• Non ci sono risultati.

Search for heavy neutrinos in K+ > mu+ nu(mu) decays

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for heavy neutrinos in K+ > mu+ nu(mu) decays"

Copied!
7
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

heavy

neutrinos

in

K

+

μ

+

ν

μ

decays

.

The NA62

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received24May2017

Receivedinrevisedform25July2017 Accepted25July2017

Availableonline27July2017 Editor:W.-D.Schlatter Keywords:

Kaondecays Heavyneutrinos

TheNA62experimentrecordedalargesampleofK+→

μ

+

ν

μdecaysin2007.Apeaksearchhasbeen

performedinthereconstructedmissing massspectrum.Intheabsenceofasignal,limits inthe range 2×10−6to10−5havebeensetonthesquaredmixingmatrixelement|U

μ4|2betweenmuonandheavy

neutrinostates,forheavyneutrinomassesintherange300–375 MeV/c2.Theresultextendstherange

ofmassesforwhichupperlimits havebeenset onthevalueof|4|2 inpreviousproductionsearch

experiments.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Thefactthatneutrinososcillateimpliesthattheyhavenon-zero

masses. While in the Standard Model (SM) neutrinos are

mass-less by construction, the SM can be extended in various ways

to accommodate neutrino masses [1]. In a large class of mod-els, the see-saw mechanism is used to explain the lightness of the SM neutrinos by introducing additional heavy neutrino mass stateswhichmix withthe SM flavour states[2]. Oneexample of models including heavy neutrinos is the neutrino minimal Stan-dard Model (

ν

MSM), in which three right-handed neutrinos are addedto the SM withone ofthem beingat theGeVscale [3,4]. Forheavy neutrinoswithmassesbelowthekaonmass,limitson theirmixingmatrixelementscanbeplacedbysearchingforpeaks inthemissingmassspectrumof K± decays[5].In thefollowing,

two-bodykaondecaystoa muonanda SMneutrinoaredenoted

K+

μ

+

ν

μ,whilethosewithamuon anda heavyneutrinoare denoted K+

μ

+

ν

h; the notation K+

μ

+N indicates either

case.Limitson

|

4

|

2intheextendedneutrinomixingmatrix

us-ingtheprocessK+

μ

+

ν

hcomefromexperimentswithstopped

kaons,andareoftheorderof10−8upto300 MeV/c2[6]and10−6 upto330 MeV/c2 [7].

TheratiooftheK+decaywidthtoheavyneutrinotothedecay widthtoSMmuonneutrinosisrelatedto

|

4

|

2[5]:

B

(

K+

μ

+

ν

h

)

B

(

K+

μ

+

ν

μ

)

= |

Uμ4

|

2f

(

mh

) ,

(1)

wheremh isthemassoftheheavyneutrino,and f

(m

h

)

accounts

forthephasespacefactorandthehelicitysuppression,andvaries intherange1.5–4.0formh intheregion300–375 MeV/c2

consid-eredinthepresentanalysis.

Under theassumption that heavy neutrinos decayonly toSM particles, the lifetime of a heavy neutrino is determined by the mixing matrix elements and by its mass [8].For heavy neutrino massesintherange300–375 MeV/c2,thedominantdecaymodes are

ν

h

π

0

ν

e,μ,τ and

ν

h

π

+



−, where



=

e,

μ

. Assuming

|

U4

|

2

<

10−4 with



=

e,

μ

,

τ

,themeanfree pathofheavy

neu-trinosatNA62foranymassintherangeconsideredisgreaterthan 10km,andthereforetheirdecayscanbeneglected,sincethe prob-abilityofdecayinginthedetectorordecayvolumeisbelow1%.

