• Non ci sono risultati.

Insulin-like growth factor I media gli effetti dell'arricchimento ambientale sul sistema visivo

N/A
N/A
Protected

Academic year: 2021

Condividi "Insulin-like growth factor I media gli effetti dell'arricchimento ambientale sul sistema visivo"

Copied!
63
0
0

Testo completo

(1)

I risultati presentati dimostrano che nel ratto l’allevamento in un ambiente arricchito fin dalla nascita determina un’accelerazione dello sviluppo del sistema visivo, in par-ticolare dell’acuit`a visiva.

Tuttavia, la scoperta pi`u eclatante di questo studio `e che il fattore di crescita insulino-simile IGF-I `e il mediatore degli effetti dell’arricchimento sullo sviluppo dell’acuit`a visiva.

L’arricchimento ambientale accelera lo sviluppo

del-l’acuit`

a visiva

Negli ultimi 50 anni si sono succeduti numerosi lavori, che hanno dimostrato che l’arricchimento ambientale ha molteplici effetti sul sistema nervoso maturo a livello funzionale, anatomico e molecolare (per una review, Rampon e Tsien,2000).

Mancavano, per`o, in letteratura lavori designati ad analizzare un effetto dell’arric-chimento ambientale fin dai primi giorni di vita sullo sviluppo del sistema nervoso. Tale mancanza `e stata recentemente colmata: Bartoletti et al.(2004) e Cancedda et al.(2004) hanno, infatti, dimostrato che un protocollo di arricchimento ambientale precoce ha una robusta influenza sullo sviluppo del sistema visivo.

Il lavoro di Bartoletti et al. (2004) ha chiarito che l’arricchimento ambientale previene gli effetti del dark-rearing sulla maturazione della corteccia visiva, promuovendone il normale sviluppo.

Il lavoro di Cancedda et al. (2004) ha dimostrato, invece, che l’esperienza in un ambiente arricchito, a partire dalla nascita, determina un’accelerazione dello svilup-po dell’acuit`a visiva nel topo, accompagnata a livello elettrofisiologico da un precoce

(2)

declino del WM-LTP e preceduta a livello biochimico da un innalzamento dei livelli proteici di BDNF e di GAD65 in corteccia visiva, nonch´e da un’espressione pi`u pre-coce dei geni mediati da CRE.

Noi abbiamo effettuato un’analisi dello sviluppo dell’acuit`a visiva in ratti arricchiti ed in ratti standard, utilizzando il metodo elettrofisiologico di registrazione dei poten-ziali visivi evocati. La tecnica elettrofisiologica, rispetto alla valutazione dell’acuit`a visiva con il metodo comportamentale (Prusky et al., 2000a), ha il vantaggio di dare la possibilit`a di testare le capacit`a visive anche di animali non a criterio per il test comportamentale (Porciatti et al., 1999).

Abbiamo riscontrato che l’arricchimento ambientale determina una consistente acce-lerazione dello sviluppo dell’acuit`a visiva: i ratti arricchiti raggiungono l’acuit`a visiva di un ratto adulto gi`a al giorno postnatale 25 (P25).

Si tratta di un’ulteriore dimostrazione che l’ottimizzazione delle condizioni ambientali fornita dal protocollo di arricchimento abbia un effetto non solo sul cervello adulto, ma anche sulla maturazione del sistema nervoso.

Tuttavia, quali siano i mediatori molecolari dell’arricchimento sullo sviluppo del-l’acuit`a visiva non `e noto.

E’ interessante notare che il lavoro di Bartoletti et al. (2004) ha dimostrato che l’ar-ricchimento ambientale promuove lo sviluppo del sistema visivo anche in condizioni di completa deprivazione di stimoli visivi.

Questo suggerisce che anche fattori, che non sono sotto il diretto controllo dell’espe-rienza visiva, possano contribuire allo sviluppo della corteccia visiva e che sia tramite tali fattori che l’arricchimento ambientale esercita i suoi effetti sul sistema visivo in sviluppo.

Un candidato particolarmente interessante `e IGF-I.

L’arricchimento ambientale influenza i livelli

prote-ici di IGF-I in corteccia visiva

E’ noto ormai da qualche anno che l’attivit`a fisica determina un aumento dei livelli ematici di IGF-I (Schwarz et al., 1996; Wallace et al., 1999).

(3)

del-l’uptake dell’IGF-I ematico nel tessuto cerebrale: infatti, in ratti sottoposti ad una sola ora di corsa sulla ruota si pu`o evidenziare una diffusa marcatura di differenti aree cerebrali (corteccia, ippocampo, striato, setto, talamo, ipotalamo, cervelletto e molti nuclei del tronco encefalico) con anticorpi contro IGF-I (Carro et al., 2000).

Dal momento che l’esercizio fisico `e una componente fondamentale della stimolazione fornita dall’arricchimento ambientale, `e ragionevole ritenere che anche l’arricchimento ambientale possa influenzare i livelli di IGF-I nel cervello.

Noi abbiamo, dunque, analizzato i livelli proteici di IGF-I nella corteccia visiva di animali arricchiti e non arricchiti a diverse et`a con un convenzionale protocollo di immunoistochimica. La nostra indagine si `e focalizzata su una finestra precoce della vita postnatale degli animali, da P15 a P25.

Si tratta del primo studio che si propone di esaminare la presenza e lo sviluppo dei livelli proteici di IGF-I in corteccia visiva. Studi precedenti avevano analizzato il pattern di espressione di IGF-I a livello del sistema visivo, ma solo nelle strutture periferiche e sottocorticali (Bondy, 1991).

I dati riportati dimostrano che, per quanto concerne lo sviluppo dei livelli corticali di IGF-I da P15 a P25, negli animali non arricchiti si pu`o osservare un lieve effetto dell’et`a, anche se non si riscontrano differenze significative nella valutazione compa-rativa delle diverse coppie di et`a.

E’ interessante notare che tra P15 e P25 non appare evidente la presenza di un picco dei livelli di IGF-I.

Tuttavia, `e stato osservato che IGF-I nei sistemi sensoriali viene espresso pi`u preco-cemente nelle strutture periferiche e solo successivamente nelle strutture pi`u centrali (Bondy, 1991): dal momento che nella retina le maggiori quantit`a di IGF-I si riscon-trano a cavallo tra la vita embrionale e la vita postnatale, sembra legittimo suggerire che in corteccia visiva si potrebbe ravvisare un transiente aumento dei livelli proteici di IGF-I dopo la nascita, ma prima dell’inizio del periodo critico. Tale ipotesi prende corpo se si pensa all’azione antiapoptotica di IGF-I durante lo sviluppo del sistema nervoso centrale, documentata da numerosi lavori (per una review, vedi D’Ercole et al., 1996; Varela-Nieto et al., 2003), dato che la fase di morte neuronale massiva in corteccia si osserva nei primi 10 giorni di vita postnatale (Hicks e D’Amato, 1968; Spreafico et al., 1995).

(4)

l’espres-sione di IGF-I in corteccia visiva ad et`a pi`u precoci di P15.

Negli animali arricchiti lo sviluppo dei livelli di IGF-I in corteccia visiva assume un profilo differente da quello che abbiamo descritto per gli animali non arricchiti: in-fatti, `e evidente la presenza di un picco di IGF-I a P18.

Abbiamo riscontrato una differenza statisticamente significativa tra i livelli di IGF-I nella corteccia di animali arricchiti e quelli degli animali non arricchiti a P18, mentre n´e a P15 n´e a P25 si pu`o rilevare una variabilit`a significativa tra le due condizioni di allevamento.

L’arricchimento ambientale modula, dunque, i livelli proteici di IGF-I nella corteccia visiva in un periodo cruciale della maturazione della stessa, ovvero all’inizio del pe-riodo critico (Berardi et al., 2000): tale osservazione avvalora l’ipotesi, secondo cui questo fattore di crescita possa essere coinvolto nei processi di plasticit`a neurale, che determinano l’accelerazione dello sviluppo dell’acuit`a visiva negli animali allevati in condizioni di arricchimento ambientale.

Resta da chiarire se l’arricchimento ambientale determina un incremento fattivo dell’e-spressione di IGF-I in corteccia visiva o se l’aumento dei livelli della proteina osservato sia dovuto ad un’intensificazione dell’uptake dell’ormone dal circolo ematico.

Inoltre, pensiamo sarebbe stimolante verificare se l’arricchimento ambientale influenzi il contenuto di IGF-I della corteccia visiva anche in stadi pi`u precoci dello sviluppo, considerata l’ipotesi secondo la quale, durante la crescita dei piccoli, due distinte fasi temporali sono importanti nel mediare gli effetti dell’ambiente arricchito sul sistema visivo (Cancedda et al., 2004).

IGF-I media gli effetti dell’arricchimento

ambien-tale sul sistema visivo

Abbiamo dimostrato che i livelli proteici di IGF- I sono incrementati dall’arricchi-mento ambientale in corteccia visiva.

Questo fattore, legandosi ai recettori presenti sulle cellule nervose, determina un sostanziale aumento della loro attivit`a elettrica, inducendo anche la produzione di fattori importanti per la plasticit`a neurale, ed in particolare per la plasticit`a corticale visiva, quali BDNF e NGF (Carro et al., 2000, Berardi et al., 2003). I recettori per

(5)

IGF- I sono presenti nella corteccia occipitale (Frolich et al., 1998) e quindi IGF- I potrebbe stimolare il processo di produzione di molecole che favoriscono la plasticit`a corticale.

Noi ci siamo proposti di verificare se IGF- I possa essere un mediatore degli effetti dell’arricchimento sullo sviluppo della corteccia visiva. Abbiamo, quindi, sommini-strato IGF-I per via intracorticale ad animali non arricchiti da P18 a P25.

