• Non ci sono risultati.

Search for heavy neutrinos and WR bosons with right-handed couplings in a left-right symmetric model in pp collisions at √s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for heavy neutrinos and WR bosons with right-handed couplings in a left-right symmetric model in pp collisions at √s=7 TeV"

Copied!
16
0
0

Testo completo

(1)

Search for Heavy Neutrinos and

W

R

Bosons with Right-Handed Couplings

in a Left-Right Symmetric Model in

pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 8 October 2012; published 27 December 2012)

Results are presented from a search for heavy, right-handed muon neutrinos, N, and right-handed WR

bosons, which arise in the left-right symmetric extensions of the standard model. The analysis is based on a5:0 fb1sample of proton-proton collisions at a center-of-mass energy of 7 TeV, collected by the CMS detector at the Large Hadron Collider. No evidence is observed for an excess of events over the standard model expectation. For models with exact left-right symmetry, heavy right-handed neutrinos are excluded at 95% confidence level for a range of neutrino masses below the WRmass, dependent on the value of

MWR. The excluded region in the two-dimensional (MWR, MN) mass plane extends to MWR¼ 2:5 TeV.

DOI:10.1103/PhysRevLett.109.261802 PACS numbers: 13.85.Rm, 12.60.Cn, 14.60.St

The maximal violation of parity conservation is a promi-nent feature of neutrino interactions that is included in the standard model (SM) in terms of purely left-handed couplings to the W boson. In addition, the observation of neutrino oscillations (see e.g. [1]), together with direct limits on neutrino masses [2], has demonstrated that neu-trinos have tiny but nonvanishing masses, suggesting a distinct origin from the masses of the quarks and leptons.

The left-right (LR) symmetric extension of the standard model [3–6] provides a possible explanation for neutrino mass through the seesaw mechanism [7]. The LR symmetry is spontaneously broken at a multi-TeV mass scale, leading to parity violation in weak interactions as described by the SM. By introducing a right-handed SU(2) symmetry group, the LR model incorporates heavy right-handed Majorana neutrinos (N, ‘¼ e, , ) as well as additional charged (WR) and neutral (ZR) gauge bosons.

We search for the production of WRbosons from proton-proton collisions at the Large Hadron Collider (LHC). The WR boson is assumed to decay to a muon and to a right-handed neutrino N, which subsequently decays to produce a second muon together with a virtual WR. If the N is a Majorana particle as predicted in the LR model, the two final state muons may have the same sign. The virtual WR decays to a pair of quarks which hadronize into jets (j), resulting in a final state with two muons and two jets,

WR! 1N ! 12WR ! 12qq0 ! 12j1j2: The search presented in this Letter is characterized by the WRand N masses, MWRand MN, which are allowed to vary independently. Although MN> MWRis allowed, it

is not considered in this analysis. The branching fraction for WR ! N depends on the number of heavy neutrino flavors that are accessible at LHC energies. To simplify the interpretation of the results, N is assumed to be the only heavy neutrino flavor light enough to contribute signifi-cantly to the WR decay width. CMS recently performed a search for heavy Majorana neutrinos in the final state containing two jets and two same-sign electrons or muons and set limits on the coupling between such a neutrino and the left-handed W of the SM as a function of MN [8],

while this analysis considers on-shell production of a right-handed WRboson. No charge requirements are imposed on the final state muons in this analysis.

For given WRand Nmasses, the signal cross section can be predicted from the assumed value of the coupling constant gR, which denotes the strength of the gauge interactions of WR bosons. Strict left-right symmetry implies that gR is equal to the (left-handed) weak interaction coupling strength gL at MWR, which will be assumed throughout this Letter.

Consequently, the WRproduction cross section can be calcu-lated by the FEWZ program [9] using the left-handed W0 model [10,11]. As an additional simplification, the left-right boson and lepton mixing angles are assumed to be small.

Estimates based on KL-KS mixing results imply a theo-retical lower limit of MWR * 2:5 TeV [12,13]. Searches for

WR! tb decays at the Tevatron [14–16] and at the LHC [17,18] exclude WR masses below 1.85 TeV. An ATLAS search for WR! ‘N‘ using similar model assumptions as those in this Letter, but allowing WR decays to both Ne and N, excluded a region in the two-dimensional parameter (MWR, MN‘) space extending to nearly MWR ¼ 2:5 TeV [19].

