• Non ci sono risultati.

High performance fibre reinforced cementitious composites: Six memos for the XXI century societal and economical challenges of civil engineering

N/A
N/A
Protected

Academic year: 2021

Condividi "High performance fibre reinforced cementitious composites: Six memos for the XXI century societal and economical challenges of civil engineering"

Copied!
16
0
0

Testo completo

(1)

Case

study

High

performance

fibre

reinforced

cementitious

composites:

Six

memos

for

the

XXI

century

societal

and

economical

challenges

of

civil

engineering

Liberato

Ferrara

DepartmentofCivilandEnvironmentalEngineering,PolitecnicodiMilano,Italy

ARTICLE INFO

Articlehistory:

Received26November2018

Receivedinrevisedform10January2019

Accepted10January2019

Keywords:

Highperformancefibrereinforced

cementitiouscomposites Lightness Quickness Exactitude Multiplicity Visibility Consistency ABSTRACT

Worldwideincreasingconsciousnessforsustainableuseofnaturalresourceshasmade “overcomingtheapparentcontradictoryrequirementsofcostandperformance effective-nessachallengingtask”aswellasamajorconcern.HighPerformanceFibreReinforced CementitiousComposites,byprovidingtailoredandmultiplefunctionalizedperformance canrepresentanassetfortheconstructionindustrytofacethechallengesimposedbythe needsofourcontinuouslyandfastevolvingsociety.Thepaper,movingfromaparallelwith “Sixmemosfromthenextmillennium”byItaloCalvino,theauthorwillprovidehisown perspectiveonthecurrentstateonthetopic,tryingtohighlightthebenefitsachievable throughareliableandconsistentincorporationintoadesignandconstructionpracticefor bothnewandexistingbuildingsandstructures.

©2019TheAuthor.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCC BY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

Theconstructionindustry,whichaccountsforabout6%ofglobalGDP(from5%indevelopedcountriesupto8%in developingones)iscalledtoplayasignificantroletowardsasustainableandinclusiveglobalworldwidegrowth,money investedintheinfrastructuresectorbeingexpectedtofeatureaKeynesianmultiplierequalto1.5[1,2].Thisisalsoduetothe peculiarfeatureofconstructionindustry,which,withtotalannualrevenuesofabout10trillionUSDand3.6trillionUSD addedvaluesandmorethan100millionpeopledirectlyemployedworldwide,servesalltheindustryverticals.Actually38% ofglobalconstructionvolumeaccountedforbyresidentialhousing,32%bytransport,energyandwaterinfrastructures,18% by institutional and commercial buildings and 13% by industrial sites. With such figures, it is no surprise that the constructionindustryisnotonlythesinglelargestglobalconsumerofresourcesandrawmaterialsbutalsooneofthelargest generatorsofsolidwasteaswell,with,e.g.,about40%ofsolidwasteintheUSand35%inEU28countries(Eurostat2014 estimate)beingproducedbyconstructionanddemolitionactivities[1].

Withabout10billiontons(correspondingtoabout4billioncubicmeters)producedeachyear,whicharelargerthanthe totalofallotherbuildingmaterials,includingsteel,wood,aluminiumandplastic,concreteisthemainactorofthewhole constructionindustry.Itsproductionandconsumptionfeedsthedemandforalikewisehighproductionandconsumptionof themainconstituentsofconcrete,includingcement(morethan4blnt/y),aggregates(about48blnt/y)andwater,thelatter representingahighlysensitivesocietalissue,competingwiththeaccesstowaterneedsoftheworldpopulation.

Itwouldbeanywaydeceptiveandmisleadingtolimitoneselftothesegrossfiguresasanindicatorofthe“sustainability” ofconcreteasaconstructionmaterial,mostofallwithreferencetoitscarbonfootprint.Asamatteroffact,“thereason concretehasahighfootprintasawholeisthattherearejustsuchhugeconcretequantitiesused”,andthereasonforwhichit isusedinsuchlargeamountsand“hasbeenusedin[...]pioneeringarchitecturalfeatsformillennia”isthat“itis,simply,a

https://doi.org/10.1016/j.cscm.2019.e00219

2214-5095/©2019TheAuthor.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/

licenses/by-nc-nd/4.0/).

CaseStudiesinConstructionMaterialsxxx(2018)xxx–xxx

ContentslistsavailableatScienceDirect

Case

Studies

in

Construction

Materials

(2)

remarkablygoodbuildingmaterial”and“isinfactaverylowimpactmaterial”[3].Moreover,“ifyoureplaceconcretewith anothermaterial,itwouldhaveabiggercarbonfootprint”[3].This,besidesthegoodperformanceofconcreteintermsof, among the others, compressive strength, thermal inertia and cost effectiveness, is mainly due the worldwide local availabilityofitsrawconstituents.

Theaforementionedenvironmentalfootprintofaconstructionmaterialisonlyoneaspectofthe“sustainability”ofthe engineeringapplicationemployingthat samematerial,beingiteithera structuralelementorsubassembly,abuilding structureoraninfrastructureunitornetwork.

Withtheaimofprovidingaquantitativemeasureofthe“sustainabilityindex”ofaconstructionmaterialand/orofany kindofengineeringapplicationmadewithit,twomethodshavebeenrecentlyproposed,whichdefineeitheraSustainability PotentialIndex[4]oranA(pathy)Index[5]:

SUSTAINABILITYPOTENTIALINDEX¼ ServiceLifePerformance

Environmentalfootprint ð1Þ

AðPATHYÞINDEX¼ EnvironmentalfPerformanceootprint ð2Þ thelatterbeingobviouslylowerinthecaseofabetterperformingsolution.

Bothindicesencompassthethreetraditionalpillarsofsustainability,namelytheenvironmentalaspects,throughthe environmentalfootprint,andthesocialandeconomicones,throughtheperformanceandservicelifeconsiderations,thus incorporatingintoaunique“decisionmakingtool”informationconcerningimpactresultingfromtheproductionofbuilding materials,theerectionofbuildingsandstructuresandthesubsequentusethereof.

Withtheaimofprovidingaconcreteansweringtothesustainabilitychallenges,theconcreteindustryinthelastdecades hasbeenintensivelyworkingtothedevelopmentanduseofanewbroadcategoryofadvancedcementbasedmaterials, namelyHighPerformanceFibreReinforcedCementitiousComposites(HPFRCCs),whichareabletoprovidetailoredand multiplefunctionalizedperformancewhich canrepresentanassetfortheconstructionindustrytofacethechallenges imposedbytheneedsofourcontinuouslyandfastevolvingsociety.

Whilenotenteringintospecificquantitativeassessmentofanyofthemultiplesolutionsprovidedbytheresearchandin severalcasesalreadyavailableonthemarket,thepaper,throughanoverviewofwhathasbeencurrentlydonetoimproveto sustainabilityperformance ofconcretematerialsandstructuresbyactingoneitheroneortheotherfactoroftheafore definedindices,alsowantstoprovideamodestcontributiontodispelthemythoftheconstructionindustryasasector traditionally regarded as highly inertial in implementing innovation. Through this, without any presumption to be exhaustive,thepaperwillprovidetheauthor’spersonalperspectiveonthetopic.Thisperspectiveventuresintoaparallel withtheSixmemosforthenextmillennium1,aseriesofsixlecturesthattheItalianwriterItaloCalvinowasexpectedtodeliver

fortheCharlesEliotNortonLecturesatHarvard,whichheneverdidbecauseofhisprematuredeath.Thelectures,whichbut thelastonewerereadyatthetimeofCalvino’sdeathandwerepublishedinaposthumousbook,addressedthevalues (memos)of literaturethat Calvinofeltwereimportantforthecomingmillennium,i.e. Lightness,Quickness, Exactitude, Visibility,Multiplicity.AllthatisknownofthesixthlectureisthatitwastobeonConsistency.Thesesixmemoswillbetakenas areferencetohighlight,stillfromtheauthor’spersonalpointofview,themostexcitingchallengesthatthecivilengineering communitycanfacethroughareliableandconsistentincorporationofadvancedcementbasedmaterialsconcepts and performancesintodesignandconstructionpracticeforbothnewandexistingstructures.

