,48S. Kailas,48S. K. Kataria,48A. K. Mohanty,48,bL. M. Pant,48P. Shukla,48P. Suggisetti,48T. Aziz,49

M. Guchait,49,lA. Gurtu,49M. Maity,49D. Majumder,49G. Majumder,49K. Mazumdar,49G. B. Mohanty,49 A. Saha,49K. Sudhakar,49N. Wickramage,49S. Banerjee,50S. Dugad,50N. K. Mondal,50H. Arfaei,51 H. Bakhshiansohi,51S. M. Etesami,51A. Fahim,51M. Hashemi,51A. Jafari,51M. Khakzad,51A. Mohammadi,51

M. Mohammadi Najafabadi,51S. Paktinat Mehdiabadi,51B. Safarzadeh,51M. Zeinali,51M. Abbrescia,52a,52b L. Barbone,52a,52bC. Calabria,52a,52bA. Colaleo,52aD. Creanza,52a,52cN. De Filippis,52a,52cM. De Palma,52a,52b

A. Dimitrov,52aF. Fedele,52aL. Fiore,52aG. Iaselli,52a,52cL. Lusito,52a,52b,bG. Maggi,52a,52cM. Maggi,52a N. Manna,52a,52bB. Marangelli,52a,52bS. My,52a,52cS. Nuzzo,52a,52bN. Pacifico,52a,52bG. A. Pierro,52a A. Pompili,52a,52bG. Pugliese,52a,52cF. Romano,52a,52cG. Roselli,52a,52bG. Selvaggi,52a,52bL. Silvestris,52a

R. Trentadue,52aS. Tupputi,52a,52bG. Zito,52aG. Abbiendi,53aA. C. Benvenuti,53aD. Bonacorsi,53a S. Braibant-Giacomelli,53a,53bP. Capiluppi,53a,53bA. Castro,53a,53bF. R. Cavallo,53aM. Cuffiani,53a,53b G. M. Dallavalle,53aF. Fabbri,53aA. Fanfani,53a,53bD. Fasanella,53aP. Giacomelli,53aM. Giunta,53aC. Grandi,53a

S. Marcellini,53aM. Meneghelli,53a,53bA. Montanari,53aF. L. Navarria,53a,53bF. Odorici,53aA. Perrotta,53a F. Primavera,53aA. M. Rossi,53a,53bT. Rovelli,53a,53bG. Siroli,53a,53bS. Albergo,54a,54bG. Cappello,54a,54b M. Chiorboli,54a,54b,bS. Costa,54a,54bA. Tricomi,54a,54bC. Tuve,54aG. Barbagli,55aG. Broccolo,55a,55b V. Ciulli,55a,55bC. Civinini,55aR. D’Alessandro,55a,55bE. Focardi,55a,55bS. Frosali,55a,55bE. Gallo,55aP. Lenzi,55a,55b M. Meschini,55aS. Paoletti,55aG. Sguazzoni,55aA. Tropiano,55a,bL. Benussi,56S. Bianco,56S. Colafranceschi,56,m F. Fabbri,56D. Piccolo,56P. Fabbricatore,57R. Musenich,57A. Benaglia,58a,58bG. B. Cerati,58a,58bF. De Guio,58a,58b,b

L. Di Matteo,58a,58bA. Ghezzi,58a,58b,bP. Govoni,58a,58bM. Malberti,58a,58bS. Malvezzi,58aA. Martelli,58a,58b A. Massironi,58a,58bD. Menasce,58aV. Miccio,58a,58bL. Moroni,58aM. Paganoni,58a,58bD. Pedrini,58a S. Ragazzi,58a,58bN. Redaelli,58aS. Sala,58aT. Tabarelli de Fatis,58a,58bV. Tancini,58a,58bS. Buontempo,59a

C. A. Carrillo Montoya,59aA. Cimmino,59a,59bA. De Cosa,59a,59b,bM. De Gruttola,59a,59bF. Fabozzi,59a A. O. M. Iorio,59aL. Lista,59aP. Noli,59a,59bP. Paolucci,59aP. Azzi,60aN. Bacchetta,60aP. Bellan,60a,60bM. Bellato,60a

(7)

M. Biasotto,60a,nD. Bisello,60a,60bA. Branca,60aR. Carlin,60a,60bP. Checchia,60aM. De Mattia,60a,60bT. Dorigo,60a F. Gasparini,60a,60bP. Giubilato,60a,60bA. Gresele,60a,60cS. Lacaprara,60a,nI. Lazzizzera,60a,60cM. Margoni,60a,60b

G. Maron,60aA. T. Meneguzzo,60a,60bM. Nespolo,60aM. Passaseo,60aL. Perrozzi,60a,bN. Pozzobon,60a,60b P. Ronchese,60a,60bF. Simonetto,60a,60bE. Torassa,60aM. Tosi,60a,60bA. Triossi,60aS. Vanini,60a,60bP. Zotto,60a,60b P. Baesso,61a,61bU. Berzano,61aC. Riccardi,61a,61bP. Torre,61a,61bP. Vitulo,61a,61bC. Viviani,61a,61bM. Biasini,62a,62b

G. M. Bilei,62aB. Caponeri,62a,62bL. Fano`,62a,62bP. Lariccia,62a,62bA. Lucaroni,62a,62b,bG. Mantovani,62a,62b M. Menichelli,62aA. Nappi,62a,62bA. Santocchia,62a,62bL. Servoli,62aS. Taroni,62a,62bM. Valdata,62a,62b

R. Volpe,62a,62b,bP. Azzurri,63a,63cG. Bagliesi,63aJ. Bernardini,63a,63b,bT. Boccali,63a,bR. Castaldi,63a R. T. D’Agnolo,63a,63cR. Dell’Orso,63aF. Fiori,63a,63bL. Foa`,63a,63cA. Giassi,63aA. Kraan,63aF. Ligabue,63a,63c