The analysis is based on a 5:0 fb1 sample of proton-proton collision data at a center-of-mass energy of 7 TeV, collected by the Compact Muon Solenoid (CMS) detector [20] at the LHC. The central feature of the CMS apparatus is a superconducting solenoid, of 6 m internal diameter, providing a field of 3.8 T. Within the field volume are the *Full author list given at the end of the article.

Published by the American Physical Society under the terms of

the Creative Commons Attribution 3.0 License. Further

distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

silicon pixel and strip trackers, the lead-tungstate crystal electromagnetic calorimeter, and the brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel return yoke, with detection planes made of three technologies: drift tubes, cathode strip chambers, and resistive plate chambers. The CMS trigger system, composed of custom hardware processors at the first level followed by a processor farm at the next level, selects Oð100 HzÞ of the most interesting events. The events used in this analysis were collected with single-muon triggers whose pTthresholds ranged from 24 GeV to 40 GeV, depending on the instantaneous luminosity.

The WR! N signal samples are generated using

PYTHIA6.4.24 [21], which includes the LR symmetric model with the standard assumptions mentioned previously, with CTEQ6L1 parton distribution functions [22]. We also study SM background processes using simulated samples: tt and single-top (both generated usingPOWHEG[23]), W and Drell-Yan production in association with jets (SHERPA[24]), and diboson production (PYTHIA). Generated events pass through the full CMS detector simulation based onGEANT[25].

The muon identification strategy is based on both the muon detectors and the inner tracker, described in Ref. [26]. At least one of the two muons used to define the WRcandidate is required to be matched to a muon candidate found by the trigger, and both muons are required to satisfy the tight identification criteria discussed in Ref. [27]. The muon identification requirements ensure good consistency between the measurements of the muon detector and the inner tracker, and suppress muons from decay-in-flight of hadrons as well as from shower punch-through. Nonisolated muon backgrounds are controlled by computing the sum of the transverse momentum of tracks within a cone about the muon direction ofR < 0:3, with R ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2, given the azimuthal angle  and ¼  ln½tanð=2Þ, where  is the polar angle with respect to the beam direction. The final pTsum must be less than 10% of the muon transverse momentum.

Jets are reconstructed by forming clusters of charged and neutral hadrons, photons, and leptons that are first recon-structed based on the CMS particle-flow technique [28], using the anti-kT clustering algorithm [29] with a radius

parameter R¼ 0:5. Energy deposits in the calorimeter with characteristics that match those of noise or beam halo tracks are identified, and events are rejected if either of the two highest-pT jet candidates was produced by such energy deposits. To suppress backgrounds from heavy-flavor-quark decays, any muon is rejected if found near a jet, with Rð; jÞ < 0:5.

In approximately 95% of simulated signal event samples, the WRfinal state decay products are the highest pTmuons and jets in the event. WR ! N candidates are thus formed from the two highest-pT muons and the two highest-pTjets in the event. As the initial two-body decay WR! N tends to produce a high-momentum muon, events are selected in which the leading muon has pT> 60 GeV and the subleading muon has pT> 30 GeV. A minimum transverse momentum requirement of 40 GeV is imposed on the jet candidates after correcting for the effects of the extra pp collisions in the event and the jet energy response of the detector. Backgrounds are suppressed by requiring the invariant mass of the dimuon system M> 200 GeV and the four-object mass Mjj> 600 GeV.

The signal acceptance is found to be typically near 80% at MN MWR=2 and decreases rapidly for MN &

0:10MWR. At low neutrino mass, the N! jj decay

products tend to overlap due to the boost from WRdecay, and the two jets may not be distinguishable or the muon from N decay may be too close to a jet. For WR signal events which meet the kinematic acceptance requirements, the efficiency to reconstruct the four high-pTobjects using the CMS detector ranges between 75% and 80% as a function of WR and N mass.

After the muon requirements are applied, the SM back-grounds for WR! N consist primarily of events from processes with two isolated high-pT muons, namely tt ! bW þ bWand Zþ jets processes. The impact of the selec-tion criteria on background processes is shown in TableI.

The tt background contribution is estimated using a control sample of ejj events reconstructed in data and simulation. This sample is dominated by tt events, with small contributions from other SM processes esti-mated using simulation. The simulated tt background TABLE I. The total number of events reconstructed in data, and the expected contributions from signal and background (bkgd) samples, after different stages of the selection requirements are applied. The first selection given below requires two muons with pT> 30 GeV and two jets with pT> 40 GeV meeting all requirements described in the text. The ‘‘Signal’’ column indicates the

expected contribution for MWR¼ 1800 GeV, with MN ¼ 1000 GeV. The uncertainties for the background expectation are derived for the final stage of selection and more details are given in the text. The yields from earlier stages of the selection have greater relative uncertainty than that for the full selection.