2. Beam,detectoranddatasamples

The beam line and detector of the earlier NA48/2

experi-ment were reused by the NA62 experiment during 2007 data

taking; they are described in detail in [9,10].Primary protons of

400 GeV/c, extracted from the CERN SPS, impinged on a 40 cm

long,0.2 cmdiameterberylliumtarget.Secondarybeamsof posi-tivelyandnegativelychargedhadronswereproduced, momentum-selected, similarlyfocused andtransportedto the detector.These beamscouldberunsimultaneouslyorseparately.Thecentralbeam

momentumof74 GeV/c was selectedbythefirsttwomagnetsin

a four-dipole achromat andby momentum-defining slits incorpo-ratedintoa3.2mthickcopper/ironprotonbeamdump,whichalso provided thepossibilityofblockingeitherof thetwobeams.The beams hada momentum spread of

±

1

.

4 GeV

/c (rms).

Forabout 1

.

8

×

1012primary protonsincidentonthetargetper SPSspillof

4.8 sduration, the secondarybeam fluxesattheentrance to the decayvolumewere,respectively,1

.

7

×

107and0

.

8

×

107 positively andnegativelychargedparticlesperspill.

The fraction of kaons ineach beamwas about6%. The beam

kaons decayed in a fiducial volume contained in a 114 m long

cylindricalevacuatedtank.The K+and K−beamsweredeflected

http://dx.doi.org/10.1016/j.physletb.2017.07.055

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

kickof265 MeV/c tochargedparticles,andthespectrometerhad amomentum resolutionof

σ

p

/p

=

0

.

48%

0

.

009%

·

p,wherethe

momentum p isexpressedinGeV/c.A hodoscope (HOD)

consist-ingoftwoplanesofplasticscintillatorstripsproducingfasttrigger signalswas placed afterthe spectrometer. A liquidkrypton (LKr) electromagnetic calorimeterof thickness 127 cm (27X0) was

lo-catedfurtherdownstream.Its13248readoutcellshadatransverse sizeof2

×

2 cm2eachwithnolongitudinalsegmentation.The

en-ergyresolutionwas

σ

E

/

E

=

3

.

2%

/

E

9%

/E

0

.

42%,andthe spa-tialresolutionforthetransversecoordinatesx andy ofanisolated electromagnetic shower was

σ

x

=

σ

y

=

0

.

42 cm

/

E

0

.

06 cm, whereE isexpressedinGeV.Amuondetector(MUV)waslocated

further downstream.The MUVwas composed of three planesof

plasticscintillatorstrips(aligned horizontallyinthefirst andlast planes,andverticallyinthemiddleplane)readoutby photomulti-pliersatbothends.Eachstripwas2.7 mlongand1 cmthick.The widthsofthestripswere25 cminthefirsttwoplanes,and45 cm inthethirdplane.TheMUVwasprecededbyahadronic calorime-ter(6.7nuclearinteractionlengths)notusedforthepresent

mea-surement.Each MUVplane was precededby an additional0.8 m

thickironabsorber.

Generaldatatakingconditionsaredescribed in[11].Themain trigger condition for selecting the sample of K+

μ

+N decays requiredthecoincidence intime andspaceof signalsinthe two

HOD planes (HOD signal), and loose lower and upper limits on

theDCHhitmultiplicity(1-tracksignal),downscaledbyafactorof 150.Datatakingperiodswithsimultaneousbeamswere collected withalead barinstalled betweenthetwo HODplanes formuon identificationstudies.Fordatacollectedwiththeleadbarinplace, the vetoing power for backgrounds with photons is reduced, so thesedataareexcludedfromthepresentanalysis.Sincethemuon halobackgroundissmallerintheK+sample,thisanalysisisbased ondatawiththe K+ beamonly(43%oftheintegratedkaonflux, asusedin[12]),whiledatatakenwithonlytheK−beamareused tostudythebackgroundfromhalomuons.

