• Non ci sono risultati.

Search for the standard model Higgs boson in the decay channel H→ZZ→4l in pp collisions at √s=7TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for the standard model Higgs boson in the decay channel H→ZZ→4l in pp collisions at √s=7TeV"

Copied!
17
0
0

Testo completo

(1)

Search for the Standard Model Higgs Boson in the Decay Channel

H ! ZZ ! 4l in pp

Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 9 February 2012; published 13 March 2012)

A search for a Higgs boson in the four-lepton decay channel H! ZZ, with each Z boson decaying to an electron or muon pair, is reported. The search covers Higgs boson mass hypotheses in the range of 110 < mH< 600 GeV. The analysis uses data corresponding to an integrated luminosity of 4:7 fb1

recorded by the CMS detector in pp collisions atpffiffiffis¼ 7 TeV from the LHC. Seventy-two events are observed with four-lepton invariant mass m4‘> 100 GeV (with 13 below 160 GeV), while 67:1  6:0

(9:5 1:3) events are expected from background. The four-lepton mass distribution is consistent with the expectation of standard model background production of ZZ pairs. Upper limits at 95% confidence level exclude the standard model Higgs boson in the ranges of 134–158 GeV, 180–305 GeV, and 340–465 GeV. Small excesses of events are observed around masses of 119, 126, and 320 GeV, making the observed limits weaker than expected in the absence of a signal.

DOI:10.1103/PhysRevLett.108.111804 PACS numbers: 14.80.Bn, 12.15.Ji, 13.38.Dg, 13.85.Qk

The standard model (SM) of electroweak interactions [1–3] relies on a scalar particle, the Higgs boson, associ-ated with the field responsible for the spontaneous electro-weak symmetry breaking [4–9]. The existence of the Higgs boson has yet to be established experimentally, while its mass, mH, is not fixed by the theory. Direct searches for the SM Higgs boson at the LEP eþecollider and the Tevatron pp collider have led, respectively, to a lower mass bound of mH> 114:4 GeV [10], and to an exclusion in the range of 162–166 GeV [11], at 95% C.L. Indirect constraints from precision measurements favor the mass range of mH< 158 GeV [12,13] at 95% C.L. The inclusive Higgs boson production followed by the decay H! ZZ is ex-pected to be one of the main discovery channels at the CERN proton-proton (pp) Large Hadron Collider (LHC) for a wide range of mHvalues. Using the H! ZZ and the H ! WW decay channels, the ATLAS collaboration has excluded at 95% C.L. the mass ranges of 145–206 GeV, 214–224 GeV, and 340–450 GeV [14–16].

In this Letter, an inclusive search in the four-lepton decay channel, H! ZZ ! ‘þ‘‘0þ‘0 with ‘, ‘0 ¼ e or , abbreviated as H ! 4‘, is presented. The analysis is designed for a Higgs boson in the mass range of 110 < mffiffiffiH< 600 GeV. It uses pp data from the LHC collected at

s p

¼ 7 TeV by the Compact Muon Solenoid (CMS) ex-periment during 2010 and 2011. The data correspond to an integrated luminosity of 4:7 fb1. The search relies solely on the measurement of leptons, and the analysis achieves

high lepton reconstruction, identification, and isolation efficiencies for a ZZ! 4‘ system composed of two pairs of same-flavor and opposite-charge isolated leptons, eþe or þ, in the measurement range of m4‘> 100 GeV. One or both of the Z bosons can be off-shell. The back-ground sources include an irreducible four-lepton contri-bution from direct ZZ (or Z) production via q q annihilation and gg fusion. Reducible contributions arise from Zb b and tt where the final states contain two isolated leptons and two b jets producing secondary leptons. Additional background of instrumental nature arises from Z þ jets events where jets are misidentified as leptons.

Particles produced in the pp collisions are detected in the pseudorapidity range of jj < 5, where  ¼  ln tanð=2Þ and  is the polar angle with respect to the direction of the proton beam. The CMS detector comprises a superconducting solenoid, providing a uniform magnetic field of 3.8 T in the bore, equipped with silicon pixel and strip tracking systems (jj < 2:5) surrounded by a lead tungstate crystal electromagnetic calorimeter (ECAL) and a brass-scintillator hadronic calorimeter (HCAL) (jj < 3:0). A steel and quartz-fiber Cherenkov calorime-ter extends the coverage (jj < 5). The steel return yoke outside the solenoid is instrumented with gas detectors used to identify muons (jj < 2:4). A detailed description of the detector is given in Ref. [17].

Monte Carlo (MC) samples for the SM Higgs boson signal and for background processes are used to optimize the event selection and to evaluate the acceptance and systematic uncertainties. The Higgs boson signals from gluon-fusion (gg! H), and vector-boson fusion (qq! qqH), are generated withPOWHEG[18] at next-to-leading order (NLO) and a dedicated generator from Ref. [19]. Additional samples of, WH, ZH, and ttH events are generated with PYTHIA[20]. Events at generator level

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

are reweighted according to the total cross section ðpp ! HÞ, which contains contributions from gluon fusion up to next-to-next-to-leading order (NNLO) and next-to-next-to-leading log taken from Refs. [21–32] and from the weak-boson fusion contribution computed at NNLO in Refs. [24,33–37]. The total cross section is scaled by the branching fraction BðH ! 4‘Þ calculated withPROPHECY4Fwhich includes NLO QCD and electro-weak corrections and all interference effects at NLO [24,38–41], in particular, effects specific to the 4e and 4 channels. The SM background contribution from ZZ production via q q is generated at NLO withPOWHEG, while other diboson processes (WW, WZ) are generated with PYTHIAwith cross sections rescaled to NLO predictions. The gg! ZZ contribution is generated with GG2ZZ[42]. The Zb b, Zc c, Z, and Z þ light jets samples are gener-ated withMADGRAPH [43] with cross sections rescaled to NNLO prediction for inclusive Z production. The tt events are generated at NLO withPOWHEG. The generation takes into account the internal initial state and final state radia-tion effects which can lead to the presence of addiradia-tional hard photons in an event. For leading-order generators, the default set of parton distribution functions (PDF) used to produce these samples isCTEQ6L[44], while CT10[45] is used for NLO generators. All generated samples are inter-faced with PYTHIA. All events are processed through a detailed simulation of the CMS detector based on GEANT4 [46] and are reconstructed with the same algo-rithms that are used for data.

Collision events are selected by the trigger system that requires the presence of a pair of electrons (a pair of muons) with transverse energy (transverse momenta) for the first and second lepton above 17 and 8 GeV, respec-tively. The trigger efficiency within the acceptance of this analysis is greater than 99% for signal in the 4e and 4 channels, and rises from about 97.5% at mH ¼ 120 GeV to above 99% at mH> 140 GeV in the 2e2 channel, within the acceptance of this analysis.

Electrons are reconstructed within the geometrical ac-ceptance,jej < 2:5, and with peT> 7 GeV, by combining information from the ECAL and inner tracker [47,48]. Electron identification selection requirements rely on elec-tromagnetic shower-shape observables and on observables combining tracker and calorimetry information. The selec-tion criteria depend on peT,jej, and on a categorization according to observables sensitive to the amount of brems-strahlung emitted along the trajectory in the inner tracker. Muons are reconstructed [49] withinjj < 2:4 and pT > 5 GeV, using information from both the inner tracker and the muon spectrometer. The inner track is required to be composed of more than 10 tracker-layer hits [17] to ensure a precise measurement of the momentum. The efficiencies are measured in data, using a tag-and-probe technique [50] based on an inclusive sample of Z events. The measure-ments are performed in several ranges in p‘T andjj. The

product of reconstruction and identification efficiencies for electrons in the ECAL barrel (endcaps) varies from about 68% (62%) for 7 < peT< 10 GeV to 82% (74%) at pe

T ’ 10 GeV, and reaches 90% (89%) for peT ’ 20. It drops to about 85% in the transition region, 1:44 <jj < 1:57, between the ECAL barrel and endcaps. The muons are reconstructed and identified with efficiencies above 98%. Lepton candidates are defined with a loose constraint on their isolation, by requiring the sum of the transverse momenta of tracks i within a cone around the lepton ‘ of R¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ð‘ iÞ2þ ð iÞ2 q

< 0:3, where  is the azimuthal angle, to have PipiT;track=p‘T< 0:7. The lepton isolation efficiency for identified leptons with this very loose definition of isolation is found to be greater than 99%.

We first require a Z candidate formed with a pair of lepton candidates satisfying 50 < m1;2< 120 GeV, p‘T1> 20 GeV, and p‘2

T > 10 GeV. The pTthresholds ensure that the leptons are on the high-efficiency plateau for the trig-ger. The lepton pair is required to be well isolated using a combination of the tracker, ECAL, and HCAL informa-tion. The sum of the combined relative isolation Risofor the two leptons is required to satisfy R‘1

isoþ R‘iso2 < 0:35, where for each lepton, Riso¼ ð1=p‘TÞðPipiT;trackþPjEjT;ECALþ P

kEkT;HCALÞ, with sums running over the charged tracks i, and the ET from energy deposits in cells j and k of the ECAL and HCAL within a cone of radius R < 0:3, respectively. The footprint of the lepton object (a measured track for muons, or a combination of a track and a cluster of ECAL energy deposits for electrons) is removed from the isolation sum. The combined isolation efficiencies mea-sured with data using the tag-and-probe technique are found to be >99% for muons and between 94% and 99% for electrons. The isolation is made largely insensitive to the number of overlapping pp interactions by correcting for the average energy flow [51] per unit area measured as a function of the number of primary vertices. The ratio of the efficiencies measured with data and with simulated Z ! ‘‘ events is found to be consistent with unity. The significance of the signed impact parameter (SIP) of each lepton relative to the event vertex, SIP3D ¼IPIP, where IP is the impact parameter in three dimensions and IP the associated uncertainty, is required to satisfy jSIP3Dj < 4. The ‘þ‘ pair with reconstructed mass closest to the nominal Z boson mass is retained and denoted Z1. The Z1þ X data set thus defined is used below to estimate the ZZ rates. In the next step, a subset of events is identified with at least a third lepton candidate. The Z1þ ‘ events are used to measure misidentified lepton rates. A subset of events with at least a fourth lepton candidate of any flavor or charge is then identified. Together, the Z1þ ‘ and Z1þ ‘‘0 samples are used below to estimate the remaining reducible (Zb b, tt) and instrumental (Z þ light jets) back-grounds. For the signal, we select a second lepton pair,

(3)

denoted Z2, from the remaining same-flavor ‘þ‘ combi-nations, by requiring mZ2> 12 GeV, with the restriction m4‘> 100 GeV. For the 4e and 4 final states, at least three of the four combinations of opposite-sign pairs must satisfy m‘‘> 12 GeV. If more than one Z2 candidate satisfies all criteria, the ambiguity is resolved by choosing the leptons of highest pT. The isolation and impact pa-rameter are used to further suppress the remaining back-grounds. We require for any combination of two leptons i and j, irrespective of flavor or charge, that Riisoþ Rjiso< 0:35 and also impose jSIP3Dj < 4 for each of the four leptons.