T. Lomtadze,63aL. Martini,63aA. Messineo,63a,63bF. Palla,63aF. Palmonari,63aS. Sarkar,63a,63cG. Segneri,63a A. T. Serban,63aP. Spagnolo,63aR. Tenchini,63a,bG. Tonelli,63a,63b,bA. Venturi,63aP. G. Verdini,63aL. Barone,64a,64b F. Cavallari,64a,bD. Del Re,64a,64bE. Di Marco,64a,64bM. Diemoz,64aD. Franci,64a,64bM. Grassi,64aE. Longo,64a,64b G. Organtini,64a,64bA. Palma,64a,64bF. Pandolfi,64a,64b,bR. Paramatti,64aS. Rahatlou,64a,64b,bN. Amapane,65a,65b

R. Arcidiacono,65a,65cS. Argiro,65a,65bM. Arneodo,65a,65cC. Biino,65aC. Botta,65a,65b,bN. Cartiglia,65a R. Castello,65a,65bM. Costa,65a,65bN. Demaria,65aA. Graziano,65a,65b,bC. Mariotti,65aM. Marone,65a,65b S. Maselli,65aE. Migliore,65a,65bG. Mila,65a,65bV. Monaco,65a,65bM. Musich,65a,65bM. M. Obertino,65a,65c

N. Pastrone,65aM. Pelliccioni,65a,65b,bA. Romero,65a,65bM. Ruspa,65a,65cR. Sacchi,65a,65bV. Sola,65a,65b A. Solano,65a,65bA. Staiano,65aD. Trocino,65a,65bA. Vilela Pereira,65a,65b,bF. Ambroglini,66a,66bS. Belforte,66a

F. Cossutti,66aG. Della Ricca,66a,66bB. Gobbo,66aD. Montanino,66a,66bA. Penzo,66aS. G. Heo,67S. Chang,68 J. Chung,68D. H. Kim,68G. N. Kim,68J. E. Kim,68D. J. Kong,68H. Park,68D. Son,68D. C. Son,68Zero Kim,69 J. Y. Kim,69S. Song,69S. Choi,70B. Hong,70M. Jo,70H. Kim,70J. H. Kim,70T. J. Kim,70K. S. Lee,70D. H. Moon,70 S. K. Park,70H. B. Rhee,70E. Seo,70S. Shin,70K. S. Sim,70M. Choi,71S. Kang,71H. Kim,71C. Park,71I. C. Park,71

S. Park,71G. Ryu,71Y. Choi,72Y. K. Choi,72J. Goh,72J. Lee,72S. Lee,72H. Seo,72I. Yu,72M. J. Bilinskas,73 I. Grigelionis,73M. Janulis,73D. Martisiute,73P. Petrov,73T. Sabonis,73H. Castilla Valdez,74E. De La Cruz Burelo,74

R. Lopez-Fernandez,74A. Sa´nchez Herna´ndez,74L. M. Villasenor-Cendejas,74S. Carrillo Moreno,75 F. Vazquez Valencia,75H. A. Salazar Ibarguen,76E. Casimiro Linares,77A. Morelos Pineda,77M. A. Reyes-Santos,77

P. Allfrey,78D. Krofcheck,78J. Tam,78P. H. Butler,79R. Doesburg,79H. Silverwood,79M. Ahmad,80I. Ahmed,80 M. I. Asghar,80H. R. Hoorani,80W. A. Khan,80T. Khurshid,80S. Qazi,80M. Cwiok,81W. Dominik,81K. Doroba,81

A. Kalinowski,81M. Konecki,81J. Krolikowski,81T. Frueboes,82R. Gokieli,82M. Go´rski,82M. Kazana,82 K. Nawrocki,82M. Szleper,82G. Wrochna,82P. Zalewski,82N. Almeida,83A. David,83P. Faccioli,83 P. G. Ferreira Parracho,83M. Gallinaro,83P. Martins,83G. Mini,83P. Musella,83A. Nayak,83L. Raposo,83 P. Q. Ribeiro,83J. Seixas,83P. Silva,83D. Soares,83J. Varela,83,bH. K. Wo¨hri,83I. Belotelov,84P. Bunin,84 M. Finger,84M. Finger, Jr.,84I. Golutvin,84A. Kamenev,84V. Karjavin,84G. Kozlov,84A. Lanev,84P. Moisenz,84 V. Palichik,84V. Perelygin,84S. Shmatov,84V. Smirnov,84A. Volodko,84A. Zarubin,84N. Bondar,85V. Golovtsov,85

Y. Ivanov,85V. Kim,85P. Levchenko,85V. Murzin,85V. Oreshkin,85I. Smirnov,85V. Sulimov,85L. Uvarov,85 S. Vavilov,85A. Vorobyev,85Yu. Andreev,86S. Gninenko,86N. Golubev,86M. Kirsanov,86N. Krasnikov,86

V. Matveev,86A. Pashenkov,86A. Toropin,86S. Troitsky,86V. Epshteyn,87V. Gavrilov,87V. Kaftanov,87,a M. Kossov,87,bA. Krokhotin,87S. Kuleshov,87N. Lychkovskaya,87A. Oulianov,87G. Safronov,87S. Semenov,87

I. Shreyber,87V. Stolin,87E. Vlasov,87A. Zhokin,87E. Boos,88M. Dubinin,88,oL. Dudko,88A. Ershov,88 A. Gribushin,88O. Kodolova,88I. Lokhtin,88S. Obraztsov,88S. Petrushanko,88L. Sarycheva,88V. Savrin,88 A. Snigirev,88V. Andreev,89M. Azarkin,89I. Dremin,89M. Kirakosyan,89S. V. Rusakov,89A. Vinogradov,89 I. Azhgirey,90S. Bitioukov,90V. Grishin,90,bV. Kachanov,90D. Konstantinov,90V. Krychkine,90V. Petrov,90 R. Ryutin,90S. Slabospitsky,90A. Sobol,90L. Tourtchanovitch,90S. Troshin,90N. Tyurin,90A. Uzunian,90