3. Analysisstrategy

In the decay K+

μ

+N the neutrino mass can be

recon-structed asm2

h

=

m2miss

= (

pK

pμ)2,where pK and pμ arethe

four-momenta of the kaon andthe muon respectively. The kaon

momentumis not measured on an event-by-event basis,and pK

is obtained, assuming the kaon mass, from the average

three-momentummeasuredwithK+

π

+

π

+

π

−decaysapproximately

every 500 SPS spills. The muon four-momentum pμ is

deter-mined asthatof areconstructed chargedtrack, assumedto be a muon.

istsbelow300 MeV/c2 [7].Thereconstructedmissingmassrange 245–298 MeV/c2,wherethe

ν

h presenceisexcludedbythislimit,

isusedasacontrolregiontomeasurethetriggerefficiencyforthe backgroundevents.

4. Eventselection

Charged particle trajectories and momenta are reconstructed fromhitsanddrifttimesinthespectrometerusingadetailed mag-neticfieldmap.Thereconstructed K+

π

+

π

+

π

−invariantmass is usedfor fine calibrationof thespectrometer momentum scale andDCHalignmentthroughoutthedatataking.Clustersofenergy depositionintheLKrcalorimeterarefoundbylocatingmaximain space andtime in the digitized pulses fromindividual cells. Re-constructed energies are corrected forenergy outside thecluster boundaries,energylostinisolatedinactive cells(0.8% ofthetotal number),sharingofenergybetweenclusters,andnon-linearityfor clusterswithenergybelow11 GeV.

Theselectionrequiresexactlyonepositivelychargedtrackwith the following characteristics: within the DCH, LKr calorimeter

andMUVgeometricalacceptance; momentum p between 10and

65 GeV/c;within 20 nsofthetriggertime recordedbytheHOD;

distance of closest approach (CDA) between the track and the

beam axis, as monitored with K+

π

+

π

+

π

− decays, smaller than3 cm; trackextrapolationassociatedintimeandspacewith MUVsignalsfromthefirsttwoplanes.

Selected events are required to be free of clusters of energy deposition inthe LKrcalorimeterexcept foranyofthe following configurations:theclusterenergyislowerthan2 GeV;thecluster time ismorethan12 nsaway fromthe tracktime;thecluster is consistentwithbremsstrahlungfromthetrackbeforedeflectionby thespectrometermagnet(within6 cm ofthestraight-line extrap-olatedupstreamtrack);theclusterpositioniswithin40 cmofthe extrapolateddownstreamtrack.

5. Backgroundcontributions

Thebackgroundreceivescontributions frommuon halo, evalu-ated withthecontrol data sample,and fromkaondecays, evalu-atedwithsimulation.

5.1. Muonhalobackground

A data driven approach is used in modelling the muon halo

contribution,andindesigningaselectionthatminimizesthis back-groundwhilepreservingsignalacceptance.Thedistributionofhalo backgroundeventsisestimatedusingthecontrolsample(see Sec-tion 3). The majority of reconstructed

μ

+ in the control sample

(3)

Fig. 1. Distributionofhaloeventsinthe(zvertex)plane(left)and(zvertex,p)plane(right).Thecontoursshowtheprojectionsofthefive-dimensionalselectioncriteria.The

eventsoutsidethecontoursarerejected.Thearrowindicatesthestartofthefiducialvolume.SeeSection5fordetails.

comesfrommuonhalowithtwosourcesofcontamination:1) K+

in specific momentum bands pass through the beam absorbers

(witha probability ofup to 5

×

10−4 depending on momentum)

anddecayinto K+

μ

+

ν

μ; asimulation showsthatthe recon-structedmmiss calculatedassuming thenominalkaonmomentum

islowerthan280 MeV/c2,andthereforethiscomponentdoesnot

enter the signal region; 2) the contribution from mis-identified positivelychargedpions from K

π

π

π

+ decaysentersthe signalregion,andissimulatedandsubtracted.