2.Reducingtheenvironmentalfootprintofconcreteandcement-basedmaterialsandstructures

Efficientreductionoftheenvironmentalfootprintofconcreteandcementbasedmaterialsandstructurescanbeachieved throughcombinedactionaimed,ontheonehand,atusingmaterialswithareducedfootprintthemselvesand,ontheother, tothedevelopmentof“environmentally”friendlymaterialandstructureconcept,productionandconstructiontechniques. In sucha framework, theproduction of cement,as a primary constituent of concrete, plays a role of paramount importance,alsoconsideringitrequireslargequantitiesofrawmaterials(approximatelyabout2tonsoflimestoneandshale, whereavailable,pertonofcement),andhighenergy(about4GJpertonofcement)andproducesabout1tonCO2pertonof

cement.Thismakesthecementindustryresponsibleofabout5%notenergyrelatedgreenhousegasemissionsworldwide. Itwellworthremarkingthatbothcementandconcreteindustryarereallymakinggiantleapsforwardinimprovingtheir sustainabilitysignaturethroughthereductionofenvironmentalfootprintofcementproduction.Theadoptedmeasures rangefromoptimizationofcementproductionprocesses,including,e.g.,reuseofwasteheatoruseofsecondaryfuelssuchas waste tires in cement kilns. Moreover, formidable research and progresses in concrete technology have promoted a tremendousoptimizationintheuseofcementandbinders.AshighlightedbyDaminelietal[6],abinderconsumptionper unitstrengthofconcreteaslowas5kg/[m3MPa]isnowadayspossible,thankstomix-designconceptsbasedonoptimum

(3)

particlepackingmodelsaswellastothedevelopmentanduseoftailoredadmixtures.Moreover,theconstanteffortsinthe reductionofcementdemandfortheproductionofconcrete,the“performances”ofinterestholdingthesame,haslong resultedintoconsolidateduseofsupplementarycementitiousmaterialsasreplacementofcementinconcreteandinthe productionofmulti-blendedcements,includingflyash,groundgranulatedblastslag,silicafume,naturalpozzolansand by-products from a range of industrial and wastereclaiming/combustion processes [7]. Though expectedto undergo a compoundannualgrowthrateofabout6%inthecomingfivetosevenyears[8],themarketofsupplementarycementitious materials,whoselargestshareiscurrentlydetainedbyflyashes,willhavetofaceinthenextshorttomediumtermfuturethe progressiveshiftingofpowerproductionfromfossilfuelsources,whichareoneofthemajorsourcesofSCMs,toalternative onesaswellasoftheproductionofsteelfromoretoscrap.

Researchonalternativebinders,whoseusemaycontributetoafurtherreductioninthedemandofPortlandcementand henceintheresultinguseresourcedepletionandenvironmentalfootprint,including,e.g.,CalciumSulfo-Aluminatecements [9],AlkaliActivatedMaterials[10]andLimestoneCalcinedClayCements(LC3)[11,12].Themarketpenetrationofthesenew potentiallyattractivetechnologieshasanyway,ontheonehand,tocopewiththegeographicalproximityofsupplychainof precursors,whichisoneofthemostformidableadvantagesofPortlandCementtechnology.Insomespecificcases,the competitionwithotherwelldevelopedindustrialsectors,suchasthealuminiumindustryinthecaseofCSAcements,has alsotobeconsidered.Ontheotherhand,ithastoberemarkedthatalltheexistingstandardsonconcretematerialsand productsandconcretestructuraldesigncodeshaveacascadingdependenceontheassumptionthatPortlandCementisthe mainconcreteconstituent,eveninthepresenceofsupplementarycementitiousmaterials.

Thesesamestatementsholdtrueinthecaseofreplacingnaturalaggregateswithrecycledonesobtained,e.g.,from constructionanddemolitionand/orotherkindsofwastesorinthelikewiseinterestingcase ofemployingasdispersed reinforcementfibresobtained,e.g.,fromscraptires,wastePETbottlesornaturalvegetableonesfromfoodandagriculture industryresiduals[13].Inallthelatteraforementionedcasesthedifferentpropertiesofarecycledconstituentfromanatural (inthecaseofaggregates)orindustriallyproducedone(inthecaseoffibres)havealsotobecarefullyconsidered.Thissurely refers to the regularity and constancy of the physical, chemical and mechanical properties of the aforementioned constituentsand,evenmoreimportantly,totherelationbetweenthemicrostructuredevelopmentandcharacteristicsand itslinkwiththemacroscopicpropertiesofthecementitiouscomposite,whichmayevensignificantlydifferfromtheoneson whichstructuraldesigncodesarebasedorimplicitlyrelyupon.

Lastbutnottheleasttheissueofwaterhastobeconsidered.Asamatteroffact,theprescriptioncontainedinstandards andstructuraldesigncodesworldwidereferringtothealmostexclusiveuseofpotablewaterforconcreteproductionmay enterintonotseldomdramaticconflictwiththewaterneedsofafastgrowingpopulationmainlyin,butnotexclusively, areasaffectedbypermanentscarcityofwaterand/ordroughts.Inthisrespect,theusenotonlyofwaterresultingfrom washingoutconcretemixingequipmentbutalsooftreatedwastewaterandevenseawaterinthemix-designmaybe deemedasconditionallypossible,ifnotfullylegitimized[14].

Whendesigningandbuildinganengineeringand/orarchitecturalfeat,the“sustainabilitysignature”oftheemployed material(s)hasalsotobeanalysedinthesightoftheirstructuraluse.Asamatteroffact,ahigherlevelofperformancecan allow,e.g.,fortheuseofreducedquantitiesofagivenmaterial,the“sustainabilitysignature”ofthefinalapplicationhaving thustotakeintoaccountnotonlythesignatureofthematerialbutalsoitsusedvolume.Moreover,abetterperformancecan alsoimplyreducedmaintenanceneeds,which,allalongtheservicelifeofthebuildingand/orstructure,doalsocontributeto theoverallsustainabilitysignature.Theadventonthemarketofadvancedmaterialsinastartingphaseisoftenaccompanied bythesimpleimprovementofexistingstructuralconceptsandconstructiontechniques.Though,ifthematerialaimsto represent a breakthrough in the construction industry, thedevelopment of new advanced construction technologies implementedintosuitablylikewiseinnovativetailoredstructureconcept,designandanalysisprocedure,whichhavealsoto consistently incorporate the life-cycle assessment of the performance, in a cradle-to-grave or even cradle-to-cradle approach,thusalsoaddressingissuesrelatedtotherecyclabilityoftheemployedmaterials.

3.Whatperformanceforwhatscenario?HighPerformanceFibreReinforcedCementitiousCompositespushingahead theboundariesofstructuralconcreteconcept

Athoroughevaluationofthesustainabilityofaconstructionwork,intheframeworkofthebuiltenvironmentasawhole, hastoconsidertheperformanceoftheconstructioninserviceconditionsallalongitslifecycle,includingitsdurability, whichis,asoftoday, oneofthemajorconcerns,ifnotthemostdramaticallyseriousone,oftheconstructionindustry. Reinforcedconcretestructuresmoreandmorefrequentlyexhibitearlierandfasterandmoreandmoreseveredecayoftheir levelofperformanceintheservicescenariosandconditionstheyhavebeensupposedlydesignedfor.