Finally, to select the four-lepton signal candidates, we require that the Z1 and Z2 masses satisfy mminZ1 < mZ1<

120 GeV and mmin

Z2 <mZ2<120 GeV, with ðm

min Z1 ; m

min Z2 Þ ¼

ð50; 12Þ GeV defining the baseline selection and ðmmin

Z1 ; m

min

Z2 Þ ¼ ð60; 60Þ GeV defining the high-mass

selec-tion. The baseline selection is used to search for the Higgs boson, and the high-mass selection is used to measure the ZZ cross section.

The event yields are found to be in good agreement with the MC background expectation at each step of event selection. The ZZ and Zþ X backgrounds dominate after the full event selection. The overall signal detection efficiency for the 4e (4, 2e2) channel is evaluated by MC simulation and increases from 21% (59%, 35%) at mH ¼ 120 GeV to  35% (71%, 50%) at mH ¼ 140 GeV, reaching a plateau at  51% (81%, 63%) at mH ¼ 200 GeV, and then slowly rising to  60% (83%, 72%) at mH¼ 350 GeV. The relative mass resolution estimated from MC signal samples is about 2.1% (1.1%, 1.6%) for 4e (4, 2e2).

The small number of observed events precludes a pre-cise direct evaluation of background by extrapolating from mass sidebands. Instead, we rely on MC calculations to evaluate the number of events expected from the ZZ back-ground. The cross section for ZZ production at NLO, through the dominant process of q q annihilation and through gg fusion, is calculated withMCFM[52–54]. The theoretical uncertainties are computed as a function of m4‘, varying both the QCD renormalization and factorization scales and the PDF set following the PDF4LHC recom-mendations [55–59]. The uncertainties for the QCD and PDF scales for each final state are on average 8%. The number of predicted ZZ! 4‘ events and their uncertain-ties after the baseline selection are given in TableI. As a consistency check, an evaluation is made based on a nor-malization to the measured inclusive single-Z production, a procedure discussed in Refs. [60,61]. The measured rate of single Z bosons defined in this analysis is used to predict the total ZZ rate; making use of the ratio of the theoretical cross sections for ZZ and Z production, and the ratio of the reconstruction and selection efficiencies for the four-lepton and two-lepton final states. The results are in agreement with the ZZ rates reported in TableIwithin uncertainties.

To estimate the reducible (Zb b, tt) and instrumental (Zþ light jets) backgrounds, a region well separated from the signal region is defined by relaxing and inverting some selection criteria and verifying that the event rates change according to MC expectation. The event rates measured in the background control region are then extrapolated to the signal region. The control region for Z þ X, where X stands for b b, cc, gluon or light quark jets, is obtained by relaxing the isolation and identification criteria for two additional reconstructed lepton objects indicated as ‘reco‘reco. The additional pair of leptons must have like sign charge (to avoid signal contamination) and same flavor (ee, ), a reconstructed invariant mass mZ2 either satisfying the baseline selection or the high-mass selection, and m4‘> 100 GeV. A sample Z1þ ‘reco, with at least one reconstructed lepton object, is also defined for the measurement of the lepton misidentification proba-bility, the probability for a reconstructed object to pass the isolation and identification requirements. The contamina-tion from WZ in this set of events is suppressed by requir-ing the imbalance of the measured energy deposition in the transverse plane to be below 25 GeV. From the Z þ ‘reco‘recosample the expected number of Zþ X back-ground events in the signal region is obtained by taking into account the lepton misidentification probability for each of the two additional leptons. The number of back-ground events expected in the signal region, normalized to the integrated luminosity, and the associated systematic uncertainties, are given in TableIfor the baseline selection in the range of 100 < m4‘< 600 GeV. The reducible and instrumental background is found to be dominated by Zþ light jets. A small residual contamination of Zb b remains at low mass while for the high-mass selection these reducible backgrounds are an order of magnitude smaller and therefore can be neglected. This was verified by performing a measurement of Zb b and tt rates in a dedicated four-lepton background control region, defined by requiring a Z1 and two additional leptons satisfying an inverted SIP3Drequirement, namelyjSIP3Dj > 5, and with relaxed isolation, charge, and flavor requirements. This ensures a negligible Zþ light jets contribution in the

TABLE I. The number of candidates observed, compared to background and signal rates for each final state for 100 < m4‘<

600 GeV for the baseline selection. For the Z þ X background, the estimations are based on data.

Channel 4e 4 2e2 ZZ background 12:27  1:16 19:11  1:75 30:25  2:78 Z þ X 1:67  0:55 1:13  0:55 2:71  0:96 All background 13:94  1:28 20:24  1:83 32:96  2:94 mH¼ 120 GeV 0.25 0.62 0.68 mH¼ 140 GeV 1.32 2.48 3.37 mH¼ 350 GeV 1.95 2.61 4.64 Observed 12 23 37

(4)

four-lepton background control region, while the signal and the ZZ background are absent. To extract background rates, the reconstructed Z1mass for the sum of the Z1þ 2e, Z1þ 2, and Z1þ e final states is fit with a Breit-Wigner function convoluted with a Crystal Ball function [62] for the Z1peak from Zb b and Chebychev polynomials for the description of the tt continuum. The extrapolation to the signal region relies on knowledge of, and the distinct features of, the SIP3Ddistributions for the Z2leptons of the tt and Zb b backgrounds. The result is found to be compat-ible with the MC expectation in the signal region within the systematic uncertainty of 20%.

Systematic uncertainties are evaluated from data for trigger (1.5%), lepton reconstruction and identification (2%–3%), and isolation efficiencies (2%). Systematic uncertainties on energy-momentum calibration (0.5%), and energy resolution are accounted for by their effects on the reconstructed mass distributions. The effect of the energy resolution uncertainties is taken into account by introducing a 30% uncertainty on the width of the signal mass peak. Additional systematic uncertainties arise from limited statistics in the reducible background control re-gions. All reducible and instrumental background sources are derived from control regions, and the comparison of data with the background expectation in the signal region is independent of the uncertainty on the LHC integrated luminosity of the data sample. This uncertainty (4.5%) [63] enters the evaluation of the ZZ background and in the calculation of the cross section limit through the nor-malization of the signal. Systematic uncertainties on the Higgs boson cross section (17%–20%) and branching fraction (2%) are taken from Ref. [24].

Recent studies [24,64,65] show that current Monte Carlo simulations do not describe the expected Higgs boson mass line shape above 300 GeV. These effects are estimated to amount to an additional uncertainty on the theoretical cross section, and hence on the limits, of about 4% at mH ¼ 300 GeV and 10%–30% for mH of 400–600 GeV.

The number of candidates observed, as well as the estimated background in the signal region, are reported in Table I for the baseline selection. The reconstructed four-lepton invariant mass distribution for the combined 4e, 4, and 2e2 channels with the baseline selection is shown in Fig.1(a)and compared to expectations from the backgrounds. The shape of the mass distribution below mH ¼ 180 GeV reflects the shape of the dominant q q annihilation process [66]. The low-mass range is shown in Fig.1(b)together with the mass of each candidate and its uncertainty. The reducible and instrumental background rates are small. These rates have been obtained from data and the corresponding m4‘distributions are obtained from MC samples.

The measured distribution is compatible with the expec-tation from SM direct production of ZZ pairs. We observe 72 candidates, 12 in 4e, 23 in 4, and 37 in 2e2, while

67:1  6:0 events are expected from standard model back-ground processes. No hard photon (pT> 5 GeV) was found, outside the isolation veto cone that surrounds each lepton, that could be unambiguously identified as final state radiation. Thirteen candidates are observed within 100 < m4‘< 160 GeV while 9:5  1:3 background events are expected. We observe 53 candidates for the high-mass selection compared to an expectation of 51:3 4:6 events from background. This high-mass event selection is used to provide a measurement of the total cross section ðpp ! ZZ þ XÞ  BðZZ ! 4‘Þ ¼ 28:1þ4:6

4:0ðstat:Þ  1:2ðsyst:Þ  1:3ðlumi:Þ fb. The measurement agrees with the SM pre-diction at NLO [52] of 27:9 1:9 fb and is consistent with previous measurements at the LHC [67]. The local p-values, representing the significance of local excesses relative to the background expectation, are shown as a

FIG. 1 (color online). (a) Distribution of the four-lepton re-constructed mass for the sum of the 4e, 4, and 2e2 channels. (b) Expansion of the low-mass range with existing exclusion limits at 95% C.L.; also shown are the central values and individual candidate mass measurement uncertainties. Points represent the data, shaded histograms represent the background, and the unshaded histogram the signal expectations.

(5)

function of mH in Fig. 2(a), obtained either taking into account or not the individual candidate mass measurement uncertainties, for the combination of the three channels. Excesses are observed for masses near 119 GeV and 320 GeV. The small 2 excess near 320 GeV includes three events with p4‘T > 50 GeV. The most significant excess near 119 GeV corresponds to about 2:5 signifi-cance. The significance is less than 1:0 (about 1:6) when the look-elsewhere effect [68] is accounted for over the full mass range (for the low-mass range 100 < m4‘< 160 GeV). The local significances change only slightly when including candidate mass uncertainties, instead of using the average mass resolution, e.g., rising to 2:7 around 119 GeV and reaching 1:5 around 126 GeV.

