• Non ci sono risultati.

Measurement of prompt ψ(2S) production cross sections in proton–lead and proton–proton collisions at √sNN =5.02TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of prompt ψ(2S) production cross sections in proton–lead and proton–proton collisions at √sNN =5.02TeV"

Copied!
24
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

prompt

ψ (2S)

production

cross

sections

in

proton–lead

and

proton–proton

collisions

at

s

NN

=

5.02

TeV

.The CMS Collaboration CERN,Switzerland

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received6May2018

Receivedinrevisedform2January2019 Accepted29January2019

Availableonline1February2019 Editor: M.Doser

Keywords:

CMS pPb

ψ(2S)

Measurementsofpromptψ(2S)mesonproductioncrosssectionsinproton–lead(pPb)andproton–proton (pp)collisionsatanucleon–nucleoncenter-of-massenergyof√sNN=5.02TeV arereported.Theresults arebasedonpPb andpp datacollectedbytheCMSexperimentattheLHC,correspondingtointegrated luminositiesof34.6 nb−1 and28.0 pb−1,respectively. ThenuclearmodificationfactorR

pPb ismeasured forpromptψ(2S)inthetransversemomentumrange4<pT<30GeV/c andthecenter-of-massrapidity range−2.4<yCM<1.93.The resultsonψ(2S) RpPb are comparedtothecorresponding modification factorforpromptJ mesons.Theresultspointtodifferentnucleareffectsatplayintheproductionof theexcitedcharmoniumstatecomparedtothegroundstate,intheregionofbackwardrapidityandfor pT<10GeV/c.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The studyof quarkonium productionin nuclear collisions has a long and rich history, dating back to the original proposal by MatsuiandSatzpredictingJsuppressioninheavyioncollisions duetoDebyescreeninginthequark–gluonplasma(QGP) [1].After thisproposal, the firstJ measurements inheavy ion collisions were performedin fixed target experiments atthe CERN SPS, at anucleon–nucleoncenter-of-massenergyof√sNN≈20GeV [2,3].

A similarlevelofsuppressionwaslaterobservedingold–gold col-lisions at the BNL RHIC, at √sNN=200GeV [4,5]. At the CERN

LHC, the production of charmonium (J, ψ(2S)) and bottomo-nium(ϒ(1S), ϒ(2S),ϒ(3S)) stateshasbeen studiedin lead–lead (PbPb)collisionsat√sNN=2.76 and5.02 TeV [6–12],bringingnew

elementsfortheunderstanding ofthemedium producedin high-energyheavyioncollisions.

Thequarkoniumyieldscanbemodified inheavyioncollisions becauseof severaleffects [13], including suppression [1] and re-combinationofcharmquarkpairs [14] insidethehotmatter(QGP), and cold nuclear matter effects. An unambiguous interpretation ofthenucleus–nucleusLHC resultsrequiresaquantitative under-standingofcoldnuclear mattereffects.Thenuclearparton distri-butionfunctions(nPDFs)areknowntobedifferentfromthoseina

 E-mailaddress:cms-publication-committee-chair@cern.ch.

freeproton [15,16].Inaddition,gluonradiationinduced by multi-plepartonscatteringinthenucleusleadstotransversemomentum (pT)broadeningandcoherentenergyloss,resultinginasignificant

quarkoniumsuppressioninnuclearcollisionsatallavailable ener-gies [17,18].Thesephenomena arebeststudiedinproton-nucleus collisions, inwhichhotmedium effects,suchasthoseduetothe QGP,arelikelytobelimited.

Many charmonium production measurements have been per-formed inproton-inducedcollisions, onseveralnuclei, attheSPS [19–22], HERA [23], and Tevatron [24]. A global analysis of the fixed-target measurements can be found in Ref. [25]. At RHIC, J and ψ(2S) data in deuteron-gold collisions have been re-ported by the PHENIX [26] and STAR [27] Collaborations. At the LHC, the cross section of J in proton–lead (pPb) collisions at √

sNN=5.02TeV hasbeenmeasured bythe ALICE [28,29],ATLAS

[30],CMS [31],andLHCb [32] Collaborations.Asignificant suppres-sionoftheprompt J yield inpPb collisionshasbeenobserved atforwardrapidity( y)andlowpT,whilenostrongnucleareffects

are reportedat backward rapidity, where forward andbackward indicate, respectively,the directionsof theproton andPbbeams. Measurementsofthe ϒ(1S) in pPb collisionsat√sNN=5.02TeV

have also been performed by the ALICE [33], ATLAS [34], and LHCb [35] experiments,indicatingthattheϒ(1S)stateisless sup-pressedthantheJ.

Additionalinformationcanbeobtainedbystudyingthe behav-ioroftheexcitedstates,whicharelesstightlyboundcomparedto

https://doi.org/10.1016/j.physletb.2019.01.058

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

thegroundstatesandmightsufferstronger suppressioninheavy ioncollisions.AttheLHC,theALICE [36] andCMS [11] Collabora-tionshavereportedastrongersuppressionoftheψ(2S)state com-paredtothe J inPbPb collisions. InpPb collisions,ALICE [37], ATLAS [34],andLHCb [38] datashowthatψ(2S)suppression, inte-gratedovertransversemomentum,ismorepronounced thanthat oftheJ.Thisobservationsuggestsfinal-stateeffectsforthe ex-citedstates,possiblyduetoinelasticinteractionswiththemedium produced in pPb collisions [39]. In the bottomonium sector, the doubleyield ratios ϒ(3S)/ϒ(1S)and ϒ(2S)/ϒ(1S) in pPb relative topp collisionshavebeenmeasuredbyCMS [40] andfoundtobe lessthanunity, againindicatingstronger final-stateeffectsinthe productionofexcitedquarkoniumstates.

This Letter reports measurements of the cross sections for prompt ψ(2S) production in pp and pPb collisions at √sNN=

5.02TeV, with the ψ(2S) decaying to μ+μ−, over the pT range

4–30 GeV/c and center-of-massrapidityrange−2.4<yCM<1.93.

The data were collected with the CMS detector at the LHC, in 2013for the pPb sample andin 2015for the pp sample, corre-sponding to integrated luminosities of 34.6±1.2nb−1 [41] and 28.0±0.6pb−1 [42],respectively.Inaddition,themodification of quarkonium productioninpPb collisions isquantified bythe nu-clearmodificationfactor, RpPb,whichisdefinedastheratioofthe

cross sections in pPb and pp collisions divided by the Pb mass number, A=208.The ψ(2S) RpPb isdetermined asafunction of

yCMandpT,andiscomparedtothatoftheJ mesonsmeasured

atthesamecenter-of-massenergy [31].Thisisthefirst measure-mentofψ(2S) RpPb at√sNN=5.02TeV in differentialbinsof pT

and yCM that uses the pp data measured atthe same

center-of-massenergy. 2. TheCMSdetector

The central feature of the CMS apparatus is a superconduct-ing solenoidof6 m internaldiameter, providinga magneticfield of3.8 T.Withinthesolenoidvolume thereareasiliconpixeland strip tracker,a leadtungstatecrystalelectromagnetic calorimeter, andabrass andscintillatorhadron calorimeter,eachcomposedof abarrelandtwoendcapsections.Forwardcalorimetersextendthe pseudorapidity (η) coverage provided by the barrel and endcap detectors.The forwardhadron (HF) calorimeteruses steel as ab-sorberandquartzfibers asthesensitive material.Thetwohalves of the HF are located at ±11.2 m from the nominal interaction point.Togethertheyprovidecoverageintherange3.0<|η|<5.2 andalsoserveasluminositymonitors.Muonsaredetectedin gas-ionization chambersembedded inthe steelflux-returnyoke out-side the solenoid, in the range |η|<2.4, with detection planes madeusingthreetechnologies:drifttubes,cathodestripchambers, andresistive-platechambers.Matchingmuonstotracksmeasured inthesilicontrackerresultsinarelative pT resolutionfortypical

muonsinthisanalysisof1.3–2.0%inthebarrelandbetterthan6% intheendcaps [43].AmoredetaileddescriptionoftheCMS detec-tor,together witha definitionofthecoordinatesystemused and therelevantkinematicvariables,canbefoundinRef. [44]. 3. Eventselection

The pPb collisions at √sNN=5.02TeV correspond to a

pro-ton beam energy of 4 TeV and a lead beam energy of 1.58 TeV per nucleon. The proton beam traveled in the −η direction (in the detectorcoordinate system) in thefirst part of the run, cor-responding to an integrated luminosity Lint=20.7 nb−1, and in

theoppositedirectioninthesecondpartoftherun,corresponding toLint=13.9 nb−1.Particlesemittedat|ηCM|=0 inthenucleon–

nucleoncenter-of-massframearedetectedinthelaboratoryframe

at ηlab= ±0.465 depending ontheprotonbeamdirection.Inthis

paper,dataforhalfoftherunwerereflectedsothatpositive η al-wayscorrespondstothedirectionoftheprotonbeam.Thepp data set,collectedatthesamecollisionenergyasthepPb sample, cor-respondstoLint=28.0pb−1.Inthepp sample,thedimuonsfrom

ψ(2S)decaysarereconstructedwithin|yCM|<2.4 andinthesame

pT rangeasthepPb data,4<pT<30GeV/c.