To studythe halo, the event selection described in Section 4

is used with a relaxed CDA condition (CDA

<

8 cm). The distri-bution ofthe eventsin thecontrol sample passing thisselection is shown in Fig. 1 in the variables zvertex, track momentum p

and

θ

, where

θ

isthe anglebetweenthe K+ beamaxisandthe measuredmuondirection.Tomimimizethehalocontribution, ad-ditionalselection criteria are applied ina five-dimensional space (zvertex

,

θ,

p,CDA

,

φ

), where

φ

isthetrackazimuthal angleinthe

transverseplane.ThecontoursinFig. 1showexampleprojections ofthesefive-dimensionalcriteria;theeventsoutsidethecontours are rejected. The signal acceptance reduction due to the multi-dimensionalcriteriawithrespecttotheselectiondescribedin Sec-tion4isintherange40–45%dependingonmh.

The estimated number of halo background events in the

fi-nal sample is obtained from the number of events observed in

the control sample, normalized to the K+ data in the range

m2

miss

>

0

.

05 GeV

2

/c

4 and3

<

CDA

<

8 cm.

5.2. Kaondecaybackground

Thetotal numberofkaondecaysinthefiducialregion, NK, is

used to scale the simulated distributions of the expected back-grounds. It is measured with a sample of K+

μ

+

ν

μ decays using the selection described in [11] after adding the kinematic criteria; the numberof events in the missing mass squared dis-tribution within

|

m2miss

|

<

0

.

015 GeV2

/c

4 is evaluated after

sub-tractinga sub-percent contributionfrombeam halo.The squared

missing mass distribution is shown in Fig. 2. The number of

K+

μ

+

ν

μ decays after background subtraction is 9

.

45

×

106 andthe corresponding acceptance is 24.88%. The resulting num-berofkaondecaysinthefiducialvolumeintheanalyseddataset isNK

= (

5

.

977

±

0

.

015

)

×

107.

The decay K+

μ

+

ν

μ forms a peak at zero m2miss with a

widthdeterminedbythewidthofthekaonmomentumspectrum,

Fig. 2. Reconstructedsquaredmissingmassdistributionfordatapassingthefinal eventselection.

thebeamdivergenceandthespectrometerresolution;thepeakis well outside the300–375 MeV/c2 signal region.The contribution fromK+

μ

+

ν

μ

γ

decayappearsasahigh-masstailinthem2miss distributionandistakenintoaccountbythesimulation.The domi-nantbackgroundfromkaondecaysinthesignalregioncomesfrom K+

π

0

μ

+

ν

μ decays with an undetected

π

0 due to the non-hermeticgeometricalacceptance.ThehadronicdecayK+

π

+

π

0

isonlyreconstructedassignalifthe

π

0 isundetectedandthe

π

+

ismis-identifiedasamuonordecaysintoamuon.

The backgrounds due to kaon decays to three pions are

naturally suppressed because they involve either three tracks (K+

π

+

π

+

π

−)orphotons(K+

π

+

π

0

π

0).Theeventswhich

pass theselection typicallyappear at theupperendofthem2 miss

spectrum. Decays with positrons in the final state (K+

e+

ν

e,

K+

π

0e+

ν

e)arerejectedwithparticleidentification. 6. Systematicuncertaintiesonthebackgroundestimate

The uncertainty on kaon decaybackground receives contribu-tions from theuncertainty onthe numberofkaon decaysin the fiducialvolume, NK,andtheindividual kaondecaybranching

(4)

missing mass,

π

+ momentum and direction spectra. From this comparisonitis inferred thatthe uncertaintyon thebackground estimatein the K+

μ

+

ν

h signal regiondoesnot exceed6% of

thetotalexpectedbackground;thisuncertaintyaffectsmostlythe low

ν

h massregion.

The systematic uncertaintyattributed to the halo background arisesfromthelimitedsizeofthecontrolsample (halostatistical contribution),andfromtheassumptionthat thehalodistribution inthe control sample accurately reproduces that of the K+ data (halomodelcontribution).Thehalostatisticalcontributionis2–4% of the total expected background in the range 300–360 MeV/c2

andrises to 16%inthe range360–375 MeV/c2.The control sam-ple is divided into sub-samples according to selection variables

and each sub-sample is normalised to the K+ data. The halo

modelcontributionisevaluated bycomparing thenormalizations obtained with the different sub-samples with that obtained for theentiresample. Thiscontributionis1–3%ofthetotalexpected backgroundinthe range300–360 MeV/c2 andrises to 8% inthe range360–375 MeV/c2.Theuncertaintydueto thesubtractionof K

π

π

π

+eventsisnegligible.