A. Volkov,90P. Adzic,91M. Djordjevic,91D. Krpic,91D. Maletic,91J. Milosevic,91J. Puzovic,91 M. Aguilar-Benitez,92J. Alcaraz Maestre,92P. Arce,92C. Battilana,92E. Calvo,92M. Cepeda,92M. Cerrada,92 N. Colino,92B. De La Cruz,92C. Diez Pardos,92C. Fernandez Bedoya,92J. P. Ferna´ndez Ramos,92A. Ferrando,92

J. Flix,92M. C. Fouz,92P. Garcia-Abia,92O. Gonzalez Lopez,92S. Goy Lopez,92J. M. Hernandez,92M. I. Josa,92 G. Merino,92J. Puerta Pelayo,92I. Redondo,92L. Romero,92J. Santaolalla,92C. Willmott,92C. Albajar,93 G. Codispoti,93J. F. de Troco´niz,93J. Cuevas,94J. Fernandez Menendez,94S. Folgueras,94I. Gonzalez Caballero,94

L. Lloret Iglesias,94J. M. Vizan Garcia,94I. J. Cabrillo,95A. Calderon,95M. Chamizo Llatas,95S. H. Chuang,95 J. Duarte Campderros,95M. Felcini,95,pM. Fernandez,95G. Gomez,95J. Gonzalez Sanchez,95R. Gonzalez Suarez,95

(8)

C. Jorda,95P. Lobelle Pardo,95A. Lopez Virto,95J. Marco,95R. Marco,95C. Martinez Rivero,95F. Matorras,95 J. Piedra Gomez,95,qT. Rodrigo,95A. Ruiz Jimeno,95L. Scodellaro,95M. Sobron Sanudo,95I. Vila,95 R. Vilar Cortabitarte,95D. Abbaneo,96E. Auffray,96P. Baillon,96A. H. Ball,96D. Barney,96F. Beaudette,96,c

A. J. Bell,96,rD. Benedetti,96C. Bernet,96,cA. K. Bhattacharyya,96W. Bialas,96P. Bloch,96A. Bocci,96 S. Bolognesi,96H. Breuker,96G. Brona,96K. Bunkowski,96T. Camporesi,96E. Cano,96A. Cattai,96G. Cerminara,96

T. Christiansen,96J. A. Coarasa Perez,96R. Covarelli,96B. Cure´,96D. D’Enterria,96T. Dahms,96A. De Roeck,96 A. Elliott-Peisert,96W. Funk,96A. Gaddi,96S. Gennai,96G. Georgiou,96H. Gerwig,96D. Gigi,96K. Gill,96 D. Giordano,96F. Glege,96R. Gomez-Reino Garrido,96M. Gouzevitch,96S. Gowdy,96L. Guiducci,96M. Hansen,96 J. Harvey,96J. Hegeman,96B. Hegner,96C. Henderson,96H. F. Hoffmann,96A. Honma,96V. Innocente,96P. Janot,96

E. Karavakis,96P. Lecoq,96C. Leonidopoulos,96C. Lourenc¸o,96A. Macpherson,96T. Ma¨ki,96L. Malgeri,96 M. Mannelli,96L. Masetti,96F. Meijers,96S. Mersi,96E. Meschi,96R. Moser,96M. U. Mozer,96M. Mulders,96 E. Nesvold,96,bL. Orsini,96E. Perez,96A. Petrilli,96A. Pfeiffer,96M. Pierini,96M. Pimia¨,96G. Polese,96A. Racz,96

G. Rolandi,96,sC. Rovelli,96,tM. Rovere,96H. Sakulin,96C. Scha¨fer,96C. Schwick,96I. Segoni,96A. Sharma,96 P. Siegrist,96M. Simon,96P. Sphicas,96,uD. Spiga,96M. Spiropulu,96,oF. Sto¨ckli,96M. Stoye,96P. Tropea,96

A. Tsirou,96G. I. Veres,96,kP. Vichoudis,96M. Voutilainen,96W. D. Zeuner,96W. Bertl,97K. Deiters,97 W. Erdmann,97K. Gabathuler,97R. Horisberger,97Q. Ingram,97H. C. Kaestli,97S. Ko¨nig,97D. Kotlinski,97 U. Langenegger,97F. Meier,97D. Renker,97T. Rohe,97J. Sibille,97,vA. Starodumov,97,wL. Caminada,98,xZ. Chen,98

S. Cittolin,98G. Dissertori,98M. Dittmar,98J. Eugster,98K. Freudenreich,98C. Grab,98A. Herve´,98W. Hintz,98 P. Lecomte,98W. Lustermann,98C. Marchica,98,xP. Martinez Ruiz del Arbol,98,yP. Meridiani,98P. Milenovic,98,z F. Moortgat,98A. Nardulli,98P. Nef,98F. Nessi-Tedaldi,98L. Pape,98F. Pauss,98T. Punz,98A. Rizzi,98F. J. Ronga,98 L. Sala,98A. K. Sanchez,98M.-C. Sawley,98B. Stieger,98L. Tauscher,98,aA. Thea,98K. Theofilatos,98D. Treille,98

C. Urscheler,98R. Wallny,98,pM. Weber,98L. Wehrli,98J. Weng,98E. Aguilo´,99C. Amsler,99V. Chiochia,99 S. De Visscher,99C. Favaro,99M. Ivova Rikova,99A. Jaeger,99B. Millan Mejias,99C. Regenfus,99P. Robmann,99

T. Rommerskirchen,99A. Schmidt,99H. Snoek,99L. Wilke,99Y. H. Chang,100K. H. Chen,100W. T. Chen,100 S. Dutta,100A. Go,100C. M. Kuo,100S. W. Li,100W. Lin,100M. H. Liu,100Z. K. Liu,100Y. J. Lu,100J. H. Wu,100 S. S. Yu,100P. Bartalini,101P. Chang,101Y. H. Chang,101Y. W. Chang,101Y. Chao,101K. F. Chen,101W.-S. Hou,101

Y. Hsiung,101K. Y. Kao,101Y. J. Lei,101R.-S. Lu,101J. G. Shiu,101Y. M. Tzeng,101M. Wang,101J. T. Wei,101 A. Adiguzel,102M. N. Bakirci,102S. Cerci,102,aaZ. Demir,102C. Dozen,102I. Dumanoglu,102E. Eskut,102S. Girgis,102