Inelastic hadronic collisions are selected by requiring at least oneHFtowerwithmorethan3 GeV oftotalenergyineachofthe two HF calorimeters. Thisis not required inpp collisions, which sufferlessfromphoton-inducedinteractionscomparedtopPb col-lisions.Thepp andpPb eventsarefurtherselectedtohaveatleast one reconstructed primary vertex composed of two ormore as-sociated tracks,excludingthetwomuons, within25 cmfromthe nominal interaction point along the beamaxis and within 2 cm inthetransverseplane.Torejectthebeam-gasbackgroundevents, thefractionofgood-qualitytracksassociatedwiththeprimary ver-texisrequiredtobelargerthan25%whentherearemorethan10 tracksperevent.

The dimuoneventsare selectedby thelevel-1trigger,a hard-ware-based triggersystem requiringtwo muon candidatesin the muon detectorswith no explicitlimitations on their pT or η. In

theofflineanalysis,muonsarerequiredtobewithinthefollowing kinematic regions, which ensure single-muonreconstruction effi-cienciesabove10%:

T >3.3 GeV/c for|ηlabμ| <1.2,

T > (4− [1.1|ημlab|])GeV/c for 1.2<|ημlab| <2.1,

T >1.3 GeV/c for 2.1<|ημlab| <2.4.

(1)

The oppositely chargedmuon pairs are further selected to origi-natefromacommonvertexwitha χ2probabilitygreaterthan1%,

andtosurvivestandardidentificationcriteria [43].Inorderto re-movecosmic-raymuons,thetransverseandlongitudinaldistances of closest approach betweenthe muon trajectory andthe recon-structed primary vertexare required to be lessthan 0.3 cm and 20 cm, respectively. All of these selections are common to both thepp andthepPb datasets.

4. Yieldextraction

Thepromptψ(2S)signalextractionprocedureissimilartothat in previous CMSanalyses [8,11], andisthe samefor thepp and pPb data sets. Thedimuon massdistribution isfittedwithsignal (including both the J and ψ(2S) resonances) and background contributions using an extended unbinned maximum likelihood procedure [45].WhilethescopeofthepresentLetteristhe mea-surementofthepromptψ(2S)production,theJresonancewas includedintheψ(2S)fittoincreasethepeakfittingstability.Ithas beencheckedthatthepromptJresultsobtainedinthisanalysis agreewiththeonesinRef. [31],whichusedadifferentmethodfor separating prompt from nonprompt charmonia. The prompt J

resultsofRef. [31] aretheonesusedinthisLetterforcomparison withthenewanalysisofψ(2S)production.Bothresonanceshapes are modeledby theweighted sumofaCrystalBall(CB) [46] and a Gaussian function. The CB function, gCB(m), combines a

Gaus-sian core anda power law tail withexponent n, accountingfor energy lossdueto final-statephoton radiation,witha parameter

α definingthetransitionbetweentheGaussianandthepowerlaw functions:

(3)

gCB(m)= ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ N √ 2π σCB exp  −(mm0)2 2σ2 CB  , formm0 σCB >α; N √ 2π σCB  n |α| n exp  −|α|2 2  ×  n |α|− |α|− mm0 σCB −n , formm0 σCB <α. (2)

The CB and Gaussian functions have independent widths, σCB

and σG, to accommodate the dependence of the dimuon

invari-antmass resolution on the dimuonrapidity and pT, butshare a

commonmeanm0 representingtheJ mass. Thesignal models

used for the ψ(2S) and J share the same α and n param-eters. The mean and the width of the Gaussian model for the

ψ(2S) are obtainedfrom those of the J, scaled by their mass ratio (mψ (2S)/mJ=1.1903 [47]). The following parameters are leftfree inthe fit:m0, σCB, σG, NJ (theJ yield), Nψ (2S) (the ψ(2S) yield), f (the relativecontributionof theGaussian andCB functions),and α. Based on simulation studies, the value of the parametern is fixed to 2.1. The parameter α is left free, cover-ing thevariation of signal shapesineach of the pT andrapidity

bins.Thesamevalue for f is usedinthedefinitionofthe ψ(2S)

andJsignalshapes.Theunderlyingbackgroundisdescribedby a Chebyshev polynomial ofdegree N (1≤N≤3).The degree of theChebyshevpolynomialisobtainedineach(pT,yCM)binofthe

analysisusingalog-likelihoodratiotest.Severalalternativefitting procedureshavebeentested,andtheyieldvariationswithrespect tothenominalresultare includedasa systematicuncertainty, as explained inSection 6. The two pPb data sets, corresponding to each proton beam direction, are merged and analyzed together afterhaving verified that theindependent results are compatible witheachother.

TheJ andψ(2S)comingfromb hadron decays(nonprompt charmonia) are evaluated using the displacement of the μ+μ

vertex from the primary collision vertex. This secondary μ+μ

vertexischaracterizedbythepseudo-properdecaylength,

J=Lxy

mJ

pT

, (3)

where Lxy is the transverse distance between the primary and dimuonvertices,mJ isthemassoftheJ [47] (assumedforall muonpairs), andpT isthetransversemomentumofthedimuon.

Prompt charmonia are selected by requiring J to be smaller thana threshold value l0, whichis tuned usingsimulation

sepa-ratelyforthepp andpPb collisionssystems,inordertokeep90% ofthetotalpromptcharmonia [11].Sincethe J resolution im-proveswithincreasingdimuonpT,thel0valuesalsodependonpT.

Thel0 valuesusedremovebetween70%and90%(80%and90%)of

thenonpromptψ(2S)inpPb (pp)collisions,fromlow- tohigh-pT.

Theyields soobtainedhaveasmallnonpromptcontamination, whichiscorrectedusingthe numberofsimulatedeventspassing andfailingthe J thresholdcriteria [11]. The full value ofthis correctionisalsopropagatedasasourceofsystematicuncertainty. Fig.1showsthedimuoninvariant massdistributionswiththe J andψ(2S)peaksinpPb andpp data,foroneofthebinswith thesmallestsignal-to-backgroundratio(lowestpTandmost

back-wardy),afterapplyingtheJ selection,togetherwiththecurves resultingfrom thefits. The rawprompt ψ(2S) yield extractedin these bins is ∼300 for the pPb, and twice as much for the pp samples.

Fig. 1. Dimuoninvariantmassdistributionshowingthe J and ψ(2S)peaksin pPb (toppanel)andpp (bottompanel)data,afterapplyingtheJ selection,for

−2.4<yCM<−1.93 and4<pT<6.5GeV/c.Thefitstothedistributionsarealso

shown.

5. Acceptanceandefficiencycorrections

Simulated events are used to obtain the acceptance and effi-ciencycorrectionfactorsforthemeasuredψ(2S)yields.Theevents aregeneratedusing pythia 6.424 [48] forpPb collisionsand pythia 8.209 [49] for pp collisions. The generated particles in the pPb Monte Carlo (MC) are boosted by the β of the center-of-mass system in the laboratory frame, resulting in y= ±0.465. The promptJandψ(2S)areassumedtobeproducedunpolarizedin both pp andpPb collisions, whichissupported bymeasurements inpp collisionsat√s=7TeV [50,51].Thefinal-stateQEDradiation ofthedecaymuonsissimulatedusing photos 215.5 [52].Finally, theCMSdetectorresponseissimulatedusing Geant4 [53].

Theacceptanceinagiven(pT,yCM)binisdefinedasthe

frac-tion of generated ψ(2S) mesons resulting in a detectable muon pair, i.e., passing the single muon selection criteria defined in Eq. (1).Theefficiencyisgivenbythefractionofgeneratedand de-tectablemuonpairsthatresultinareconstructedmuonpair,also passingthetriggerandofflineselections.Thecombinedψ(2S) ac-ceptance andefficiencyfor pPb(pp) resultsranges between13% (14%)inthelowestpTregion(4.0<pT<6.5GeV/c)and66%(67%)

inthehighestpT region(10.0<pT<30.0GeV/c). Itismaximum

in the overlap region between barrel and endcap detectors, and decreasestominimumvaluesfor|yCM|>2.

Theindividualcomponentsofthesimulation-baseddimuon ef-ficiency (track reconstruction, muon identification and selection, andtriggering)areprobedusingsinglemuonsfromJmeson de-cays inboth simulatedandcollision data,withthetag-and-probe

(4)

(T&P)method [31,54].Thedata-to-simulationratiosofsinglemuon efficienciesobtainedfromT&P,calculatedasafunctionofmuon η

andpT,areusedasweights(scalefactors)tocorrectevent-by-event

thedimuonefficiency.Theeffectofthiscorrectiononthedimuon efficiencyissimilarforpp andpPb eventsandrangesfrom0.99to 1.33, withlargercorrectionsatlower pT andmore

forward/back-wardrapidities.