La scelta dell’et`a a cui iniziare a somministrare IGF-I `e stata effettuata in relazione alla valutazione comparata dell’espressione di IGF- I durante lo sviluppo della cortec-cia visiva in animali allevati in condizioni standard e di arricchimento.

A P25 l’acuit`a visiva degli animali trattati in questo modo non differisce dal valore misurato negli animali allevati nelle gabbie di arricchimento. Quindi, `e sufficiente far aumentare la disponibilit`a di IGF-I per una settimana nella corteccia visiva per mimare il robusto effetto dell’arricchimento sullo sviluppo dell’acuit`a visiva.

Questo suggerisce che l’aumento di IGF-I riscontrato a P18 nella corteccia visiva di ratti arricchiti sia un fattore importante per gli effetti dell’arricchimento sullo svilup-po della corteccia visiva.

Tuttavia, `e possibile che l’incremento delle quantit`a di IGF-I in corteccia visiva, prodotto dal nostro protocollo sperimentale, sia superiore a quello osservabile negli animali arricchiti dalla nascita.

Per dare ulteriore corpo all’ipotesi che l’aumento di IGF-I sia componente cruciale dei meccanismi d’azione dell’arricchimento, abbiamo effettuato l’esperimento oppo-sto, disegnato per verificare se il blocco di IGF- I annulla l’accelerazione dello sviluppo del sistema visivo osservato negli animali arricchiti. Abbiamo, dunque, somministrato JB-1, antagonista di IGF-I per il legame al suo recettore (Pietrzkowski et al., 1992), per via intracorticale ad animali arricchiti da P18 a P25 ed abbiamo riscontrato che a P25 l’acuit`a visiva dei ratti arricchiti trattati con il bloccante non `e statisticamente differente da quella dei ratti allevati in condizioni standard.

I valori di acuit`a visiva misurati nei ratti impiantati con le minipompe contenenti JB-1 sono leggermente inferiori rispetto a quelli ottenuti negli animali standard, ma tale differenza non `e significativa.

Questo risultato dimostra che l’azione di IGF-I `e necessaria affinch´e l’arricchimento ambientale possa esercitare i suoi effetti sullo sviluppo della corteccia visiva. Quindi, nonostante l’arricchimento ambientale possa promuovere l’attivazione di altri fattori,

(6)

il fatto che sia sufficiente bloccare IGF-I per cancellare l’azione dell’arricchimento ambientale suggerisce che o tali fattori sono sotto il controllo di IGF-I o non sono sufficienti a promuovere lo sviluppo dell’acuit`a visiva.

Nel complesso, i nostri risultati mostrano, quindi, che IGF-I, essendo necessario e sufficiente per l’accelerazione dello sviluppo dell’acuit`a visiva, pu`o essere considerato un fattore cruciale per l’accelerazione dello sviluppo del sistema visivo, determinato dall’arricchimento ambientale, almeno per quanto riguarda lo sviluppo dell’acuit`a vi-siva.

Si tratta della prima dimostrazione del fatto che un fattore molecolare sia responsa-bile, almeno in parte, degli effetti dell’esperienza ambientale sul sistema nervoso. Come pu`o realizzare l’azione di IGF-I sullo sviluppo dell’acuit`a visiva?

L’espressione dei geni sotto il controllo del promotore CRE `e stata coinvolta in molti paradigmi di plasticit`a in vivo e in vitro nella corteccia visiva, cos`ı come in molte altre regioni cerebrali (Impey et al., 1996; Impey et al., 1998 a, b; Pham et al., 1999a; Barth et al., 2000; Watt e Storm, 2001; Athos et al., 2002; Barrot et al., 2002). Re-centemente `e stato suggerito che essa sia coinvolta nelle fasi precoci del sistema visivo (Pham et al., 2001): infatti questo studio indica che esiste una definita finestra tempo-rale durante lo sviluppo del talamo, in cui `e particolarmente intensa la trascrizione dei geni CRE, in coincidenza con il periodo di raffinamento delle connessioni talamiche. Il lavoro di Cancedda et al. (2004) ha successivamente dimostrato che `e possibile individuare una finestra di espressione dei geni CRE anche durante lo sviluppo della corteccia visiva intorno a P25. Inoltre, la stessa ricerca ha evidenziato che tale finestra `

e anticipata di circa cinque giorni negli animali arricchiti, quindi intorno a P20, e che l’induzione farmacologica del sistema cAMP/CREB mima gli effetti dello sviluppo dell’attivit`a visiva (Cancedda et al., 2004).

Dal momento che l’attivazione della via di cAMP/CREB `e una delle pi`u importanti cascate di trasduzione del segnale, innescate dal legame di IGF-I con il suo recettore (per una review vedi D’Ercole et al., 1996), tali risultati ci suggeriscono che l’azione di IGF-I sullo sviluppo dell’acuit`a visiva possa essere mediata da questo pathway molecolare.

Come abbiamo precedentemente discusso, l’arricchimento ambientale dalla nascita e-sercita i suoi effetti sullo sviluppo della corteccia visiva in due distinte fasi temporali: in un primo tempo l’arricchimento ambientale agisce indirettamente, determinando

(7)

un trasferimento di fattori importanti per lo sviluppo dalla madre al piccolo, attra-verso la barriera placentare o attraattra-verso il latte materno, o un incremento dei livelli di cure materne; successivamente, quando i piccoli iniziano ad esplorare attivamente l’ambiente, la complessa stimolazione sensori-motoria fornita dall’ambiente arricchito pu`o direttamente influenzare lo sviluppo del sistema visivo.

Noi abbiamo dimostrato che IGF-I media l’azione diretta dell’ambiente arricchito sullo sviluppo del sistema visivo. Tuttavia, sarebbe interessante esaminare se l’e-spressione di IGF-I sia influenzata anche pi`u precocemente dal nostro protocollo di arricchimento ambientale e se la sua azione in questa finestra temporale possa essere ugualmente essenziale per la maturazione corticale del sistema visivo.

Recentemente `e stato dimostrato che `e possibile rilevare nel latte materno degli ani-mali arricchiti un cospicuo contenuto di IGF-I, statisticamente maggiore di quello del latte materno degli animali non arricchiti (Sale et al., dati non pubblicati). Resta ancora da chiarire, per`o, se questo maggiore apporto trofico a favore dei piccoli arric-chiti abbia un effetto rilevante sullo sviluppo del sistema nervoso.

Infine, ci sembra opportuno sottolineare che i nostri risultati si riferiscono solo allo sviluppo precoce dell’acuit`a visiva indotto dall’arricchimento ambientale; `e stato di-mostrato, tuttavia, che l’ambiente arricchito promuove la maturazione di altri aspetti funzionali del sistema visivo, come lo sviluppo delle colonne di dominanza oculare (Bartoletti et al., 2004): sarebbe doveroso verificare se sia possibile identificare una relazione causale tra tali effetti dell’arricchimento ambientale e l’incremento di IGF-I in corteccia visiva, osservato nel nostro lavoro.

Anche in questo caso IGF-I sembrerebbe un buon candidato, dal momento che `e noto che IGF-I influenza l’espressione di NGF e BDNF (Carro et al., 2000; Thoenen and Sendtner, 2002) e che la sovraespressione di BDNF e la somministrazione di NGF in-fluenzano fortemente i fenomeni di plasticit`a della corteccia visiva (Huang et al.,1999; Lodovichi et al., 2000; Gianfranceschi et al., 2003).

Plasticit`

a corticale nell’adulto

Come abbiamo gi`a ricordato, lo sviluppo della corteccia visiva `e fortemente influen-zato dall’esperienza visiva durante specifici intervalli temporali della vita postnatale, detti periodi critici (Berardi et al., 2000). Durante tali periodi di intensa plasticit`a

(8)

l’esperienza sensoriale pu`o produrre modificazioni estese e permanenti dell’organiz-zazione corticale.

Alla fine del periodo critico, la plasticit`a corticale declina. Per alcune strutture, come per esempio la corteccia visiva, il declino della plasticit`a `e molto evidente, mentre in altre aree corticali, come la corteccia somatosensoriale, la corteccia acustica primaria e la corteccia motoria primaria, la plasticit`a `e ancora presente, bench`e si osservi una chiara riduzione della modificabilit`a delle mappe corticali.

La corteccia visiva dell’adulto risponde ancora all’esperienza sensoriale con modifica-zioni plastiche, come documentato dagli effetti dell’apprendimento percettivo (Schoups et al., 2001) e delle lesioni retiniche (Dreher et al., 2001). Tuttavia la misura in cui `e possibile osservare fenomeni di plasticit`a `e fortemente ridotta nell’adulto: la deprivazione monoculare o lo strabismo nell’adulto non hanno effetti e il recupero dell’ambliopia `e molto limitato una volta terminato il periodo critico.

Diversi lavori si sono proposti di identificare fattori che stabilizzano le connessioni sinaptiche e limitano la plasticit`a al periodo critico (Berardi et al., 2003), sui quali potere agire al fine di ripristinare la plasticit`a nell’adulto. Tuttavia gli approcci finora impiegati (Pizzorusso et al., 2002) non sembrano poter avere sbocchi clinici imme-diati.

Dato che IGF-I risulta mediatore della plasticit`a corticale durante lo sviluppo e che i fattori medianti la plasticit`a del periodo critico potrebbero essere cruciali per riaprire la plasticit`a nell’adulto, ci proponiamo di verificare in futuro se la somministrazione di IGF-I ripristina l’efficacia della deprivazione monoculare sulla corteccia visiva del-l’adulto.

IGF-I potrebbe rappresentare un buon candidato per la sperimentazione clinica, in quanto, attraversando la barriera ematoencefalica (Duffy et al., 1988; Reinhardt e Bondy, 1994; Armstrong et al., 2000; Carro et al., 2000; Pulford e Ishii, 2001), pu`o essere somministrato per via sistemica.