Thoughacomprehensiveanalysisofthecausesoftheaforementionedproblemissofarlacking,severalissuescanbe called for to justify the somewhat premature decay of structural performance and anyway their higher durability sensitiveness,including,e.g.:

-currentconstructiontechnologies,qualificationoftheworkmanshipandinsomecasesthesamestructureconcepthave not adequatelypaced upwiththedevelopment in materialconcept and technology ofconcrete and cement-based materials;

(4)

- climatechangeandenvironmentpollutionissues,whichaccompanyalsoaprogressivelyincreasingurbanizationofthe worldpopulation,togetherwiththefactthatthematerialanddesignconcepttogetherhavepushedaheadtheservice stressboundaries,aregoingtothreatenmoreseverelythematerial,wheninserviceinthestructure[15].

Concreteisexpectedtocrackbecauseofitsinherentbrittlenessandlowtensilestrength;forthisreason,itisgenerally usedincombinationwith,prevalentlysteel,reinforcement,whichtakesthetensileforcesgeneratedbytheappliedactions. Cracksopenaningresspathwayforaggressiveagentstopenetrateinsideastructuralelement,reachingthereinforcement andtheinsidebulkconcrete,andactivatingcomplexdegradationmechanisms,amongwhichthecorrosionofthesame reinforcementissurelyamongthemostthreateningones.Unexpectedand/ornotcorrectlypredicteddecayofthestructural performanceresultsintounpredictedmaintenance needswhich, besides beingcostlier thanifcorrectlypredicted and planned,hardlycanrestorethepristinelevelofperformance,thusimplyingalsoanincreasedfrequencyofthesubsequent followingmaintenanceactionsandanuncontrolledgrowthofthelifecyclecosts.Recentestimateshaveshownthat,e.g.,the costofrepairingcorrosiondamages(includingalsoautomotiveandaircraftindustry)sumsuptoabout3.5%oftheworldGDP [16]andthatcurrentlyrepresentsasignificantshareoftheyearbudgetofconstructionindustryindevelopedcountries accountsformaintenanceandrepairofexistingstructures.Atthesametime,thelifespanofthesamemaintenanceand repairworksisdramaticallyshortening,asfromacasehistoryanalysisrecentlyprovidedbytheCON-REP-NETproject[17], whichhasshownthat50%oftherepairedconcreteworksfailedagain,25%ofwhich inthefirst5yearsafterrepair.A percentagesharewhichincreasesto75%and95%respectivelyifthetimeobservationframeisextendedto10and15years aftertherepair.

Atrue“durabilitybased”designapproachisactuallyfarfrombeingformulatedincurrentdesigncodes,thoughitis appropriatelyrecognizedthattheachievementoftherequireddurabilityisthecomplexoutcomeofthesuitablechoiceof structureconceptandshape,materialselection,aswellasoftheenforcementof“operational”designcriteria,whichlimit thecrackwidthundertheanticipatedactionstosuitablescenario-basedthresholdvalues[18,19].Limitationofcrackwidth beinghencerecognizedasthemajorrequisitefortheintendeddurability,concretetechnologyhasdeveloped,overthepast fiftyyears,FibreReinforcedConcrete(FRC).Thankstothedispersedfibrereinforcement,aneffectivecontrolofcrackwidth canbeachievedthroughouttheentirestructureandstartingfromtheveryearlyages.Asamatteroffact,becauseoftheir wire-likefeatures,fibresareabletointeractwithcracksmuchfinerthanwhatobtainablewiththesmallestcommercially availablebardiameters[20].Theboundariesofthisconcepthavebeenpushedforwarduptotheformulationoftheso-called HighPerformanceFibreReinforcedCementitiousComposites(HPFRCCs),whosecompositionisdesignedthrough micro-mechanicalconceptsbasedonfibrepull-outandcracktiptoughnessbalance.Thankstothis,aftertheformationofafirst crack,fibreseffectivelyprovideathroughcrackstressredistributionwhichenablesnewmultiplecrackstobeformedwhile controllingtheopeningofthepreviouslyformedones,whicharebasicallystoppedfromfurtherwidening,uptotheunstable localizationofonemajorcrack.Thismakesthematerialableto“spread”theentityofasingledamage(crack)intoaseriesof tightlyspacesandnarrowlyopenedmultiplecracks,whosesinglewidthishencemuchlessdetrimentaltothestructural durability[21].

TheHPFRCCconceptisrootedintothosewhichcanbeconsideredthethreemajorinnovationsinthefieldofconcrete technologyinthesecondhalfoftwentiethcentury,namely,besidesFibreReinforcedConcreteasrecalledabove,datingback totheearlysixties,Self-CompactingConcrete,datingback,alsothroughsomeprecursors,tothelateseventiesandearly eighties[22],andHighPerformanceConcrete,alsogoingbacktosomepioneerideasputforwardbetweentheseventiesand theeightiesofthelastcentury[23].Thecombinationoftheperformancebenefitsofthethreetechnologiesintoaunique material,besides thewell-known advantagesin terms ofmore efficient and worker-friendlyconcrete production and application[24],resultsintoone-of-a-kindfeatures,anideaofwhichwillbeprovidedintheforthcomingsection,which makeHPFRCCsavaluableassetfortheconstructionandcivilengineeringsectortofacethechallengesofthesocietaland economicneedsofXXIcentury.

4.HighperformancefibrereinforcedcementitiouscompositesperformingCalvino’ssixmemosforthenext millennium

4.1.Lightness

Committing to a sustainable built environment implies the “namesake” goal of “lightening” the burden on the environment by theactivities related to theproduction, useand disposalof construction materialsand engineering buildings,structuresandinfrastructures.

Theeffectivenessoftheeffortsceaselesslylavishedonimprovingthecompressivestrengthyieldbybindershavebeen alreadyrecalledabove[6].Though,focusingonlyonthematerialcompressivestrengthmaybelimitingifnotmisleading sinceitisthestructureconceptandtheresultingstructuraluseofthematerialwhichgovernshowmuchoftheachievedand potentially“in-structure”availablecompressivestrengthisactuallyusedandexploited.

Inclassical“beam”elementssuchshareislimitedbythetensileperformanceofthematerial,becauseoftheneedof sectionalforceequilibrium.Inthisrespect,ratherthanthethree-digitscompressivestrengthofHPFRCCs,itistheirsignature tensilebehaviour,featuringalmostconstantloadbearingcapacityuptosignificantstrainlevels(strain-hardening)that enablesaremarkabletensilestressredistributioncapacityoverthecrosssection.Thismakesitpossible,evencontinuingto

(5)

adoptclassicalbeamelementsmainlyworkinginbending,tosignificantlyreducethedepthofstructuralelements,holding theloadbearingcapacityconstant.Moreover,sincethedispersedfibrereinforcementmayevencompletelyreplacethe conventional reinforcement in few specific applications,the depthof the elementis not even longer constrained by durability-relatedminimumcoverthicknessrequirementsdictatedbytheneedtoprovideadequateprotectiontothesteel bars(SeeFig.1).

InFig.2aatypicalapplicationisshown,asproposedin[25],where,intheroof-deckarrangementofaprecastreinforced concretebuilding,an80mmthickreinforcedconcreteslab,deemedtosupportitsself-weightand,incase,snowload,canbe effectivelyreplaced,asalsoconfirmedbyexperimentaltests(Fig.2b)bya25mmthickHPFRCCslab(theemployedHPFRCC mixcompositionisprovidedintheinsetTable).Theresultingabout70%weightreductiondoesnotonlycompensateforthe highdosageofcementandbinderinthebulk“percubicmeter”compositionaswellasfortheexpectablehigher“percubic meter”costofthematerial(50%ofwhichisduetothebinders,35%tothefibres,10%totheadmixture,sandandwater accountingfortherest).Thisonlyconsideringthe“materialdelivery”costanddeliberatelyomittingtoconsideraspects relatedtoitsdurability,whichwillbedealtwithlater.