6. Systematicuncertainties

The following sources of point-to-point systematic uncertain-tiesareconsidered forbothpp andpPb data:theyieldextraction method,giventhechoiceofsignalandbackgroundmodels; accep-tance and efficiency corrections, including T&P scale factors and thepossible differencein thedimuon pT spectrum betweendata

andsimulation;andthenonpromptcharmoniacontamination.The evaluationofthesesystematicuncertaintiesisdescribedbelow.

Signalshapevariation. Thissystematicuncertaintyisobtained by changing the fitting constraints on the CB shape param-eters. In the nominal fits, the CB parameter n isfixed from simulation,n=2.1,andtheparameter α isleftfree.Inafirst variation,theparameter α isfixed totheMC-basedvalue1.7, andn isleftfree.Asecondvariationconsistsinfixingboth pa-rameterstothevaluesextractedfromMC,n=2.1 and α=1.7. The maximum difference, in each analysis bin, between the yieldsextractedwiththenominalfitandeitherofthese vari-ations,istakenasasystematicuncertainty.

Backgroundshapevariation. Thedegree N of theChebyshev polynomialischangedtoN+1 ifN<3,andtoN−1 ifN=3. Thesystematicuncertaintyisestimatedastheabsolute differ-enceintheyieldswithrespecttothenominalcase.

SimulateddimuonpTspectrum. Theacceptanceandefficiency

correctionfactorsdependontheshapeofthesimulatedψ(2S)

pTdistribution;thedifferencebetweendataandsimulationis

asource ofsystematicuncertainty.The ratioofthecorrected yields in data and simulation is evaluated as a function of pT,foreachrapiditybin.Continuousweightingfactorsare

ob-tainedby fittingthesedata-to-simulationratioswitha linear functioninpT.Theacceptanceandefficiencyvaluesare

evalu-atedagainafterweightingthepTdistributionofthegenerated

ψ(2S)mesonsinthesimulationbythefunctionobtained.The differencebetweenthereweighedsimulationandthenominal yieldsistakenasasystematicuncertainty.

T&Pscalefactors. ThestatisticaluncertaintyontheT&Pscale factors,aswellassystematicuncertaintiesintheirderivation, areaccountedforasasystematicuncertainty.These uncertain-tiesarefurtherdescribedinRef. [31].

Nonprompt contamination. The difference between the promptmesonyields withandwithoutthecorrectionforthe residualnonpromptcontamination ispropagatedasa system-aticuncertainty.

Thesystematicuncertaintyinthe yieldextraction,determined by summing the uncertainties from the signal and background shape variations in quadrature, is in the range 1.0–22% and 0.4–6.5%forthepPb andpp results,respectively. Thislarge range is mostly driven by the variation of the signal over background ratio across the analysis bins. The dominant part in this uncer-tainty isfrombackgroundmodeling,withanaverage overallthe pTandyCM binsof3.9(2.4)%andamaximumof22(4.9)%forthe

pPb(pp)results.The averagesignal modelingcontributionis1.9% and1.4%,forthepPb andpp results,respectively.

Thesystematicuncertaintyintheacceptanceandefficiency cor-rection factors, combining the dimuon pT spectrum reweighting

Fig. 2. Differentialcrosssection(multipliedbythedimuonbranchingfraction)of promptψ(2S)productioninpPb collisionsat√sNN=5.02TeV,asafunctionofpT,

inseveralrapiditybinsandseparatelyforbackward(toppanel)andforward (bot-tompanel)rapidityregions.Statisticalandsystematicuncertaintiesarerepresented witherrorbarsandboxes,respectively.Thefullycorrelatedluminosityuncertainty of3.5%isnotincludedinthepoint-by-pointuncertainties.

and T&P uncertainties, lies within 2.0–7.4% and 1.9–8.1% for the pPb and pp results, respectively. The prompt selection method induces an uncertainty of 4.5–15% (0.2–8.0%) for the pPb (pp)

results,withthemaximumvalueinthelowestpT bininthe

back-ward y region.The totalsystematicuncertainty,calculatedasthe suminquadrature oftheindividual uncertainties,is intherange 5–26% (4–11%) for the pPb (pp) cross section measurements. In general, the uncertainty is minimum in the highest pT bins in

the central y region,and increaseswhen going to lower pT and

forward/backward y regions. For the RpPb measurement, the pp

and pPb uncertainties are considered independent and added in quadraturepoint-by-point.Thetotalsystematicuncertaintyinthis caseisintherange5.0–22.6%.

The global(common to all points) systematicuncertaintydue totheuncertaintyintheintegratedluminosity ofthepPbandpp data sets is 3.5% [41] and 2.3% [42], respectively. For the cross section results, this uncertainty is not included to the point-to-point uncertainties, while for the RpPb results the two numbers

are addedinquadratureanddisplayed asaboxaround RpPb=1.

The dominantsourceofuncertaintyforthe RpPb measurementis

thestatisticaluncertaintyinthepPb data. 7. Results

The promptψ(2S)productioncrosssection (multipliedby the

ψ(2S) branching fraction to μ+μ−, B(ψ(2S)μ+μ)) in the dimuondecaychannelisdeterminedas

(5)

Fig. 3. Differentialcrosssection(multipliedbythedimuonbranchingfraction)of promptψ(2S)productioninpp collisionsat√s=5.02TeV asafunctionofpT,in

four yCM bins.Statisticalandsystematicuncertaintiesarerepresentedwitherror

barsandboxes,respectively.Thefullycorrelatedluminosityuncertaintyof2.3%is notincludedinthepoint-by-pointuncertainties.

B(ψ (2S)μ+μ) d 2σ dpTd yCM= Nψ (fit2S)/(accε) Lint pT yCM , (4)

whereNfitψ (2S) istheextractedrawyieldofpromptψ(2S)mesons ina given(pT,yCM) bin,(accε)istheproductofthedimuon

ac-ceptanceandefficiencydescribedinSection5,and pTand yCM

arethewidthsofthekinematicbinconsidered.

Figs. 2 and 3 show the production cross sections of prompt

ψ(2S) mesons in pPb and pp collisions at √sNN=5.02TeV,

re-spectively. The results are givenas a function of pT and in four

rapidity bins, separately forforward (the directionof the proton beam) andbackward (the directionofthePb beam)rapidities in thecaseofthepPb measurements.

The second observable considered is the nuclear modification factor,definedas RpPb(pT,yCM)(d2σ/dpTd yCM)pPb A(d2σ/dp Td yCM)pp . (5)

In the absence ofany nuclear effects the measured yield in pPb collisions wouldbe justa superpositionof A=208 (the number ofnucleons inthe Pbnucleus)pp collisions, andthe RpPb would

beone.

Fig.4showstherapiditydependenceofthepromptψ(2S)RpPb

inthree pT ranges:4–6.5, 6.5–10, and10–30 GeV/c.In the

back-wardrapidityregion,thepromptψ(2S)mesonsaresuppressedin theintermediate pTregion,andcompatiblewithunityintherest.

Intheforwardrapidityregion,theRpPbisconsistentwithunityfor

all pT bins (althoughsystematicallysmaller). Forcomparison,the

promptJnuclearmodificationfactor [31] isalsoshowninFig.4. The measuredvalue of RpPb forprompt ψ(2S)mesons,when

in-tegratedover pT andrapidity (6.5<pT<30GeV/c, |y|<1.6), is

0.852±0.037stat±0.062syst. Theprompt J RpPb inthe same

kinematic range is 1.108±0.021stat±0.055syst. The RpPb for

prompt J mesons lies systematically above that of the ψ(2S)

state. The difference between the two sets of results was

quan-Fig. 4. Rapiditydependenceofthepromptψ(2S)RpPbinthreepTranges.Forcomparison,thepromptJ nuclearmodificationfactor [31] isalsoshown.Statisticaland

systematicuncertaintiesarerepresentedwitherrorbarsandboxes,respectively.Thefullycorrelatedglobaluncertaintyof4.2%(thataffectsbothcharmonia)isdisplayedas aboxaroundRpPb=1.

(6)

Fig. 5. Transversemomentumdependenceofthepromptψ(2S)RpPbinfourrapidityranges.Statisticalandsystematicuncertaintiesarerepresentedwitherrorbarsand

boxes,respectively.Thefullycorrelatedglobaluncertaintyof4.2%isdisplayedasaboxaroundRpPb=1.

tified,separately forthe backward andforward regions, by com-paringthe two distributions witha χ2-test, removing the

corre-lated uncertainties from the integrated luminosity. The p-values are<0.05 forthelowesttwo pT rangesinthebackwardrapidity

region,and>0.37 inall theotherrapidity and pT intervals. This

showsthat,witha p-valuecutoffof 0.05,the twosets ofresults areincompatible witheach otherinthebackward rapidityregion for pT<10GeV/c, but are compatiblein the rest. This suggests

thepresenceofdifferentnucleareffectsatplay intheproduction oftheexcitedcharmoniumstatecomparedtothegroundstate,in theregionofbackwardrapidityandforpT<10GeV/c.