In absence of a significant clustering of candidates at any given mass, we derive exclusion limits. The exclusion limits for a SM-like Higgs boson are computed for a large number of mass points in the range of 110–600 GeV, using the predicted signal and background mass distribution shapes. The choice of the step size in the scan between Higgs mass hypotheses is driven by either detector resolu-tion, or the natural width of the Higgs boson. The signal mass distributions shapes are determined using simulated samples for 27 values of mH covering the full mass range. The shapes are fit using a function obtained from a con-volution of a Breit-Wigner probability density function to describe the theoretical resonance line shape and a Crystal Ball function to account for the detector effects. The parameters of the Crystal Ball function are interpolated for the mH points where there is no simulated sample available. The shapes of the background mass distributions are determined by fits to the simulated sample of events, while the normalization is taken from estimates of overall event yields as described above. For each mass hypothesis, we perform an unbinned likelihood fit using the statistical approach discussed in Ref. [69]. We account for systematic uncertainties in the form of nuisance parameters with a log-normal probability density function. The observed and median expected upper limits on ðpp ! H þ XÞ  BðH ! 4‘Þ at 95% C.L. are shown in Fig.2(b). The limits are calculated relative to their expected SM Higgs boson prediction SM, using the modified frequentist method CLs[70,71]. The bands represent the 1 and 2 probabil-ity intervals around the expected limit. These upper limits exclude the standard model Higgs boson at 95% C.L. in the mH ranges of 134–158 GeV, 180–305 GeV, and 340–465 GeV. The limits reflect the dependence of the branching ratio BðH ! ZZÞ on mH. The worsening of the limits at high mass arises from the decreasing cross section for the H! 4‘ signal. By virtue of the excellent mass resolution and low background, the structure in the measured limits follows the fluctuations of the number of observed events.

In summary, a search for the standard model Higgs boson has been presented in the four-lepton decay modes.

Upper limits at 95% confidence level exclude the Higgs boson mass ranges of 134–158 GeV, 180–305 GeV, and 340–465 GeV. A major fraction of the explored mass range is thus excluded at 95% C.L. and the exclusion limits extend beyond the sensitivity of previous collider experi-ments. Excesses of events are observed at the low end of the explored mass range, around masses of 119 and 126 GeV, and at high mass around 320 GeV. These ex-cesses, although not statistically significant, make the ob-served limits weaker than expected in the absence of a signal. At low mass, only the region 114:4 < mH< 134 GeV remains consistent with the expectation for the standard model Higgs boson production.

We wish to congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administra-tive staff at CERN and other CMS institutes, and acknowl-edge support from: FMSR (Austria); FNRS and FWO

= 7 TeV s 600 local p -value 10-3 10-2 10-1 10-4 1 1 2 3 mH[GeV] 1 2 3 mH[GeV] mH[GeV] Expected ± 1 CMS L = 4.7 fb-1 120 140 w/o m4uncertainties with m4uncertainties local p -value 1 10-2 (a) 110 200 300 400 500 ( L 95% C.L. limit on σ / σSM = 7 TeV s 10 1 CMS L = 4.7 fb-1 (b) Expected ± 1 Expected ± 2 Observed (/SML 600 110 200 300 400 500 1 140 120 mH[GeV] 10

FIG. 2 (color online). (a) The significance of the local excesses with respect to the standard model expectation as a function of the Higgs boson mass, without (blue) or with (red) individual candidate mass measurement uncertainties. (b) The observed and the median expected upper limits at 95% C.L. on ¼ ðpp ! H þ XÞ  BðH ! 4‘Þ, relative to their standard model prediction SM, for a Higgs boson in the mass range of

110–600 GeV, using the CLs approach. The insets expand the

(6)

(Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] S. L. Glashow,Nucl. Phys. 22, 579 (1961). [2] S. Weinberg,Phys. Rev. Lett. 19, 1264 (1967).

[3] A. Salam, in Elementary Particle Physics: Relativistic Groups and Analyticity, edited by N. Svartholm (Almquvist & Wiskell, Stockholm, 1968), p. 367, pro-ceedings of the eighth Nobel symposium.

[4] F. Englert and R. Brout,Phys. Rev. Lett. 13, 321 (1964). [5] P. W. Higgs,Phys. Lett. 12, 132 (1964).

[6] P. W. Higgs,Phys. Rev. Lett. 13, 508 (1964).

[7] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett. 13, 585 (1964).

[8] P. W. Higgs,Phys. Rev. 145, 1156 (1966). [9] T. W. B. Kibble,Phys. Rev. 155, 1554 (1967).

[10] ALEPH, DELPHI, L3, OPAL Collaborations, and the LEP Working Group for Higgs boson searches,Phys. Lett. B 565, 61 (2003).

[11] CDF and D0 Collaborations,Phys. Rev. Lett. 104, 061802 (2010), a more recent, unpublished, limit is given in preprint arXiv:1103.3233.

[12] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, the SLD Electroweak, and Heavy Flavour Groups,

arXiv:1012.2367.

[13] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD Collaborations, the LEP Electroweak Working Group, the Tevatron Electroweak Working Group, the SLD Electroweak and Heavy Flavour Groups, Phys. Rep. 427, 257 (2006).

[14] G. Aad et al. (ATLAS Collaboration),Phys. Lett. B 705, 435 (2011).

[15] G. Aad et al.(ATLAS Collaboration),Phys. Rev. Lett. 107, 221802 (2011).

[16] ATLAS Collaboration (ATLAS), this issue, Phys. Rev. Lett. 108, LM13005 (2012).

[17] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[18] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[19] Y. Gao et al.,Phys. Rev. D 81, 075022 (2010).

[20] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[21] C. Anastasiou, R. Boughezal, and F. Petriello, J. High Energy Phys. 04 (2009) 003.

[22] D. de Florian and M. Grazzini,Phys. Lett. B 674, 291 (2009).

[23] J. Baglio and A. Djouadi,J. High Energy Phys. 03 (2011) 055.

[24] LHC Higgs Cross Section Working Group, CERN Report No. CERN-2011-002, 2011 (unpublished).

[25] A. Djouadi, M. Spira, and P. M. Zerwas,Phys. Lett. B 264, 440 (1991).

[26] S. Dawson,Nucl. Phys. B 359, 283 (1991). [27] M. Spira et al.,Nucl. Phys. B 453, 17 (1995).

[28] R. V. Harlander and W. B. Kilgore,Phys. Rev. Lett. 88, 201801 (2002).

[29] C. Anastasiou and K. Melnikov,Nucl. Phys. B 646, 220 (2002).

[30] V. Ravindran, J. Smith, and W. L. van Neerven, Nucl. Phys. B 665, 325 (2003).

[31] S. Catani et al.,J. High Energy Phys. 07 (2003) 028. [32] S. Actis et al.,Phys. Lett. B 670, 12 (2008).

[33] M. Ciccolini, A. Denner, and S. Dittmaier,Phys. Rev. Lett. 99, 161803 (2007).

[34] M. Ciccolini, A. Denner, and S. Dittmaier,Phys. Rev. D 77, 013002 (2008).

[35] T. Figy, D. Zeppenfeld, and C. Oleari,Phys. Rev. D 68, 073005 (2003).

[36] K. Arnold et al., Comput. Phys. Commun. 180, 1661 (2009).

[37] P. Bolzoni et al.,Phys. Rev. Lett. 105, 011801 (2010). [38] A. Bredenstein et al., Phys. Rev. D 74, 013004

(2006).

[39] A. Bredenstein et al.,J. High Energy Phys. 02 (2007) 080. [40] A. Djouadi, J. Kalinowski, and M. Spira,Comput. Phys.

Commun. 108, 56 (1998).

[41] S. Actis et al.,Nucl. Phys. B 811, 182 (2009).

[42] T. Binoth, N. Kauer, and P. Mertsch, in Proceedings of the XVI Int. Workshop on Deep-Inelastic Scattering and Related Topics (DIS’08), London, England, April 2008, edited by R. Devenish and J. Ferrando (Science Wise Publishing, 2008).

[43] J. Alwall et al.,J. High Energy Phys. 09 (2007) 028. [44] H.-L. Lai et al.,Phys. Rev. D 82, 054021 (2010). [45] H.-L. Lai et al.,Phys. Rev. D 82, 074024 (2010). [46] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270

(2006).

[47] S. Baffioni et al.,Eur. Phys. J. C 49, 1099 (2007). [48] CMS Collaboration (CMS), CMS Physics Analysis

Summary Report No. CMS-PAS-EGM-10-004, 2010. [49] CMS Collaboration (CMS), CMS Physics Analysis

Summary Report No. CMS-PAS-MUO-10-002, 2010. [50] S. Chatrchyan et al. (CMS Collaboration),J. High Energy

Phys. 10 (2011) 132.

[51] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 005.

[52] J. M. Campbell and R. K. Ellis,Nucl. Phys. B, Proc. Suppl. 205–206, 10 (2010).

(7)

[53] J. M. Campbell and R. K. Ellis,Phys. Rev. D 60, 113006 (1999).

[54] J. M. Campbell, R. Ellis, and C. Williams,J. High Energy Phys. 07 (2011) 018.

[55] M. Botje et al.,arXiv:1101.0538. [56] S. Alekhin et al.,arXiv:1101.0536.

[57] H.-L. Lai et al.,Phys. Rev. D 82, 074024 (2010). [58] A. Martin et al.,Eur. Phys. J. C 63, 189 (2009). [59] R. D. Ball et al.,Nucl. Phys. B 849, 296 (2011). [60] S. Baffioni et al.,J. Phys. G 34, N23 (2007). [61] S. Abdullin et al., Acta Phys. Pol. B 38, 731 (2007). [62] M. J. Oreglia, Ph.D. thesis, Stanford University, 1980,

SLAC Report SLACR-236, see Appendix D.

[63] CMS Collaboration (CMS), CMS Physics Analysis Summary Report No. CMS-PAS-EWK-11-001, 2011.

[64] G. Passarino, C. Sturm, and S. Uccirati,Nucl. Phys. B 834, 77 (2010).