A K+

μ

+

ν

μ sample is used to measure the MUV muon identificationefficiencyasafunctionoftrackmomentum.This

ef-ficiencyvariesbetween 96% and98% over the momentum range

between10and 65 GeV/c. The simulationis tuned to reproduce thisefficiency to 1% precision, andtherefore a systematic uncer-taintyof1%isassignedtothetotalexpectedbackground.

TheHODtriggerinefficiencyis

(

1

.

4

±

0

.

1

)

% asdiscussedin[11];

since the inefficiency depends mainly on the number of tracks

whichisthesameforsignal, K+

μ

+

ν

μ decaysandmain back-grounds,itcancelsout toagoodapproximation.The1-track trig-ger inefficiency for K+

μ

+

ν

μ decays was measured with

re-spect to the HOD trigger to be much smaller that the HOD

in-efficiency [11] and can be neglected. Conversions of undetected photons from K+

π

0

μ

+

ν

decays cause a 1-track inefficiency

due to events with high multiplicity of hits in the DCH cham-bers. The 1-track trigger efficiency for the background could be evaluated directly in the signal region, or by extrapolating the measurement performed in the control region to the signal re-gion. However, the possible presence of K+

μ

+

ν

h decays in

thesignal regionwould increase the apparent efficiency, thereby affecting the signal sensitivity. Therefore the 1-track trigger effi-ciencyforthebackgroundisevaluatedinthecontrolmmiss region

245–298 MeV/c2,since strong limits on the heavy neutrino

pro-duction in this region already exist. In this control region the 1-track efficiencyis

(

89

.

8

±

0

.

6

)

% andwas shownnot to depend onthemissingmass.Theuncertaintyonthetriggerefficiencyfor thebackgroundtranslatesintoa contributionof0.7%onthetotal expectedbackground.

Fig. 3. Missingmass distributionsfor data,showing statisticaluncertainties,and fortheestimatedbackgroundcontributions,inbothsignalandcontrolregions.The lowerplotshowsthetotaluncertaintyonthebackgroundestimate.

7. Upperlimitsonheavyneutrinoproduction

The eventselection described in Section 4 with the addition ofthefive-dimensionalcriteriadescribedinSection5.1constitutes the final selection. Fig. 3 shows the mmiss distribution of events

passingthefinalselectionandtheestimatedbackgroundspectrum. Thehalocontributionvariesasafunctionofmmissbetween5%and

20% ofthe backgroundandcarriesthe largestrelative systematic uncertainty.

For each neutrino mass mh under consideration in the signal

region 300–375 MeV/c2, a window of

±

σ

h in the missing mass

spectrum is defined centred on mh, where

σ

h is the resolution

parametrized as

σ

h

=

12 MeV

/c

2

0

.

03

·

mh. For each window,

thewidthis roundedto thenearest multipleof10−4 GeV2

/c

4 in

m2

miss.The signal acceptance,evaluated forarangeofheavy

neu-trino masses with simulation, is about 0.20 up to 360 MeV/c2

anddropstozeroforlargermasses.Thestatisticalanalysisis per-formedby applyingtheRolke–Lopez method[13]tofindthe90% confidenceintervalsonthenumberofreconstructed K+

μ

+

ν

h

eventsforthecaseofaPoissonprocessinthepresenceofGaussian backgrounds.Inputstothecomputationineachmasswindoware the numberofdata eventsobserved,andthe estimate ofthe to-talnumberofbackgroundeventswithitsuncertainty.Thesquared uncertaintiesonthenumbersofexpectedeventsineachmass hy-pothesisareshowninFig. 4,wherethevariouscontributionscan beseen.