G. Go¨kbulut,102Y. Gu¨ler,102E. Gurpinar,102I. Hos,102E. E. Kangal,102T. Karaman,102A. Kayis Topaksu,102 A. Nart,102G. O¨ nengu¨t,102K. Ozdemir,102S. Ozturk,102A. Polato¨z,102K. Sogut,102,bbB. Tali,102H. Topakli,102 D. Uzun,102L. N. Vergili,102M. Vergili,102C. Zorbilmez,102I. V. Akin,103T. Aliev,103S. Bilmis,103M. Deniz,103

H. Gamsizkan,103A. M. Guler,103K. Ocalan,103A. Ozpineci,103M. Serin,103R. Sever,103U. E. Surat,103 E. Yildirim,103M. Zeyrek,103M. Deliomeroglu,104D. Demir,104,ccE. Gu¨lmez,104A. Halu,104B. Isildak,104 M. Kaya,104,ddO. Kaya,104,ddM. O¨ zbek,104S. Ozkorucuklu,104,eeN. Sonmez,104,ffL. Levchuk,105P. Bell,106

F. Bostock,106J. J. Brooke,106T. L. Cheng,106D. Cussans,106R. Frazier,106J. Goldstein,106M. Grimes,106 M. Hansen,106G. P. Heath,106H. F. Heath,106B. Huckvale,106J. Jackson,106L. Kreczko,106S. Metson,106 D. M. Newbold,106,ggK. Nirunpong,106A. Poll,106V. J. Smith,106S. Ward,106L. Basso,107K. W. Bell,107 A. Belyaev,107C. Brew,107R. M. Brown,107B. Camanzi,107D. J. A. Cockerill,107J. A. Coughlan,107K. Harder,107

S. Harper,107B. W. Kennedy,107E. Olaiya,107D. Petyt,107B. C. Radburn-Smith,107

C. H. Shepherd-Themistocleous,107I. R. Tomalin,107W. J. Womersley,107S. D. Worm,107R. Bainbridge,108 G. Ball,108J. Ballin,108R. Beuselinck,108O. Buchmuller,108D. Colling,108N. Cripps,108M. Cutajar,108G. Davies,108

M. Della Negra,108C. Foudas,108J. Fulcher,108D. Futyan,108A. Guneratne Bryer,108G. Hall,108Z. Hatherell,108 J. Hays,108G. Iles,108G. Karapostoli,108L. Lyons,108A.-M. Magnan,108J. Marrouche,108R. Nandi,108J. Nash,108

A. Nikitenko,108,wA. Papageorgiou,108M. Pesaresi,108K. Petridis,108M. Pioppi,108,hhD. M. Raymond,108 N. Rompotis,108A. Rose,108M. J. Ryan,108C. Seez,108P. Sharp,108A. Sparrow,108A. Tapper,108S. Tourneur,108

M. Vazquez Acosta,108T. Virdee,108,bS. Wakefield,108D. Wardrope,108T. Whyntie,108M. Barrett,109 M. Chadwick,109J. E. Cole,109P. R. Hobson,109A. Khan,109P. Kyberd,109D. Leslie,109W. Martin,109I. D. Reid,109

L. Teodorescu,109K. Hatakeyama,110T. Bose,111E. Carrera Jarrin,111A. Clough,111C. Fantasia,111A. Heister,111 J. St. John,111P. Lawson,111D. Lazic,111J. Rohlf,111D. Sperka,111L. Sulak,111J. Andrea,112A. Avetisyan,112

S. Bhattacharya,112J. P. Chou,112D. Cutts,112S. Esen,112A. Ferapontov,112U. Heintz,112S. Jabeen,112 G. Kukartsev,112G. Landsberg,112M. Narain,112D. Nguyen,112M. Segala,112T. Speer,112K. V. Tsang,112

(9)

M. A. Borgia,113R. Breedon,113M. Calderon De La Barca Sanchez,113D. Cebra,113M. Chertok,113J. Conway,113 P. T. Cox,113J. Dolen,113R. Erbacher,113E. Friis,113W. Ko,113A. Kopecky,113R. Lander,113H. Liu,113 S. Maruyama,113T. Miceli,113M. Nikolic,113D. Pellett,113J. Robles,113T. Schwarz,113M. Searle,113J. Smith,113

M. Squires,113M. Tripathi,113R. Vasquez Sierra,113C. Veelken,113V. Andreev,114K. Arisaka,114D. Cline,114 R. Cousins,114A. Deisher,114J. Duris,114S. Erhan,114C. Farrell,114J. Hauser,114M. Ignatenko,114C. Jarvis,114

C. Plager,114G. Rakness,114P. Schlein,114,aJ. Tucker,114V. Valuev,114J. Babb,115R. Clare,115J. Ellison,115 J. W. Gary,115F. Giordano,115G. Hanson,115G. Y. Jeng,115S. C. Kao,115F. Liu,115H. Liu,115A. Luthra,115 H. Nguyen,115G. Pasztor,115,iiA. Satpathy,115B. C. Shen,115,aR. Stringer,115J. Sturdy,115S. Sumowidagdo,115

R. Wilken,115S. Wimpenny,115W. Andrews,116J. G. Branson,116E. Dusinberre,116D. Evans,116F. Golf,116 A. Holzner,116R. Kelley,116M. Lebourgeois,116J. Letts,116B. Mangano,116J. Muelmenstaedt,116S. Padhi,116 C. Palmer,116G. Petrucciani,116H. Pi,116M. Pieri,116R. Ranieri,116M. Sani,116V. Sharma,116,bS. Simon,116Y. Tu,116

A. Vartak,116F. Wu¨rthwein,116A. Yagil,116D. Barge,117R. Bellan,117C. Campagnari,117M. D’Alfonso,117 T. Danielson,117P. Geffert,117J. Incandela,117C. Justus,117P. Kalavase,117S. A. Koay,117D. Kovalskyi,117