(9)

I nostri risultati indicano che esperire la complessa stimolazione sensoriale e motoria, fornita dall’ambiente arricchito, durante lo sviluppo postnatale precoce, non solo in-fluenza la maturazione funzionale del sistema visivo nel ratto, ma determina anche alterazioni quantitative del fattore neurotrorofico IGF-I.

Questo effetto pu`o rappresentare un meccanismo tramite il quale il protocollo di ar-ricchimento ambientale dalla nascita determina modificazioni a lungo termine della funzionalit`a e della plasticit`a corticale; infatti, l’azione di questo fattore sembra es-sere necessaria e sufficiente per gli effetti dell’arricchimento ambientale sullo sviluppo dell’acuit`a visiva.

Noi proponiamo che negli animali arricchiti, l’incremento dei livelli proteici di IGF-I in corteccia visiva, come attivatore diretto o indiretto dell’espressione dei geni sot-to il controllo del promosot-tore CRE, possa essere responsabile dell’accelerazione dello sviluppo dell’acuit`a visiva.

Alla luce di questi risultati, `e possibile ipotizzare che lo sviluppo precoce del sistema visivo abbia il suo primum movens in un aumento del passaggio di fattori trofici, come BDNF o IGF-I, dalla madre all’embrione o dalla madre al piccolo e in un’in-tensificazione delle cure materne ricevute dagli animali arricchiti. Successivamente, quando i piccoli iniziano a muoversi e ad esplorare l’ambiente, la ricchezza dell’ambi-ente stesso pu`o direttamente influenzare lo sviluppo della corteccia visiva, tramite la mediazione del fattore di crescita insulino-simile IGF-I.

(10)
(11)

Aberg MA,Aberg ND, Hedbacker H, Oscarsson J, Eriksson PS. (2000), Peripheral infusion of IGF-I selectively induces neurogenesis in the adult rat hippocampus. J Neurosci. 20(8):2896-903.

Adamo M, Werner H, Farnsworth W, Roberts CT Jr, Raizada M, LeRoith D. (1988), Dexamethasone reduces steady state insulin-like growth factor I messenger ribonucleic acid levels in rat neuronal and glial cells in primary culture. Endocrinol-ogy. 123(5):2565-70.

Aguado F, Sanchez-Franco F, Cacidedo L, Fernandez T, Rodrigo J, Martinez-Murillo R. (1992), Subcellular localization of insulin-like growth factor I (IGF-I) in Purkinje cells of the adult rat: an immunocytochemical study. Neurosci Lett. 135(2):171-4.

Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. (2002), Phos-phorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 277(2):1531-7.

Aizenman Y, de Vellis J. (1987), Brain neurons develop in a serum and glial free environment: effects of transferrin, insulin, insulin-like growth factor-I and thyroid hormone on neuronal survival, growth and differentiation. Brain Res. 406(1-2):32-42.

(12)

Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. (1995), Biologia molecolare della cellula, Zanichelli Bologna.

Albus K, Wolf W. (1984), Early post-natal development of neuronal function in the kitten’s visual cortex: A laminar analysis. J Physiol. 384: 153-185.

Altschuler RA. (1979), Morphometry of the effect of increased experience and training on synaptic density in area CA3 of the rat hippocampus. J Histochem Cytochem. 27(11):1548-50.

Anderson MF, Aberg MA, Nilsson M, Eriksson PS. (2002), Insulin-like growth factor-I and neurogenesis in the adult mammalian brain. Brain Res Dev Brain Res. 134(1-2):115-22.

Ang LC, Bhaumick B, Munoz DG, Sass J, Juurlink BH. (1992), Effects of astro-cytes, insulin and insulin-like growth factor I on the survival of motoneurons in vitro. J Neurol Sci. 109(2):168-72.

Ang LC, Bhaumick B, Juurlink BH. (1993), Neurite promoting activity of insulin, insulin-like growth factor I and nerve growth factor on spinal motoneurons is astrocyte dependent. Brain Res Dev Brain Res. 74(1):83-8.

Anlar B, Sullivan KA, Feldman EL. (1999), Insulin-like growth factor-I and central nervous system development. Horm Metab Res. 31(2-3):120-5.

Antonini A, Stryker MP. (1993), Development of individual geniculocortical arbors in cat striate cortex and effects of binocular impulse blockade. J Neurosci. 13(8):3549-73.

(13)

Arkin SM (1999) Elder rehab: a student-supervised exercise program for Alzheimer’s patients. Gerontologist 39(6):729-735.

Armstrong CS, Wuarin L, Ishii DN. (2000), Uptake of circulating insulin-like growth factor-I into the cerebrospinal fluid of normal and diabetic rats and normal-ization of IGF-II mRNA content in diabetic rat brain. J Neurosci Res. 59(5):649-60.

Athos J, Impey S, Pineda VV, Chen X, Storm DR. (2002), Hippocampal CRE-mediated gene expression is required for contextual memory formation. Nat Neurosci. 5(11):1119-20.

Bach MA, Shen-Orr Z, Lowe WL Jr, Roberts CT Jr, LeRoith D. (1991), Insulin-like growth factor I mRNA levels are developmentally regulated in specific regions of the rat brain. Brain Res Mol Brain Res. 10(1):43-8.

Baker J, Liu JP, Robertson EJ, Efstratiadis A. (1993), Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 75(1):73-82.

Baker NL, Carlo Russo V, Bernard O, D’Ercole AJ, Werther GA. (1999), Inter-actions between bcl-2 and the IGF system control apoptosis in the developing mouse brain. Brain Res Dev Brain Res. 118(1-2):109-18.

Baron-Van Evercooren A, Olichon-Berthe C, Kowalski A, Visciano G, Van Ob-berghen E. (1991), Expression of IGF-I and insulin receptor genes in the rat central nervous system: a developmental, regional, and cellular analysis. J Neurosci Res. 28(2):244-53.

Barres BA, Raff MC. (1993), Proliferation of oligodendrocyte precursor cells de-pends on electrical activity in axons. Nature. 361(6409):258-60.

(14)

Barrot M, Olivier JD, Perrotti LI, DiLeone RJ, Berton O, Eisch AJ, Impey S, Storm DR, Neve RL, Yin JC, Zachariou V, Nestler EJ. (2002), CREB activity in the nucleus accumbens shell controls gating of behavioral responses to emotional stimuli. Proc Natl Acad Sci U S A. 99(17):11435-40.

Barth AL, McKenna M, Glazewski S, Hill P, Impey S, Storm D, Fox K. (2000), Upregulation of cAMP response element-mediated gene expression during experience-dependent plasticity in adult neocortex. J Neurosci. 20(11):4206-16.

Bartlett WP, Li XS, Williams M, Benkovic S. (1991), Localization of insulin-like growth factor-1 mRNA in murine central nervous system during postnatal develop-ment. Dev Biol. 147(1):239-50.

Bartoletti A, Medini P, Berardi N, Maffei L. (2004), Environmental enrichment prevents effects of dark-rearing in the rat visual cortex. Nat Neurosci. 7(3):215-6.

Baxter RC. (1986), The somatomedins: insulin-like growth factors. Adv Clin Chem. 25:49-115.

Baxter RC. (1991), Insulin-like growth factor (IGF) binding proteins: the role of serum IGFBPs in regulating IGF availability. Acta Paediatr Scand Suppl. 372:107-14.

Beaulieu C, Colonnier M. (1987), Effect of the richness of the environment on the cat visual cortex. J Comp Neurol. 266(4):478-94.

Beck KD, Powell-Braxton L, Widmer HR, Valverde J, Hefti F. (1995), Igf1 gene disruption results in reduced brain size, CNS hypomyelination, and loss of hippocam-pal granule and striatal parvalbumin-containing neurons. Neuron. 14(4):717-30.

(15)

Behringer RR, Lewin TM, Quaife CJ, Palmiter RD, Brinster RL, D’Ercole AJ. (1990), Expression of insulin-like growth factor I stimulates normal somatic growth in growth hormone-deficient transgenic mice. Endocrinology. 127(3):1033-40.

Belz EE, Kennell JS, Czambel RK, Rubin RT, Rhodes ME. (2003), Environmental enrichment lowers stress-responsive hormones in singly housed male and female rats. Pharmacol Biochem Behav. 76(3-4):481-6.

Benaroya-Milshtein N, Hollander N, Apter A, Kukulansky T, Raz N, Wilf A, Yaniv I, Pick CG. (2004), Environmental enrichment in mice decreases anxiety, attenuates stress responses and enhances natural killer cell activity. Eur J Neurosci. 20(5):1341-7.

Benevento LA, Bakkum BW, Port JD, Cohen RS. (1992), The effects of dark-rearing on the electrophysiology of the rat visual cortex. Brain Res. 572(1-2):198-207.

Benevento LA, Bakkum BW, Cohen RS. (1995), Gamma-Aminobutyric acid and somatostatin immunoreactivity in the visual cortex of normal and dark-reared rats. Brain Res. 689(2):172-82.

Berardi N, Domenici L, Parisi V, Pizzorusso T, Cellerino A, Maffei L. (1993), Monocular deprivation effects in the rat visual cortex and lateral geniculate nucle-us are prevented by nerve growth factor (NGF). I. Visual cortex, Proc Biol Sci. 251(1330):17-23.

Berardi N, Maffei L. (1999), From visual experience to visual function: roles of neurotrophins. J Neurobiol. 41(1):119-26.

(16)

Berardi N, Pizzorusso T, Maffei L. (2000), Critical periods during sensory devel-opment. Curr Opin Neurobiol. 10(1):138-45.

Berardi N, Pizzorusso T, Ratto GM, Maffei L. (2003), Molecular basis of plasticity in the visual cortex. Trends Neurosci. 26(7):369-78.

Berridge CW, Waterhouse BD. (2003), The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev. 42(1):33-84.