Selection stage Data Signal Total bkgd tt Z þ jets Other

Two muons, two jets 21 769 50 21 061 1603 19 136 322

1pT> 60 GeV 13 328 50 12 862 1106 11 531 225

M> 200 GeV 365 48 341 211 116 14

(3)

contribution is scaled to data using events satisfying Me> 200 GeV, which is equivalent to the third selection stage in Table I. The scale factor for the simulated tt sample, relative to the tt cross section measured by CMS [30], is 0:97  0:06. The uncertainty on this scale factor reflects the number of events in data with Me> 200 GeV. Applying this scale factor to the tt simulation, the Mejj distributions in data and simulation are found to be in agreement. This scale factor is applied to the simulated tt event sample at all stages of selection in order to estimate the expected number of pp! tt þ X events that survive successive selection criteria.

The Zþ jets background contribution is estimated from Z !  decays reconstructed in simulation and data. The simulated Zþ jets background contribution is normalized to data using events in the dimuon mass region60 GeV < M< 120 GeV after requiring 1pT> 60 GeV as indi-cated in Table I. Accounting for other SM background processes, the simulated Zþ jets scale factor is 1:43  0:01 relative to inclusive next-to-next-to-leading order cal-culations. The uncertainty on this value reflects the number of events from data with 60 GeV < M< 120 GeV. After rescaling the Zþ jets simulation, the shape of the Mdistribution for data is in agreement with simulation for M> 60 GeV.

After all selection criteria are applied, the tt and Z þ jets processes dominate the total SM background contribution. Other SM processes, mostly diboson and single top, comprise less than 5% of the total background and their contributions are estimated from simulation. Background from Wþ jets processes, also estimated from simulation, is negligible. The background contribution from multijet processes is estimated using control samples from data and is roughly 0.1% of the total SM background after all selection requirements are applied.

The observed and expected number of events surviving the selections are summarized in TableI. The yields reflect the number of background events surviving each selection stage, with normalization factors obtained from control sample studies (tt, Z þ jets, and multijet processes) or taken directly from simulation. The data are found to be in agreement with SM expectations.

The reconstructed four-object mass in data and simula-tion is used to estimate limits on WRproduction. The Mjj distribution for WR! jj signal events, for each WR mass assumption, is included together with the SM background distributions to search for evidence of WR production.

The dominant uncertainty related to WR! N tion arises from the variation in the predicted signal produc-tion cross secproduc-tion as a result of the uncertainties in the parton distribution functions (PDFs) of the proton. This uncertainty varies between 4% and 22%, depending on the WR mass hypothesis, following the PDF4LHC prescriptions [31] for the CT10 [32] and MSTW2008 [33] PDF sets.

The uncertainties associated with muon reconstruction and identification are determined from Z! þevents reconstructed in both data and simulation. The size of this uncertainty is about 15% for signal and 5% for background processes.

The shape of each SM background Mjjdistribution is modeled by an exponential (eaþbMjj) line shape, and the

background contributions as a function of mass are deter-mined from the result of fits applied to each background type: tt, Z þ jets, and other SM backgrounds. The back-ground uncertainty is dominated by the uncertainty in the background modeling and is computed as a function of jj mass.

The uncertainty in the exponential fit is taken as the uncertainty due to background modeling. Each background distribution is also fit with an alternative suite of exponen-tial functions to allow for deviations from the assumed shape at high mass. For a given Mjj range, we take the maximum of the deviation, relative to the nominal expo-nential fit, from any alternative fit result as the uncertainty due to background modeling if this deviation exceeds the nominal fit uncertainty.

Uncertainties in the jet energy scale and resolution impact the shape of the signal and background Mjj distributions, contributing less than 10% to the signal and background uncertainties. The normalization of the various background samples contributes 5% to the total uncer-tainty. Muon resolution and trigger efficiency uncertain-ties, and additional factorization and scale theoretical uncertainties, contribute to the total uncertainty to a lesser extent. The uncertainties in the total number of background events are derived taking into account the relative contri-bution of all background events after the full event selec-tion, and the correlation of each effect between all background processes.