Such a remarkable “lightening”wouldalsoimply benefitsonthedesign oftheunderneath supportingcolumnand foundationstructure,toanevenmoresignificantextentifthedesignincaseofearthquakehastobeperformed,alargermasson thetopanditscorrespondinglyhigherearthquakeinducedinertiaforceresultingintoahigherbendingmomentatthebaseof thecolumnsandotherlateralloadresistingelements.Lastbutnottheleast,thereducedelementthicknesswouldallowalsoan optimizationofthetransportandhandlingoperationandcosts,thesametruckbeingabletotransportthreetimesasmuchthe numberofroofslabsthaninthecaseofthetraditionalreinforcementsolution.Thiswouldnotonlyallowafasterconstruction, alsothroughreducednumberofcraneswithevenlowerliftingcapacity,butalsobringafurthercontributiontotheoverall sustainabilitysignatureofthewholeconstructionprocess,e.g.throughreducedimpactontrafficandfuelconsumption. 4.2.Quickness

Theaforementionedconsiderationsaboutthehigherefficiencyoftheconstructionprocessthatcanbeachievedthankstothe use, mainly - evenifnot exclusively -in precastconstruction industry, ofHPFRCCs brings us into the secondmemo.Thecomposition ofHPFRCCs,resultingfromthemicro-mechanicallybaseddesignrecalledabovetargetedtoachievestrain-hardeningtensile behaviour,ischaracterized,asalsoobservablefromtheinsetTableinFig.2b,byahighcontentofbinder,verylowmaximum aggregatesizeandhighdosageofsuperplasticizer,tobalanceouttheeffectsofthelikewiserequiredhighdosageoffibresandlow watercontent.Thissamecompositionishighlyconducingtoendowingthematerialwithasuperiorperformance(Fig.3)inthe fresh state, implementing the latin "Festina lente”(makehasteslowly) motto throughanadaptedrheology characterizedby alow yieldstress,forenhancedflowabilityandself-levellingcapacity,andabalancedviscosity,instrumentalatguaranteeingan adequateresistancetostaticanddynamicsegregationofaggregatesandmostofallofthefibres[24,26–29].

4.3.Exactitude

Asaddressedabove,oneoftheadvantagesofincorporatingfibresintoamatrixwithadaptedrheologyistheachievement ofauniformdispersionoffibreswithinstructuralelements,notevenaffectedbytheirsegregation[26–29].Thisrequisiteis

(6)

ofparamountimportancefor a reliablestructuralperformance ofelementsmadewithFibreReinforced Concreteand CementitiousComposites.

Asuitablyadaptedrheology,i.e.anadequatelybalancedperformanceofthefluidmixtureasabove,couldalsoimplythe possibilityofeffectivelyaligningthefibresalongthecasting-flowdirection[28,30–34].Thispreferredorientationoffibersis duetotwoconcurrentcauses:1)theprofile ofthedragforcesinduced bytheflowand 2)thewalleffect[35].Flows dominatedbyshearstressesfeatureaparabolicflow-velocitycrossprofileswithanassociateddistributionofdragforces (Fig.4).Thisalignmentcanbepracticallyconsidered,attheindustrialscale,asanalmostinstantaneousphenomenon,since itoccursina“maximumfiberorientationcharacteristictime”whichisoftheorderofacoupleseconds,whichisfarshorter thanthedurationofanyrealcastingprocess[35].Thesecondcauseforpreferredalignmentoffibersisthesocalled“wall effect”,sinceitis“notpossibletofindafiberperpendiculartoawallatadistancelowerthanhalfthelengthofthefiber”[35]. Bysuitablytailoringthecastingprocesstotheintended application,i.e. combiningComputational FluidDynamics modellingofthecastingprocess[36–40]withclassicalfiniteelementstructuralanalysis,theflowdirectionofthefresh

Fig.2.(a)traditionalprecastroofdeckarrangement(left)vsHPFRCCone(right);and(b)experimentaltestingtheloadbearingcapacityoftheHPFRCC

(7)

concrete,alongwhichfibrestendtobealigned,canbemadetocoincide,ascloselyaspossible,withtheanticipatedstress pattern(i.e.,thedirectionofprincipaltensilestresses)withinthestructuralelementwheninservice.Thefibre-alignment dependantmaterialbehaviour(Fig.5)canbeexploitedthroughabetterstructuralefficiencyfurthercontributiontothe elementsizeandstructureoptimization[25].

Fig.3.adaptingtherheologyofFRCCs(a–b)forenhancedfibredispersion(c)[24].

(8)

Fig.5.Aligningthefibresperpendicularly(a)andparallel(b)totheflowandtoprincipaltensilestressesinbeamspecimens;respectiveresultingdeflection

(9)

4.4.Multiplicity

Theadventandimplementationofnanotechnologyintheconstructionfield,whichisgoingtoenableametamaterial conceptapproachtoconstructionmaterialswhich,throughthemanipulationofthemostinnerstructureofthematerial wouldallowtoobtainpropertiesand/orlevelsofperformancewhichcouldnotbeobtainedandachievedthroughtraditional processing[41].

ExamplesofresearchinthisfieldrangefromtheuncouplingbetweencompressivestrengthandYoungmodulus[42],a topicofextremelyhighinterestintheconstructionofhighrisebuildings,tothepossibilityofendowingconcretewith self-sensing[43]orself-curing[44]properties,through,e.g.,therespectiveuseofcarbonandcellulosenano-constituents,tothe functionalizationoffibre-matrixinterfacefortailoredenhancementofthematerialperformance.

AmongthemultiplicityofperformancethattheHPFRCCsareabletoprovide,itisworthrecallingthatthesynergybetween “extreme” crackwidthcontrol andmaterialcomposition, asdescribedabove,alsoresultsintoa high conducivenessto autogenousself-healing(Fig.6),withsynergeticeffectsontheenhancementofthematerialandstructuraldurability[45,46].

(10)

As a matter of fact, the matrix is able, on the one hand,throughits extremelyhigh compactnessand crackcontrolling ability, to slowdown thepenetrationof aggressiveagentsintoitscorestructure, andeventuallyto thelevel ofthereinforcement.Thanksto itsinbornself-healingcapacity,thematrixisalsoabletoprogressivelysealthesametightlyspacedandnarrowopenedcracks, thusdrawingtowardsarecoveryofitspristinelevelofperformanceintheun-crackedstate.Thecompositionofthiscategoryof advancedcementitiouscompositesfeatureshighcontentsofcementandsupplementarybinders,witheitherpozzolanic(fly ash,silicafume)ordelayedcementitiousactivity(slag)andlowwatercontent.Theresultinghighamountofreactivematerial whichremainsun-hydratedandentrappedinsidethebulkvolumeofastructuralelementmaybe,uponcrackingexposedto outdoorenvironment,incasefeaturingpresenceofliquidorvapourwater.Thesecanbothactivatedelayedhydrationreactions aswellascarbonationones,whoseproductsprecipitateontothecracksurfacessealingit.

Moreover,healingproducts,besidesreconstructingthethrough-crackmatrixcontinuity,arealsolikelytoimprovethe fibre-matrixbond.Itisfurthermoreworthremarkingthatthepresenceofthefibresandthesignaturetensilebehaviourof thematerialmaketheaforementionedrecoveryofthepristinelevelofperformancereferredtotheun-crackedstatetruefor bothdurabilityandmechanicalproperties.Thismayalsoresult,uponreloadingahealedspecimen,intotheformationofnew cracks,farfromthehealedone,insteadofthere-openingofthelatter(Fig.7)[47].

Self-healingmaterialsarewellknowninthefieldofbiology.Bloodclotting,skinwoundhealingandbonereconstruction are “sparkling” examples of self-healing functionalities inborn in biological materials which material science has successfullyattemptedtoincorporatealsoinman-madeones,including,amongtheothers,polymers,metals,asphalts, paintingsandcement-basedconstructionmaterialsaswell[48].Itisblatantlyundeniablethatthepossibilityofengineering orstimulatingtheself-repairing functionalitiesin cement-basedmaterialswould enhancethematerialand structural durabilityalsoresultinginreducedmaintenanceneedsoveranextendedstructureservicelife.