Besnard F, Perraud F, Sensenbrenner M, Labourdette G. (1989), Effects of acidic and basic fibroblast growth factors on proliferation and maturation of cultured rat oligodendrocytes. Int J Dev Neurosci. 7(4):401-9.

Bigon E, Soranzo C, Minozzi C, Skaper SD, Callegaro L. (1990), Large scale purification and immunological characterization of human placental nerve growth factor. Neurochem Res. 15(12):1197-202.

Black JE, Isaacs KR, Anderson BJ, Alcantara AA, Greenough WT (1990), Learn-ing causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc Natl Acad Sci USA. 87:5568-5572.

Blair LA, Marshall J. (1997), IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner. Neuron. 19(2):421-9.

Blakemore C, Van Sluyters RC. (1975), Innate and environmental factors in the development of the kitten’s visual cortex. J Physiol. 248(3):663-716.

(17)

Blue ME, Parnavelas JG. (1983a), The formation and maturation of synapses in the visual cortex of the rat. I. Qualitative analysis. J Neurocytol. 12(4):599-616.

Blue ME, Parnavelas JG. (1983b), The formation and maturation of synapses in the visual cortex of the rat. II. Quantitative analysis. J Neurocytol. 12(4):697-712.

Blundell TL, Bedarkar S, Rinderknecht E, Humbel RE. (1978), Insulin-like growth factor: a model for tertiary structure accounting for immunoreactivity and receptor binding. Proc Natl Acad Sci U S A. 75(1):180-4.

Bohannon NJ, Corp ES, Wilcox BJ, Figlewicz DP, Dorsa DM, Baskin DG. (1988), Localization of binding sites for insulin-like growth factor-I (IGF-I) in the rat brain by quantitative autoradiography. Brain Res. 444(2):205-13.

Bondy CA, Werner H, Roberts CT Jr, LeRoith D. (1990), Cellular pattern of insulin-like growth factor-I (IGF-I) and type I IGF receptor gene expression in early organogenesis: comparison with IGF-II gene expression. Mol Endocrinol. 4(9):1386-98.

Bondy CA. (1991), Transient IGF-I gene expression during the maturation of functionally related central projection neurons. J Neurosci. 11(11):3442-55.

Bondy CA, Chin E, Zhou J. (1993), Significant species differences in local IGF-I and -II gene expression. Adv Exp Med Biol. 343:73-7.

Bondy CA, Lee WH. (1993), Patterns of insulin-like growth factor and IGF re-ceptor gene expression in the brain. Functional implications. Ann N Y Acad Sci. 692:33-43.

(18)

Bondy CA, Cheng CM. (2004), Signaling by insulin-like growth factor 1 in brain. Eur J Pharmacol. 490(1-3):25-31.

Bonhoeffer T. (1996), Neurotrophins and activity-dependent development of the neocortex. Curr Opin Neurobiol. 6(1):119-26.

Boothe RG, Dobson V, Teller DY. (1985), Postnatal development of vision in human and nonhuman primates. Annu Rev Neurosci. 8:495-545.

Boothe RG, Kiorpes L, Williams RA, Teller DY. (1988), Operant measurements of contrast sensitivity in infant macaque monkeys during normal development. Vision Res. 28(3):387-96.

Borke RC, Nau ME. (1984), Glycogen, its transient occurrence in neurons of the rat CNS during normal postnatal development. Brain Res. 318(2):277-84.

Bourgeon S, Xerri C, Coq JO. (2004), Abilities in tactile discrimination of textures in adult rats exposed to enriched or impoverished environments. Behav Brain Res. 153(1):217-31.

Brar AK, Chernausek SD. (1993), Localization of insulin-like growth factor bind-ing protein-4 expression in the developbind-ing and adult rat brain: analysis by in situ hybridization. J Neurosci Res. 35(1):103-14.

Brooker GJ, Kalloniatis M, Russo VC, Murphy M, Werther GA, Bartlett PF. (2000), Endogenous IGF-1 regulates the neuronal differentiation of adult stem cells. J Neurosci Res. 59(3):332-41.

(19)

Buonomano DV, Merzenich MM. (1998), Cortical plasticity: from synapses to maps. Annu Rev Neurosci. 21:149-86.

Burgaud JL, Baserga R. (1996), Intracellular transactivation of the insulin-like growth factor I receptor by an epidermal growth factor receptor. Exp Cell Res. 223(2):412-9.

Busiguina S, Fernandez AM, Barrios V, Clark R, Tolbert DL, Berciano J, Torres-Aleman I. (2000), Neurodegeneration is associated to changes in serum insulin-like growth factors. Neurobiol Dis. 7(6 Pt B):657-65.

Caleo M, Lodovichi C, Maffei L. (1999), Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity. Eur J Neurosci. 11(8):2979-84.

Camarero G, Avendano C, Fernandez-Moreno C, Villar A, Contreras J, de Pablo F, Pichel JG, Varela-Nieto I. (2001), Delayed inner ear maturation and neuronal loss in postnatal Igf-1-deficient mice. J Neurosci. 21(19):7630-41.

Camel JE, ,Withers GS, Greenough WT. (1986), Persistence of visual cortex den-dritic alterations induced by postweaning exposure to a superenriched environment in rats. Behav Neurosci. 100(6):810-3.

Cancedda L, Putignano E, Sale A, Viegi A, Berardi N, Maffei L. (2004), Ac-celeration of visual system development by environmental enrichment. J Neurosci. 24(20):4840-8.

Carro E, Nunez A, Busiguina S, Torres-Aleman I. (2000), Circulating insulin-like growth factor I mediates effects of exercise on the brain. J Neurosci. 20(8):2926-33.

(20)

Carro E, Trejo JL, Busiguina S, Torres-Aleman I. (2001), Circulating insulin-like growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci. 21(15):5678-84.

Carro E, Torres-Aleman I. (2004), The role of insulin and insulin-like growth factor I in the molecular and cellular mechanisms underlying the pathology of Alzheimer’s disease. Eur J Pharmacol. 490(1-3):127-33.

Carson MJ, Behringer RR, Brinster RL, McMorris FA. (1993), Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron. 10(4):729-40.

Casella C, Taglietti V. (1996), Principi di Fisiologia, La Goliardica Pavese Pavia.

Castren E, Zafra F, Thoenen H, Lindholm D. (1992), Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci U S A. 89(20):9444-8.

Cellerino A, Maffei L. (1996), The action of neurotrophins in the development and plasticity of the visual cortex. Prog Neurobiol. 49(1):53-71.

Chakravarthy MV, Abraha TW, Schwartz RJ, Fiorotto ML, Booth FW. (2000), Insulin-like growth factor-I extends in vitro replicative life span of skeletal muscle satellite cells by enhancing G1/S cell cycle progression via the activation of phos-phatidylinositol 3’-kinase/Akt signaling pathway. J Biol Chem. 275(46):35942-52.

Chapillon P, Manneche C, Belzung C, Caston J. (1999), Rearing environmental enrichment in two inbred strains of mice: 1. Effects on emotional reactivity. Behav

(21)

Genet. 29(1):41-6.

Chen SJ, DeVries GH. (1989), Mitogenic effect of axolemma-enriched fraction on cultured oligodendrocytes. J Neurochem. 52(1):325-7.

Cheng CM, Reinhardt RR, Lee WH, Joncas G, Patel SC, Bondy CA. (2000), Insulin-like growth factor 1 regulates developing brain glucose metabolism. Proc Natl Acad Sci USA 97:10236-10241.

Chernausek SD. (1993), Insulin-like growth factor-I (IGF-I) production by as-troglial cells: regulation and importance for epidermal growth factor-induced cell replication. J Neurosci Res. 34(2):189-97.

Chrysis D, Calikoglu AS, Ye P, D’Ercole AJ. (2001), Insulin-like growth factor-I overexpression attenuates cerebellar apoptosis by altering the expression of Bcl family proteins in a developmentally specific manner. J Neurosci. 21(5):1481-9.

Churchill JD, Galvez R, Colcombe S, Swain RA, Kramer AF, Greenough WT. (2002), Exercise, experience and the aging brain. Neurobiol Aging. 23(5):941-55.

Clemmons DR, Underwood LE. (1991), Nutritional regulation of IGF-I and IGF binding proteins. Annu Rev Nutr. 11:393-412.

Clemmons DR. (1991a), Insulin-like growth factor binding protein control secre-tion and mechanisms of acsecre-tion. Adv Exp Med Biol. 293:113-23.

Clemmons DR. (1991b),Insulin-like growth factor binding proteins: roles in regu-lating IGF physiology. J Dev Physiol. 15(2):105-10.

(22)

Clemmons DR. (1993), IGF binding proteins and their functions. Mol Reprod Dev. 35(4):368-74.

Collazo D, Takahashi H, McKay RD. (1992), Cellular targets and trophic functions of neurotrophin-3 in the developing rat hippocampus. Neuron. 9(4):643-56.

Comery TA, Shah R, Greenough WT. (1995), Differential rearing alters spine density on medium-sized spiny neurons in the rat corpus striatum: evidence for as-sociation of morphological plasticity with early response gene expression. Neurobiol Learn Mem. 63(3):217-9.

Coq JO, Xerri C. (1998), Environmental enrichment alters organizational features of the forepaw representation in the primary somatosensory cortex of adult rats. Exp Brain Res. 121(2):191-204.

Cotman CW, Berchtold NC. (2002), Exercise: a behavioral intervention to en-hance brain health and plasticity. Trends Neurosci. 25(6):295-301.

Crair MC. (1999), Neuronal activity during development: permissive or instruc-tive? Curr Opin Neurobiol. 9(1):88-93.

Crowley JC, Katz LC. (2002), Ocular dominance development revisited. Curr Opin Neurobiol. 12(1):104-9.