[65] C. Anastasiou et al.,J. High Energy Phys. 12 (2011) 058. [66] LHC Higgs Cross Section Working Group, CERN Report

No. CERN-2012-002, 2012.

[67] G. Aad et al., (ATLAS Collaboration),Phys. Rev. Lett. 108, 041804 (2012).

[68] E. Gross and O. Vitells, Eur. Phys. J. C 70, 525 (2010).

[69] ATLAS and CMS Collabortions, Reports No. ATLPHYS-PUB-2011-011, and CMS NOTE-2011/005, 2011. [70] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434,

435 (1999).

[71] A. L. Read, CERN Report No. CERN-OPEN-2000-005, 2000.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bM. Hoch,2N. Ho¨rmann,2J. Hrubec,2M. Jeitler,2 W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2

R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Bansal,4L. Benucci,4T. Cornelis,4 E. A. De Wolf,4X. Janssen,4S. Luyckx,4T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4 M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6 G. H. Hammad,6T. Hreus,6A. Le´onard,6P. E. Marage,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wickens,6

V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7 A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7 L. Vanelderen,7P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8L. Ceard,8 J. De Favereau De Jeneret,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cG. Gre´goire,8

J. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8 N. Beliy,9T. Caebergs,9E. Daubie,9G. A. Alves,10M. Correa Martins Junior,10D. De Jesus Damiao,10T. Martins,10

M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11 C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11V. Oguri,11

W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11L. Soares Jorge,11A. Sznajder,11T. S. Anjos,12,d C. A. Bernardes,12,dF. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12 P. G. Mercadante,12,dS. F. Novaes,12Sandra S. Padula,12V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13

S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14 A. Karadzhinova,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15 M. Xu,15J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16 S. J. Qian,16H. Teng,16S. Wang,16B. Zhu,16W. Zou,16A. Cabrera,17B. Gomez Moreno,17A. F. Osorio Oliveros,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,fD. Polic,18I. Puljak,18,bZ. Antunovic,19M. Dzelalija,19 M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21

C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,gA. Ellithi Kamel,23,h S. Khalil,23,iM. A. Mahmoud,23,jA. Radi,23,kA. Hektor,24M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24

A. Tiko,24V. Azzolini,25P. Eerola,25G. Fedi,25M. Voutilainen,25S. Czellar,26J. Ha¨rko¨nen,26A. Heikkinen,26 V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26

P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26 L. Wendland,26K. Banzuzi,27A. Korpela,27T. Tuuva,27D. Sillou,28M. Besancon,29S. Choudhury,29M. Dejardin,29

D. Denegri,29B. Fabbro,29J. L. Faure,29F. Ferri,29S. Ganjour,29A. Givernaud,29P. Gras,29

(8)

I. Shreyber,29M. Titov,29S. Baffioni,30F. Beaudette,30L. Benhabib,30L. Bianchini,30M. Bluj,30,lC. Broutin,30 P. Busson,30C. Charlot,30N. Daci,30T. Dahms,30L. Dobrzynski,30S. Elgammal,30R. Granier de Cassagnac,30 M. Haguenauer,30P. Mine´,30C. Mironov,30C. Ochando,30P. Paganini,30D. Sabes,30R. Salerno,30Y. Sirois,30

C. Thiebaux,30C. Veelken,30A. Zabi,30J.-L. Agram,31,mJ. Andrea,31D. Bloch,31D. Bodin,31J.-M. Brom,31 M. Cardaci,31E. C. Chabert,31C. Collard,31E. Conte,31,mF. Drouhin,31,mC. Ferro,31J.-C. Fontaine,31,mD. Gele´,31

U. Goerlach,31P. Juillot,31M. Karim,31,mA.-C. Le Bihan,31P. Van Hove,31F. Fassi,32D. Mercier,32C. Baty,33 S. Beauceron,33N. Beaupere,33M. Bedjidian,33O. Bondu,33G. Boudoul,33D. Boumediene,33H. Brun,33 J. Chasserat,33R. Chierici,33,bD. Contardo,33P. Depasse,33H. El Mamouni,33A. Falkiewicz,33J. Fay,33S. Gascon,33

M. Gouzevitch,33B. Ille,33T. Kurca,33T. Le Grand,33M. Lethuillier,33L. Mirabito,33S. Perries,33V. Sordini,33 S. Tosi,33Y. Tschudi,33P. Verdier,33S. Viret,33D. Lomidze,34G. Anagnostou,35S. Beranek,35M. Edelhoff,35 L. Feld,35N. Heracleous,35O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35A. Ostapchuk,35A. Perieanu,35 F. Raupach,35J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35B. Wittmer,35V. Zhukov,35,nM. Ata,36 J. Caudron,36E. Dietz-Laursonn,36M. Erdmann,36A. Gu¨th,36T. Hebbeker,36C. Heidemann,36K. Hoepfner,36 T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aJ. Lingemann,36C. Magass,36M. Merschmeyer,36

A. Meyer,36M. Olschewski,36P. Papacz,36H. Pieta,36H. Reithler,36S. A. Schmitz,36L. Sonnenschein,36 J. Steggemann,36D. Teyssier,36M. Weber,36M. Bontenackels,37V. Cherepanov,37M. Davids,37G. Flu¨gge,37

H. Geenen,37M. Geisler,37W. Haj Ahmad,37F. Hoehle,37B. Kargoll,37T. Kress,37Y. Kuessel,37A. Linn,37 A. Nowack,37L. Perchalla,37O. Pooth,37J. Rennefeld,37P. Sauerland,37A. Stahl,37M. H. Zoeller,37 M. Aldaya Martin,38W. Behrenhoff,38U. Behrens,38M. Bergholz,38,oA. Bethani,38K. Borras,38A. Burgmeier,38 A. Cakir,38L. Calligaris,38A. Campbell,38E. Castro,38D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38

G. Flucke,38A. Geiser,38J. Hauk,38H. Jung,38,bM. Kasemann,38P. Katsas,38C. Kleinwort,38H. Kluge,38 A. Knutsson,38M. Kra¨mer,38D. Kru¨cker,38E. Kuznetsova,38W. Lange,38W. Lohmann,38,oB. Lutz,38R. Mankel,38

I. Marfin,38M. Marienfeld,38I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38A. Mussgiller,38 S. Naumann-Emme,38J. Olzem,38A. Petrukhin,38D. Pitzl,38A. Raspereza,38P. M. Ribeiro Cipriano,38M. Rosin,38

J. Salfeld-Nebgen,38R. Schmidt,38,oT. Schoerner-Sadenius,38N. Sen,38A. Spiridonov,38M. Stein,38 J. Tomaszewska,38R. Walsh,38C. Wissing,38C. Autermann,39V. Blobel,39S. Bobrovskyi,39J. Draeger,39 H. Enderle,39J. Erfle,39U. Gebbert,39M. Go¨rner,39T. Hermanns,39R. S. Ho¨ing,39K. Kaschube,39G. Kaussen,39

H. Kirschenmann,39R. Klanner,39J. Lange,39B. Mura,39F. Nowak,39N. Pietsch,39C. Sander,39H. Schettler,39 P. Schleper,39E. Schlieckau,39A. Schmidt,39M. Schro¨der,39T. Schum,39H. Stadie,39G. Steinbru¨ck,39J. Thomsen,39

C. Barth,40J. Berger,40T. Chwalek,40W. De Boer,40A. Dierlamm,40G. Dirkes,40M. Feindt,40J. Gruschke,40 M. Guthoff,40,bC. Hackstein,40F. Hartmann,40M. Heinrich,40H. Held,40K. H. Hoffmann,40S. Honc,40I. Katkov,40,n J. R. Komaragiri,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40A. Nu¨rnberg,40O. Oberst,40 A. Oehler,40J. Ott,40T. Peiffer,40G. Quast,40K. Rabbertz,40F. Ratnikov,40N. Ratnikova,40M. Renz,40S. Ro¨cker,40

C. Saout,40A. Scheurer,40P. Schieferdecker,40F.-P. Schilling,40M. Schmanau,40G. Schott,40H. J. Simonis,40 F. M. Stober,40D. Troendle,40J. Wagner-Kuhr,40T. Weiler,40M. Zeise,40E. B. Ziebarth,40G. Daskalakis,41

T. Geralis,41S. Kesisoglou,41A. Kyriakis,41D. Loukas,41I. Manolakos,41A. Markou,41C. Markou,41 C. Mavrommatis,41E. Ntomari,41L. Gouskos,42T. J. Mertzimekis,42A. Panagiotou,42N. Saoulidou,42E. Stiliaris,42

I. Evangelou,43C. Foudas,43,bP. Kokkas,43N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43 A. Aranyi,44G. Bencze,44L. Boldizsar,44C. Hajdu,44,bP. Hidas,44D. Horvath,44,pA. Kapusi,44K. Krajczar,44,q F. Sikler,44,bV. Veszpremi,44G. Vesztergombi,44,qN. Beni,45J. Molnar,45J. Palinkas,45Z. Szillasi,45J. Karancsi,46

P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Jindal,47 M. Kaur,47J. M. Kohli,47M. Z. Mehta,47N. Nishu,47L. K. Saini,47A. Sharma,47A. P. Singh,47J. Singh,47 S. P. Singh,47S. Ahuja,48B. C. Choudhary,48A. Kumar,48A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48

V. Sharma,48R. K. Shivpuri,48S. Banerjee,49S. Bhattacharya,49S. Dutta,49B. Gomber,49S. Jain,49S. Jain,49 R. Khurana,49S. Sarkar,49R. K. Choudhury,50D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50,bL. M. Pant,50

P. Shukla,50T. Aziz,51S. Ganguly,51M. Guchait,51,rA. Gurtu,51,rM. Maity,51,sG. Majumder,51K. Mazumdar,51 G. B. Mohanty,51B. Parida,51A. Saha,51K. Sudhakar,51N. Wickramage,51S. Banerjee,52S. Dugad,52 N. K. Mondal,52H. Arfaei,53H. Bakhshiansohi,53,tS. M. Etesami,53,uA. Fahim,53,tM. Hashemi,53H. Hesari,53