Fig.5showsthe pT dependenceofthe promptψ(2S) RpPb in

sevenrapiditybins,fromthemostbackward−2.4<yCM<−1.93

to themostforward 1.5<yCM<1.93 accessible regions.Also in

thiscase, a χ2-test was used to quantify the significanceof the

difference oftheresultsfromunity, inwhich thefullycorrelated globaluncertainty, displayed as a box around RpPb=1, was not

included.The p-valuesarebelow0.05 onlyinthemostbackward region.Thispoints tothepresenceofnucleareffectsaffectingthe

ψ(2S) production in the most backward region that persists at largetransversemomentum.

The suppression of prompt ψ(2S) mesons as compared to prompt J mesons,seenin Fig.4,iscompatiblewithwhat was measured by the ALICE [37], ATLAS [34], and LHCb [38] Collab-orations for pT integrated charmonium production in pPb

colli-sionsatthesamecollisionenergy.WhilenPDFs [15,16] and coher-ent energyloss [17,18] are themost discussedeffects to explain prompt J meson suppression, these two phenomena are ex-pected to affect the RpPb of prompt J and ψ(2S) mesons by

asimilaramount.Onthecontrary,thefinal-stateinteractionwith

hadronsmovingalongwiththeproducedcharmoniummightlead to a stronger suppression of the ψ(2S) meson, due to its larger size [39,55]. Thepresentmeasurements,coveringwide transverse momentum(4<pT<30GeV/c)andrapidity(−2.4<yCM<1.93)

ranges, willhelp understand theoriginof thesuppression of ex-citedquarkoniumstatesinpPb collisionsattheLHC.

8. Summary

Thedatacollectedby CMSinpp andpPb collisionsat√sNN=

5.02TeV areusedto investigateprompt ψ(2S) mesonproduction. Theresultsarebasedondatasamplescorrespondingtointegrated luminosities of28.0 pb−1 forpp collisions and34.6 nb−1 forpPb collisions.Thenuclearmodificationfactor(RpPb)ofpromptψ(2S),

inthekinematicrange4<pT<30GeV/c and−2.4<yCM<1.93,

is determined andcompared to that of prompt J mesons, re-portedinRef. [31].Thepromptψ(2S)productionissuppressedin the intermediate 6.5–10 GeV/c pT interval inthe region of

back-ward rapidity.The RpPb is consistent withunity everywhereelse

(althoughsystematically smaller). The RpPb values ofpromptJ

when compared to those of prompt ψ(2S) mesons,point to dif-ferent nuclear effects at play in the production of the excited charmonium state compared to the ground state, in the region of backward rapidity and for pT<10GeV/c. The effects of

nu-clearpartondistributionfunctionsorcoherentenergylossare ex-pected to affectthe RpPb ofprompt J andψ(2S) by a similar

amount, thus the resultshint the presence offinal-state interac-tions with the medium (partonic or hadronic) produced in pPb collisions.

(7)

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrativestaffs atCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentersand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG,and HGF (Germany); GSRT (Greece);NKFIA (Hungary);DAE and Department of Science and Technology (India); IPM (Iran); SFI(Ireland);INFN(Italy);MSIPandNRF(RepublicofKorea);LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONA-CYT,LNS,SEP,andUASLP-FAI(Mexico);MBIE(NewZealand);PAEC (Pakistan);MSHEandNSC(Poland);FCT(Portugal);JINR(Dubna); MON, ROSATOM, RAS and RFBR (Russia); MESTD (Serbia); SEIDI, CPAN,PCTI andFEDER(Spain); SwissFundingAgencies (Switzer-land); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thai-land);TUBITAKandTAEK(Turkey);NASUandSFFR(Ukraine);STFC (UnitedKingdom);DOEandNationalScienceFoundation(USA).

Individuals have received support from the Marie-Curie pro-gramandtheEuropeanResearchCouncilandHorizon2020Grant, contract No. 675440 (European Union); the Leventis Founda-tion; the Alfred P. Sloan Foundation; the Alexander von Hum-boldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dansl’Industrie et dans l’Agriculture (FRIA-Belgium);the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S. - FNRS and FWO (Belgium) under the “Excellence of Science – EOS” – be.h project n. 30820817; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület (“Mo-mentum”) Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excel-lenceProgram ÚNKP,the NKFIA research grants 123842, 123959, 124845, 124850 and 125105 (Hungary); the Council of Science andIndustrial Research,India;the HOMING PLUSprogramofthe Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Education, the National Science Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/B/ST2/ 02861,Sonata-bis2012/07/E/ST2/01406;theNationalPriorities Re-search Program by Qatar National Research Fund; the Programa Estatal de Fomento de la Investigación Científica y Técnica de ExcelenciaMaríade Maeztu,grantMDM-2015-0509 andthe Pro-grama Severo Ochoa del Principado de Asturias; the Thalis and Aristeiaprograms cofinancedbyEU-ESF andtheGreek NSRF;the Rachadapisek Sompot Fund for Postdoctoral Fellowship, Chula-longkornUniversity andthe ChulalongkornAcademicintoIts 2nd CenturyProjectAdvancementProject (Thailand);theWelch Foun-dation,contractC-1845;andtheWestonHavensFoundation(USA). References

[1] T.Matsui,H. Satz,J suppressionbyquarkgluonplasmaformation,Phys. Lett.B178(1986)416,https://doi.org/10.1016/0370-2693(86)91404-8.

[2] C.Baglin,et al., NA38,The production ofJ in200 GeV/nucleonoxygen– uranium interactions, Phys. Lett. B220 (1989)471, https://doi.org/10.1016/ 0370-2693(89)90905-2.

[3] M.C.Abreu,etal.,NA50,AnomalousJ suppressioninPbPb interactionsat 158 GeV/c pernucleon,Phys.Lett.B410(1997)337,https://doi.org/10.1016/ S0370-2693(97)00915-5.

[4] A.Adare, et al., PHENIX, J production versus centrality, transverse mo-mentum,andrapidityinAuAucollisionsat√sNN=200GeV,Phys.Rev.Lett.

98 (2007)232301,https://doi.org/10.1103/PhysRevLett.98.232301, arXiv:nucl -ex/0611020.

[5] A.Adare,etal.,PHENIX, J suppressionatforwardrapidityinAuAu colli-sionsat √sNN=200GeV, Phys.Rev.C84(2011)054912,https://doi.org/10.

1103/PhysRevC.84.054912,arXiv:1103.6269.

[6] ALICECollaboration,Centrality,rapidityandtransversemomentumdependence ofJ suppressioninPbPb collisionsat√sNN=2.76TeV,Phys. Lett.B734

(2014)314,https://doi.org/10.1016/j.physletb.2014.05.064,arXiv:1311.0214. [7] CMSCollaboration,Suppressionandazimuthalanisotropyofpromptand

non-prompt J production inPbPb collisions at √sNN=2.76TeV, Eur.Phys.J.

C77(2017)252,https://doi.org/10.1140/epjc/s10052-017-4781-1,arXiv:1610. 00613.

[8] CMSCollaboration,Measurementofpromptψ(2S)toJyieldratiosinPbPb and pp collisions at √sNN=2.76TeV, Phys. Rev.Lett. 113(2014) 262301,

https://doi.org/10.1103/PhysRevLett.113.262301,arXiv:1410.1804.

[9] CMSCollaboration, Observation ofsequential ϒsuppression inPbPb colli-sions,Phys.Rev.Lett.109(2012)222301,https://doi.org/10.1103/PhysRevLett. 109.222301,arXiv:1208.2826.

[10] CMSCollaboration,Suppressionofϒ(1S),ϒ(2S)andϒ(3S)productioninPbPb collisionsat√sNN=2.76TeV,Phys.Lett.B770(2017)357,https://doi.org/10.

1016/j.physletb.2017.04.031,arXiv:1611.01510.

[11] CMSCollaboration,Relativemodificationofpromptψ(2S)andJyieldsfrom pp toPbPb collisionsat√sNN=5.02TeV,Phys.Rev.Lett.118(2017)162301,

https://doi.org/10.1103/PhysRevLett.118.162301,arXiv:1611.01438.

[12] CMSCollaboration,Suppressionofexcitedϒstatesrelativetothegroundstate in PbPb collisionsat √sNN=5.02TeV, Phys. Rev.Lett.120 (2018)142301,

https://doi.org/10.1103/PhysRevLett.120.142301,arXiv:1706.05984.

[13] V. Kumar, P. Shukla, R. Vogt, Quarkonia suppression in PbPb collisions at

sNN=2.76TeV, Phys. Rev. C 92 (2015) 024908, https://doi.org/10.1103/

PhysRevC.92.024908,arXiv:1410.3299.