V. Krutelyov,117S. Lowette,117N. Mccoll,117V. Pavlunin,117F. Rebassoo,117J. Ribnik,117J. Richman,117 R. Rossin,117D. Stuart,117W. To,117J. R. Vlimant,117M. Witherell,117A. Bornheim,118J. Bunn,118Y. Chen,118

M. Gataullin,118D. Kcira,118V. Litvine,118Y. Ma,118A. Mott,118H. B. Newman,118C. Rogan,118K. Shin,118 V. Timciuc,118P. Traczyk,118J. Veverka,118R. Wilkinson,118Y. Yang,118R. Y. Zhu,118B. Akgun,119A. Calamba,119

R. Carroll,119T. Ferguson,119Y. Iiyama,119D. W. Jang,119S. Y. Jun,119Y. F. Liu,119M. Paulini,119J. Russ,119 N. Terentyev,119H. Vogel,119I. Vorobiev,119J. P. Cumalat,120M. E. Dinardo,120B. R. Drell,120C. J. Edelmaier,120 W. T. Ford,120B. Heyburn,120E. Luiggi Lopez,120U. Nauenberg,120J. G. Smith,120K. Stenson,120K. A. Ulmer,120

S. R. Wagner,120S. L. Zang,120L. Agostino,121J. Alexander,121F. Blekman,121A. Chatterjee,121S. Das,121 N. Eggert,121L. J. Fields,121L. K. Gibbons,121B. Heltsley,121K. Henriksson,121W. Hopkins,121 A. Khukhunaishvili,121B. Kreis,121V. Kuznetsov,121Y. Liu,121G. Nicolas Kaufman,121J. R. Patterson,121 D. Puigh,121D. Riley,121A. Ryd,121M. Saelim,121X. Shi,121W. Sun,121W. D. Teo,121J. Thom,121J. Thompson,121

J. Vaughan,121Y. Weng,121L. Winstrom,121P. Wittich,121A. Biselli,122G. Cirino,122D. Winn,122S. Abdullin,123 M. Albrow,123J. Anderson,123G. Apollinari,123M. Atac,123J. A. Bakken,123S. Banerjee,123L. A. T. Bauerdick,123

A. Beretvas,123J. Berryhill,123P. C. Bhat,123I. Bloch,123F. Borcherding,123K. Burkett,123J. N. Butler,123 V. Chetluru,123H. W. K. Cheung,123F. Chlebana,123S. Cihangir,123M. Demarteau,123D. P. Eartly,123V. D. Elvira,123

I. Fisk,123J. Freeman,123Y. Gao,123E. Gottschalk,123D. Green,123K. Gunthoti,123O. Gutsche,123A. Hahn,123 J. Hanlon,123R. M. Harris,123J. Hirschauer,123B. Hooberman,123E. James,123H. Jensen,123M. Johnson,123 U. Joshi,123R. Khatiwada,123B. Kilminster,123B. Klima,123K. Kousouris,123S. Kunori,123S. Kwan,123P. Limon,123

R. Lipton,123J. Lykken,123K. Maeshima,123J. M. Marraffino,123D. Mason,123P. McBride,123T. McCauley,123 T. Miao,123K. Mishra,123S. Mrenna,123Y. Musienko,123,jjC. Newman-Holmes,123V. O’Dell,123S. Popescu,123 R. Pordes,123O. Prokofyev,123N. Saoulidou,123E. Sexton-Kennedy,123S. Sharma,123A. Soha,123W. J. Spalding,123

L. Spiegel,123P. Tan,123L. Taylor,123S. Tkaczyk,123L. Uplegger,123E. W. Vaandering,123R. Vidal,123 J. Whitmore,123W. Wu,123F. Yang,123F. Yumiceva,123J. C. Yun,123D. Acosta,124P. Avery,124D. Bourilkov,124

M. Chen,124G. P. Di Giovanni,124D. Dobur,124A. Drozdetskiy,124R. D. Field,124M. Fisher,124Y. Fu,124 I. K. Furic,124J. Gartner,124S. Goldberg,124B. Kim,124S. Klimenko,124J. Konigsberg,124A. Korytov,124 K. Kotov,124A. Kropivnitskaya,124T. Kypreos,124K. Matchev,124G. Mitselmakher,124L. Muniz,124Y. Pakhotin,124

M. Petterson,124C. Prescott,124R. Remington,124M. Schmitt,124B. Scurlock,124P. Sellers,124M. Snowball,124 D. Wang,124J. Yelton,124M. Zakaria,124C. Ceron,125V. Gaultney,125L. Kramer,125L. M. Lebolo,125S. Linn,125

P. Markowitz,125G. Martinez,125D. Mesa,125J. L. Rodriguez,125T. Adams,126A. Askew,126J. Bochenek,126 J. Chen,126B. Diamond,126S. V. Gleyzer,126J. Haas,126S. Hagopian,126V. Hagopian,126M. Jenkins,126 K. F. Johnson,126H. Prosper,126S. Sekmen,126V. Veeraraghavan,126M. M. Baarmand,127B. Dorney,127 S. Guragain,127M. Hohlmann,127H. Kalakhety,127H. Mermerkaya,127R. Ralich,127I. Vodopiyanov,127 M. R. Adams,128I. M. Anghel,128L. Apanasevich,128Y. Bai,128V. E. Bazterra,128R. R. Betts,128J. Callner,128

R. Cavanaugh,128C. Dragoiu,128E. J. Garcia-Solis,128C. E. Gerber,128D. J. Hofman,128S. Khalatyan,128 F. Lacroix,128C. O’Brien,128C. Silvestre,128A. Smoron,128D. Strom,128N. Varelas,128U. Akgun,129 E. A. Albayrak,129B. Bilki,129K. Cankocak,129,kkW. Clarida,129F. Duru,129C. K. Lae,129E. McCliment,129 J.-P. Merlo,129A. Mestvirishvili,129A. Moeller,129J. Nachtman,129C. R. Newsom,129E. Norbeck,129J. Olson,129