A. Jafari,53,tM. Khakzad,53A. Mohammadi,53,vM. Mohammadi Najafabadi,53S. Paktinat Mehdiabadi,53 B. Safarzadeh,53,wM. Zeinali,53,uM. Abbrescia,54a,54bL. Barbone,54a,54bC. Calabria,54a,54bS. S. Chhibra,54a,54b

(9)

L. Lusito,54a,54bG. Maggi,54a,54cM. Maggi,54aN. Manna,54a,54bB. Marangelli,54a,54bS. My,54a,54cS. Nuzzo,54a,54b N. Pacifico,54a,54bA. Pompili,54a,54bG. Pugliese,54a,54cF. Romano,54a,54cG. Selvaggi,54a,54bL. Silvestris,54a G. Singh,54a,54bS. Tupputi,54a,54bG. Zito,54aG. Abbiendi,55aG. Barozzi,55aA. C. Benvenuti,55aD. Bonacorsi,55a,55b

S. Braibant-Giacomelli,55a,55bL. Brigliadori,55a,55bP. Capiluppi,55a,55bA. Castro,55a,55bF. R. Cavallo,55a M. Cuffiani,55a,55bG. M. Dallavalle,55aF. Fabbri,55aA. Fanfani,55a,55bD. Fasanella,55a,55b,bP. Giacomelli,55a

C. Grandi,55aS. Marcellini,55aG. Masetti,55aM. Meneghelli,55a,55bA. Montanari,55aF. L. Navarria,55a,55b F. Odorici,55aA. Perrotta,55aF. Primavera,55a,55bA. M. Rossi,55a,55bT. Rovelli,55a,55bG. Siroli,55a,55b R. Travaglini,55a,55bS. Albergo,56a,56bG. Cappello,56a,56bM. Chiorboli,56a,56bS. Costa,56a,56bR. Potenza,56a,56b

A. Tricomi,56a,56bC. Tuve,56a,56bG. Barbagli,57aV. Ciulli,57a,57bC. Civinini,57aR. D’Alessandro,57a,57b E. Focardi,57a,57bS. Frosali,57a,57bE. Gallo,57aS. Gonzi,57a,57bM. Meschini,57aS. Paoletti,57aG. Sguazzoni,57a

A. Tropiano,57a,bL. Benussi,58S. Bianco,58S. Colafranceschi,58,xF. Fabbri,58D. Piccolo,58P. Fabbricatore,59 R. Musenich,59A. Benaglia,60a,60b,bF. De Guio,60a,60bL. Di Matteo,60a,60bS. Fiorendi,60a,60bS. Gennai,60a,b A. Ghezzi,60a,60bS. Malvezzi,60aR. A. Manzoni,60a,60bA. Martelli,60a,60bA. Massironi,60a,60b,bD. Menasce,60a

L. Moroni,60aM. Paganoni,60a,60bD. Pedrini,60aS. Ragazzi,60a,60bN. Redaelli,60aS. Sala,60a

T. Tabarelli de Fatis,60a,60bS. Buontempo,61aC. A. Carrillo Montoya,61a,bN. Cavallo,61a,yA. De Cosa,61a,61b O. Dogangun,61a,61bF. Fabozzi,61a,yA. O. M. Iorio,61a,bL. Lista,61aM. Merola,61a,61bP. Paolucci,61aP. Azzi,62a N. Bacchetta,62a,bP. Bellan,62a,62bD. Bisello,62a,62bA. Branca,62aR. Carlin,62a,62bP. Checchia,62aT. Dorigo,62a

U. Dosselli,62aF. Fanzago,62aF. Gasparini,62a,62bU. Gasparini,62a,62bA. Gozzelino,62aK. Kanishchev,62a S. Lacaprara,62a,zI. Lazzizzera,62a,62cM. Loreti,62aM. Margoni,62a,62bM. Mazzucato,62aA. T. Meneguzzo,62a,62b

M. Nespolo,62a,bL. Perrozzi,62aN. Pozzobon,62a,62bP. Ronchese,62a,62bF. Simonetto,62a,62bE. Torassa,62a M. Tosi,62a,62b,bS. Vanini,62a,62bP. Zotto,62a,62bG. Zumerle,62a,62bU. Berzano,63aM. Gabusi,63a,63bS. P. Ratti,63a,63b C. Riccardi,63a,63bP. Torre,63a,63bP. Vitulo,63a,63bM. Biasini,64a,64bG. M. Bilei,64aB. Caponeri,64a,64bL. Fano`,64a,64b

P. Lariccia,64a,64bA. Lucaroni,64a,64b,bG. Mantovani,64a,64bM. Menichelli,64aA. Nappi,64a,64bF. Romeo,64a,64b A. Santocchia,64a,64bS. Taroni,64a,64b,bM. Valdata,64a,64bP. Azzurri,65a,65cG. Bagliesi,65aT. Boccali,65a G. Broccolo,65a,65cR. Castaldi,65aR. T. D’Agnolo,65a,65cR. Dell’Orso,65aF. Fiori,65a,65bL. Foa`,65a,65cA. Giassi,65a

A. Kraan,65aF. Ligabue,65a,65cT. Lomtadze,65aL. Martini,65a,aaA. Messineo,65a,65bF. Palla,65aF. Palmonari,65a A. Rizzi,65aA. T. Serban,65aP. Spagnolo,65aR. Tenchini,65aG. Tonelli,65a,65b,bA. Venturi,65a,bP. G. Verdini,65a L. Barone,66a,66bF. Cavallari,66aD. Del Re,66a,66b,bM. Diemoz,66aC. Fanelli,66aM. Grassi,66a,bE. Longo,66a,66b

P. Meridiani,66aF. Micheli,66aS. Nourbakhsh,66aG. Organtini,66a,66bF. Pandolfi,66a,66bR. Paramatti,66a S. Rahatlou,66a,66bM. Sigamani,66aL. Soffi,66aN. Amapane,67a,67bR. Arcidiacono,67a,67cS. Argiro,67a,67b M. Arneodo,67a,67cC. Biino,67aC. Botta,67a,67bN. Cartiglia,67aR. Castello,67a,67bM. Costa,67a,67bN. Demaria,67a

A. Graziano,67a,67bC. Mariotti,67a,bS. Maselli,67aE. Migliore,67a,67bV. Monaco,67a,67bM. Musich,67a M. M. Obertino,67a,67cN. Pastrone,67aM. Pelliccioni,67aA. Potenza,67a,67bA. Romero,67a,67bM. Ruspa,67a,67c R. Sacchi,67a,67bV. Sola,67a,67bA. Solano,67a,67bA. Staiano,67aA. Vilela Pereira,67aS. Belforte,68aF. Cossutti,68a G. Della Ricca,68a,68bB. Gobbo,68aM. Marone,68a,68bD. Montanino,68a,68b,bA. Penzo,68aS. G. Heo,69S. K. Nam,69

S. Chang,70J. Chung,70D. H. Kim,70G. N. Kim,70J. E. Kim,70D. J. Kong,70H. Park,70S. R. Ro,70D. C. Son,70 J. Y. Kim,71Zero J. Kim,71S. Song,71H. Y. Jo,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73T. J. Kim,73

K. S. Lee,73D. H. Moon,73S. K. Park,73E. Seo,73K. S. Sim,73M. Choi,74S. Kang,74H. Kim,74J. H. Kim,74 C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Cho,75Y. Choi,75Y. K. Choi,75J. Goh,75M. S. Kim,75B. Lee,75

J. Lee,75S. Lee,75H. Seo,75I. Yu,75M. J. Bilinskas,76I. Grigelionis,76M. Janulis,76H. Castilla-Valdez,77 E. De La Cruz-Burelo,77I. Heredia-de La Cruz,77R. Lopez-Fernandez,77R. Magan˜a Villalba,77 J. Martı´nez-Ortega,77A. Sa´nchez-Herna´ndez,77L. M. Villasenor-Cendejas,77S. Carrillo Moreno,78 F. Vazquez Valencia,78H. A. Salazar Ibarguen,79E. Casimiro Linares,80A. Morelos Pineda,80M. A. Reyes-Santos,80

D. Krofcheck,81A. J. Bell,82P. H. Butler,82R. Doesburg,82S. Reucroft,82H. Silverwood,82M. Ahmad,83 M. I. Asghar,83H. R. Hoorani,83S. Khalid,83W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83M. Shoaib,83

G. Brona,84M. Cwiok,84W. Dominik,84K. Doroba,84A. Kalinowski,84M. Konecki,84J. Krolikowski,84 H. Bialkowska,85B. Boimska,85T. Frueboes,85R. Gokieli,85M. Go´rski,85M. Kazana,85K. Nawrocki,85 K. Romanowska-Rybinska,85M. Szleper,85G. Wrochna,85P. Zalewski,85N. Almeida,86P. Bargassa,86A. David,86

P. Faccioli,86P. G. Ferreira Parracho,86M. Gallinaro,86P. Musella,86A. Nayak,86J. Pela,86,bP. Q. Ribeiro,86 J. Seixas,86J. Varela,86P. Vischia,86I. Belotelov,87I. Golutvin,87N. Gorbounov,87I. Gramenitski,87A. Kamenev,87

(10)

V. Perelygin,87M. Savina,87S. Shmatov,87S. Vasil’ev,87A. Zarubin,87S. Evstyukhin,88V. Golovtsov,88Y. Ivanov,88 V. Kim,88P. Levchenko,88V. Murzin,88V. Oreshkin,88I. Smirnov,88V. Sulimov,88L. Uvarov,88S. Vavilov,88 A. Vorobyev,88An. Vorobyev,88Yu. Andreev,89A. Dermenev,89S. Gninenko,89N. Golubev,89M. Kirsanov,89 N. Krasnikov,89V. Matveev,89A. Pashenkov,89A. Toropin,89S. Troitsky,89V. Epshteyn,90M. Erofeeva,90 V. Gavrilov,90M. Kossov,90,bA. Krokhotin,90N. Lychkovskaya,90V. Popov,90G. Safronov,90S. Semenov,90

V. Stolin,90E. Vlasov,90A. Zhokin,90A. Belyaev,91E. Boos,91M. Dubinin,91,eL. Dudko,91A. Ershov,91 A. Gribushin,91O. Kodolova,91I. Lokhtin,91A. Markina,91S. Obraztsov,91M. Perfilov,91S. Petrushanko,91