Cynader M, Mitchell DE. (1980), Prolonged sensivity to monocular deprivation in dark-reared cats, J Neurophysiol. 43:1026-54.

Czech MP. (1989), Signal transmission by the insulin-like growth factors. Cell. 59(2):235-8.

(23)

Dahlstrand J, Lardelli M, Lendahl U. (1995), Nestin mRNA expression correlates with the central nervous system progenitor cell state in many, but not all, regions of developing central nervous system. Brain Res Dev Brain Res. 84(1):109-29.

Daughaday WH, Rotwein P. (1989), Insulin-like growth factors I and II. Peptide, messenger ribonucleic acid and gene structures, serum, and tissue concentrations. Endocr Rev. 10(1):68-91.

Dentremont KD, Ye P, D’Ercole AJ, O’Kusky JR. (1999), Increased insulin-like growth factor-I (IGF-I) expression during early postnatal development differentially increases neuron number and growth in medullary nuclei of the mouse. Brain Res Dev Brain Res. 114(1):135-41.

D’Ercole AJ, Dai Z, Xing Y, Boney C, Wilkie MB, Lauder JM, Han VK, Clemmons DR. (1994), Brain growth retardation due to the expression of human insulin like growth factor binding protein-1 in transgenic mice: an in vivo model for the analysis of igf function in the brain. Brain Res Dev Brain Res. 82(1-2):213-22.

D’Ercole AJ, Ye P, Calikoglu AS, Gutierrez-Ospina G. (1996), The role of the insulin-like growth factors in the central nervous system. Mol Neurobiol. 13(3):227-55.

D’Ercole AJ, Ye P, O’Kusky JR. (2002), Mutant mouse models of insulin-like growth factor actions in the central nervous system. Neuropeptides. 36(2-3):209-20.

D’Hooge R, De Deyn PP. (2001), Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev. 36(1):60-90.

(24)

Diamond MC, Krech D, Rosenzweig MR. (1964), The effects on an enriched en-viroment on the histology of the rat cerebral rat. J Comp Neurol. 123: 111-9.

Diamond MC. (1967), Extensive cortical depth measurement and neuron size in-creases in the cortex of environmentally enriched rats. J Comp Neurol. 131: 357-64.

Diamond MC, Rosenzweig MR, Bennett EL, Lindner B, Lyon L. (1972), Effects of environmental enrichment and impoverishment on rat cerebral cortex. J Comp Neurol 3 (1): 47-64.

Diamond MC, Lindner B, Johnson R, Bennett EL, Rosenzweig MR, Diamond MC, Lindner B, Johnson R, Bennett EL, Rosenzweig MR. (1975), Differences in occipital cortical synapses from environmentally enriched, impoverished, and standard colony rats. J Neurosci Res. 1(2):109-19.

Diamond MC. (1988), Enriching Heredity. the Free press New York.

DiCicco-Bloom E, Black IB. (1989), Depolarization and insulin-like growth factor-I (factor-IGF-factor-I) differentially regulate the mitotic cycle in cultured rat sympathetic neurob-lasts. Brain Res. 491(2):403-6.

D’Mello SR, Galli C, Ciotti T, Calissano P. (1993), Induction of apoptosis in cere-bellar granule neurons by low potassium: inhibition of death by insulin-like growth factor I and cAMP. Proc Natl Acad Sci U S A. 90(23):10989-93.

Domenici L, Berardi N, Carmignoto G, Vantini G, Maffei L. (1991), Nerve growth factor prevents the amblyopic effects of monocular deprivation. Proc Natl Acad Sci U S A. 88(19):8811-5.

(25)

Drago J, Murphy M, Carroll SM, Harvey RP, Bartlett PF. (1991), Fibroblast growth factor-mediated proliferation of central nervous system precursors depends on endogenous production of insulin-like growth factor I. Proc Natl Acad Sci U S A. 88(6):2199-203.

Dreher B, Burke W, Calford MB. (2001), Cortical plasticity revealed by circum-scribed retinal lesions or artificial scotomas. Prog Brain Res. 134:217-46.

Drop SL, Schuller AG, Lindenbergh-Kortleve DJ, Groffen C, Brinkman A, Zwarthoff EC. (1992), Structural aspects of the IGFBP family. Growth Regul. 2(2):69-79.

Duan C. (2002), Specifying the cellular responses to IGF signals: roles of IGF-binding proteins. J Endocrinol. 175(1):41-54.

Duffy KR, Pardridge WM, Rosenfeld RG. (1988), Human blood-brain barrier insulin-like growth factor receptor. Metabolism. 37(2):136-40.

Duman RS, Nakagawa S, Malberg J. (2001), Regulation of adult neurogenesis by antidepressant treatment. Neuropsychopharmacology. 25(6):836-44.

Dunn SE. (2000), Insulin-like growth factor I stimulates angiogenesis and the production of vascular endothelial growth factor. Growth Horm IGF Res. 10 [Suppl A]:S41-S42.

Dutly F, Schwab ME. (1991), Neurons and astrocytes influence the development of purified O-2A progenitor cells. Glia. 4(6):559-71.

Eccleston PA, Silberberg DH. (1985), Fibroblast growth factor is a mitogen for oligodendrocytes in vitro. Brain Res. 353(2):315-8. Efstratiadis A. (1998), Genetics

(26)

of mouse growth. Int J Dev Biol. 42(7):955-76.

Engineer ND, Percaccio CR, Pandya PK, Moucha R, Rathbun DL, Kilgard MP. (2004), Environmental enrichment improves response strength, threshold, selectivity, and latency of auditory cortex neurons. J Neurophysiol. 92(1):73-82.

Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. (1998), Neurogenesis in the adult human hippocampus. Nat Med. 4(11):1313-7.

Escorihuela RM, Fernandez-Teruel A, Tobena A, Vivas NM, Marmol F, Badia A, Dierssen M. (1995), Early environmental stimulation produces long-lasting changes on beta-adrenoceptor transduction system. Neurobiol Learn Mem. 64(1):49-57.

Fadool DA, Tucker K, Phillips JJ, Simmen JA. (2000), Brain insulin receptor causes activity-dependent current suppression in the olfactory bulb through multiple phosphorylation of Kv1.3. J Neurophysiol. 83(4):2332-48.

Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L. (1994), Functional postnatal development of the rat primary visual cortex and the role of visual experi-ence: dark rearing and monocular deprivation. Vision Res. 34(6):709-20.

Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR. (2004), Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience. 124(1):71-9.

Ferchmin PA, Bennett EL. (1975), Direct contact with enriched environment is required to alter cerebral weights in rats. J Comp Physiol Psychol. 88(1):360-7.

(27)

Fernandez AM, Garcia-Estrada J, Garcia-Segura LM, Torres-Aleman I. (1997), Insulin-like growth factor I modulates c-Fos induction and astrocytosis in response to neurotoxic insult. Neuroscience. 76(1):117-22.

Fernandez AM, de la Vega AG, Torres-Aleman I. (1998), Insulin-like growth factor I restores motor coordination in a rat model of cerebellar ataxia. Proc Natl Acad Sci USA. 95:1253-8.

Fernandez AM, Gonzalez de la Vega AG, Planas B, Torres-Aleman I. (1999), Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 11:2019-30.

Fernandez V, Fernandez B, Adaro L. (2003), Early polysensorial enrichment: spe-cific experience-induced structural changes in the parieto-occipital cortex of the rat. Growth Dev Aging. 67(1):3-10.

Fernandez AM, Carro EM, Lopez-Lopez C, Torres-Aleman I. (2005), Insulin-like growth factor I treatment for cerebellar ataxia: Addressing a common pathway in the pathological cascade? Brain Res Brain Res Rev. In press.

Fernyhough P, Willars GB, Lindsay RM, Tomlinson DR. (1993), Insulin and insulin-like growth factor I enhance regeneration in cultured adult rat sensory neu-rones. Brain Res. 607(1-2):117-24.

Floeter MK, Greenough WT. (1979), Cerebellar plasticity: modification of Purk-inje cell structure by differential rearing in monkeys. Science. 206(4415):227-9.

Fordyce DE, Farrar RP. (1991), Enhancement of spatial learning in F344 rats by physical activity and related learning-associated alterations in hippocampal and

(28)

cortical cholinergic functioning. Behav Brain Res 46:123-33.

Fordyce DE, Farrar RP. (1991), Enhancement of spatial learning in F344 rats by physical activity and related learning-associated alterations in hippocampal and cortical cholinergic functioning. Behav Brain Res. 46(2):123-33.

Frank HJ, Pardridge WM, Morris WL, Rosenfeld RG, Choi TB. (1986), Binding and internalization of insulin and insulin-like growth factors by isolated brain mi-crovessels. Diabetes. 35(6):654-61.

Freeman DN, Marg E. (1975), Visual acuity development coincides with the sen-sitive period in kittens. Nature. 254(5501):614-5.

Frick KM, Fernandez SM. (2003), Enrichment enhances spatial memory and in-creases synaptophysin levels in aged female mice. Neurobiol Aging. 24(4):615-26.

Froesch ER, Buergi H, Ramseier EB, Bally P, Labhart A. (1963), Antibody-suppressible and nonAntibody-suppressible insulin-like activities in human serum and their physiologic significance. An insulin assay with adipose tissue of increased precision and specificity. J Clin Invest. 42:1816-34.

Froesch ER, Zapf J, Meuli C, Mader M, Waldvogel M, Kaufmann U, Morell B. (1975), Biological properties of NSILA-S. Adv Metab Disord. 8:211-35.

Froesch ER, Zapf J, Audhya TK, Ben-Porath E, Segen BJ, Gibson KD. (1976), Nonsuppressible insulin-like activity and thyroid hormones: major pituitary-dependent sulfation factors for chick embryo cartilage. Proc Natl Acad Sci U S A. 73(8):2904-8.