The total uncertainty for signal and background is sum-marized in TableI. The Mjjdistribution for events with M> 200 GeV is presented in Fig.1, which also sum-marizes the background uncertainty as a function of Mjj and demonstrates the dominant background model uncer-tainty relative to the total background unceruncer-tainty.

As no evidence for WR! Ndecay is found, limits on WR production are estimated using a multibin technique based on the ROOSTATS package [34]. The bin width of

200 GeV, comparable to the mass resolution for a recon-structed WRboson with mass below 2.5 TeV, is chosen for the Mjj distributions used to compute the limits. The background inputs to the limit calculation use the results of the exponential fit, while the signal input is taken directly from the Mjj distribution for each signal WR mass assumption. Uncertainties are included as nuisance pa-rameters in the limit calculations. A CLS limit setting technique [35,36] is used to estimate the 95% confidence level (CL) excluded region as a function of the WR cross section multiplied by the WR! jj branching fraction

(4)

and WRmass. The observed and expected limits are found to be in agreement. These results (available in tabular form in the Supplemental Material [37]) can be used for the evaluation of models other than those considered in this Letter.

Limits as a function of WR mass for a right-handed neutrino with MN ¼12MWR are presented in Fig. 2. The

theoretical expectation in Fig.2assumes that only N con-tributes to the WR decay width, as mentioned previously. Assuming degenerate N‘ (‘¼ e, , ) masses allows WR ! eNe and WR ! N decays in addition to WR ! qq and WR ! N and effectively decreases the expected WR ! jj production rate by approximately 15%.

For the model considered in this Letter, Fig.3indicates the range of excluded Nmasses as a function of WRmass by comparing the observed (expected) upper limit and the predicted cross section for each mass point. These limits extend to MWR ¼ 2:5 TeV, and exclude a wide range of

heavy neutrino masses for WR mass assumptions below this maximal value.

In summary, we have presented a search for the right-handed heavy muon neutrinos (N) and bosons (WR) of the

left-right symmetric extension of the standard model. We find that our data sample is in agreement with expectations from standard model processes and therefore set a limit on the WR and N masses. For models with exact left-right sym-metry (the same coupling to the right-handed and left-handed sectors), we exclude heavy right-handed neutrinos for a range of MN< MWR, dependent on the value of MWR. For these

models, the excluded region in the two-dimensional pa-rameter space (MWR, MN) extends to MWR ¼ 2:5 TeV.

Events / 200 GeV 1 10 2 10 Data (365 events) (211) t t Z+Jets (116) Other (14) = 1.8 TeV (48) R W M -1 = 7 TeV 5.0 fb s CMS [GeV] jj µ µ M 0 500 1000 1500 2000 2500 Data/SM 0 2

FIG. 1 (color online). Distribution of the invariant mass Mjj

for events in data (points with error bars) with M> 200 GeV

and for simulated background contributions (hatched stacked histograms). The signal mass point MWR¼ 1800 GeV, MN ¼ 1000 GeV, is included for comparison (open red histogram). The number of events from each background process (and the expected number of signal events) is included in parentheses in the legend. The data are compared to SM expectations in the lower portion of the figure. The total background uncertainty (outer band) and the background uncertainty after neglecting the uncertainty due to background modeling (inner band) are included as a function of Mjjfor Mjj> 600 GeV.

[GeV] R W M 1000 1500 2000 2500 jj) [fb]µ µ → R BR(W× ) R W → (ppσ 1 10 2 10 /2 R W = M µ N M -1 = 7 TeV 5.0 fb s CMS Method 95% CL S CL Observed Limit Expected Limit σ 1 ± Expected σ 2 ± Expected ) L = g R Theory (g

FIG. 2 (color online). The 95% confidence level exclusion limit on the WRproduction cross section times branching

frac-tion for WR! jj as a function of MWR for MN ¼12MWR. This limit is compared to expectations given the theoretical model described in the text.

[GeV] R W M 1000 1500 2000 2500 [GeV] µ N M 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Observed Limit Expected Limit R W > M µ N M Excluded by T e vatron -1 = 7 TeV 5.0 fb s CMS

FIG. 3 (color online). The 95% confidence level exclusion region in the (MWR, MN) plane, assuming the model described in the text. The Tevatron exclusion region for WR production

(5)

These results represent the most sensitive limits to date on WR production assuming a single heavy neutrino flavor contributes significantly to the WRdecay width.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge support from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).