L. Sarycheva,91,aV. Savrin,91A. Snigirev,91V. Andreev,92M. Azarkin,92I. Dremin,92M. Kirakosyan,92 A. Leonidov,92G. Mesyats,92S. V. Rusakov,92A. Vinogradov,92I. Azhgirey,93I. Bayshev,93S. Bitioukov,93

V. Grishin,93,bV. Kachanov,93D. Konstantinov,93A. Korablev,93V. Krychkine,93V. Petrov,93R. Ryutin,93 A. Sobol,93L. Tourtchanovitch,93S. Troshin,93N. Tyurin,93A. Uzunian,93A. Volkov,93P. Adzic,94,bb M. Djordjevic,94M. Ekmedzic,94D. Krpic,94,bbJ. Milosevic,94M. Aguilar-Benitez,95J. Alcaraz Maestre,95

P. Arce,95C. Battilana,95E. Calvo,95M. Cerrada,95M. Chamizo Llatas,95N. Colino,95B. De La Cruz,95 A. Delgado Peris,95C. Diez Pardos,95D. Domı´nguez Va´zquez,95C. Fernandez Bedoya,95J. P. Ferna´ndez Ramos,95 A. Ferrando,95J. Flix,95M. C. Fouz,95P. Garcia-Abia,95O. Gonzalez Lopez,95S. Goy Lopez,95J. M. Hernandez,95

M. I. Josa,95G. Merino,95J. Puerta Pelayo,95I. Redondo,95L. Romero,95J. Santaolalla,95M. S. Soares,95 C. Willmott,95C. Albajar,96G. Codispoti,96J. F. de Troco´niz,96J. Cuevas,97J. Fernandez Menendez,97 S. Folgueras,97I. Gonzalez Caballero,97L. Lloret Iglesias,97J. Piedra Gomez,97,ccJ. M. Vizan Garcia,97 J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98J. Duarte Campderros,98M. Felcini,98,dd M. Fernandez,98G. Gomez,98J. Gonzalez Sanchez,98C. Jorda,98P. Lobelle Pardo,98A. Lopez Virto,98J. Marco,98 R. Marco,98C. Martinez Rivero,98F. Matorras,98F. J. Munoz Sanchez,98T. Rodrigo,98A. Y. Rodrı´guez-Marrero,98

A. Ruiz-Jimeno,98L. Scodellaro,98M. Sobron Sanudo,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99 E. Auffray,99G. Auzinger,99P. Baillon,99A. H. Ball,99D. Barney,99C. Bernet,99,fW. Bialas,99G. Bianchi,99

P. Bloch,99A. Bocci,99H. Breuker,99K. Bunkowski,99T. Camporesi,99G. Cerminara,99T. Christiansen,99 J. A. Coarasa Perez,99B. Cure´,99D. D’Enterria,99A. De Roeck,99S. Di Guida,99M. Dobson,99N. Dupont-Sagorin,99

A. Elliott-Peisert,99B. Frisch,99W. Funk,99A. Gaddi,99G. Georgiou,99H. Gerwig,99M. Giffels,99D. Gigi,99 K. Gill,99D. Giordano,99M. Giunta,99F. Glege,99R. Gomez-Reino Garrido,99P. Govoni,99S. Gowdy,99R. Guida,99

L. Guiducci,99M. Hansen,99P. Harris,99C. Hartl,99J. Harvey,99B. Hegner,99A. Hinzmann,99H. F. Hoffmann,99 V. Innocente,99P. Janot,99K. Kaadze,99E. Karavakis,99K. Kousouris,99P. Lecoq,99P. Lenzi,99C. Lourenc¸o,99 T. Ma¨ki,99M. Malberti,99L. Malgeri,99M. Mannelli,99L. Masetti,99G. Mavromanolakis,99F. Meijers,99S. Mersi,99

E. Meschi,99R. Moser,99M. U. Mozer,99M. Mulders,99E. Nesvold,99M. Nguyen,99T. Orimoto,99L. Orsini,99 E. Palencia Cortezon,99E. Perez,99A. Petrilli,99A. Pfeiffer,99M. Pierini,99M. Pimia¨,99D. Piparo,99G. Polese,99

L. Quertenmont,99A. Racz,99W. Reece,99J. Rodrigues Antunes,99G. Rolandi,99,eeT. Rommerskirchen,99 C. Rovelli,99,ffM. Rovere,99H. Sakulin,99F. Santanastasio,99C. Scha¨fer,99C. Schwick,99I. Segoni,99A. Sharma,99

P. Siegrist,99P. Silva,99M. Simon,99P. Sphicas,99,ggD. Spiga,99M. Spiropulu,99,eM. Stoye,99A. Tsirou,99 G. I. Veres,99,qP. Vichoudis,99H. K. Wo¨hri,99S. D. Worm,99,hhW. D. Zeuner,99W. Bertl,100K. Deiters,100 W. Erdmann,100K. Gabathuler,100R. Horisberger,100Q. Ingram,100H. C. Kaestli,100S. Ko¨nig,100D. Kotlinski,100

U. Langenegger,100F. Meier,100D. Renker,100T. Rohe,100J. Sibille,100,iiL. Ba¨ni,101P. Bortignon,101 M. A. Buchmann,101B. Casal,101N. Chanon,101Z. Chen,101A. Deisher,101G. Dissertori,101M. Dittmar,101

M. Du¨nser,101J. Eugster,101K. Freudenreich,101C. Grab,101P. Lecomte,101W. Lustermann,101

P. Martinez Ruiz del Arbol,101N. Mohr,101F. Moortgat,101C. Na¨geli,101,jjP. Nef,101F. Nessi-Tedaldi,101L. Pape,101 F. Pauss,101M. Peruzzi,101F. J. Ronga,101M. Rossini,101L. Sala,101A. K. Sanchez,101M.-C. Sawley,101 A. Starodumov,101,kkB. Stieger,101M. Takahashi,101L. Tauscher,101,aA. Thea,101K. Theofilatos,101D. Treille,101 C. Urscheler,101R. Wallny,101H. A. Weber,101L. Wehrli,101J. Weng,101E. Aguilo,102C. Amsler,102V. Chiochia,102

S. De Visscher,102C. Favaro,102M. Ivova Rikova,102B. Millan Mejias,102P. Otiougova,102P. Robmann,102 H. Snoek,102M. Verzetti,102Y. H. Chang,103K. H. Chen,103C. M. Kuo,103S. W. Li,103W. Lin,103Z. K. Liu,103 Y. J. Lu,103D. Mekterovic,103R. Volpe,103S. S. Yu,103P. Bartalini,104P. Chang,104Y. H. Chang,104Y. W. Chang,104

Y. Chao,104K. F. Chen,104C. Dietz,104U. Grundler,104W.-S. Hou,104Y. Hsiung,104K. Y. Kao,104Y. J. Lei,104 R.-S. Lu,104D. Majumder,104E. Petrakou,104X. Shi,104J. G. Shiu,104Y. M. Tzeng,104M. Wang,104A. Adiguzel,105 M. N. Bakirci,105,llS. Cerci,105,mmC. Dozen,105I. Dumanoglu,105E. Eskut,105S. Girgis,105G. Gokbulut,105I. Hos,105 E. E. Kangal,105G. Karapinar,105A. Kayis Topaksu,105G. Onengut,105K. Ozdemir,105S. Ozturk,105,nnA. Polatoz,105

(11)

K. Sogut,105,ooD. Sunar Cerci,105,mmB. Tali,105,mmH. Topakli,105,llD. Uzun,105L. N. Vergili,105M. Vergili,105 I. V. Akin,106T. Aliev,106B. Bilin,106S. Bilmis,106M. Deniz,106H. Gamsizkan,106A. M. Guler,106K. Ocalan,106

A. Ozpineci,106M. Serin,106R. Sever,106U. E. Surat,106M. Yalvac,106E. Yildirim,106M. Zeyrek,106 M. Deliomeroglu,107E. Gu¨lmez,107B. Isildak,107M. Kaya,107,ppO. Kaya,107,ppS. Ozkorucuklu,107,qq N. Sonmez,107,rrL. Levchuk,108F. Bostock,109J. J. Brooke,109E. Clement,109D. Cussans,109H. Flacher,109

R. Frazier,109J. Goldstein,109M. Grimes,109G. P. Heath,109H. F. Heath,109L. Kreczko,109S. Metson,109 D. M. Newbold,109,hhK. Nirunpong,109A. Poll,109S. Senkin,109V. J. Smith,109T. Williams,109L. Basso,110,ss K. W. Bell,110A. Belyaev,110,ssC. Brew,110R. M. Brown,110D. J. A. Cockerill,110J. A. Coughlan,110K. Harder,110

S. Harper,110J. Jackson,110B. W. Kennedy,110E. Olaiya,110D. Petyt,110B. C. Radburn-Smith,110 C. H. Shepherd-Themistocleous,110I. R. Tomalin,110W. J. Womersley,110R. Bainbridge,111G. Ball,111 R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111M. Cutajar,111P. Dauncey,111G. Davies,111 M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111A. Gilbert,111A. Guneratne Bryer,111G. Hall,111

Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111G. Karapostoli,111L. Lyons,111A.-M. Magnan,111 J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111A. Nikitenko,111,kkA. Papageorgiou,111M. Pesaresi,111

K. Petridis,111M. Pioppi,111,ttD. M. Raymond,111S. Rogerson,111N. Rompotis,111A. Rose,111M. J. Ryan,111 C. Seez,111A. Sparrow,111A. Tapper,111S. Tourneur,111M. Vazquez Acosta,111T. Virdee,111S. Wakefield,111 N. Wardle,111D. Wardrope,111T. Whyntie,111M. Barrett,112M. Chadwick,112J. E. Cole,112P. R. Hobson,112 A. Khan,112P. Kyberd,112D. Leslie,112W. Martin,112I. D. Reid,112P. Symonds,112L. Teodorescu,112M. Turner,112 K. Hatakeyama,113H. Liu,113T. Scarborough,113C. Henderson,114A. Avetisyan,115T. Bose,115E. Carrera Jarrin,115