Inthewholeframeworkhereinoutlinedself-healingcement-basedmaterialswouldhencerepresentanexceptionalasset forshapingthesustainabilityofthecement,concreteandconstructionindustry[46].Theauthorhasintensivelyparticipated intoresearchrelatedtostimulatedhealingthroughcrystallineadmixtures,wellknownandwidelyemployedinmodern concretetechnology,beingclassifiedasaspecialtypeofpermeabilityreducingadmixture.Significantamountofworkon theiruseashealingstimulatorshasbeendone[51–57],alsoinvestigatingthemodificationstotheintrinsicconcrete micro-structurebroughtbythecrystallinereactionpromotedbytheadditives(Fig.8)[58].Moreover,aninterestingsynergywith thedispersedfibrereinforcementhasbeenobserved[54]:thefillingofthecracksbycrystallinehealingproductsislikelyto activateasortofchemicalpre-stressingthroughoutthecrackedmaterial,fromwhichthehealinginducedrecoveryofthe performanceislikelytobenefittoagreaterextentthaninthecaseofordinaryFRC[45](Fig.9).

Themultiplicityoftheperformance,sofaranalysedwithreferencetothematerial,canbeeasilyextendedtothescaleof thestructuralelement.

Fig.7. Microstrucreofhealedcrackinconcretewithout(a)andwith(b)crystallineadmixture[58].

(11)

AnexampleistheconceptoflayeredcompositeelementproposedbydiPriscoetal.[59]whichemploysatopHPFRCClayeranda TextileReinforcedMortarbottomlayer,coupledbymeansofahighdensityPolystyrenepanel,whichperformsthestructuralfunction oftransmittingverylowshearstressesandisusedalsoforthermalinsulation(Fig.10).ThelowpermeabilityoftheHPFRCCinthe un-crackedstateanditsself-healingcapacityevenledtoavoidtheuseofawaterproofinglayer.Theseelementsarealso characterizedbyahighfireresistance:infact,whenafireoccurs,polystyrenesublimatesbecausethemeltingtemperatureof EPS(ExpandedPolystyrene)iscloseto160C.Ifsuitableescapesforthesmokeareintroducedandafixingdeviceisdesignedto

hangthetextilethinlayertotheupperHPFRCCplate,theempty chamberresultingthepolystyrenesublimationactsasanideal barrieragainstfireandtheTRCpanelworksasafireshieldpreservingthestructuralbearingresistanceofthetopHPFRCCplate.

Fig.9.Pre-cracking/post-healingstressvs.crackopeningperformanceofHPFRCCspecimenswithout(a)andwith(b)crystallineadmixtures[54].

Fig.10.LayeredHPFRCC/TRCelementsontheprecastrunway(a)anddetail(b)[59].

(12)

Fig.12.Retrofittingofshearwallcoupling-beamswithHPFRCC:testset-up(a);loadvs,driftperformanceforreferenceandretrofitted/upgradedmock-ups

(b);diagonalcrackinginanunreinforcedbeam(c)andintheunreinforcedsubgradeofaretrofittedone(d)ascomparedtomultiplecrackinginthe

retrofittedlayer(e);andnumerficalpush-overcurvesfordifferentretrofittingoptions,ascomparedtotheperformanceofuncoupledtwo-shaftwalland

(13)

Theenhancedthermalperformancemakesthemextremelyattractiveforanenergyretrofittingofbuildings,notdisjoined fromalikewisehighefficiencyvs.earthquakeinducedactionsbecauseoftheirreducedself-weight[60,61].

4.5.Visibility

Itclearlyappears,fromwhatsyntheticallydescribedinthissection,thatUHPC/UHPFRCcanrepresentthestartingpoint forthedevelopmentofaconsistentmaterialandstructuraldesignapproachaimed,ontheonehand,atimprovingthe durabilityandreducingmaintenanceeffortsforstructuresexposedtoextremelyaggressiveexposures.Ontheother,through a “holistic”design approach, which tailors both the material composition and thecasting process totheanticipated structuralperformance,theorientationoffibrescouldbetailoredtomatchascloseaspossiblewiththedirectionofthe principaltensilestresswithinthestructuralelementwheninservice,sotoachieveamoreefficientstructuraluseofthe material.Thesuitablybalancedfresh-stateperformanceofHPFRCCswouldallowtomouldtheshapeofanelementand, thankstoatailoredcastingprocess,toorientthefibresalongthedirectionoftheprincipaltensilestressesresultingfromits structuralfunction.Inthiswayadesirableclosercorrespondencebetweentheshapeofanelementandthefunctionit performsinastructureassemblycouldbepursuedinthedesign.

Thisresultintoahigh“visibility”,i.e.architecturalvalueofstructuresmadeofHPFRCC,which,startingfromthefirst UHPCpedestrian bridgebuiltin Canadain 1997(Fig.11), are demonstratingonthefield theirexcellentperformance throughouttheworld[23].

4.6.Consistency

Theaforementionedsuperiorperformanceinthefreshandhardenedstate,alsowithreferencetotheexpectedlongterm durability,makeHPFRCCsabletoprovideabreakthroughchangeinthecurrentdesignandconstructionpracticeforboth existingto-be-retrofitted[62–64]andnewstructures.

Withreference totheformer, theauthorreports itsown experiencewithreferencetothechallengingdesign and applicationscenariosuchastheupgrading/retrofittingofcouplingbeamsinearthquakeresistantshearwalls[65,66].An adequateselectionofthematerialallowedretrofittinglayersasthinas20mmtobeappliedonthesideandbottomfacesof thecouplingbeam,asfeasibleinthepracticeduetooperationalconstraints,andobtaintherequiredenhancementofthe loadbearinganddeformationcapacity(Fig.12a–b),accompaniedbyatransitionfromabrittlediagonalcracking(Fig.12c)to afailuremodecharacterizedbytheabilityofspreadingthelocalizeddamageintothesubgrade(Fig.12d)intomultipletiny cracks(Fig.12e).Thepossibilitywasalsoaddressedofextendingtheretrofittingdesignconceptfromthesingleelement isolatedfromitsstructuralcontexttoa“model”shearwall,inordertogetback,evenifnotcompletely,thebehaviourone throughatailoredretrofitting,appliedonlytocouplingbeamsat“selected”storeys(Fig.12f).

Withreferencetonewconstructions,HPFRCCscanprovideabreakthroughchangeinthecurrentdesignandconstruction practice of infrastructures for energy harvesting from renewable sources, including wind, where also iconic feats characterizedbyahighengineeringandarchitecturalvaluearepossible.Focusingonon-shorewindturbinetowers,the projected and planned increase of wind-energyshare in thetotal power needof several countries, is leading tothe developmentanduseofhigherpowerturbines(e.g.from5to10MW)whichemployrotorswithdiametersequalto100mor larger.Atthisheight,severaloftheadvantagesofthecurrentsteeltowersarelostdue totheirlargersize,theirlower stiffness,andthenecessityforon-sitecompletion.Undertheseconditions,concretetowersbecomepracticablealternatives andeconomicallyattractive[67],providingtallerhubheightsandfeaturingadvantageswhich,besidesavarietyofboth precastandcast-in-placeconstructionoptionseasilyachievablethroughtheuseoflocallysourcedmaterialsandlabour,also includelowerprojectcostsandpotentialsforreductionoflogisticsandtransportationconstraints,improvedservicelifeand, quiteinterestingly,alsoforrepoweringwiththenextgenerationofturbines.

Lastbutnotleast,HPFRCCsareidealcandidatematerialstomeetthechallengesofimplementingadditivemanufacturing and3Dprintingtechnologiesintotheconstructionindustry.Asamatteroffact,thankstotheircompositionandbehaviour, theycanprovidea“structuralreinforcement”optionwhichwouldotherwisehavetobeincorporatedthroughalternative technologies [68], theirperformance alsobenefits from a fibre alignment almost inborn into, e.g., layered extrusion processing,atthesametimealsoallowingforshapeandstructuresizeoptimization[69].