No signal is observed, the maximum local significance being 2.67 standard deviations at 357 MeV/c2. The upper limits (UL) at 90% CL on the numbers of reconstructed K+

μ

+

ν

h events

is indicated asnU L.The expected upperlimitsare calculated

as-sumingthat thenumberofeventsobserved isequaltothe num-ber of events expected, i.e. the number of background events. These upperlimits are convertedto upper limitson the branch-ing ratio

B(

K+

μ

+

ν

h

)

as shown in Fig. 5, using the relation

nU L

=

B

U L

(K

+

μ

+

ν

h

)A(m

h

)N

K,where A(mh

)

isthe signal

ac-ceptance,

B

U L isthe upperlimit on thebranching ratio,and NK

is given in Section 5. The branching ratio is related to the neu-trinomixing-matrix element squared

|

4

|

2 by equation (1).The

obtainedupperlimitson

|

4

|

2 areshowninFig. 6,togetherwith

(5)

Fig. 4. Upperplot:squareduncertaintiesonthenumbersofexpectedbackground eventsateachheavyneutrinomass.Lowerplot:squaredstatisticaluncertaintyfor data.

Fig. 5. Expectedandobservedupperlimits(at90%CL)onthebranchingratioin 10−5unitsoftheK+μ+νhdecayateachassumedνhmass.

8. Conclusions

Apeak search has beenperformedin themissingmass spec-trumobservedin K+

μ

+N decaysusingpartoftheNA622007 dataset.Limitsintherange2

×

10−6to10−5 havebeensetonthe mixingmatrixelementsquaredbetweenmuonandheavyneutrino

Fig. 6. Expected and observedupper limits (at90% CL)on the matrix element squared|4|2 ateach assumedνh mass.TheexistinglimitfromKEKE089[6]

isalsoshown(dottedline).Below300 MeV/c2 thereisalimitofO(10−8)from

BNLE949[7],notshown.

statesforassumedneutrinomassesintherange300–375 MeV/c2.

Theresultextendstherangeofmassesforwhichupperlimitshave been set on the value of

|

4

|

2 by previous

ν

h production

ex-periments.Thanks tothedesignandexcellentperformanceofthe currentNA62setup [14],a substantialimprovementinsensitivity isexpected.

Acknowledgements

WegratefullyacknowledgetheCERNSPSacceleratorand beam-linestafffortheexcellent performanceofthebeamandthe tech-nical staff of the participating institutes for their efforts in the maintenanceandoperationofthedetector,anddataprocessing.

References

[1]R.N.Mohapatra,P.B.Pal,WorldSci.Lect.NotesPhys.72(2004)1.

[2]R.N.Mohapatra,etal.,Rep.Prog.Phys.70(2007)1757.

[3]T.Asaka,S.Blanchet,M.Shaposhnikov,Phys.Lett.B63(2005)151.

[4]T.Asaka,M.Shaposhnikov,Phys.Lett.B620(2005)17.

[5]R.Shrock,Phys.Lett.B96(1980)159.

[6]R.S.Hayano,etal.,KEKE089Collaboration,Phys.Rev.Lett.49(1982)1305.

[7]A.V.Artamonov,etal.,BNLE949Collaboration,Phys.Rev.D91(2015)052001.

[8]D.Gorbunov,M.Shaposhnikov,J.HighEnergyPhys.0710(2007)015; D.Gorbunov,M.Shaposhnikov,J.HighEnergyPhys.1311(2013)101(Erratum).

[9]J.R.Batley,etal.,NA48/2Collaboration,Eur.Phys.J.C52(2007)875.

[10]V.Fanti,etal.,NA48Collaboration,Nucl.Instrum.MethodsA574(2007)433.

[11]C.Lazzeroni,etal.,NA62Collaboration,Phys.Lett.B719(2013)326.

[12]C.Lazzeroni,etal.,NA62Collaboration,Phys.Lett.B698(2011)105.

[13]W.A.Rolke,A.M.Lopez,Nucl.Instrum.MethodsA458(2001)745.