C. Fantasia,115A. Heister,115J. St. John,115P. Lawson,115D. Lazic,115J. Rohlf,115D. Sperka,115L. Sulak,115 S. Bhattacharya,116D. Cutts,116A. Ferapontov,116U. Heintz,116S. Jabeen,116G. Kukartsev,116G. Landsberg,116

M. Luk,116M. Narain,116D. Nguyen,116M. Segala,116T. Sinthuprasith,116T. Speer,116K. V. Tsang,116 R. Breedon,117G. Breto,117M. Calderon De La Barca Sanchez,117M. Caulfield,117S. Chauhan,117M. Chertok,117

J. Conway,117R. Conway,117P. T. Cox,117J. Dolen,117R. Erbacher,117M. Gardner,117R. Houtz,117W. Ko,117 A. Kopecky,117R. Lander,117O. Mall,117T. Miceli,117R. Nelson,117D. Pellett,117J. Robles,117B. Rutherford,117

M. Searle,117J. Smith,117M. Squires,117M. Tripathi,117R. Vasquez Sierra,117V. Andreev,118K. Arisaka,118 D. Cline,118R. Cousins,118J. Duris,118S. Erhan,118P. Everaerts,118C. Farrell,118J. Hauser,118M. Ignatenko,118

C. Jarvis,118C. Plager,118G. Rakness,118P. Schlein,118,aJ. Tucker,118V. Valuev,118M. Weber,118J. Babb,119 R. Clare,119J. Ellison,119J. W. Gary,119F. Giordano,119G. Hanson,119G. Y. Jeng,119H. Liu,119O. R. Long,119 A. Luthra,119H. Nguyen,119S. Paramesvaran,119J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119 W. Andrews,120J. G. Branson,120G. B. Cerati,120S. Cittolin,120D. Evans,120F. Golf,120A. Holzner,120R. Kelley,120 M. Lebourgeois,120J. Letts,120I. Macneill,120B. Mangano,120S. Padhi,120C. Palmer,120G. Petrucciani,120H. Pi,120 M. Pieri,120R. Ranieri,120M. Sani,120I. Sfiligoi,120V. Sharma,120S. Simon,120E. Sudano,120M. Tadel,120Y. Tu,120

A. Vartak,120S. Wasserbaech,120,uuF. Wu¨rthwein,120A. Yagil,120J. Yoo,120D. Barge,121R. Bellan,121 C. Campagnari,121M. D’Alfonso,121T. Danielson,121K. Flowers,121P. Geffert,121J. Incandela,121C. Justus,121

P. Kalavase,121S. A. Koay,121D. Kovalskyi,121,bV. Krutelyov,121S. Lowette,121N. Mccoll,121V. Pavlunin,121 F. Rebassoo,121J. Ribnik,121J. Richman,121R. Rossin,121D. Stuart,121W. To,121J. R. Vlimant,121C. West,121 A. Apresyan,122A. Bornheim,122J. Bunn,122Y. Chen,122E. Di Marco,122J. Duarte,122M. Gataullin,122Y. Ma,122 A. Mott,122H. B. Newman,122C. Rogan,122V. Timciuc,122P. Traczyk,122J. Veverka,122R. Wilkinson,122Y. Yang,122 R. Y. Zhu,122B. Akgun,123R. Carroll,123T. Ferguson,123Y. Iiyama,123D. W. Jang,123S. Y. Jun,123Y. F. Liu,123

M. Paulini,123J. Russ,123H. Vogel,123I. Vorobiev,123J. P. Cumalat,124M. E. Dinardo,124B. R. Drell,124 C. J. Edelmaier,124W. T. Ford,124A. Gaz,124B. Heyburn,124E. Luiggi Lopez,124U. Nauenberg,124J. G. Smith,124

K. Stenson,124K. A. Ulmer,124S. R. Wagner,124S. L. Zang,124L. Agostino,125J. Alexander,125A. Chatterjee,125 N. Eggert,125L. K. Gibbons,125B. Heltsley,125W. Hopkins,125A. Khukhunaishvili,125B. Kreis,125N. Mirman,125

G. Nicolas Kaufman,125J. R. Patterson,125A. Ryd,125E. Salvati,125W. Sun,125W. D. Teo,125J. Thom,125 J. Thompson,125J. Vaughan,125Y. Weng,125L. Winstrom,125P. Wittich,125A. Biselli,126D. Winn,126S. Abdullin,127 M. Albrow,127J. Anderson,127G. Apollinari,127M. Atac,127J. A. Bakken,127L. A. T. Bauerdick,127A. Beretvas,127

J. Berryhill,127P. C. Bhat,127I. Bloch,127K. Burkett,127J. N. Butler,127V. Chetluru,127H. W. K. Cheung,127 F. Chlebana,127S. Cihangir,127W. Cooper,127D. P. Eartly,127V. D. Elvira,127S. Esen,127I. Fisk,127J. Freeman,127

Y. Gao,127E. Gottschalk,127D. Green,127O. Gutsche,127J. Hanlon,127R. M. Harris,127J. Hirschauer,127 B. Hooberman,127H. Jensen,127S. Jindariani,127M. Johnson,127U. Joshi,127B. Klima,127S. Kunori,127S. Kwan,127

(12)

C. Leonidopoulos,127D. Lincoln,127R. Lipton,127J. Lykken,127K. Maeshima,127J. M. Marraffino,127 S. Maruyama,127D. Mason,127P. McBride,127T. Miao,127K. Mishra,127S. Mrenna,127Y. Musienko,127,vv

C. Newman-Holmes,127V. O’Dell,127J. Pivarski,127R. Pordes,127O. Prokofyev,127T. Schwarz,127 E. Sexton-Kennedy,127S. Sharma,127W. J. Spalding,127L. Spiegel,127P. Tan,127L. Taylor,127S. Tkaczyk,127

L. Uplegger,127E. W. Vaandering,127R. Vidal,127J. Whitmore,127W. Wu,127F. Yang,127F. Yumiceva,127 J. C. Yun,127D. Acosta,128P. Avery,128D. Bourilkov,128M. Chen,128S. Das,128M. De Gruttola,128 G. P. Di Giovanni,128D. Dobur,128A. Drozdetskiy,128R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128 J. Gartner,128S. Goldberg,128J. Hugon,128B. Kim,128J. Konigsberg,128A. Korytov,128A. Kropivnitskaya,128 T. Kypreos,128J. F. Low,128K. Matchev,128P. Milenovic,128,wwG. Mitselmakher,128L. Muniz,128R. Remington,128

A. Rinkevicius,128M. Schmitt,128B. Scurlock,128P. Sellers,128N. Skhirtladze,128M. Snowball,128D. Wang,128 J. Yelton,128M. Zakaria,128V. Gaultney,129L. M. Lebolo,129S. Linn,129P. Markowitz,129G. Martinez,129 J. L. Rodriguez,129T. Adams,130A. Askew,130J. Bochenek,130J. Chen,130B. Diamond,130S. V. Gleyzer,130

J. Haas,130S. Hagopian,130V. Hagopian,130M. Jenkins,130K. F. Johnson,130H. Prosper,130S. Sekmen,130 V. Veeraraghavan,130M. Weinberg,130M. M. Baarmand,131B. Dorney,131M. Hohlmann,131H. Kalakhety,131 I. Vodopiyanov,131M. R. Adams,132I. M. Anghel,132L. Apanasevich,132Y. Bai,132V. E. Bazterra,132R. R. Betts,132

J. Callner,132R. Cavanaugh,132C. Dragoiu,132L. Gauthier,132C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132 G. J. Kunde,132,xxF. Lacroix,132M. Malek,132C. O’Brien,132C. Silkworth,132C. Silvestre,132D. Strom,132 N. Varelas,132U. Akgun,133E. A. Albayrak,133B. Bilki,133,yyW. Clarida,133F. Duru,133S. Griffiths,133C. K. Lae,133

E. McCliment,133J.-P. Merlo,133H. Mermerkaya,133,zzA. Mestvirishvili,133A. Moeller,133J. Nachtman,133 C. R. Newsom,133E. Norbeck,133J. Olson,133Y. Onel,133F. Ozok,133S. Sen,133E. Tiras,133J. Wetzel,133T. Yetkin,133

K. Yi,133B. A. Barnett,134B. Blumenfeld,134S. Bolognesi,134A. Bonato,134D. Fehling,134G. Giurgiu,134 A. V. Gritsan,134Z. J. Guo,134G. Hu,134P. Maksimovic,134S. Rappoccio,134M. Swartz,134N. V. Tran,134 A. Whitbeck,134P. Baringer,135A. Bean,135G. Benelli,135O. Grachov,135R. P. Kenny Iii,135M. Murray,135 D. Noonan,135S. Sanders,135R. Stringer,135G. Tinti,135J. S. Wood,135V. Zhukova,135A. F. Barfuss,136T. Bolton,136

I. Chakaberia,136A. Ivanov,136S. Khalil,136M. Makouski,136Y. Maravin,136S. Shrestha,136I. Svintradze,136 J. Gronberg,137D. Lange,137D. Wright,137A. Baden,138M. Boutemeur,138B. Calvert,138S. C. Eno,138 J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138M. Kirn,138T. Kolberg,138Y. Lu,138M. Marionneau,138 A. C. Mignerey,138A. Peterman,138K. Rossato,138P. Rumerio,138A. Skuja,138J. Temple,138M. B. Tonjes,138 S. C. Tonwar,138E. Twedt,138B. Alver,139G. Bauer,139J. Bendavid,139W. Busza,139E. Butz,139I. A. Cali,139 M. Chan,139V. Dutta,139G. Gomez Ceballos,139M. Goncharov,139K. A. Hahn,139Y. Kim,139M. Klute,139 Y.-J. Lee,139W. Li,139P. D. Luckey,139T. Ma,139S. Nahn,139C. Paus,139D. Ralph,139C. Roland,139G. Roland,139

M. Rudolph,139G. S. F. Stephans,139F. Sto¨ckli,139K. Sumorok,139K. Sung,139D. Velicanu,139E. A. Wenger,139 R. Wolf,139B. Wyslouch,139S. Xie,139M. Yang,139Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139S. I. Cooper,140