5.Conclusions

In thispaper,moving fromaparallelwith“Sixmemos fromthenext millennium”byItaloCalvino,theauthorhas discussed,alsobasedonthemostsignificantresultsofitsresearchinthelasttenyears,hisownperspectiveonthecurrent stateontheuseofHPFRCCsincivilengineeringforbothnewandexistingbuildingsandstructures.

Thethread-linewhich,intheauthor’sopinion,hastoinformandgovernthebreakthroughpenetrationofHPFRCCsinto theconstruction market,movingfroma prescription-basedtoa performance-basedmaterial andstructural durability concept,aimsatthebreakthroughtargetoftheoverallresilience[70,71]oftheengineeringfeats,whichencompass:  materialrobustness,i.e.lowsensitivitytochangesincomposition,handlingetc.,andstructuralrobustness,i.e.theability

(14)

lossofperformance;thishastoinclude,ontheonehand,thedevelopmentofconstructiontechniquesreally“tailored”to theexploitthefullbenefitsoftheadvancedperformanceofHPFRCCsand,ontheother,addressthepossibilityofrecycling thesamematerialsandassessthelevelofperformanceobtainablethroughsucha“rebirth”approach;

structuralandmaterialredundancy,throughfit-for-the-purposestructureconceptandamaterialabletoprovide,also thankstoitsabilitytospreadthedamageintoasetofmultipletinycracks,multiple-scalebarrierstodegradation:material imperviousnessintheun-crackedstate,cracktightnessinthecrackedstateandactivationofself-healingfunctionalities uponcracking;

resourcefulnessandrapidity,throughsynergybetweenmaterialfunctionalitiesandtailoreddesign.

Thevisionhighlightedintheprevioussubsections,throughthevaluesoflightness,quickness,exactitude,multiplicityand visibility,shallbeconsistentlyscaledup,throughaholisticdesignapproach.Thishastomovefromthematerialtothe structuraldurabilitylevel,anticipatingtheevolutionofthestructureperformanceandquantifytheresultingincreaseinthe servicelifeofstructuresmadeofHPFRCC,andtherelatedoutcomesintermsofLifeCycleCostandSocialLifeCycleAnalysis, bothincradle-to-graveandcradle-to-gateapproach[72–74].

Moreover,itisworthalwayskeepinginmindthatnewmaterialstraditionallypushforthedevelopmentofnewstructural conceptsandnewconstructiontechnologies,andnotonlyforimprovementoftheexistingones.Inthisrespect,advanced manufacturingtechniques,suchasDigitalFabricationones,couldbereallyexploitedasakeyenablingtechnologytopushfor furtherspreadingofthecategoryofadvancedcementbasedmaterialshereindealtwith.

Acknowledgements

Inthispaper,which reflectsthepresentationgivenatBCCM-4inRiodeJaneiro,inJuly 2018,Ihavetried,inan intrepidparallel,tomergemypassionfortheItalianwriterItaloCalvinowiththeresultsofabout15yearsofresearchin thefieldofHighPerformanceFibreReinforcedCementitiousComposites.Iamindebtedtoprof.MarcodiPrisco,myPhD supervisor at Politecnico di Milano, and to prof. Surendra P. Shah, my supervisor during my Fulbright visiting scholarshipatNorthwesternUniversityin2006,who,throughtheirmentorship,haveinstilledmethewilltopursuea one-of-a-kind“holistic”perspectiverangingfrommaterialstostructuralapplicationswhichIhaveconstantlytriedto pursueinmywork.

References

[1]EuropeanCommission.TheEuropeanconstructionsector.Aglobalpartner.11/03/2016.16pp.

https://ec.europa.eu/growth/content/european-construction-sector-global-partner-0_en(Accessed1March2018).

[2]WEF, Shaping the Future of Construction. A Breakthrough in Mindset and Technology 61p, (2016) . http://www3.weforum.org/docs/

WEF_Shaping_the_Future_of_Construction_full_report__.pdf).

[3]The concrete conundrum, Chemistry World, March Accessed on March 1, 2018 through, (2008) , pp. 62–66. http://www.rsc.org/images/

Construction_tcm18-114530.pdf.

[4]H.S.Müller,M.Haist,M.Vogel,Assessmentofthesustainabilitypotentialofconcreteandconcretestructuresconsideringtheirenvironmentalimpact, performanceandlifetime,Constr.Build.Mater.67(2014)321–337.

[5]R.Gettu,R.G.Pillai,J.Meena,A.S.Basavaraj,M.Santhanam,B.S.Dhanya,etal.,Considerationsofsustainabilityinthemixtureproportioningofconcrete forstrengthanddurability,V.Falikman(Ed.),Durabilityandsustainabilityofconcretestructures(DSCS-2018),Proceedings2ndInternational Workshop(2018)ACISP326,5.1-5.16.

[6]B.L.Damineli,F.M.Kemeid,P.S.Aguiar,V.M.John,Measuringtheeco-efficiencyofcementuse,Cem.Concr.Compos.32(2010)555–562.

[7]PropertiesofFreshandHardenedConcreteContainingSupplementaryCementitiousMaterials.State-of-the-ArtReportoftheRILEMTechnical

Committee238-SCM,WorkingGroup4.In:N.DeBelieetal.,(eds.),Springer,2018,315+xxvpp.,ISBN978-3-319-70606-1.

[8]SupplementaryCementitiousMaterialsMarketbyType(FlyAsh,FerrousSlag,andSilicaFumes),GlobalOpportunityAnalysisandIndustryForecast,

2017-2023.(accessedonNov,14,2018throughhttps://www.alliedmarketresearch.com/supplementary-cementitious-materials-market).

[9]P.Chaunsali,P.Mondal,Influenceofcalciumsulfoaluminate(CSA)cementcontentonexpansionandhydrationbehaviorofvariousordinaryportland Cement-CSAblends,J.Am.Ceram.Soc.98(8)(2015)2617–2624.

[10]AlkaliActivatedMaterials:State-of-the-ArtReportoftheRILEMTechnicalCommittee224-AAM.In:Provis,J.andvanDeventer,J.,(eds.),Springer,

2014,388pp.,ISBN978-94-007-7672-2.

[11]CalcinedClaysforSustainableConcrete.Proceedingsofthe1stInternationalConferenceonCalcinedClaysforSustainableConcrete,In:ScrivenerK.

andFavier,A.,(eds.),Springer,2015,597+xvipp.,ISBN978-94-017-9939-3.

[12]CalcinedClaysforSustainableConcrete.Proceedingsofthe2ndInternationalConferenceonCalcinedClaysforSustainableConcrete.In:Martirena,F.

etal.,(eds.),Springer,2018,520+xxvipp.,ISBN978-94-024-1207-9.

[13]Recentadvancesongreenconcreteforstructuralpurposes.ThecontributionoftheEU-FP7projectEnCoRe.In:Barros,J.A.O.etal.,(eds.),Springer,2017,

pp.427+x,ISBN978-3-319-56797-6.

[14]J.Xiao,C.Qiang,A.Nanni,K.Zhanga,Useofsea-sandandseawaterinconcreteconstruction:currentstatusandfutureopportunities,Constr.Build. Mater.155(2017)1101–1111.

[15]S.Talukdar,N.Banthia,Carbonationinconcreteinfrastructureinthecontextofglobalclimatechange:modelrefinementandrepresentative concentrationpathwayscenarioevaluation,ASCEJ.Mater.CivilEng.28(4)(2016)04015178.

[16]https://inspectioneering.com/news/2016-03-08/5202/nace-study-estimates-global-cost-of-corrosion-at-25-trillion-ann(Accessed1March2018). [17]S.Matthews,CONREPNET:performance-basedapproachtotheremediationofreinforcedconcretestructures:achievingdurablerepairedconcrete

structures,J.Build.Apprais.3(1)(2007)6–20.