[14] E.CortinaGil,etal.,NA62Collaboration,2017JINST12P05025.

NA62Collaboration

C. Lazzeroni

,

1

,

N. Lurkin

,

2

,

F. Newson,

A. Romano

UniversityofBirmingham,Edgbaston,Birmingham,B152TT,UnitedKingdom

A. Ceccucci,

H. Danielsson,

V. Falaleev,

L. Gatignon,

S. Goy Lopez

3

,

B. Hallgren

4

,

A. Maier,

A. Peters,

M. Piccini

5

,

P. Riedler

(6)

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiFirenze,I-50019SestoFiorentino,Italy

A. Antonelli,

M. Moulson,

M. Raggi

11

,

T. Spadaro

LaboratoriNazionalidiFrascati,I-00044Frascati,Italy

K. Eppard,

M. Hita-Hochgesand,

K. Kleinknecht,

B. Renk,

R. Wanke,

A. Winhart

4

InstitutfürPhysik,UniversitätMainz,D-55099Mainz,Germany12

R. Winston

UniversityofCalifornia,Merced,CA95344,USA

V. Bolotov

,

V. Duk

5

,

E. Gushchin

InstituteforNuclearResearch,117312Moscow,Russia

F. Ambrosino,

D. Di Filippo,

P. Massarotti,

M. Napolitano,

V. Palladino

13

,

G. Saracino

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiNapoli,I-80126Napoli,Italy

G. Anzivino,

E. Imbergamo,

R. Piandani

14

,

A. Sergi

4

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPerugia,I-06100Perugia,Italy

P. Cenci,

M. Pepe

Sezionedell’INFNdiPerugia,I-06100Perugia,Italy

F. Costantini,

N. Doble,

S. Giudici,

G. Pierazzini

,

M. Sozzi,

S. Venditti

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPisa,I-56100Pisa,Italy

S. Balev

,

G. Collazuol

15

,

L. Di Lella,

S. Gallorini

15

,

E. Goudzovski

1

,

2

,

4

,

G. Lamanna

16

,

I. Mannelli,

G. Ruggiero

17

ScuolaNormaleSuperioreeSezionedell’INFNdiPisa,I-56100Pisa,Italy

C. Cerri,

R. Fantechi

Sezionedell’INFNdiPisa,I-56100Pisa,Italy

S. Kholodenko,

V. Kurshetsov,

V. Obraztsov,

V. Semenov,

O. Yushchenko

(7)

G. D’Agostini

DipartimentodiFisica,UniversitàdiRomaLaSapienzaeSezionedell’INFNdiRomaI,I-00185Roma,Italy

E. Leonardi,

M. Serra,

P. Valente

Sezionedell’INFNdiRomaI,I-00185Roma,Italy

A. Fucci,

A. Salamon

Sezionedell’INFNdiRomaTorVergata,I-00133Roma,Italy

B. Bloch-Devaux

19

,

B. Peyaud

DSM/IRFU–CEASaclay,F-91191Gif-sur-Yvette,France

J. Engelfried

InstitutodeFísica,UniversidadAutónomadeSanLuisPotosí,78240SanLuisPotosí,Mexico20

D. Coward

SLACNationalAcceleratorLaboratory,StanfordUniversity,MenloPark,CA94025,USA

V. Kozhuharov

21

,

L. Litov

FacultyofPhysics,UniversityofSofia,BG-1164Sofia,Bulgaria22

R. Arcidiacono

23

,

S. Bifani

4

DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiTorino,I-10125Torino,Italy

C. Biino,

G. Dellacasa,

F. Marchetto

Sezionedell’INFNdiTorino,I-10125Torino,Italy

T. Numao,

F. Retière

TRIUMF,Vancouver,BritishColumbia,V6T2A3,Canada

*

Correspondingauthors.

E-mailaddresses:cristina.lazzeroni@cern.ch(C. Lazzeroni),nicolas.lurkin@cern.ch(N. Lurkin).

Deceased.