[14] P.Braun-Munzinger,V.Koch,T.Schäfer,J.Stachel,Propertiesofhotanddense matterfromrelativisticheavyioncollisions,Phys.Rep.621(2016)76,https:// doi.org/10.1016/j.physrep.2015.12.003,arXiv:1510.00442.

[15] E.G.Ferreiro,F.Fleuret,J.P.Lansberg,A.Rakotozafindrabe,Impactofthe nu-clearmodificationofthegluondensitiesonJproductioninpPb collisionsat

sNN=5TeV,Phys.Rev.C88(2013)047901,https://doi.org/10.1103/PhysRevC.

88.047901,arXiv:1305.4569.

[16] R.Vogt,ShadowingeffectsonJ andϒproductionatenergiesavailableat the CERNLargeHadronCollider,Phys. Rev.C92(2015)034909,https://doi. org/10.1103/PhysRevC.92.034909,arXiv:1507.04418.

[17] F.Arleo,S.Peigné,JsuppressioninpA collisionsfrompartonenergylossin coldQCDmatter,Phys.Rev.Lett.109(2012)122301,https://doi.org/10.1103/ PhysRevLett.109.122301,arXiv:1204.4609.

[18] F.Arleo,R.Kolevatov,S.Peigné,M.Rustamova,CentralityandpTdependenceof

J suppressioninproton-nucleuscollisionsfrompartonenergyloss,J.High Energy Phys. 05(2013)155,https://doi.org/10.1007/JHEP05(2013)155,arXiv: 1304.0901.

[19] J.Badier,etal.,NA3,ExperimentalJhadronicproductionfrom150-GeV/c to 280-GeV/c,Z.Phys.C20(1983)101,https://doi.org/10.1007/BF01573213. [20] M.C.Abreu,etal.,NA38,Charmoniaproductionin450-GeV/c protoninduced

reactions,Phys.Lett.B444(1998)516,https://doi.org/10.1016/S0370-2693(98) 01398-7.

[21] B. Alessandro,et al.,NA50, Charmoniumproductionand nuclearabsorption inpA interactionsat450-GeV,Eur.Phys.J.C33(2004)31,https://doi.org/10. 1140/epjc/s2003-01539-y.

[22] R.Arnaldi,etal.,NA60,Jproductioninproton-nucleuscollisionsat158and 400 GeV,Phys.Lett.B706(2012)263,https://doi.org/10.1016/j.physletb.2011. 11.042,arXiv:1004.5523.

[23] I.Abt,etal.,HERA-B,KinematicdistributionsandnucleareffectsofJ pro-ductionin920GeVfixed-targetproton-nucleuscollisions,Eur.Phys.J.C60 (2009)525,https://doi.org/10.1140/epjc/s10052-009-0965-7,arXiv:0812.0734. [24] M.J.Leitch,etal.,FNALE866/NuSea,MeasurementofJandψ(2S) suppres-sion inpA collisionsat 800 GeV/c,Phys.Rev.Lett.84(2000)3256, https:// doi.org/10.1103/PhysRevLett.84.3256,arXiv:nucl-ex/9909007.

[25] C. Lourenco,R.Vogt,H.K.Woehri,EnergydependenceofJ absorptionin proton-nucleuscollisions,J.HighEnergyPhys.02(2009)014,https://doi.org/ 10.1088/1126-6708/2009/02/014,arXiv:0901.3054.

[26] S.S.Adler,etal.,PHENIX,Jproductionandnucleareffectsford+auandpp collisionsat √sNN=200GeV,Phys.Rev.Lett.96(2006)012304, https://doi.

(8)

[27] L.Adamczyk,etal.,STAR,Suppressionofϒproductionind+AuandAuAu colli-sionsat√sNN=200GeV,Phys.Lett.B735(2014)127,https://doi.org/10.1016/

j.physletb.2014.06.028,arXiv:1312.3675,Erratum:Phys.Lett.B743(2015)537. [28] ALICECollaboration, J production andnucleareffectsinpPb collisionsat

s

NN=5.02TeV,J.HighEnergyPhys.02(2014)073,https://doi.org/10.1007/

JHEP02(2014)073,arXiv:1308.6726.

[29] ALICECollaboration, Rapidityandtransversemomentumdependenceofthe inclusiveJnuclearmodificationfactorinpPb collisionsat√sNN=5.02TeV,

J.HighEnergyPhys.06(2015)055,https://doi.org/10.1007/JHEP06(2015)055, arXiv:1503.07179.

[30] ATLASCollaboration, MeasurementofdifferentialJ production cross sec-tionsandforward–backwardratiosinpPb collisionswiththeATLASdetector, Phys. Rev. C92 (2015) 034904, https://doi.org/10.1103/PhysRevC.92.034904, arXiv:1505.08141.

[31] CMSCollaboration,MeasurementofpromptandnonpromptJproductionin pp andpPb collisionsat√sNN=5.02TeV,Eur.Phys.J.C77(2017)269,https://

doi.org/10.1140/epjc/s10052-017-4828-3,arXiv:1702.01462.

[32] LHCbCollaboration,StudyofJ productionandcoldnuclearmattereffects inpPb collisionsat√sNN=5TeV,J.HighEnergyPhys.02(2014)072,https://

doi.org/10.1007/JHEP02(2014)072,arXiv:1308.6729.

[33] ALICECollaboration, Productionofinclusive ϒ(1S) and ϒ(2S) inpPb colli-sionsat√sNN=5.02TeV,Phys.Lett.B740(2015)105,https://doi.org/10.1016/

j.physletb.2014.11.041,arXiv:1410.2234.

[34] ATLASCollaboration,Measurementofquarkoniumproductioninproton–lead andproton–protoncollisionsat5.02 TeV withtheATLASdetector,Eur.Phys.J. C78(2018)171,https://doi.org/10.1140/epjc/s10052-018-5624-4,arXiv:1709. 03089.

[35] LHCbCollaboration,Studyofϒproductionandcoldnuclearmattereffectsin pPb collisionsat√sNN=5TeV,J.HighEnergyPhys.07(2014)094,https://

doi.org/10.1007/JHEP07(2014)094,arXiv:1405.5152.

[36] ALICECollaboration,DifferentialstudiesofinclusiveJandψ(2S)production atforwardrapidityinPbPb collisionsat√sNN=2.76TeV,J.HighEnergyPhys.

05(2016)179,https://doi.org/10.1007/JHEP05(2016)179,arXiv:1506.08804. [37] ALICE Collaboration, Suppression ofψ(2S) production in pPb collisions at

sNN=5.02TeV,J.HighEnergyPhys.12(2014)073,https://doi.org/10.1007/

JHEP12(2014)073,arXiv:1405.3796.

[38] LHCbCollaboration,Studyofψ(2S)productionandcoldnuclearmattereffects inpPb collisionsat√sNN=5TeV,J.HighEnergyPhys.03(2016)133,https://

doi.org/10.1007/JHEP03(2016)133,arXiv:1601.07878.

[39] E.G.Ferreiro,Excitedcharmoniumsuppressioninproton-nucleuscollisionsasa consequenceofcomovers,Phys.Lett.B749(2015)98,https://doi.org/10.1016/ j.physletb.2015.07.066,arXiv:1411.0549.

[40] CMSCollaboration,Eventactivitydependenceofϒ(nS)productionin√sNN=

5.02TeV pPb and√s=2.76TeV pp collisions,J.HighEnergyPhys.04(2014) 103,https://doi.org/10.1007/JHEP04(2014)103,arXiv:1312.6300.

[41] CMS Collaboration, Luminosity calibration for the 2013 proton–lead and proton–proton data taking, CMS Physics Analysis Summary CMS-PAS-LUM-13-002,http://cds.cern.ch/record/1643269,2014.

[42] CMS Collaboration, CMSluminosity calibration for the pp reference run at

s=5.02TeV,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-16-001,https:// cds.cern.ch/record/2235781,2016.

[43] CMSCollaboration,PerformanceofCMSmuonreconstructioninpp collision eventsat √s=7TeV, J. Instrum.7 (2012)P10002, https://doi.org/10.1088/ 1748-0221/7/10/P10002,arXiv:1206.4071.

[44] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[45]W.Verkerke,D.P.Kirkby,The RooFit toolkitfordatamodeling,in:13th Inter-nationalConferenceforComputinginHigh-EnergyandNuclearPhysics,CHEP 2003,LaJolla,California,2003,arXiv:physics/0306116,eConfC0303241(2003) MOLT007.

[46] M.J.Oreglia,AStudyoftheReactionsψ→γ γψ,Ph.D.thesis,Stanford Univer-sity,1980,http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html,SLAC ReportSLAC-R-236.