Y. Onel,129F. Ozok,129S. Sen,129J. Wetzel,129T. Yetkin,129K. Yi,129B. A. Barnett,130B. Blumenfeld,130

(10)

A. Bonato,130C. Eskew,130D. Fehling,130G. Giurgiu,130A. V. Gritsan,130Z. J. Guo,130G. Hu,130P. Maksimovic,130 S. Rappoccio,130M. Swartz,130N. V. Tran,130A. Whitbeck,130P. Baringer,131A. Bean,131G. Benelli,131 O. Grachov,131M. Murray,131D. Noonan,131V. Radicci,131S. Sanders,131J. S. Wood,131V. Zhukova,131 D. Bandurin,132T. Bolton,132I. Chakaberia,132A. Ivanov,132M. Makouski,132Y. Maravin,132S. Shrestha,132 I. Svintradze,132Z. Wan,132J. Gronberg,133D. Lange,133D. Wright,133A. Baden,134M. Boutemeur,134S. C. Eno,134

D. Ferencek,134J. A. Gomez,134N. J. Hadley,134R. G. Kellogg,134M. Kirn,134Y. Lu,134A. C. Mignerey,134 K. Rossato,134P. Rumerio,134F. Santanastasio,134A. Skuja,134J. Temple,134M. B. Tonjes,134S. C. Tonwar,134 E. Twedt,134B. Alver,135G. Bauer,135J. Bendavid,135W. Busza,135E. Butz,135I. A. Cali,135M. Chan,135V. Dutta,135

P. Everaerts,135G. Gomez Ceballos,135M. Goncharov,135K. A. Hahn,135P. Harris,135Y. Kim,135M. Klute,135 Y.-J. Lee,135W. Li,135C. Loizides,135P. D. Luckey,135T. Ma,135S. Nahn,135C. Paus,135C. Roland,135G. Roland,135

M. Rudolph,135G. S. F. Stephans,135K. Sumorok,135K. Sung,135E. A. Wenger,135B. Wyslouch,135S. Xie,135 M. Yang,135Y. Yilmaz,135A. S. Yoon,135M. Zanetti,135P. Cole,136S. I. Cooper,136P. Cushman,136B. Dahmes,136

A. De Benedetti,136P. R. Dudero,136G. Franzoni,136J. Haupt,136K. Klapoetke,136Y. Kubota,136J. Mans,136 V. Rekovic,136R. Rusack,136M. Sasseville,136A. Singovsky,136L. M. Cremaldi,137R. Godang,137R. Kroeger,137 L. Perera,137R. Rahmat,137D. A. Sanders,137D. Summers,137K. Bloom,138S. Bose,138J. Butt,138D. R. Claes,138

A. Dominguez,138M. Eads,138J. Keller,138T. Kelly,138I. Kravchenko,138J. Lazo-Flores,138C. Lundstedt,138 H. Malbouisson,138S. Malik,138G. R. Snow,138U. Baur,139A. Godshalk,139I. Iashvili,139A. Kharchilava,139 A. Kumar,139K. Smith,139J. Zennamo,139G. Alverson,140E. Barberis,140D. Baumgartel,140O. Boeriu,140 M. Chasco,140K. Kaadze,140S. Reucroft,140J. Swain,140D. Wood,140J. Zhang,140A. Anastassov,141A. Kubik,141

N. Odell,141R. A. Ofierzynski,141B. Pollack,141A. Pozdnyakov,141M. Schmitt,141S. Stoynev,141M. Velasco,141 S. Won,141L. Antonelli,142D. Berry,142M. Hildreth,142C. Jessop,142D. J. Karmgard,142J. Kolb,142T. Kolberg,142 K. Lannon,142W. Luo,142S. Lynch,142N. Marinelli,142D. M. Morse,142T. Pearson,142R. Ruchti,142J. Slaunwhite,142

N. Valls,142J. Warchol,142M. Wayne,142J. Ziegler,142B. Bylsma,143L. S. Durkin,143J. Gu,143C. Hill,143 P. Killewald,143T. Y. Ling,143M. Rodenburg,143G. Williams,143N. Adam,144E. Berry,144P. Elmer,144 D. Gerbaudo,144V. Halyo,144P. Hebda,144A. Hunt,144J. Jones,144E. Laird,144D. Lopes Pegna,144D. Marlow,144 T. Medvedeva,144M. Mooney,144J. Olsen,144P. Piroue´,144H. Saka,144D. Stickland,144C. Tully,144J. S. Werner,144 A. Zuranski,144J. G. Acosta,145X. T. Huang,145A. Lopez,145H. Mendez,145S. Oliveros,145J. E. Ramirez Vargas,145

A. Zatserklyaniy,145E. Alagoz,146V. E. Barnes,146G. Bolla,146L. Borrello,146D. Bortoletto,146A. Everett,146 A. F. Garfinkel,146Z. Gecse,146L. Gutay,146M. Jones,146O. Koybasi,146A. T. Laasanen,146N. Leonardo,146 C. Liu,146V. Maroussov,146M. Meier,146P. Merkel,146D. H. Miller,146N. Neumeister,146K. Potamianos,146

I. Shipsey,146D. Silvers,146A. Svyatkovskiy,146H. D. Yoo,146J. Zablocki,146Y. Zheng,146P. Jindal,147 N. Parashar,147C. Boulahouache,148V. Cuplov,148K. M. Ecklund,148F. J. M. Geurts,148J. H. Liu,148J. Morales,148

B. P. Padley,148R. Redjimi,148J. Roberts,148J. Zabel,148B. Betchart,149A. Bodek,149Y. S. Chung,149 P. de Barbaro,149R. Demina,149Y. Eshaq,149H. Flacher,149A. Garcia-Bellido,149P. Goldenzweig,149Y. Gotra,149 J. Han,149A. Harel,149D. C. Miner,149D. Orbaker,149G. Petrillo,149D. Vishnevskiy,149M. Zielinski,149A. Bhatti,150