(29)

Frolich L, Blum-Degen D, Bernstein HG, Engelsberger S, Humrich J, Laufer S, Muschner D, Thalheimer A, Turk A, Hoyer S, Zochling R, Boissl KW, Jellinger K, Riederer P. (1998), Brain insulin and insulin receptors in aging and sporadic Alzheimer’s disease. J Neural Transm. 105(4-5):423-38.

Gammeltoft S, Ballotti R, Nielsen FC, Kowalski A, Van Obberghen E. (1988), Receptors for insulin-like growth factors in the central nervous system: structure and function. Horm Metab Res. 20(7):436-42.

Garcia-Estrada J, Garcia-Segura LM, Torres-Aleman I. (1992), Expression of insulin-like growth factor I by astrocytes in response to injury. Brain Res. 592(1-2):343-7.

Garcia-Galloway E, Arango C, Pons S, Torres-Aleman I. (2003), Glutamate ex-citotoxicity attenuates insulin-like growth factor-I prosurvival signaling. Mol Cell Neurosci. 24(4):1027-37.

Garcia-Segura LM, Perez J, Pons S, Rejas MT, Torres-Aleman I. (1991), Local-ization of insulin-like growth factor I (IGF-I)-like immunoreactivity in the developing and adult rat brain. Brain Res. 560(1-2):167-74.

Gasparini L, Netzer WJ, Greengard P, Xu H. (2002), Does insulin dysfunction play a role in Alzheimer’s disease? Trends Pharmacol Sci. 23(6):288-93.

Gasparini L, Xu H. (2003), Potential roles of insulin and IGF-1 in Alzheimer’s disease. Trends Neurosci. 26(8):404-6.

Gaull GE, Wright CE, Isaacs CE. (1985), Significance of growth modulators in human milk. Pediatrics. 75(1 Pt 2):142-5.

(30)

Gay E, Seurin D, Babajko S, Doublier S, Cazillis M, Binoux M. (1997), Liver-specific expression of human insulin-like growth factor binding protein-1 in transgenic mice: repercussions on reproduction, ante- and perinatal mortality and postnatal growth. Endocrinology. 138(7):2937-47.

Gianfranceschi L, Siciliano R, Walls J, Morales B, Kirkwood A, Huang ZJ, Tone-gawa S, Maffei L. (2003), Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF. Proc Natl Acad Sci U S A. 100(21):12486-91.

Globus A, Rosenzweig MR, Bennett EL, Diamond MC. (1973), Effects of differ-ential experience on dendritic spine counts in rat cerebral cortex. J Comp Physiol Psychol. 82(2):175-81.

Gluckman P, Klempt N, Guan J, Mallard C, Sirimanne E, Dragunow M, Klempt M, Singh K, Williams C, Nikolics K. (1992), A role for IGF-1 in the rescue of CNS neu-rons following hypoxic-ischemic injury. Biochem Biophys Res Commun. 182(2):593-9.

Goldstein LD, Reynolds CP, Perez-Polo JR. (1978), Isolation of human nerve growth factor from placental tissue. Neurochem Res. 3(2):175-83.

Gomez-Pinilla F, Dao L, So V. (1997), Physical exercise induces FGF-2 and its mRNA in the hippocampus. Brain Res. 764(1-2):1-8.

Gomez-Pinilla F, Ying Z, Roy RR, Molteni R, Edgerton VR. (2002), Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J Neu-rophysiol. 88(5):2187-95.

Gonzalez de la Vega AV, Bu˜no W, Pons S, Garcia-Calderat MS, Garcia-Galloway E, and Torres-Aleman I. (2001), Insulin-like growth factor I potentiates kainate re-ceptors through a phosphatidylinositol 3-kinase dependent pathway. Neuroreport 12:

(31)

1293-6.

Gordon JA, Stryker MP. (1996), Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse, J Neurosci. 16(10):3274-86.

Gould E, Reeves AJ, Graziano MS, Gross CG. (1999), Neurogenesis in the neo-cortex of adult primates. Science. 286(5439):548-52.

Green EJ, Greenough WT, Schlumpf BE. (1983), Effects of complex or isolated environments on cortical dendrites of middle-aged rats. Brain Res. 264(2):233-40.

Green EJ, Greenough WT. (1986), Altered synaptic transmission in dentate gyrus of rats reared in complex environments: evidence from hippocampal slices maintained in vitro. J Neurophysiol. 55(4):739-50.

Greene MW, Garofalo RS. (2002), Positive and negative regulatory role of insulin receptor substrate 1 and 2 (IRS-1 and IRS-2) serine/threonine phosphorylation. Bio-chemistry. 41(22):7082-91.

Greenough WT, Volkmar FR. (1973), Pattern of dendritic branching in occipital cortex of rats reared in complex environments. Exp Neurol. 40(2):491-504.

Greenough WT, West RW, DeVoogd TJ. (1978), Subsynaptic plate perforations: changes with age and experience in the rat. Science. 202(4372):1096-8.

Grueters A, Lakshmanan J, Tarris R, Alm J, Fisher DA. (1985), Nerve growth factor in mouse milk during early lactation: lack of dependency on submandibular salivary glands. Pediatr Res.19(9):934-7.

(32)

Gueneau G, Privat A, Drouet J, Court L. (1982), Subgranular zone of the dentate gyrus of young rabbits as a secondary matrix. A high-resolution autoradiographic study. Dev Neurosci. 5(4):345-58.

Gutierrez-Ospina G, Calikoglu AS, Ye P, D’Ercole AJ. (1996), In vivo effects of insulin-like growth factor-I on the development of sensory pathways: analysis of the primary somatic sensory cortex (S1) of transgenic mice. Endocrinology. 137(12):5484-92.

Harris KM, Kater SB. (1994), Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Annu Rev Neurosci. 17:341-71.

Haselbacher GK, Humbel RE. (1976), Stimulation of ornithine decarboxylase ac-tivity in chick fibroblasts by non-suppressible insulin-like acac-tivity (NSILA), insulin and serum. J Cell Physiol. 88(2):239-45.

Haselbacher GK, Andres RY, Humbel RE. (1980), Evidence for the synthesis of a somatomedin similar to insulin-like growth factor I by chick embryo liver cells. Eur J Biochem. 111(1):245-50.

Hebb DO. (1949), The Organisation of Behaviour. Wiley New York.

Heinrich G, Meyer TE. (1988), Nerve growth factor (NGF) is present in human placenta and semen, but undetectable in normal and Paget’s disease blood: measure-ments with an anti-mouse-NGF enzyme immunoassay using a recombinant human NGF reference. Biochem Biophys Res Commun. 155(1):482-6.

Hickey TL, Guillery RW. (1974), An autoradiographic study of retinogeniculate pathways in the cat and the fox. J Comp Neurol. 156(2):239-53.

(33)

Hicks SP, D’Amato CJ. (1968), Cell migrations to the isocortex in the rat. Anat Rec. 160(3):619-34.

Hicks TP, Dykes RW. (1983), Receptive field size for certain neurons in prima-ry somatosensoprima-ry cortex is determined by GABA-mediated intracortical inhibition. Brain Res. 274(1):160-4.

Hockfield S, McKay RD. (1985), Identification of major cell classes in the devel-oping mammalian nervous system. J Neurosci. 5(12):3310-28.

Hodge RD, D’Ercole AJ, O’Kusky JR. (2004), Insulin-like growth factor-I accel-erates the cell cycle by decreasing G1 phase length and increases cell cycle reentry in the embryonic cerebral cortex. J Neurosci. 24(45):10201-10.

Hoeflich A, Nedbal S, Blum WF, Erhard M, Lahm H, Brem G, Kolb HJ, Wanke R, Wolf E. (2001), Growth inhibition in giant growth hormone transgenic mice by overex-pression of insulin-like growth factor-binding protein-2. Endocrinology. 142(5):1889-98.

Holloway RL. (1966), Dendritic branching: some preliminary results of training and complexity in rat visual cortex. Brain Res. 2 (4): 393-6.

Hong M, Chen DC, Klein PS, Lee VM. (1997a), Lithium reduces tau phosphory-lation by inhibition of glycogen synthase kinase-3. J Biol Chem. 272(40):25326-32.

Hong M, Lee VM. (1997b), Insulin and insulin-like growth factor-1 regulate tau phosphorylation in cultured human neurons. J Biol Chem. 272(31):19547-53.

(34)

Huang ZJ, Kirkwood A, Pizzorusso T, Porciatti V, Morales B, Bear MF, Maffei L, Tonegawa S. (1999), BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell. 98(6):739-55.

Hubel DH, Wiesel TN. (1963a), Receptive fields of cells in striate cortex of very young, visually inexperienced kittens. J Neurophysiol. 26:994-1002.

Hubel DH, Wiesel TN. (1963b), Shape and arrangement of columns in cat’s striate cortex, J Physiol. 165:559-68.

Hubel DH, Wiesel TN. (1970), The period of susceptibility to the physiological effects of unilateral eye closure in kittens. J Physiol. 206(2):419-36.

Hubel DH, Wiesel TN, LeVay S. (1977), Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci. 278(961):377-409.

Humbel RE, Bunzli H, Mully K, Oelz O, Froesch ER, Ritschard WJ., (1970), ’Proceedings of the VII Congress of the International Diabetes Federation, Buenos Aires’, Excerpta Med Int Congr Ser. 231:306-17.

Hynes MA, Van Wyk JJ, Brooks PJ, D’Ercole AJ, Jansen M, Lund PK. (1987), Growth hormone dependence of somatomedin-C/like growth factor-I and insulin-like growth factor-II messenger ribonucleic acids. Mol Endocrinol. 1(3):233-42.

Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC. (2000), Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol. 164(1):45-52.