[47] ParticleDataGroup,C.Patrignani,etal.,Reviewofparticlephysics,Chin.Phys. C40(2016)100001,https://doi.org/10.1088/1674-1137/40/10/100001. [48] T. Sjöstrand, S. Mrenna, P. Skands, pythia 6.4physics and manual, J. High

EnergyPhys. 05(2006) 026,https://doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[49] T. Sjöstrand,S.Ask,J.R. Christiansen,R.Corke,N.Desai,P.Ilten,S. Mrenna, S.Prestel,C.O.Rasmussen,P.Z.Skands, Anintroductionto pythia 8.2, Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

[50] CMSCollaboration,MeasurementofthepromptJandψ(2S)polarizations inppcollisionsat√s=7TeV,Phys.Lett.B727(2013)381,https://doi.org/10. 1016/j.physletb.2013.10.055,arXiv:1307.6070.

[51] CMSCollaboration,ϒ(nS)polarizationsversusparticlemultiplicityinpp col-lisionsat √s=7TeV, Phys. Lett.B761(2016)31, https://doi.org/10.1016/j. physletb.2016.07.065,arXiv:1603.02913.

[52] E.Barberio,Z.Wa¸s, photos:auniversalMonteCarloforQEDradiative correc-tions: version 2.0,Comput.Phys.Commun.79(1994)291,https://doi.org/10. 1016/0010-4655(94)90074-4.

[53] S. Agostinelli, et al., GEANT4, Geant4—a simulation toolkit, Nucl. Instrum. MethodsPhys.Res.,Sect.A,Accel.Spectrom.Detect.Assoc.Equip.506(2003) 250,https://doi.org/10.1016/S0168-9002(03)01368-8.

[54] CMSCollaboration,MeasurementsofinclusiveW andZ crosssectionsinpp collisionsat√s=7 TeV,J.HighEnergyPhys.01(2011)080,https://doi.org/10. 1007/JHEP01(2011)080,arXiv:1012.2466.

[55] Y.-Q.Ma,R.Venugopalan,K.Watanabe, H.-F.Zhang, ψ(2S)versusJ sup-pressioninproton-nucleuscollisionsfromfactorizationviolatingsoftcolor ex-changes,Phys.Rev.C97(2018)014909,https://doi.org/10.1103/PhysRevC.97. 014909,arXiv:1707.07266.

TheCMSCollaboration

A.M. Sirunyan,A. Tumasyan YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin,M. Dragicevic, J. Erö,

A. Escalante Del Valle,M. Flechl, M. Friedl,V.M. Ghete, J. Hrubec, M. Jeitler1, N. Krammer,I. Krätschmer, D. Liko,T. Madlener, I. Mikulec,N. Rad, H. Rohringer, J. Schieck1, R. Schöfbeck, M. Spanring,D. Spitzbart, A. Taurok,W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Chekhovsky, V. Mossolov,J. Suarez Gonzalez InstituteforNuclearProblems,Minsk,Belarus

E.A. De Wolf,D. Di Croce, X. Janssen, J. Lauwers,M. Pieters,M. Van De Klundert, H. Van Haevermaet, P. Van Mechelen, N. Van Remortel

(9)

S. Abu Zeid,F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi, S. Lowette,I. Marchesini, S. Moortgat, L. Moreels,Q. Python, K. Skovpen, S. Tavernier,W. Van Doninck, P. Van Mulders,I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin,B. Bilin, H. Brun, B. Clerbaux, G. De Lentdecker,H. Delannoy, B. Dorney, G. Fasanella,L. Favart, R. Goldouzian, A. Grebenyuk,A.K. Kalsi,T. Lenzi, J. Luetic, E. Starling,C. Vander Velde, P. Vanlaer,

D. Vannerom

UniversitéLibredeBruxelles,Bruxelles,Belgium

T. Cornelis,D. Dobur, A. Fagot,M. Gul, I. Khvastunov2,D. Poyraz, C. Roskas, D. Trocino, M. Tytgat, W. Verbeke,B. Vermassen, M. Vit, N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,O. Bondu, S. Brochet,G. Bruno, C. Caputo, P. David,C. Delaere, M. Delcourt, B. Francois,A. Giammanco, G. Krintiras,V. Lemaitre, A. Magitteri, A. Mertens, M. Musich, K. Piotrzkowski,A. Saggio, M. Vidal Marono, S. Wertz, J. Zobec

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

F.L. Alves,G.A. Alves,L. Brito, G. Correia Silva,C. Hensel, A. Moraes,M.E. Pol, P. Rebello Teles CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato3, E. Coelho, E.M. Da Costa, G.G. Da Silveira4, D. De Jesus Damiao,C. De Oliveira Martins, S. Fonseca De Souza, H. Malbouisson, D. Matos Figueiredo, M. Melo De Almeida,C. Mora Herrera,L. Mundim, H. Nogima,W.L. Prado Da Silva, L.J. Sanchez Rosas, A. Santoro,A. Sznajder, M. Thiel, E.J. Tonelli Manganote3,F. Torres Da Silva De Araujo, A. Vilela Pereira UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa,C.A. Bernardesa, L. Calligarisa,T.R. Fernandez Perez Tomeia,E.M. Gregoresb, P.G. Mercadanteb,S.F. Novaesa,Sandra S. Padulaa, D. Romero Abadb,

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska,P. Iaydjiev, A. Marinov, M. Misheva, M. Rodozov,M. Shopova, G. Sultanov InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyofSciences,Sofia,Bulgaria

A. Dimitrov,L. Litov, B. Pavlov,P. Petkov UniversityofSofia,Sofia,Bulgaria

W. Fang5, X. Gao5,L. Yuan BeihangUniversity,Beijing,China

M. Ahmad, J.G. Bian, G.M. Chen,H.S. Chen, M. Chen, Y. Chen, C.H. Jiang, D. Leggat,H. Liao, Z. Liu, F. Romeo,S.M. Shaheen, A. Spiezia,J. Tao, C. Wang, Z. Wang, E. Yazgan, H. Zhang,J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban, G. Chen, J. Li,Q. Li, S. Liu, Y. Mao,S.J. Qian, D. Wang,Z. Xu StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

Y. Wang

(10)

C. Avila,A. Cabrera, C.A. Carrillo Montoya, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández, M.A. Segura Delgado

UniversidaddeLosAndes,Bogota,Colombia

B. Courbon, N. Godinovic, D. Lelas,I. Puljak, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia Z. Antunovic, M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, A. Starodumov6, T. Susa InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski UniversityofCyprus,Nicosia,Cyprus

M. Finger7, M. Finger Jr.7 CharlesUniversity,Prague,CzechRepublic E. Ayala

EscuelaPolitecnicaNacional,Quito,Ecuador E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

Y. Assran8,9,M.A. Mahmoud10,9, Y. Mohammed10

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

S. Bhowmik, A. Carvalho Antunes De Oliveira,R.K. Dewanjee, K. Ehataht, M. Kadastik, L. Perrini, M. Raidal, C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola, H. Kirschenmann,J. Pekkanen,M. Voutilainen DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Havukainen, J.K. Heikkilä, T. Järvinen,V. Karimäki, R. Kinnunen, T. Lampén, K. Lassila-Perini,S. Laurila, S. Lehti, T. Lindén,P. Luukka, T. Mäenpää, H. Siikonen,E. Tuominen, J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon, F. Couderc,M. Dejardin, D. Denegri, J.L. Faure, F. Ferri, S. Ganjour, A. Givernaud, P. Gras, G. Hamel de Monchenault, P. Jarry,C. Leloup,E. Locci, M. Machet, J. Malcles,G. Negro, J. Rander, A. Rosowsky, M.Ö. Sahin,M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam11,C. Amendola, I. Antropov, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot,

R. Granier de Cassagnac, I. Kucher, S. Lisniak,A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando, G. Ortona,P. Pigard, R. Salerno,J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, Y. Yilmaz, A. Zabi,A. Zghiche LaboratoireLeprince-Ringuet,Ecolepolytechnique,CNRS/IN2P3,UniversitéParis-Saclay,Palaiseau,France

(11)

J.-L. Agram12,J. Andrea, D. Bloch,J.-M. Brom, E.C. Chabert,V. Cherepanov, C. Collard, E. Conte12, F. Drouhin12,J.-C. Fontaine12, D. Gelé, U. Goerlach,M. Jansová, P. Juillot, A.-C. Le Bihan, N. Tonon, P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,F-67000Strasbourg,France S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,N. Chanon, R. Chierici,D. Contardo, P. Depasse, H. El Mamouni, L. Finco,S. Gascon, M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh,H. Lattaud, M. Lethuillier, L. Mirabito,A.L. Pequegnot, S. Perries, A. Popov13, V. Sordini,M. Vander Donckt, S. Viret, S. Zhang UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

T. Toriashvili14

GeorgianTechnicalUniversity,Tbilisi,Georgia Z. Tsamalaidze7

TbilisiStateUniversity,Tbilisi,Georgia

C. Autermann,L. Feld, M.K. Kiesel, K. Klein, M. Lipinski,M. Preuten, M.P. Rauch,C. Schomakers, J. Schulz, M. Teroerde,B. Wittmer, V. Zhukov13