L. Demortier,150K. Goulianos,150G. Lungu,150C. Mesropian,150M. Yan,150O. Atramentov,151A. Barker,151 D. Duggan,151Y. Gershtein,151R. Gray,151E. Halkiadakis,151D. Hidas,151D. Hits,151A. Lath,151S. Panwalkar,151 R. Patel,151A. Richards,151K. Rose,151S. Schnetzer,151S. Somalwar,151R. Stone,151S. Thomas,151G. Cerizza,152

M. Hollingsworth,152S. Spanier,152Z. C. Yang,152A. York,152J. Asaadi,153R. Eusebi,153J. Gilmore,153 A. Gurrola,153T. Kamon,153V. Khotilovich,153R. Montalvo,153C. N. Nguyen,153J. Pivarski,153A. Safonov,153 S. Sengupta,153A. Tatarinov,153D. Toback,153M. Weinberger,153N. Akchurin,154C. Bardak,154J. Damgov,154 C. Jeong,154K. Kovitanggoon,154S. W. Lee,154P. Mane,154Y. Roh,154A. Sill,154I. Volobouev,154R. Wigmans,154

E. Yazgan,154E. Appelt,155E. Brownson,155D. Engh,155C. Florez,155W. Gabella,155W. Johns,155P. Kurt,155 C. Maguire,155A. Melo,155P. Sheldon,155J. Velkovska,155M. W. Arenton,156M. Balazs,156S. Boutle,156 M. Buehler,156S. Conetti,156B. Cox,156B. Francis,156R. Hirosky,156A. Ledovskoy,156C. Lin,156C. Neu,156 T. Patel,156R. Yohay,156S. Gollapinni,157R. Harr,157P. E. Karchin,157V. Loggins,157M. Mattson,157C. Milste`ne,157

A. Sakharov,157M. Anderson,158M. Bachtis,158J. N. Bellinger,158D. Carlsmith,158S. Dasu,158J. Efron,158 L. Gray,158K. S. Grogg,158M. Grothe,158R. Hall-Wilton,158,bM. Herndon,158P. Klabbers,158J. Klukas,158 A. Lanaro,158C. Lazaridis,158J. Leonard,158J. Liu,158D. Lomidze,158R. Loveless,158A. Mohapatra,158

W. Parker,158D. Reeder,158I. Ross,158A. Savin,158W. H. Smith,158J. Swanson,158and M. Weinberg158

(11)

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4

Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus

22Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

23National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 24Department of Physics, University of Helsinki, Helsinki, Finland

25Helsinki Institute of Physics, Helsinki, Finland 26Lappeenranta University of Technology, Lappeenranta, Finland

27Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36

RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics "Demokritos," Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Bhabha Atomic Research Centre, Mumbai, India 49Tata Institute of Fundamental Research–EHEP, Mumbai, India 50Tata Institute of Fundamental Research–HECR, Mumbai, India 51Institute for Studies in Theoretical Physics & Mathematics (IPM), Tehran, Iran

52a

INFN Sezione di Bari, Bari, Italy

52bUniversita` di Bari, Bari, Italy 52cPolitecnico di Bari, Bari, Italy 53aINFN Sezione di Bologna, Bologna, Italy

(12)

53bUniversita` di Bologna, Bologna, Italy 54aINFN Sezione di Catania, Catania, Italy

54bUniversita` di Catania, Catania, Italy 55aINFN Sezione di Firenze, Firenze, Italy

55bUniversita` di Firenze, Firenze, Italy

56INFN Laboratori Nazionali di Frascati, Frascati, Italy 57INFN Sezione di Genova, Genova, Italy 58aINFN Sezione di Milano-Biccoca, Milano, Italy

58b

Universita` di Milano-Bicocca, Milano, Italy

59aINFN Sezione di Napoli, Napoli, Italy 59bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

60aINFN Sezione di Padova, Padova, Italy 60bUniversita` di Padova, Padova, Italy 60cUniversita` di Trento (Trento), Padova, Italy

61aINFN Sezione di Pavia, Pavia, Italy 61bUniversita` di Pavia, Pavia, Italy 62aINFN Sezione di Perugia, Perugia, Italy

62bUniversita` di Perugia, Perugia, Italy 63aINFN Sezione di Pisa, Pisa, Italy

63bUniversita` di Pisa, Pisa, Italy 63cScuola Normale Superiore di Pisa, Pisa, Italy

64aINFN Sezione di Roma, Roma, Italy 64bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

65aINFN Sezione di Torino, Torino, Italy 65b

Universita` di Torino, Torino, Italy

65cUniversita` del Piemonte Orientale (Novara), Torino, Italy 66aINFN Sezione di Trieste, Trieste, Italy

66bUniversita` di Trieste, Trieste, Italy 67Kangwon National University, Chunchon, Korea

68Kyungpook National University, Daegu, Korea

69Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 70Korea University, Seoul, Korea

71University of Seoul, Seoul, Korea 72Sungkyunkwan University, Suwon, Korea

73Vilnius University, Vilnius, Lithuania

74Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 75Universidad Iberoamericana, Mexico City, Mexico

76Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 77Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

78University of Auckland, Auckland, New Zealand 79University of Canterbury, Christchurch, New Zealand

80National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 81Institute of Experimental Physics, Warsaw, Poland

82Soltan Institute for Nuclear Studies, Warsaw, Poland

83Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 84Joint Institute for Nuclear Research, Dubna, Russia

85Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 86

Institute for Nuclear Research, Moscow, Russia

87Institute for Theoretical and Experimental Physics, Moscow, Russia 88Moscow State University, Moscow, Russia

89P. N. Lebedev Physical Institute, Moscow, Russia

90State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 91University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

92Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 93Universidad Auto´noma de Madrid, Madrid, Spain

94Universidad de Oviedo, Oviedo, Spain 95

Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

96CERN, European Organization for Nuclear Research, Geneva, Switzerland 97Paul Scherrer Institut, Villigen, Switzerland

98Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 99Universita¨t Zu¨rich, Zurich, Switzerland

(13)

100National Central University, Chung-Li, Taiwan 101National Taiwan University (NTU), Taipei, Taiwan