(35)

Ide K, Secher NH. (2000), Cerebral blood flow and metabolism during exercise. Prog Neurobiol. 61:397-414.

Impey S, Mark M, Villacres EC, Poser S, Chavkin C, Storm DR. (1996), Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron. 16(5):973-82.

Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR. (1998a), Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron. 21(4):869-83.

Impey S, Smith DM, Obrietan K, Donahue R, Wade C, Storm DR. (1998b), Stim-ulation of cAMP response element (CRE)-mediated transcription during contextual learning. Nat Neurosci. 1(7):595-601.

Ip NY, Li Y, Yancopoulos GD, Lindsay RM. (1993), Cultured hippocampal neu-rons show responses to BDNF, NT-3, and NT-4, but not NGF. J Neurosci. 13(8):3394-405.

Isaacs KR, Anderson BJ, Alcantara AA, Black JE, Greenough WT. (1992), Ex-ercise and the brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill learning. J Cereb Blood Flow Metab. 12(1):110-9.

Isgor C, Slomianka L, Watson SJ. (2004), Hippocampal mossy fibre terminal field size is differentially affected in a rat model of risk-taking behaviour, Behav Brain Res. 153(1):7-14.

Jain S, Golde DW, Bailey R, Geffner ME. (1998), Insulin-like growth factor-I resistance. Endocr Rev. 19(5):625-46.

(36)

Johnson RA, Rhodes JS, Jeffrey SL, Garland T Jr, Mitchell GS. (2003), Hip-pocampal brain-derived neurotrophic factor but not neurotrophin-3 increases more in mice selected for increased voluntary wheel running. Neuroscience. 121(1):1-7.

Jones JI, Clemmons DR. (1995), Insulin-like growth factors and their binding proteins: biological actions. Endocr Rev. 16(1):3-34.

Juraska JM, Greenough WT, Elliott C, Mack KJ, Berkowitz R. (1980), Plasticity in adult rat visual cortex: an examination of several cell populations after differential rearing. Behav Neural Biol. 29(2):157-67.

Kandel ER, Schwarz JH, Jessell TM. (2000), Principi di Neuroscienze. Casa Editrice Ambrosiana Milano.

Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I. (1999), Translo-cation of a calcium-permeable Translo-cation channel induced by insulin-like growth factor-I. Nat Cell Biol. 1(3):165-70.

Kato H, Araki T, Chen T, Itoyama Y, Kogure K. (1998), Effect of rolipram on age-related changes in cyclic AMP-selective phosphodiesterase in the rat brain: an autoradiographic study. Methods Find Exp Clin Pharmacol. 20(5):403-8.

Katz LC, Crowley JC. (2002), Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci. 3(1):34-42.

Kazanis I, Giannakopoulou M, Philippidis H, Stylianopoulou F. (2004), Alter-ations in IGF-I, BDNF and NT-3 levels following experimental brain trauma and the effect of IGF-I administration. Exp Neurol. 186(2):221-34.

(37)

Kelsch W, Hormuzdi S, Straube E, Lewen A, Monyer H, Misgeld U. (2001), Insulin-like growth factor 1 and a cytosolic tyrosine kinase activate chloride outward transport during maturation of hippocampal neurons. J Neurosci. 21(21):8339-47.

Kempermann G, Kuhn HG, Gage FH. (1997), More hippocampal neurons in adult mice living in an enriched environment. Nature. 386(6624):493-5.

Kempermann G, Gast D, Gage FH. (2002), Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrich-ment. Ann Neurol. 52(2):135-43.

Keyvani K, Sachser N, Witte OW, Paulus W. (2004), Gene expression profiling in the intact and injured brain following environmental enrichment. J Neuropathol Exp Neurol. 63(6):598-609.

Kirkwood A, Lee HK, Bear MF. (1995), Co-regulation of long-term potentiation and experience-dependent synaptic plasticity in visual cortex by age and experience. Nature. 375(6529):328-31.

Klintsova AY, Cowell RM, Swain RA, Napper RM, Goodlett CR, Greenough WT. (1998), Therapeutic effects of complex motor training on motor performance deficits induced by neonatal binge-like alcohol exposure in rats. I. Behavioral results. Brain Res. 800:48-61.

Klintsova AY, Dickson E, Yoshida R, Greenough WT. (2004), Altered expression of BDNF and its high-affinity receptor TrkB in response to complex motor learning and moderate exercise. Brain Res. 1028(1):92-104.

(38)

Kohl Z, Kuhn HG, Cooper-Kuhn CM, Winkler J, Aigner L, Kempermann G. (2002), Preweaning enrichment has no lasting effects on adult hippocampal neuroge-nesis in four-month-old mice. Genes Brain Behav. 1(1):46-54.

Kohn AD, Summers SA, Birnbaum MJ, Roth RA. (1996), Expression of a consti-tutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem. 271(49):31372-8.

Koo JW, Park CH, Choi SH, Kim NJ, Kim HS, Choe JC, Suh YH. (2003), The postnatal environment can counteract prenatal effects on cognitive ability, cell prolif-eration, and synaptic protein expression. FASEB J. 17(11):1556-8.

Kramer AF, Hahn S, Cohen NJ, Banich MT, McAuley E, Harrison CR, Chason J, Vakil E, Bardell L, Boileau RA, Colcombe A. (1999), Ageing, fitness and neurocog-nitive function. Nature. 400(6743):418-9.

Krubitzer L, Kahn DM. (2003), Nature versus nurture revisited: an old idea with a new twist. Prog Neurobiol. 70(1):33-52.

Kuhn HG, Dickinson-Anson H, Gage FH. (1996), Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci. 16(6):2027-33.

Larsen JO, Skalicky M, Viidik A. (2000), Does long-term physical exercise coun-teract age-related purkinje cell loss? A stereological study of rat cerebellum. J Comp Neurol. 428:213-22.

Larsson F, Winblad B, Mohammed AH. (2002), Psychological stress and environ-mental adaptation in enriched vs. impoverished housed rats. Pharmacol Biochem

(39)

Behav. 73(1):193-207.

Lee WH, Javedan S, Bondy CA. (1992), Coordinate expression of insulin-like growth factor system components by neurons and neuroglia during retinal and cere-bellar development. J Neurosci. 12(12):4737-44.

Lee WH, Michels KM, Bondy CA. (1993), Localization of insulin-like growth factor binding protein-2 messenger RNA during postnatal brain development: correlation with insulin-like growth factors I and II. Neuroscience. 53(1):251-65.

Legrand J. (1980), Effect of thyroid hormone on brain development, with partic-ular emphasis on glial cells and myelination. Dev Neurosci. 9:279-92.

Lenoir D, Honegger P. (1983), Insulin-like growth factor I (IGF I) stimulates DNA synthesis in fetal rat brain cell cultures. Brain Res. 283(2-3):205-13.

LeRoith D, Werner H, Neuenschwander S, Kalebic T, Helman LJ. (1995), The role of the insulin-like growth factor-I receptor in cancer. Ann N Y Acad Sci. 766:402-8.

Lesort M, Johnson GV. (2000), Insulin-like growth factor-1 and insulin mediate transient site-selective increases in tau phosphorylation in primary cortical neurons. Neuroscience. 99(2):305-16.

LeVay S, Stryker MP, Shatz CJ. (1978), Ocular dominance columns and their development in layer IV of the cat’s visual cortex: a quantitative study. J Comp Neurol. 179(1):223-44.

(40)

LeVay S, Wiesel TN, Hubel DH. (1980), The development of ocular dominance columns in normal and visually deprived monkeys. J Comp Neurol. 191(1):1-51.

Levinovitz A, Norstedt G. (1989), Developmental and steroid hormonal regulation of insulin-like growth factor II expression. Mol Endocrinol. 3(5):797-804.

Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY. (2000), Polyglutamine expan-sion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci. 3:157-163.

Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A. (1993), Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell. 75(1):59-72.

Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma S, Pearson D, Plotsky PM, Meaney MJ. (1997), Maternal care, hippocampal gluco-corticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science. 277(5332):1659-62.

Liu D, Diorio J, Day JC, Francis DD, Meaney MJ. (2000), Maternal care, hip-pocampal synaptogenesis and cognitive development in rats. Nat Neurosci. 3(8):799-806.

Lobie PE, Garcia-Aragon J, Lincoln DT, Barnard R, Wilcox JN, Waters MJ. (1993), Localization and ontogeny of growth hormone receptor gene expression in the central nervous system. Brain Res Dev Brain Res. 74(2):225-33.

Lodovichi C, Berardi N, Pizzorusso T, Maffei L. (2000), Effects of neurotrophins on cortical plasticity: same or different? J Neurosci. 20(6):2155-65.

(41)

Lowe WL Jr, Adamo M, Werner H, Roberts CT Jr, LeRoith D. (1989), Regula-tion by fasting of rat insulin-like growth factor I and its receptor. Effects on gene expression and binding. J Clin Invest. 84(2):619-26.

Lupien SJ, Fiocco A, Wan N, Maheu F, Lord C, Schramek T, Tu MT. (2005), Stress hormones and human memory function across the lifespan. Psychoneuroen-docrinology. 30(3):225-42.

Ma J, Yang SX, Ho GJ, Festoff BW. (1994a), Insulin-like growth factor binding protein-1 is pre-synaptic at mouse neuromuscular synapses and is transported in nerve. Neurochem Res. 19(11):1363-8.

Ma J, Yang SX, Ho GJ, Festoff BW. (1994b), Insulin-like growth factor binding protein-1 at mouse neuromuscular synapses. Synapse. 17(4):225-9.

MacGrogan D, Saint-Andre JP, Dicou E. (1992), Expression of nerve growth factor and nerve growth factor receptor genes in human tissues and in prostatic adenocar-cinoma cell lines. J Neurochem. 59(4):1381-91.