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

A. Albert, D. Duchardt, M. Endres,M. Erdmann, S. Erdweg, T. Esch,R. Fischer, S. Ghosh, A. Güth, T. Hebbeker,C. Heidemann, K. Hoepfner, S. Knutzen,L. Mastrolorenzo, M. Merschmeyer,A. Meyer, P. Millet,S. Mukherjee,T. Pook, M. Radziej, H. Reithler,M. Rieger, F. Scheuch, A. Schmidt, D. Teyssier, S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge,O. Hlushchenko, B. Kargoll, T. Kress, A. Künsken, T. Müller,A. Nehrkorn, A. Nowack, C. Pistone, O. Pooth,H. Sert, A. Stahl15

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, I. Babounikau, K. Beernaert,O. Behnke, U. Behrens, A. Bermúdez Martínez, D. Bertsche, A.A. Bin Anuar, K. Borras16,V. Botta, A. Campbell,P. Connor, C. Contreras-Campana, F. Costanza, V. Danilov,A. De Wit, M.M. Defranchis, C. Diez Pardos, D. Domínguez Damiani,G. Eckerlin, T. Eichhorn, A. Elwood, E. Eren, E. Gallo17,A. Geiser,

J.M. Grados Luyando, A. Grohsjean, P. Gunnellini, M. Guthoff,A. Harb, J. Hauk, H. Jung,M. Kasemann, J. Keaveney, C. Kleinwort,J. Knolle,D. Krücker, W. Lange, A. Lelek, T. Lenz,K. Lipka, W. Lohmann18, R. Mankel, I.-A. Melzer-Pellmann,A.B. Meyer, M. Meyer, M. Missiroli, G. Mittag, J. Mnich, S.K. Pflitsch, D. Pitzl,A. Raspereza, M. Savitskyi,P. Saxena,P. Schütze, C. Schwanenberger, R. Shevchenko, A. Singh, N. Stefaniuk,H. Tholen, A. Vagnerini, G.P. Van Onsem,R. Walsh, Y. Wen,K. Wichmann, C. Wissing, O. Zenaiev

DeutschesElektronen-Synchrotron,Hamburg,Germany

R. Aggleton,S. Bein, A. Benecke, V. Blobel, M. Centis Vignali, T. Dreyer,E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann, M. Hoffmann,A. Karavdina, R. Klanner, R. Kogler,N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange,D. Marconi,J. Multhaup, M. Niedziela, D. Nowatschin, A. Perieanu, A. Reimers, O. Rieger, C. Scharf,P. Schleper, S. Schumann, J. Schwandt,J. Sonneveld, H. Stadie, G. Steinbrück, F.M. Stober, M. Stöver,D. Troendle, E. Usai, A. Vanhoefer, B. Vormwald

(12)

M. Akbiyik, C. Barth,M. Baselga, S. Baur, E. Butz,R. Caspart, T. Chwalek, F. Colombo, W. De Boer, A. Dierlamm, N. Faltermann,B. Freund, M. Giffels,M.A. Harrendorf,F. Hartmann15,S.M. Heindl, U. Husemann,F. Kassel15, I. Katkov13,S. Kudella, H. Mildner, M.U. Mozer, Th. Müller, M. Plagge, G. Quast, K. Rabbertz,M. Schröder, I. Shvetsov, G. Sieber,H.J. Simonis, R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson,C. Wöhrmann, R. Wolf

InstitutfürExperimentelleTeilchenphysik,Karlsruhe,Germany

G. Anagnostou, G. Daskalakis,T. Geralis,A. Kyriakis, D. Loukas, G. Paspalaki,I. Topsis-Giotis InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

G. Karathanasis,S. Kesisoglou, A. Panagiotou, N. Saoulidou, E. Tziaferi, K. Vellidis NationalandKapodistrianUniversityofAthens,Athens,Greece

K. Kousouris,I. Papakrivopoulos, Y. Tsipolitis NationalTechnicalUniversityofAthens,Athens,Greece

I. Evangelou, C. Foudas,P. Gianneios, P. Katsoulis, P. Kokkas, S. Mallios,N. Manthos, I. Papadopoulos, E. Paradas, J. Strologas,F.A. Triantis, D. Tsitsonis

UniversityofIoánnina,Ioánnina,Greece

M. Csanad, N. Filipovic,G. Pasztor, O. Surányi,G.I. Veres MTA-ELTELendületCMSParticleandNuclearPhysicsGroup,EötvösLorándUniversity,Budapest,Hungary

G. Bencze,C. Hajdu, D. Horvath19,Á. Hunyadi, F. Sikler,T.Á. Vámi, V. Veszpremi, G. Vesztergombi† WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni, S. Czellar, J. Karancsi21,A. Makovec, J. Molnar,Z. Szillasi InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók20,P. Raics, Z.L. Trocsanyi, B. Ujvari InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

S. Choudhury, J.R. Komaragiri IndianInstituteofScience(IISc),Bangalore,India

S. Bahinipati22, P. Mal, K. Mandal, A. Nayak23, D.K. Sahoo22, S.K. Swain NationalInstituteofScienceEducationandResearch,HBNI,Bhubaneswar,India

S. Bansal, S.B. Beri,V. Bhatnagar, S. Chauhan,R. Chawla, N. Dhingra, R. Gupta, A. Kaur, A. Kaur, M. Kaur, S. Kaur,R. Kumar, P. Kumari, M. Lohan, A. Mehta,S. Sharma, J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

A. Bhardwaj,B.C. Choudhary, R.B. Garg, M. Gola,S. Keshri, Ashok Kumar, S. Malhotra,M. Naimuddin, P. Priyanka, K. Ranjan,Aashaq Shah, R. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj24,M. Bharti,R. Bhattacharya, S. Bhattacharya, U. Bhawandeep24,D. Bhowmik, S. Dey, S. Dutt24,S. Dutta, S. Ghosh,K. Mondal, S. Nandan, A. Purohit, P.K. Rout, A. Roy,S. Roy Chowdhury, S. Sarkar,M. Sharan, B. Singh, S. Thakur24

(13)

P.K. Behera

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama, D. Dutta, V. Jha, V. Kumar, P.K. Netrakanti, L.M. Pant, P. Shukla BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,M.A. Bhat, S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, R. Ravindra Kumar Verma,N. Sur, B. Sutar

TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait,Sa. Jain, S. Kumar, M. Maity25, G. Majumder,K. Mazumdar, N. Sahoo, T. Sarkar25

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani26, E. Eskandari Tadavani,S.M. Etesami26, M. Khakzad, M. Mohammadi Najafabadi, M. Naseri, F. Rezaei Hosseinabadi, B. Safarzadeh27, M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran M. Felcini,M. Grunewald

UniversityCollegeDublin,Dublin,Ireland

M. Abbresciaa,b, C. Calabriaa,b, A. Colaleoa, D. Creanzaa,c,L. Cristellaa,b, N. De Filippisa,c,

M. De Palmaa,b, A. Di Florioa,b, F. Erricoa,b,L. Fiorea,A. Gelmia,b, G. Iasellia,c, S. Lezkia,b,G. Maggia,c, M. Maggia,G. Minielloa,b,S. Mya,b,S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c,R. Radognaa, A. Ranieria, G. Selvaggia,b, A. Sharmaa, L. Silvestrisa,15,R. Vendittia,P. Verwilligena, G. Zitoa

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b, L. Borgonovia,b,S. Braibant-Giacomellia,b, R. Campaninia,b,A. Castroa,b,F.R. Cavalloa, S.S. Chhibraa,b, G. Codispotia,b, M. Cuffiania,b,

G.M. Dallavallea,F. Fabbria,A. Fanfania,b,P. Giacomellia, L. Guiduccia,b,S. Marcellinia,G. Masettia, F.L. Navarriaa,b,A. Perrottaa,A.M. Rossia,b,T. Rovellia,b, G.P. Sirolia,b, N. Tosia

aINFNSezionediBologna,Bologna,Italy bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b, A. Di Mattiaa,R. Potenzaa,b,A. Tricomia,b,C. Tuvea,b

aINFNSezionediCatania,Catania,Italy bUniversitàdiCatania,Catania,Italy

G. Barbaglia,K. Chatterjeea,b,V. Ciullia,b,C. Civininia,R. D’Alessandroa,b, E. Focardia,b, G. Latino, P. Lenzia,b, M. Meschinia, S. Paolettia,L. Russoa,28, G. Sguazzonia,D. Stroma, L. Viliania

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi,S. Bianco, F. Fabbri, D. Piccolo,F. Primavera15 INFNLaboratoriNazionalidiFrascati,Frascati,Italy

(14)