102Cukurova University, Adana, Turkey

103Middle East Technical University, Physics Department, Ankara, Turkey 104Bogazici University, Istanbul, Turkey

105National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 106University of Bristol, Bristol, United Kingdom

107Rutherford Appleton Laboratory, Didcot, United Kingdom 108

Imperial College, London, United Kingdom

109Brunel University, Uxbridge, United Kingdom 110Baylor University, Waco, Texas 76798, USA 111Boston University, Boston, Massachusetts 02215, USA 112Brown University, Providence, Rhode Island 02912, USA 113University of California, Davis, Davis, California 95616, USA 114University of California, Los Angeles, Los Angeles, California 90095, USA

115University of California, Riverside, Riverside, California 92521, USA 116University of California, San Diego, La Jolla, California 92093, USA 117University of California, Santa Barbara, Santa Barbara, California 93106, USA

118California Institute of Technology, Pasadena, California 91125, USA 119Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA 120University of Colorado at Boulder, Boulder, Colorado 80309, USA

121Cornell University, Ithaca, New York 14853-5001, USA 122Fairfield University, Fairfield, Connecticut 06824, USA

123Fermi National Accelerator Laboratory, Batavia, Illinois 60510-0500, USA 124

University of Florida, Gainesville, Florida 32611-8440, USA

125Florida International University, Miami, Florida 33199, USA 126Florida State University, Tallahassee, Florida 32306-4350, USA 127Florida Institute of Technology, Melbourne, Florida 32901, USA 128University of Illinois at Chicago (UIC), Chicago, Illinois 60607-7059, USA

129The University of Iowa, Iowa City, Iowa 52242-1479, USA 130Johns Hopkins University, Baltimore, Maryland 21218, USA

131The University of Kansas, Lawrence, Kansas 66045, USA 132Kansas State University, Manhattan, Kansas 66506, USA

133Lawrence Livermore National Laboratory, Livermore, California 94720, USA 134University of Maryland, College Park, Maryland 20742, USA 135Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

136University of Minnesota, Minneapolis, Minnesota 55455, USA 137University of Mississippi, University, Mississippi 38677, USA 138University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0111, USA 139State University of New York at Buffalo, Buffalo, New York 14260-1500, USA

140Northeastern University, Boston, Massachusetts 02115, USA 141Northwestern University, Evanston, Illinois 60208-3112, USA

142University of Notre Dame, Notre Dame, Indiana 46556, USA 143The Ohio State University, Columbus, Ohio 43210, USA 144Princeton University, Princeton, New Jersey 08544-0708, USA

145University of Puerto Rico, Mayaguez, Puerto Rico 00680 146Purdue University, West Lafayette, Indiana 47907-1396, USA

147

Purdue University Calumet, Hammond, Indiana 46323, USA

148Rice University, Houston, Texas 77251-1892, USA 149University of Rochester, Rochester, New York 14627-0171, USA

150Rockefeller University, New York, New York 10021-6399, USA

151Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854-8019, USA 152University of Tennessee, Knoxville, Tennessee 37996-1200, USA

153Texas A&M University, College Station, Texas 77843-4242, USA 154Texas Tech University, Lubbock, Texas 79409-1051, USA

155Vanderbilt University, Nashville, Tennessee 37235, USA 156

University of Virginia, Charlottesville, Virginia 22901, USA

157Wayne State University, Detroit, Michigan 48202, USA 158University of Wisconsin, Madison, Wisconsin 53706, USA

(14)

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

cAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. dAlso at Cairo University, Cairo, Egypt.

eAlso at Suez Canal University, Suez, Egypt. fAlso at Fayoum University, El-Fayoum, Egypt.

gAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland. hAlso at Brandenburg University of Technology, Cottbus, Germany.

iAlso at Moscow State University, Moscow, Russia.

jAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. kAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

lAlso at Tata Institute of Fundamental Research–HECR, Mumbai, India. mAlso at Facolta´ Ingegneria Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy.

nAlso at Laboratori Nazional di Legnaro dell’ INFN, Legnaro, Italy. o

Also at California Institute of Technology, Pasadena, CA, USA.

pAlso at University of California, Los Angeles, Los Angeles, CA, USA. qAlso at University of Florida, Gainesville, FL, USA.

rAlso at the Universite´ de Gene`ve, Geneva, Switzerland. sAlso at Scuola Normale e Sezione dell’ INFN, Pisa Italy.

tAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. uAlso at University of Athens, Athens, Greece.

vAlso at The University of Kansas, Lawrence, KS, USA.

wAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. xAlso at Paul Scherrer Institut, Villigen, Switzerland.

yAlso at Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain.

zAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. aaAlso at Adiyaman University, Adiyaman, Turkey.

bbAlso at Mersin University, Mersin, Turkey.

ccAlso at Izmir Institute of Technology, Izmir, Turkey. dd

Also at Kafkas University, Kars, Turkey.

eeAlso at Suleyman Demirel University, Isparta, Turkey. ffAlso at Ege University, Izmir, Turkey.

ggAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. hhAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

iiAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. jjAlso at Institute for Nuclear Research, Moscow, Russia.

kkAlso at Istanbul Technical University, Istanbul, Turkey.

Figura

Figure 1 presents the inclusive dijet mass distribution for pp ! 2 leading jets þ X, where X can be anything,  in-cluding additional jets
TABLE I. Upper limits at the 95% CL on   BR  A, as a function of the new particle mass, for narrow resonances  decay-ing to dijets with partons of type quark-quark (qq), quark-gluon (qg), and gluon-gluon (gg)

Riferimenti

Documenti correlati

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

The purpose of this study is to assess the growth rate of CA in the presence of different concen- trations of glucose and fructose, two of the main phys- iopathologically

Abbate (professor of Aesthetics at the University of Roma3 and author of numerous works on Ricoeurian Aesthetics), Dalle ideologie alla lotta per il riconoscimento: Paul

In addition, due to the amphoteric properties of ZnO, the catalyst can simultaneously promote transesterification and esterification processes, thus becoming applicable to