[18]EN1992-1-1,Eurocode2:DesignofConcreteStructures-Part1-1.December,(2004). [19]FibModelCodeforConcreteStructures,(2010),doi:http://dx.doi.org/10.1002/9783433604090.

[20]M.diPrisco,G.Plizzari,L.Vandewalle,Fiberreinforcedconcrete.Newdesignperspectives,Mater.Struct.42(9)(2009)1261–1281.

[21]A.E.Naaman,H.W.Reinhardt,ProposedclassificationofHPFRCcompositesbasedontheirtensileresponse,Mater.Struct.39(5)(2006)547–555. [22]H.Okamura,Selfcompactinghighperformanceconcrete,Concr.Int.19(7)(1997)50–54.

(15)

[23]UHPC,C.ShiB.ChenFuzhou,China,7-10November2018Proceedingsofthe2nd

InternationalConferenceonUHPCMaterialsandStructures2018,C.Shi, B.Chen(Eds.),Proceedingsofthe2nd

InternationalConferenceonUHPCMaterialsandStructures(2018)RILEMPubs.,832+xxiiipp.,ISBN: 978-2-35158-219-0.

[24]L.Ferrara,Y.D.Park,S.P.Shah,Amethodformix-designoffiberreinforcedselfcompactingconcrete,Cem.Concr.Res.37(2007)957–971. [25]L.Ferrara,M.diPrisco,N.Ozyurt,SelfconsolidatinghighperformanceSFRC:anexampleofstructuralapplicationinItaly,in:C.M.Aldea,L.Ferrara

(Eds.),FiberReinforcedSelfConsolidatingConcrete:ResearchandApplication,2010,pp.109–128ACI-SP274,ISBN0-87031-398-3.

[26]L.Ferrara,A.Meda,Relationshipsbetweenfibredistribution,workabilityandthemechanicalpropertiesofSFRCappliedtoprecastroofelements, Mater.Struct.39(4)(2006)411–420.

[27]L.Ferrara,Y.D.Park,S.P.Shah,Correlationamongfreshstatebehaviour,fiberdispersionandtoughnesspropertiesofSFRCs,ASCEJ.Mater.CivilEng.20 (7)(2008)493–501.

[28]L.Ferrara,N.Ozyurt,M.diPrisco,Highmechanicalperformanceoffiberreinforcedcementitiouscomposites:theroleof“casting-flow”inducedfiber orientation,Mater.Struct.44(1)(2011)109–128.

[29]L.Ferrara,P.Bamonte,A.Caverzan,A.M.Musa,I.Sanal,AcomprehensivemethodologytotesttheperformanceofSteelFibreReinforced Self-CompactingConcrete(SFR-SCC),Constr.Build.Mater.37(2012)406–424.

[30]P.Stahli,J.G.M.vanMier,Manufacturing,fibreanisotropyandfractureofhybridfibreconcrete,Eng.Fract.Mech.74(2007)223–242.

[31]P.Stahli,R.Custer,J.G.M.vanMier,Onflowproperties,fibredistribution,fibreorientationandflexuralbehaviourofFRC,Mater.Struct.41(1)(2008) 189–196.

[32]L.Ferrara,M.Faifer,S.Toscani,AmagneticmethodfornondestructivemonitoringoffiberdispersionandorientationinSteelFiberreinforced CementitiousComposites–part1:methodcalibration,Mater.Struct.45(4)(2012)575–589.

[33]L.Ferrara,M.Faifer,M.Muhaxheri,S.Toscani,AmagneticmethodfornondestructivemonitoringoffiberdispersionandorientationinSteelFiber ReinforcedCementitiousComposites–part2:correlationtotensilefracturetoughness,Mater.Struct.45(4)(2012)591–598.

[34]M.diPrisco,L.Ferrara,M.G.L.Lamperti,DoubleEdgeWedgesplitting(DEWS):anindirecttensiontesttoidentifypost-crackingbehaviouroffibre reinforcedcementitiouscomposites,Mater.Struct.46(11)(2013)1893–1918.

[35]L.Martinie,N.Roussel,Simpletoolsforfiberorientationpredictioninindustrialpractice,Cem.Concr.Res.41(2011)993–1000.

[36]N.Roussel,A.Gram,M.Cremonesi,L.Ferrara,K.Krenzer,V.Mechtcherine,S.Shyshko,J.Skocek,J.Spangenberg,O.Svec,L.N.Thrane,K.Vasilic, Numericalsimulationsofconcreteflow:abenchmarkcomparison,Cem.Concr.Res.69(2016)265–271.

[37]M.Cremonesi,L.Ferrara,A.Frangi,U.Perego,SimulationoftheflowoffreshcementitioussuspensionsbyaLagrangianFiniteElementapproach,J. Non-Netwon.FluidMech.165(2010)1555–1563.

[38]L.Ferrara,M.Cremonesi,M.Faifer,S.Toscani,L.Sorelli,M.A.Baril,J.Réthoré,F.Baby,F.Toutlemonde,S.Bernardi,Structuralelementsmadewithhighly flowableUHPFRC:correlatingComputationalFluidDynamics(CFD)predictionsandnon-destructivesurveyoffiberdispersionwithfailuremodes,Eng. Struct.133(2017)151–171.

[39]L.Ferrara,N.Tregger,S.P.Shah,Flow-inducedfiberorientationinSCSFRC:monitoringandprediction,in:K.H.Khayat,D.Feys(Eds.),Design,Production andPlacementofSelfConsolidatingConcrete,ProceedingsSCC2010,6thInternationalRILEMSymposiumand4thNorthAmericanConfereneconthe DesignandUseofSCC,SeptemberMontreal,Quebec,Canada,26-29,Springer,2010,pp.417–428.

[40]L.Ferrara,M.Cremonesi,Effectsofcastingprocessontoughnesspropertiesoffiberreinforced-selfcompactingconcreteasfromEN14651,N.Roussel, H.Bessaies-Bey(Eds.),RheologyandProcessingofConstructionMaterials,Proceedings7thRILEMInternationalConferenceonSelfCompacting Concreteand1stRILEMInternationalConferenceonRheologyandProcessingofConstructionMaterials(2013).

[41]S.P.Shah,P.Hou,etal.,Nano-engineeredmetacement-basedmaterialsanddurability,V.Falikman(Ed.),DurabilityandSustainabilityofConcrete Structures(DSCS-2018),2018Proceedings2ndInternationalWorkshop(2018).

[42]S.P.Shah,M.Konsta-Gdoutos,UncouplingModulusofelasticityandstrength,Concr.Int.39(11)(2017)37–42.

[43]B.Han,L.Zhang,J.Ou,SmartandMultifunctionalConcreteTowardSustainableInfrastructures,Springer,2017400pp.ISBN978-981-10-4348-2. [44]N.Banthia,O.Onuaguluchi,D.Chi,etal.,Bio-inspired,internallycuredcellulosefiberreinforcedconcretefornextgenerationinfrastructure,V.Falikman

(Ed.),DurabilityandSustainabilityofConcreteStructures(DSCS-2018),2018Proceedings2ndInternationalWorkshop(2018)ACISP326,1.1-1.18. [45]E.A.Cuenca,L.Ferrara,Self-healingcapabilityofFiberreinforcedConcretes.Stateoftheartandperspectives,J.KoreanSoc.Civ.Eng.21(7)(2017)2777–

2789.

[46]N.DeBelie,E.Gruyaert,A.Al-Tabbaa,P.Antonaci,C.Baera,D.Bajare,A.Darquennes,R.Davies,L.Ferrara,T.Jefferson,C.Litina,B.Miljevic,A.Otlewska,J. Ranogajec,M.Roig-Flores,K.Pain,P.Lukowski,P.Serna,J.M.Tulliani,S.Vucetic,J.Wang,H.M.Jonkers,Areviewofself-healingconcretefordamage managementofstructures,Adv.Mater.Interfaces5(17)(2018)1–28.