P. Cushman,140B. Dahmes,140A. De Benedetti,140G. Franzoni,140A. Gude,140J. Haupt,140S. C. Kao,140 K. Klapoetke,140Y. Kubota,140J. Mans,140N. Pastika,140V. Rekovic,140R. Rusack,140M. Sasseville,140 A. Singovsky,140N. Tambe,140J. Turkewitz,140L. M. Cremaldi,141R. Godang,141R. Kroeger,141L. Perera,141 R. Rahmat,141D. A. Sanders,141D. Summers,141E. Avdeeva,142K. Bloom,142S. Bose,142J. Butt,142D. R. Claes,142

A. Dominguez,142M. Eads,142P. Jindal,142J. Keller,142I. Kravchenko,142J. Lazo-Flores,142H. Malbouisson,142 S. Malik,142G. R. Snow,142U. Baur,143A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143A. Kumar,143

S. P. Shipkowski,143K. Smith,143Z. Wan,143G. Alverson,144E. Barberis,144D. Baumgartel,144M. Chasco,144 D. Trocino,144D. Wood,144J. Zhang,144A. Anastassov,145A. Kubik,145N. Mucia,145N. Odell,145 R. A. Ofierzynski,145B. Pollack,145A. Pozdnyakov,145M. Schmitt,145S. Stoynev,145M. Velasco,145S. Won,145

L. Antonelli,146D. Berry,146A. Brinkerhoff,146M. Hildreth,146C. Jessop,146D. J. Karmgard,146J. Kolb,146 K. Lannon,146W. Luo,146S. Lynch,146N. Marinelli,146D. M. Morse,146T. Pearson,146R. Ruchti,146J. Slaunwhite,146

N. Valls,146M. Wayne,146M. Wolf,146J. Ziegler,146B. Bylsma,147L. S. Durkin,147C. Hill,147P. Killewald,147 K. Kotov,147T. Y. Ling,147D. Puigh,147M. Rodenburg,147C. Vuosalo,147G. Williams,147N. Adam,148E. Berry,148 P. Elmer,148D. Gerbaudo,148V. Halyo,148P. Hebda,148J. Hegeman,148A. Hunt,148E. Laird,148D. Lopes Pegna,148 P. Lujan,148D. Marlow,148T. Medvedeva,148M. Mooney,148J. Olsen,148P. Piroue´,148X. Quan,148A. Raval,148 H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148A. Zuranski,148J. G. Acosta,149X. T. Huang,149A. Lopez,149

H. Mendez,149S. Oliveros,149J. E. Ramirez Vargas,149A. Zatserklyaniy,149E. Alagoz,150V. E. Barnes,150 D. Benedetti,150G. Bolla,150D. Bortoletto,150M. De Mattia,150A. Everett,150L. Gutay,150Z. Hu,150M. Jones,150

(13)

O. Koybasi,150M. Kress,150A. T. Laasanen,150N. Leonardo,150V. Maroussov,150P. Merkel,150D. H. Miller,150 N. Neumeister,150I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150

Y. Zheng,150S. Guragain,151N. Parashar,151A. Adair,152C. Boulahouache,152V. Cuplov,152K. M. Ecklund,152 F. J. M. Geurts,152B. P. Padley,152R. Redjimi,152J. Roberts,152J. Zabel,152B. Betchart,153A. Bodek,153

Y. S. Chung,153R. Covarelli,153P. de Barbaro,153R. Demina,153Y. Eshaq,153A. Garcia-Bellido,153 P. Goldenzweig,153Y. Gotra,153J. Han,153A. Harel,153D. C. Miner,153G. Petrillo,153W. Sakumoto,153 D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154L. Demortier,154K. Goulianos,154G. Lungu,154 S. Malik,154C. Mesropian,154S. Arora,155O. Atramentov,155A. Barker,155J. P. Chou,155C. Contreras-Campana,155

E. Contreras-Campana,155D. Duggan,155D. Ferencek,155Y. Gershtein,155R. Gray,155E. Halkiadakis,155 D. Hidas,155D. Hits,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155A. Richards,155K. Rose,155S. Salur,155

S. Schnetzer,155C. Seitz,155S. Somalwar,155R. Stone,155S. Thomas,155G. Cerizza,156M. Hollingsworth,156 S. Spanier,156Z. C. Yang,156A. York,156R. Eusebi,157W. Flanagan,157J. Gilmore,157T. Kamon,157,aaa V. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157A. Perloff,157J. Roe,157A. Safonov,157

T. Sakuma,157S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157N. Akchurin,158C. Bardak,158 J. Damgov,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158T. Libeiro,158P. Mane,158Y. Roh,158 A. Sill,158I. Volobouev,158R. Wigmans,158E. Appelt,159E. Brownson,159D. Engh,159C. Florez,159W. Gabella,159 A. Gurrola,159M. Issah,159W. Johns,159P. Kurt,159C. Maguire,159A. Melo,159P. Sheldon,159B. Snook,159S. Tuo,159

J. Velkovska,159M. W. Arenton,160M. Balazs,160S. Boutle,160S. Conetti,160B. Cox,160B. Francis,160 S. Goadhouse,160J. Goodell,160R. Hirosky,160A. Ledovskoy,160C. Lin,160C. Neu,160J. Wood,160R. Yohay,160 S. Gollapinni,161R. Harr,161P. E. Karchin,161C. Kottachchi Kankanamge Don,161P. Lamichhane,161M. Mattson,161 C. Milste`ne,161A. Sakharov,161M. Anderson,162M. Bachtis,162D. Belknap,162J. N. Bellinger,162J. Bernardini,162

L. Borrello,162D. Carlsmith,162M. Cepeda,162S. Dasu,162J. Efron,162E. Friis,162L. Gray,162K. S. Grogg,162 M. Grothe,162R. Hall-Wilton,162M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162A. Lanaro,162 C. Lazaridis,162J. Leonard,162R. Loveless,162A. Mohapatra,162I. Ojalvo,162G. A. Pierro,162I. Ross,162A. Savin,162

W. H. Smith,162and J. Swanson162

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7

Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Lab. of Nucl. Phys. and Tech., Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

(14)

27Lappeenranta University of Technology, Lappeenranta, Finland

28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

31Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

34

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Saha Institute of Nuclear Physics, Kolkata, India

50

Bhabha Atomic Research Centre, Mumbai, India

51Tata Institute of Fundamental Research - EHEP, Mumbai, India 52Tata Institute of Fundamental Research - HECR, Mumbai, India 53Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54aINFN Sezione di Bari, Bari, Italy 54bUniversita` di Bari, Bari, Italy 54cPolitecnico di Bari, Bari, Italy 55aINFN Sezione di Bologna, Bologna, Italy

55bUniversita` di Bologna, Bologna, Italy 56aINFN Sezione di Catania, Catania, Italy

56bUniversita` di Catania, Catania, Italy 57aINFN Sezione di Firenze, Firenze, Italy

57bUniversita` di Firenze, Firenze, Italy

58INFN Laboratori Nazionali di Frascati, Frascati, Italy 59INFN Sezione di Genova, Genova, Italy 60aINFN Sezione di Milano-Bicocca, Milano, Italy

60bUniversita` di Milano-Bicocca, Milano, Italy 61aINFN Sezione di Napoli, Napoli, Italy 61bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

62aINFN Sezione di Padova, Padova, Italy 62bUniversita` di Padova, Padova, Italy 62cUniversita` di Trento (Trento), Padova, Italy

63aINFN Sezione di Pavia, Pavia, Italy 63b

Universita` di Pavia, Pavia, Italy

64aINFN Sezione di Perugia, Perugia, Italy 64bUniversita` di Perugia, Perugia, Italy

65aINFN Sezione di Pisa, Pisa, Italy 65bUniversita` di Pisa, Pisa, Italy 65cScuola Normale Superiore di Pisa, Pisa, Italy

66aINFN Sezione di Roma, Roma, Italy 66bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

67aINFN Sezione di Torino, Torino, Italy 67b

Universita` di Torino, Torino, Italy

67cUniversita` del Piemonte Orientale (Novara), Torino, Italy 68aINFN Sezione di Trieste, Trieste, Italy

68bUniversita` di Trieste, Trieste, Italy 69Kangwon National University, Chunchon, Korea

Figura

TABLE I. The number of candidates observed, compared to background and signal rates for each final state for 100 &lt; m 4‘ &lt;
FIG. 1 (color online). (a) Distribution of the four-lepton re- re-constructed mass for the sum of the 4e, 4, and 2e2 channels
FIG. 2 (color online). (a) The significance of the local excesses with respect to the standard model expectation as a function of the Higgs boson mass, without (blue) or with (red) individual candidate mass measurement uncertainties

Riferimenti

Documenti correlati

gates the epidemiological evidence of age-related changes in peripheral ARHL and CAPD in mod- ulating the risk of dementia, AD, mild cognitive impairment (MCI), and other

In line with the increased IL-1β secretion, we observed a marked increase in the levels of NLRP3 activation in Winnie mice particularly in the absence of TNFα (Figure 4a).. The level

valore di quei beni immateriali che contribuiscono in larga parte alla creazione del valore da parte dell‟azienda. Con l‟introduzione del metodo del fair value,

Toscano G., 2003 – Possibilità di utilizzo delle fonti rinnovabili in ambienti rurali: energia da biomassa (prima parte).. Toscano G., 2003 – Possibilità di utilizzo delle

In order to test these two PCR-RFLP sexing methods in Short-toed Eagle, blood and feathers DNA sample from six known-sex individuals were used.. Hae III cuts CHD-Z but

In those situations, only the first one does not imply taxation, with respect to assets not transferred, in case of transfer of residence (seat and head office) to another

Esce nella collana Libro d'Oro di Fanucci Cuore di corvo, Il terzo romanzo della Saga dei Rigante di David Gemmell - Leggi tutto l'articolo su Fantascienza.com.. Un giorno

There was an inverse correlation between time of milk sampling and growth factor levels in colostrum for Hepatocyte Growth Factor (HGF) and TGFβ1 and TGFβ3, but not TGFβ2, and