F. Ferroa, F. Raveraa,b,E. Robuttia, S. Tosia,b

aINFNSezionediGenova,Genova,Italy bUniversitàdiGenova,Genova,Italy

A. Benagliaa, A. Beschib, L. Brianzaa,b, F. Brivioa,b, V. Cirioloa,b,15,M.E. Dinardoa,b,S. Fiorendia,b, S. Gennaia, A. Ghezzia,b,P. Govonia,b, M. Malbertia,b,S. Malvezzia,R.A. Manzonia,b, D. Menascea,

L. Moronia,M. Paganonia,b, D. Pedrinia,S. Pigazzinia,b,29,S. Ragazzia,b,T. Tabarelli de Fatisa,b

aINFNSezionediMilano-Bicocca,Milano,Italy bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, A. Di Crescenzoa,b,S. Di Guidaa,d,15,F. Fabozzia,c, F. Fiengaa,b, G. Galatia,b,A.O.M. Iorioa,b, W.A. Khana, L. Listaa, S. Meolaa,d,15,P. Paoluccia,15, C. Sciaccaa,b, E. Voevodinaa,b

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,N. Bacchettaa,L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, A. Bragagnolo,R. Carlina,b,P. Checchiaa, M. Dall’Ossoa,b,P. De Castro Manzanoa, T. Dorigoa,U. Dossellia,F. Gasparinia,b,U. Gasparinia,b,

A. Gozzelinoa, S. Lacapraraa,P. Lujan, M. Margonia,b, A.T. Meneguzzoa,b,P. Ronchesea,b,R. Rossina,b, F. Simonettoa,b,A. Tiko, E. Torassaa, M. Zanettia,b,P. Zottoa,b,G. Zumerlea,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,A. Magnania,P. Montagnaa,b, S.P. Rattia,b,V. Rea, M. Ressegottia,b, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

L. Alunni Solestizia,b,M. Biasinia,b, G.M. Bileia,C. Cecchia,b, D. Ciangottinia,b,L. Fanòa,b, P. Laricciaa,b, E. Manonia, G. Mantovania,b, V. Mariania,b,M. Menichellia,A. Rossia,b,A. Santocchiaa,b, D. Spigaa

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova,P. Azzurria,G. Bagliesia,L. Bianchinia,T. Boccalia,L. Borrello, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa,G. Fedia, L. Gianninia,c,A. Giassia, M.T. Grippoa,F. Ligabuea,c, T. Lomtadzea, E. Mancaa,c, G. Mandorlia,c, A. Messineoa,b, F. Pallaa,A. Rizzia,b, P. Spagnoloa, R. Tenchinia,G. Tonellia,b,

A. Venturia, P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b,F. Cavallaria, M. Cipriania,b,N. Dacia, D. Del Rea,b,E. Di Marcoa,b,M. Diemoza, S. Gellia,b, E. Longoa,b, B. Marzocchia,b,P. Meridiania, G. Organtinia,b,F. Pandolfia, R. Paramattia,b, F. Preiatoa,b, S. Rahatloua,b,C. Rovellia,F. Santanastasioa,b

aINFNSezionediRoma,Rome,Italy bSapienzaUniversitàdiRoma,Rome,Italy

N. Amapanea,b, R. Arcidiaconoa,c,S. Argiroa,b,M. Arneodoa,c,N. Bartosika,R. Bellana,b, C. Biinoa, N. Cartigliaa, F. Cennaa,b,M. Costaa,b, R. Covarellia,b,A. Deganoa,b,N. Demariaa, B. Kiania,b,

C. Mariottia, S. Masellia, E. Migliorea,b,V. Monacoa,b,E. Monteila,b,M. Montenoa, M.M. Obertinoa,b, L. Pachera,b, N. Pastronea,M. Pelliccionia,G.L. Pinna Angionia,b, A. Romeroa,b,M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa, A. Solanoa,b,A. Staianoa

(15)

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,V. Candelisea,b, M. Casarsaa,F. Cossuttia,G. Della Riccaa,b,F. Vazzolera,b, A. Zanettia

aINFNSezionediTrieste,Trieste,Italy bUniversitàdiTrieste,Trieste,Italy

D.H. Kim,G.N. Kim, M.S. Kim, J. Lee,S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen,Y.C. Yang KyungpookNationalUniversity,RepublicofKorea

H. Kim,D.H. Moon,G. Oh

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea J. Goh,T.J. Kim

HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go, D. Gyun,S. Ha,B. Hong, Y. Jo,K. Lee, K.S. Lee, S. Lee, J. Lim, S.K. Park,Y. Roh KoreaUniversity,Seoul,RepublicofKorea

H. Kim

SejongUniversity,Seoul,RepublicofKorea

J. Almond,J. Kim, J.S. Kim, H. Lee,K. Lee, K. Nam,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang, H.D. Yoo,G.B. Yu

SeoulNationalUniversity,Seoul,RepublicofKorea

H. Kim,J.H. Kim, J.S.H. Lee, I.C. Park UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,C. Hwang, J. Lee,I. Yu SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali30,F. Mohamad Idris31,W.A.T. Wan Abdullah, M.N. Yusli, Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

M.C. Duran-Osuna, H. Castilla-Valdez,E. De La Cruz-Burelo, G. Ramirez-Sanchez, I. Heredia-De La Cruz32, R.I. Rabadan-Trejo,R. Lopez-Fernandez, J. Mejia Guisao, R. Reyes-Almanza,A. Sanchez-Hernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia UniversidadIberoamericana,MexicoCity,Mexico

J. Eysermans,I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

(16)

D. Krofcheck

UniversityofAuckland,Auckland,NewZealand S. Bheesette,P.H. Butler UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, M.I. Asghar,Q. Hassan, H.R. Hoorani, A. Saddique,M.A. Shah, M. Shoaib,M. Waqas NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska, M. Bluj,B. Boimska, T. Frueboes,M. Górski, M. Kazana, K. Nawrocki, M. Szleper, P. Traczyk,P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski,A. Byszuk33, K. Doroba,A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura, M. Olszewski, A. Pyskir,M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro,J. Hollar, N. Leonardo,L. Lloret Iglesias,M.V. Nemallapudi, J. Seixas,G. Strong, O. Toldaiev, D. Vadruccio,J. Varela LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

A. Baginyan, P. Bunin,I. Golutvin, V. Karjavin, V. Korenkov, G. Kozlov, A. Lanev,A. Malakhov,

V. Matveev34,35, V.V. Mitsyn,P. Moisenz, V. Palichik,V. Perelygin, S. Shmatov, V. Smirnov,V. Trofimov, B.S. Yuldashev36, A. Zarubin,V. Zhiltsov

JointInstituteforNuclearResearch,Dubna,Russia

V. Golovtsov, Y. Ivanov, V. Kim37,E. Kuznetsova38, P. Levchenko,V. Murzin, V. Oreshkin,I. Smirnov, D. Sosnov,V. Sulimov, L. Uvarov, S. Vavilov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev, S. Gninenko, N. Golubev, A. Karneyeu,M. Kirsanov, N. Krasnikov, A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn, V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov, G. Safronov, A. Spiridonov, A. Stepennov, V. Stolin, M. Toms,E. Vlasov, A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia T. Aushev, A. Bylinkin35

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

R. Chistov39,M. Danilov39,P. Parygin, D. Philippov,S. Polikarpov, E. Tarkovskii NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin35, I. Dremin35,M. Kirakosyan35, S.V. Rusakov,A. Terkulov P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Baskakov,A. Belyaev, E. Boos,A. Demiyanov, A. Ershov, A. Gribushin,O. Kodolova, V. Korotkikh, I. Lokhtin,I. Miagkov, S. Obraztsov, S. Petrushanko,V. Savrin, A. Snigirev, I. Vardanyan

Riferimenti

Documenti correlati

Results: Multi-parametric MRI data showed microstructural brain alterations in MCI patients vs HC that might be interpreted as: (i) a broad loss of myelin/cellular proteins and

Symptomatic neonatal and post-natal hypoglycemia Symptomatic neonatal and post-natal hypoglycemia Respiratory distress Micropenis Severe short stature Severe short stature Severe

Considering the expression of key players involved in the ABA signal transduction pathway, HAB1 and ABI1 genes were upregulated in the abc1k7, abc1k8, and abc1k7/abc1k8 double

From a management point of view, Berto Salotti shows that companies cannot continue doing in the future what they did in the past: today “everything flows” at an ever-increasing

Non-Symmetrical Correspondence Analysis: testing and confidence circles The measure of the departure from independence of the (i, j)th cell of the two-way contingency table, N,

Public green areas on the one hand represent ornamental green-space (historic gardens, urban parks, wooded strips along highways, neighborhood green-spaces, conservation forests

[ 9 ] recently reported increased platelet factor 4 (CXCL4) levels in both the plasma and skin of patients with systemic sclerosis (SSc) in whom they resulted to be associated

INTRODUCTION AND OBJECTIVES: Recent reports suggest that patients who experience de novo chronic kidney disease (CKD) due to surgical removal of nephrons (CKD-S) differ from