1 SupportedbyaRoyalSocietyUniversityResearchFellowship. 2 SupportedbyERCStartingGrant336581.

3 Presentaddress:CIEMAT,E-28040Madrid,Spain.

4 Presentaddress:SchoolofPhysicsandAstronomy,UniversityofBirmingham,Birmingham,B152TT,UK. 5 Presentaddress:Sezionedell’INFNdiPerugia,I-06100Perugia,Italy.

6 Presentaddress:Ruprecht-Karls-UniversitätHeidelberg,D-69120Heidelberg,Germany.

7 Presentaddress:InstituteofNuclearResearchandNuclearEnergyofBulgarianAcademyofScience(INRNE-BAS),BG-1784Sofia,Bulgaria. 8 FundedbytheNationalScienceFoundationunderawardNo.0338597.

9 AlsoatDipartimentodiFisica,UniversitàdiModenaeReggioEmilia,I-41125Modena,Italy. 10 AlsoatIstitutodiFisica,UniversitàdiUrbino,I-61029Urbino,Italy.

11 Presentaddress:UniversitàdiRomaLaSapienza,I-00185Roma,Italy.

12 FundedbytheGermanFederalMinisterforEducationandResearch(BMBF)undercontract05HA6UMA. 13 Presentaddress:PhysicsDepartment,ImperialCollegeLondon,London,SW72BW,UK.

14 Presentaddress:Sezionedell’INFNdiPisa,I-56100Pisa,Italy.

15 Presentaddress:DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPadova,I-35131Padova,Italy. 16 Presentaddress:DipartimentodiFisicadell’UniversitàeSezionedell’INFNdiPisa,I-56100Pisa,Italy. 17 Presentaddress:DepartmentofPhysics,UniversityofLiverpool,Liverpool,L697ZE,UK.

18 PartlyfundedbytheRussianFoundationforBasicResearchgrant12-02-91513. 19 Presentaddress:DipartimentodiFisicadell’Università,I-10125Torino,Italy.

20 FundedbyConsejoNacionaldeCienciayTecnología(CONACyT)andFondodeApoyoalaInvestigación(UASLP). 21 AlsoatLaboratoriNazionalidiFrascati,I-00044Frascati,Italy.

22 FundedbytheBulgarianNationalScienceFundundercontractDID02-22. 23 AlsoatUniversitàdegliStudidelPiemonteOrientale,I-13100Vercelli,Italy.

Figura

Fig. 1. Distribution of halo events in the (z vertex , θ ) plane (left) and (z vertex , p) plane (right)
Fig. 3. Missing mass distributions for data, showing statistical uncertainties, and for the estimated background contributions, in both signal and control regions
Fig. 5. Expected and observed upper limits (at 90% CL) on the branching ratio in 10 − 5 units of the K + → μ + ν h decay at each assumed ν h mass.

Riferimenti

Documenti correlati

Based on systematic microstructural observations on our failed samples and a synthesis of our data with other published mechanical data, we assess to what extent damage

Starting from these observations, we measured eNAMPT levels in melanoma cell lines and in a large cohort of patients with BRAF-mutated metastatic melanomas, before and after

While economic vulnerability is not significantly different between conflict and non-conflict countries, human capital is 1.4 times higher on average in peaceful LDCs.. Analysis

Section (5) consists of a detailed comparison of the r = 1, 2 quiver K-theoretic partition functions in the special chamber and the refined open string invariants of toric

Ma siccome tutti, e Alison più di ogni altro, erano convinti che l’architettura, il bene culturale in ge- nerale, debba essere tutelata sempre ma comunque restando al servizio

physi s of intera ting quantum systems out of thermal equilibrium repre-. sents one of the most intriguing open problem in modern

(Because of the invariance of (4) it is sufficient to assume that the metric g ijα is nondegenerate for one value of α.) From the results of [1] it follows immediately that for

• all the springs are, in different ways, exits of the same groundwater body hosted within the dolomitic bedrock, buried by the detritic-alluvial deposits of