[1] C. Giunti and M. Laveder,arXiv:hep-ph/0310238v2. [2] J. Beringer et al. (Particle Data Group),Phys. Rev. D 86,

010001 (2012).

[3] J. C. Pati and A. Salam,Phys. Rev. D 10, 275 (1974). [4] R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 2558

(1975).

[5] G. Senjanovic and R. N. Mohapatra, Phys. Rev. D 12,

1502 (1975).

[6] W.-Y. Keung and G. Senjanovic,Phys. Rev. Lett. 50, 1427

(1983).

[7] R. N. Mohapatra and G. Senjanovic,Phys. Rev. Lett. 44,

912 (1980).

[8] S. Chatrchyan et al. (CMS Collaboration),Phys. Lett. B

717, 109 (2012).

[9] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush,Comput.

Phys. Commun. 182, 2388 (2011).

[10] R. Hamburg, W. van Neerven, and T. Matsuura, Nucl.

Phys. B359, 343 (1991).

[11] R. Hamburg, W. van Neerven, and T. Matsuura, Nucl.

Phys. B644, 403 (2002).

[12] G. Beall, M. Bander, and A. Soni,Phys. Rev. Lett. 48, 848

(1982).

[13] A. Maiezza, M. Nemevsek, F. Nesti, and G. Senjanovic,

Phys. Rev. D 82, 055022 (2010).

[14] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett.

100, 211803 (2008).

[15] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett.

103, 041801 (2009).

[16] V. M. Abazov et al. (D0 Collaboration),Phys. Lett. B 699,

145 (2011).

[17] G. Aad et al. (ATLAS Collaboration), Phys. Rev. Lett.

109, 081801 (2012).

[18] S. Chatrchyan et al. (CMS Collaboration),

arXiv:1208.0956[Phys. Lett. B (to be published)].

[19] G. Aad et al. (ATLAS Collaboration),Eur. Phys. J. C 72,

2056 (2012).

[20] S. Chatrchyan et al. (CMS Collaboration), JINST 3,

S08004 (2008).

[21] T. Sjo¨strand, S. Mrenna, and P. Skands,J. High Energy

Phys. 05 (2006) 026.

[22] J. Botts, J. G. Morn, J. F. Owens, J. Qiu, W.-K. Tung, and H. Weerts,Phys. Lett. B 304, 159 (1993).

[23] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy

Phys. 06 (2010) 043.

[24] T. Gleisberg, S. Ho¨che, F. Krauss, M. Scho¨nherr, S. Schumann, F. Siegert, and J. Winter, J. High Energy

Phys. 02 (2009) 007.

[25] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[26] CMS Collaboration, CMS Report No. CMS-PAS-MUO-10-002, 2010.

[27] S. Chatrchyan et al. (CMS Collaboration),J. High Energy

Phys. 05 (2011) 093.

[28] CMS Collaboration, CMS Report No. CMS-PAS-PFT-10-002, 2010.

[29] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy

Phys. 04 (2008) 063.

[30] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. D

84, 092004 (2011).

[31] PDF4LHC Working Group,arXiv:1101.0536v1.

[32] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan,Phys. Rev. D 82, 074024 (2010). [33] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt,

Eur. Phys. J. C 64, 653 (2009).

[34] L. Moneta, K. Belasco, K. S. Cranmer, A. Lazzaro, D. Piparo, G. Schott, W. Verkerke, and M. Wolf, Proc. Sci., ACAT2010 (2010) 057 [arXiv:1009.1003].

[35] A. L. Read,J. Phys. G 28, 2693 (2002).

[36] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434,

435 (1999).

[37] See the Supplemental Material http://link.aps.org/

supplemental/10.1103/PhysRevLett.109.261802for a

tabu-lar summary of the observed and expected limits for ðpp ! WRÞ  BðWR! jjÞ as a function of MWR and MN.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

(6)

W. Waltenberger,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3M. Bansal,4S. Bansal,4 T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4

M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6T. Hreus,6

A. Le´onard,6P. E. Marage,6A. Mohammadi,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6 V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7 A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7S. Walsh,7 E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8 L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8

K. Piotrzkowski,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10 M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11

A. Custo´dio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11 H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11 A. Santoro,11L. Soares Jorge,11A. Sznajder,11A. Vilela Pereira,11T. S. Anjos,12,dC. A. Bernardes,12,dF. A. Dias,12,e T. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12

Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13 V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14 B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15 J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16 Y. Ban,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16D. Wang,16L. Zhang,16W. Zou,16C. Avila,17

J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20

J. Luetic,20D. Mekterovic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21J. Mousa,21 C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,i A. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Raidal,24 L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26

R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26 T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26 K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,nC. Broutin,29

P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29

R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29 P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30

D. Bodin,30J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,o J.-C. Fontaine,30,oD. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31

S. Beauceron,32N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,fD. Contardo,32 P. Depasse,32H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32 L. Mirabito,32S. Perries,32L. Sgandurra,32V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,p C. Autermann,34S. Beranek,34B. Calpas,34M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34

K. Klein,34J. Merz,34A. Ostapchuk,34A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34 H. Weber,34B. Wittmer,34V. Zhukov,34,qM. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35 M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35C. Heidemann,35K. Hoepfner,35D. Klingebiel,35

P. Kreuzer,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35 S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35S. Thu¨er,35M. Weber,35M. Bontenackels,36 V. Cherepanov,36Y. Erdogan,36G. Flu¨gge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36

T. Kress,36Y. Kuessel,36J. Lingemann,36,fA. Nowack,36L. Perchalla,36O. Pooth,36P. Sauerland,36A. Stahl,36 M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,rA. Bethani,37K. Borras,37

(7)

C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37P. Gunnellini,37S. Habib,37 J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37H. Kluge,37A. Knutsson,37 M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37J. Leonard,37W. Lohmann,37,rB. Lutz,37R. Mankel,37

I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37 S. Naumann-Emme,37O. Novgorodova,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37A. Raspereza,37

P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,r

T. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37V. Blobel,38H. Enderle,38 J. Erfle,38U. Gebbert,38M. Go¨rner,38M. Gosselink,38J. Haller,38T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38 G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38F. Nowak,38T. Peiffer,38N. Pietsch,38D. Rathjens,38 C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38

J. Sibille,38,sV. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38C. Barth,39J. Berger,39 C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,fC. Hackstein,39

F. Hartmann,39,fT. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39U. Husemann,39I. Katkov,39,q J. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39

O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39 F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39J. Wagner-Kuhr,39

S. Wayand,39T. Weiler,39M. Zeise,39G. Anagnostou,40G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42P. Kokkas,42

N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,tF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,uN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45

P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46M. Kaur,46 M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. B. Singh,46Ashok Kumar,47Arun Kumar,47S. Ahuja,47

A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47V. Sharma,47R. K. Shivpuri,47 S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48S. Sarkar,48 M. Sharan,48A. Abdulsalam,49D. Dutta,49S. Kailas,49V. Kumar,49A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49

T. Aziz,50S. Ganguly,50M. Guchait,50,vA. Gurtu,50,wM. Maity,50,xG. Majumder,50K. Mazumdar,50 G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51H. Arfaei,52,y H. Bakhshiansohi,52S. M. Etesami,52,zA. Fahim,52,yM. Hashemi,52,aaH. Hesari,52A. Jafari,52M. Khakzad,52 M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,bbM. Zeinali,52M. Abbrescia,53a,53b L. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53cN. De Filippis,53a,53c,f M. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cG. Maggi,53a,53cM. Maggi,53aB. Marangelli,53a,53bS. My,53a,53c

S. Nuzzo,53a,53bN. Pacifico,53aA. Pompili,53a,53bG. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53a G. Singh,53a,53bR. Venditti,53a,53bP. Verwilligen,53aG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a D. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54bA. Castro,54a,54b

F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b P. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,f A. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54b

T. Rovelli,54a,54bG. P. Siroli,54a,54bN. Tosi,54aR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55b M. Chiorboli,55a,55bS. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56a V. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56b M. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,56bL. Benussi,57S. Bianco,57S. Colafranceschi,57,cc

F. Fabbri,57D. Piccolo,57P. Fabbricatore,58aR. Musenich,58aS. Tosi,58a,58bA. Benaglia,59aF. De Guio,59a,59b L. Di Matteo,59a,59b,fS. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59b

A. Martelli,59a,59bA. Massironi,59a,59bD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59a S. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a

N. Cavallo,60a,ddA. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,ddA. O. M. Iorio,60a,60bL. Lista,60a S. Meola,60a,eeM. Merola,60aP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fP. Bellan,61a,61bD. Bisello,61a,61b A. Branca,61a,fR. Carlin,61a,61bP. Checchia,61aT. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61bU. Gasparini,61a,61b