Maffei L, Galli-Resta L. (1990), Correlation in the discharges of neighbouring rat retinal ganglion cells during prenatal life. Proc Natl Acad Sci USA. 87(7):2861-4.

Maffei L, Berardi N, Domenici L, Parisi V, Pizzorusso T. (1992), Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats. J Neurosci. 12(12):4651-62.

Man YH, Lin JW, Ju WH, Ahmadian G, Liu L, Becker LE, Sheng M, and Wang YT. (2000), Regulation of AMPA receptor-mediated synaptic transmission by

(42)

clathrin-dependent receptor internalization. Neuron. 25:649-62.

Markowska AL, Mooney M, Sonntag WE. (1998), Insulin-like growth factor-1 ameliorates age-related behavioral deficits. Neuroscience. 87:559-569.

Marty S, Carroll P, Cellerino A, Castren E, Staiger V, Thoenen H, Lindholm D. (1996), Brain-derived neurotrophic factor promotes the differentiation of various hip-pocampal nonpyramidal neurons, including Cajal-Retzius cells, in organotypic slice cultures. J Neurosci. 16(2):675-87.

Marty S, Berzaghi MdaP, Berninger B. (1997), Neurotrophins and activity-dependent plasticity of cortical interneurons. Trends Neurosci. 20(5):198-202.

Mason JL, Ye P, Suzuki K, D’Ercole AJ, Matsushima GK. (2000), Insulin-like growth factor-1 inhibits mature oligodendrocyte apoptosis during primary demyeli-nation. J Neurosci. 20(15):5703-8.

Massague J, Czech MP. (1982), The subunit structures of two distinct receptors for insulin-like growth factors I and II and their relationship to the insulin receptor. J Biol Chem. 257(9):5038-45.

Mathews LS, Hammer RE, Behringer RR, D’Ercole AJ, Bell GI, Brinster RL, Palmiter RD. (1988), Growth enhancement of transgenic mice expressing human insulin-like growth factor I. Endocrinology. 123(6):2827-33.

Matsuda M, Katoh-Semba R, Kitani H, Tomooka Y. (1996), A possible role of the nestin protein in the developing central nervous system in rat embryos. Brain Res. 723(1-2):177-89.

(43)

Mattson MP. (2000), Neuroprotective signaling and the aging brain: take away my food and let me run. Brain Res. 886:47-53.

Maurer D, Lewis TL, Brent HP. (1983), Peripheral vision and optokinetic nystag-mus in children with unilateral congenital cataract. Behav Brain Res. 10(1):151-61.

McMorris FA, Smith TM, DeSalvo S, Furlanetto RW. (1986), Insulin-like growth factor I/somatomedin C: a potent inducer of oligodendrocyte development. Proc Natl Acad Sci U S A. 83(3):822-6.

McMorris FA, Dubois-Dalcq M. (1988), Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro. J Neurosci Res. 21(2-4):199-209.

McMorris FA, Mozell RL, Carson MJ, Shinar Y, Meyer RD, Marchetti N. (1993), Regulation of oligodendrocyte development and central nervous system myelination by insulin-like growth factors. Ann N Y Acad Sci. 692:321-34.

Meister M, Wong RO, Baylor DA, Shatz CJ. (1991), Synchronous bursts of action potentials in ganglion cells of the developing mammalian retina. Science. 252(5008):939-43.

Mitchell DE, Giffin F, Wilkinson F, Anderson P, Smith ML. (1976), Visual reso-lution in young kittens. Vision Research. 4:363-6.

Mollgaard K, Diamond MC, Bennett EL, Rosenzweig MR, Lindner B. (1971), Quantitative synaptic changes with differential experience in rat brain. Int J Neurosci. 2(3):113-27.

(44)

Moncek F, Duncko R, Johansson BB, Jezova D. (2004), Effect of environmental enrichment on stress related systems in rats. J Neuroendocrinol. 16(5):423-31.

Morell B, Froesch ER. (1973), Fibroblasts as an experimental tool in metabolic and hormone studies. II. Effects of insulin and nonsuppressible insulin-like activity (NSILA-S) on fibroblasts in culture. Eur J Clin Invest. 3(2):119-23.

Morgan DO, Jarnagin K, Roth RA. (1986), Purification and characterization of the receptor for insulin-like growth factor I. Biochemistry. 25(19):5560-4.

Mower GD. (1991), The effect of dark rearing on the time course of the critical period in cat visual cortex. Brain Res Dev Brain Res. 58(2):151-8.

Murphy LJ, Barron D, Seneviratne C. (1993), Hormonal regulation of insulin-like growth factor binding protein-1 expression and the development of transgenic mouse models to study IGFBP-1 function. Adv Exp Med Biol. 343:279-91.

Murphy LJ, Molnar P, Lu X, Huang H. (1995), Expression of human insulin-like growth factor-binding protein-3 in transgenic mice. J Mol Endocrinol. 15(3):293-303.

Naka F, Shiga T, Yaguchi M, Okado N. (2002), An enriched environment increases noradrenaline concentration in the mouse brain. Brain Res. 924(1):124-6.

Nataf V, Monier S. (1992), Effect of insulin and insulin-like growth factor I on the expression of the catecholaminergic phenotype by neural crest cells. Brain Res Dev Brain Res. 69(1):59-66.

Nawa H, Pelleymounter MA, Carnahan J. (1994), Intraventricular administra-tion of BDNF increases neuropeptide expression in newborn rat brain. J Neurosci.

(45)

14(6):3751-65.

Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW. (1995), Exercise and brain neurotrophins. Nature. 373(6510):109.

Neeper SA, Gomez-Pinilla F, Choi J, Cotman CW. (1996), Physical activity in-creases mRNA for brain-derived neurotrophic factor and nerve growth factor in rat brain. Brain Res. 726(1-2):49-56.

Neff NT, Prevette D, Houenou LJ, Lewis ME, Glicksman MA, Yin QW, Oppen-heim RW. (1993), Insulin-like growth factors: putative muscle-derived trophic agents that promote motoneuron survival. J Neurobiol. 24(12):1578-88.

Ni W, Rajkumar K, Nagy JI, Murphy LJ. (1997), Impaired brain development and reduced astrocyte response to injury in transgenic mice expressing IGF binding protein-1. Brain Res. 769(1):97-107.

Nieto-Bona MP, Busiguina S, Torres-Aleman I. (1995), Insulin-like growth factor I is an afferent trophic signal that modulates calbindin-28kD in adult Purkinje cells. J Neurosci Res 42:371-6.

Nilsson M, Perfilieva E, Johansson U, Orwar O, Eriksson PS. (1999), Enriched environment increases neurogenesis in the adult rat dentate gyrus and improves spa-tial memory. J Neurobiol. 39(4):569-78.

Nunez A, Carro E, Torres-Aleman I. (2003), Insulin-like growth factor I modifies electrophysiological properties of rat brain stem neurons. J Neurophysiol. 89(6):3008-17.

(46)

Ocrant I, Valentino KL, Eng LF, Hintz RL, Wilson DM, Rosenfeld RG. (1988), Structural and immunohistochemical characterization of insulin-like growth factor I and II receptors in the murine central nervous system. Endocrinology. 123(2):1023-34.

Odom JV. (1983), Effects of visual deprivation on monocular acuities of humans and animals. Am J Optom Physiol Opt. 60(6):472-80.

O’Kusky JR, Ye P, D’Ercole AJ. (2000), Insulin-like growth factor-I promotes neurogenesis and synaptogenesis in the hippocampal dentate gyrus during postnatal development. J Neurosci. 20(22):8435-42.

Olanrewaju HA, Sanzenbacher ED, Seidel ER. (1996), Insulin-like growth factor I in suckling rat gastric contents. Dig Dis Sci. 41(7):1392-7.

Oliff HS, Berchtold NC, Isackson P, Cotman CW. (1998), Exercise-induced regula-tion of brain-derived neurotrophic factor (BDNF) transcripts in the rat hippocampus. Brain Res Mol Brain Res. 61(1-2):147-53.

Pahlman S, Meyerson G, Lindgren E, Schalling M, Johansson I. (1991), Insulin-like growth factor I shifts from promoting cell division to potentiating maturation during neuronal differentiation. Proc Natl Acad Sci U S A. 88(22):9994-8.

Parnavelas JG, Burne RA, Lin CS. (1981), Receptive field properties of neurons in the visual cortex of the rat. Neurosci Lett. 27(3):291-6.

Pascual R, Figueroa H. (1996), Effects of preweaning sensorimotor stimulation on behavioral and neuronal development in motor and visual cortex of the rat. Biol

Riferimenti

Documenti correlati

The more innocuous Drosophila melanogaster lay eggs in fermented fruits and larvae develop in a crowded environment characterized by accumulation of nitrogenous

Li S., “Does Mandatory Adoption of International Financial Reporting Standards in the European Union Reduce the Cost of Equity Capital?”, in The Accounting Review,

Viswanathan, participants at the 2008 National Bureau of Economic Research Market Microstructure meeting, the 2009 Financial Intermediation Research Society Conference, the 2009

Art. I minori stranieri non accompagnati sono titolari dei diritti in materia di protezione dei minori a parità di trattamento con i minori di cittadinanza italiana o dell'Unione

In tal caso, ripetendo l'analisi della funzione del benessere nell'equilibrio di separazione nell'ipotesi che il valore atteso della funzione di distribuzione delle congetture a

Breast fed and formula fed infants at age of 6 months were compared in concern of insulin-like growth factor (IGF) axis: total and free IGF were significantly increased in formula

Indeed, protein tyrosine phosphatase-IB (FTP-IB) has been shown to regulate GH signaling by reducing JAK2 phosphorylation, and this may be an important mechanism of limiting

IGF-I binding to IGFIR increases the levels of inositol lipid mediators, activates the Raf/MAPK cascade, and induces the expression of the transcription factor AP-1 and