[47]L.Ferrara,S.R.Ferreira,V.Krelani,M.DellaTorre,F.Silva,R.D.ToledoFilho,etal.,NaturalfibresaspromotersofautogenoushealinginHPFRCCs:results fromanon-goingItaly-Brasilcooperation,M.A.Chiorino(Ed.),DurabilityandSustainabilityofConcreteStructures(2015)1-3ACISP305,11.1-11.10. ISBN-13:978-1-942727-44-6.

[48]S.K.Gosh(Ed.),Self-HealingMaterials:Fundamentals,DesignStrategies,andApplications,Wiley,2009ISBN9783527318292.

[49]L.Ferrara,V.Krelani,F.Moretti,AutogenoushealingontherecoveryofmechanicalperformanceofHighPerformanceFibreReinforcedCementitious Composites(HPFRCCs):part2–correlationbetweenhealingofmechanicalperformanceandcracksealing,Cem.Concr.Compos.73(2016)299–315. [50]L.Ferrara,V.Krelani,F.Moretti,M.RoigFlores,P.SernaRos,EffectsofautogenoushealingontherecoveryofmechanicalperformanceofHigh

PerformanceFibreReinforcedCementitiousComposites(HPFRCCs):part1,Cem.Concr.Compos.83(2017)76–100.

[51]L.Ferrara,V.Krelani,M.Carsana,Afracturetestingbasedapproachtoassesscrackhealingofconcretewithandwithoutcrystallineadmixtures,Constr. Build.Mater.68(2014)515–531.

[52]M.Roig-Flores,S.Moscato,P.Serna,L.Ferrara,Self-healingcapabilityofconcretewithcrystallineadmixturesindifferentenvironments,Constr.Build. Mater.86(2015)1–11.

[53]M.RoigFlores,F.Pirritano,P.SernaRos,L.Ferrara,Effectofcrystallineadmixturesontheself-healingcapabilityofearly-ageconcretestudiedbymeans ofpermeabilityandcrackclosingtests,Constr.Build.Mater.114(2016)447–457.

[54]L.Ferrara,V.Krelani,F.Moretti,Ontheuseofcrystallineadmixturesincement-basedconstructionmaterials:fromporosityreducerstopromotersof selfhealing,SmartMater.Struct.25(2016)08400217pp.

[55]R.P.Borg,E.Cuenca,E.M.GastaldoBrac,L.Ferrara,Cracksealingcapacityinchloriderichenvironmentsofmortarscontainingdifferentcement substitutesandcrystallineadmixtures,J.Sustain.Cem.Mater.7(3)(2018)141–159.

[56]E.Cuenca,A.Tejedor,L.Ferrara,Amethodologytoassesscracksealingeffectivenessofcrystallineadmixturesunderrepeatedcracking-healingcycles, Constr.Build.Mater.179(2018)619–632.

[57]P.Escoffres,C.Desmettre,J.P.Charron,Effectofacrystallineadmixtureontheself-healingcapabilityofhigh-performancefiberreinforcedconcretesin serviceconditions,Constr.Build.Mater.173(2018)763–774.

[58]L.Ferrara,S.Kassavetis,F.LoMonte,M.Stefanidou,CharacterizationofSelf-HealingReactionProductsinCementitiousMortarsviaNano-Indentation: across-collaborationintheframeworkofCOSTActionSARCOS,submittedforpresentationatNICOM-6,SixthInternationalSymposiumon NanotechnologyinConstruction(2018).

[59]M.diPrisco,L.Ferrara,M.G.L.Lamperti,S.Lapolla,A.Magri,G.Zani,Sustainableroofelements:aproposalofferedbycementitiouscomposite technology,M.N.Fardis(Ed.),InnovativeMaterialsandTechniquesinConcreteConstruction,ProceedingsACESWorkshop(2012)167–182. [60]I.Colombo,M.Colombo,M.diPrisco,etal.,TRCprecastFaçadesandwichpanelforenergyretrofittingofexistingbuildings,M.A.Chiorino(Ed.),

DurabilityandSustainabilityofConcreteStructures(2015)ACISP305,30.1-30.10.ISBN-13:978-1-942727-44-6.

[61]M.C.Caruso,C.Menna,D.Asprone,A.Prota,G.Manfredi,Methodologyforlife-cyclesustainabilityassessmentofbuildingstructures,ACIStruct.J.114 (2)(2017)323–336.

(16)

[62]G.Martinola,A.Meda,G.A.Plizzari,Z.Rinaldi,StrengtheningandrepairofRCbeamswithfiberreinforcedconcrete,Cem.Concr.Compos.32(2010) 731–739.

[63]A.Meda,S.Mostosi,P.Riva,ShearstrengtheneingofreinforcedconcretebeamwithHPFRCCjacketing,ACIStruct.J.111(5)(2014)1059–1068. [64]M.Preti,A.Meda,RCstructuralwallwithun-bondedtendonsstrengthenedwithHPFRC,Mater.Struct.48(1–2)(2015)249–260.

[65]B.A.Canbolat,G.J.Parra-Montesinos,J.K.Wight,Experimentalstudyonseismicbehaviorofhighperfor-mancefiber-reinforcedcementcomposite couplingbeams,ACIStruct.J.102(1)(2005)159–166.

[66]M.Muhaxheri,A.Spini,L.Ferrara,M.diPrisco,M.G.L.Lamperti,etal.,Strengthening/retrofittingofcouplingbeamsusingadvancedcementbased materials,F.Dehn(Ed.),ProceedingsICCRRR2015,4thInternationalConferenceonConcreteRepair,RehabilitationandRetrofitting(2015)733–741. [67]ITG-9R-16:ReportonDesignofConcreteWindTurbineTowers,AmericanConcreteInstitute,2016.

[68]D.Asprone,C.Menna,F.P.Bos,T.A.M.Salet,J.Mata-Falcón,W.Kaufmann,Rethinkingreinforcementfordigitalfabricationwithconcrete,Cem.Concr. Res.112(2018)111–121.

[69]D.Asprone,F.Auricchio,C.Menna,V.Mercuri,3Dprintingofreinforcedconcreteelements:technologyanddesignapproach,Constr.Build.Mater.165 (2018)218–231.

[70]M.Bruneau,A.Reinhorn,Overviewoftheresilienceconcept,Proceedingsofthe8thU.S.NationalConferenceonEarthquakeEngineering,April18-22 (2006).

[71]P.M.Bocchini,D.M.Frangopol,T.Ummenhofer,T.Zinke,ResilienceandsustainabilityofcivilInfrastructure:towardaunifiedapproach,J.Infrastruct. Syst.20(2)(2014)1–16.

[72]D.M.Frangopol,M.Liu,Maintenanceandmanagementofcivilinfrastructurebasedoncondition,safety,optimization,andlife-cyclecost,Struct. Infrastruct.Eng.3(1)(2007)29–41.

[73]M.M.Khasreen,P.F.G.Banfill,G.F.Menzies,Life-cycleassessmentandtheenvironmentalimpactofbuildings:areview,Sustainability1(3)(2009)674– 701.

Riferimenti

Documenti correlati

Furthermore, the nonlinear finite element analysis of reinforced concrete structures, often based on a tangent approach, requires the calculation of the stiffness matrix of the

Methods: We collected anthropometric (height, weight, body mass index (BMI) z-scores), pubertal, metabolic, and endocrine data from 72 NT1 patients at.. diagnosis and all

We propose that anthropogenic disturbance is the proximate cause of loss of Cystoseira in the Mediterranean, and that the disappearance of canopy algae causes an increase in cover

FUSION promotes the convergence of advanced network management (based on SDN) and configuration solutions (based on cloud orchestra- tion and container technologies), and it

At the same time, when using the electrodes of type 2, the change in electrical resistivity is insignificant due to better integration into the body of the sample, whereby

The University contribution is explored through the analysis of scientific publications of University members during the last 20 years. Publication data have been extracted from

This could impede the implementation of Regional Development Strategies and could limit the ability of the regional councils to perform their role in coordinating the