A. Gozzelino,61aK. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61b

(8)

S. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62b P. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bG. Mantovani,63a,63b

M. Menichelli,63aA. Nappi,63a,63b,aF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63bA. Spiezia,63a,63b S. Taroni,63a,63bP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a

R. T. D’Agnolo,64a,64c,fR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,ffA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,ggP. Spagnolo,64a P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64bA. Venturi,64aP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a D. Del Re,65a,65bM. Diemoz,65aC. Fanelli,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b

S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a S. Casasso,66a,66bM. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66b

M. Musich,66a,fM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66b M. Ruspa,66a,66cR. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aS. Belforte,67aV. Candelise,67a,67bM. Casarsa,67a

F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67a A. Schizzi,67a,67bT. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69D. J. Kong,69H. Park,69 D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71M. Jo,71H. Kim,71

T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72I. C. Park,72S. Park,72 G. Ryu,72Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73

M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74H. Castilla-Valdez,75E. De La Cruz-Burelo,75 I. Heredia-de La Cruz,75R. Lopez-Fernandez,75J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75

L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76F. Vazquez Valencia,76H. A. Salazar Ibarguen,77 E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78D. Krofcheck,79A. J. Bell,80P. H. Butler,80 R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81M. I. Asghar,81J. Butt,81H. R. Hoorani,81S. Khalid,81 W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82 M. Go´rski,82M. Kazana,82K. Nawrocki,82K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82

G. Brona,83K. Bunkowski,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83 J. Krolikowski,83M. Misiura,83N. Almeida,84P. Bargassa,84A. David,84P. Faccioli,84P. G. Ferreira Parracho,84

M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85 I. Gorbunov,85A. Kamenev,85V. Karjavin,85G. Kozlov,85A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85

V. Perelygin,85S. Shmatov,85V. Smirnov,85A. Volodko,85A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86 Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86

S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87A. Dermenev,87S. Gninenko,87N. Golubev,87 M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87D. Tlisov,87A. Toropin,87V. Epshteyn,88 M. Erofeeva,88V. Gavrilov,88M. Kossov,88N. Lychkovskaya,88V. Popov,88G. Safronov,88S. Semenov,88 I. Shreyber,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89E. Boos,89M. Dubinin,89,eL. Dudko,89 A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89A. Markina,89S. Obraztsov,89 M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90

I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91 I. Bayshev,91S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91V. Krychkine,91V. Petrov,91 R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,hh

M. Djordjevic,92M. Ekmedzic,92D. Krpic,92,hhJ. Milosevic,92M. Aguilar-Benitez,93J. Alcaraz Maestre,93 P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93 A. Delgado Peris,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93 J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93 G. Merino,93J. Puerta Pelayo,93A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93 C. Willmott,93C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95

S. Folgueras,95I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95J. A. Brochero Cifuentes,96 I. J. Cabrillo,96A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,iiM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96 F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96 I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97M. Bachtis,97P. Baillon,97A. H. Ball,97

(9)

D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97 H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97D. D’Enterria,97 A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97 W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97D. Giordano,97M. Girone,97M. Giunta,97F. Glege,97

R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97S. Gundacker,97M. Hansen,97P. Harris,97 C. Hartl,97J. Harvey,97B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97 K. Kousouris,97P. Lecoq,97Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97N. Magini,97T. Ma¨ki,97M. Malberti,97 L. Malgeri,97M. Mannelli,97L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97

M. Mulders,97P. Musella,97E. Nesvold,97T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97E. Perez,97 L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97D. Piparo,97G. Polese,97L. Quertenmont,97

A. Racz,97W. Reece,97J. Rodrigues Antunes,97G. Rolandi,97,jjC. Rovelli,97,kkM. Rovere,97H. Sakulin,97 F. Santanastasio,97C. Scha¨fer,97C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97P. Silva,97 M. Simon,97P. Sphicas,97,llD. Spiga,97A. Tsirou,97G. I. Veres,97,uJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,mm

W. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98 H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98L. Ba¨ni,99

P. Bortignon,99M. A. Buchmann,99B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99 M. Donega`,99M. Du¨nser,99J. Eugster,99K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99 A. C. Marini,99P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99C. Na¨geli,99,nnP. Nef,99F. Nessi-Tedaldi,99

F. Pandolfi,99L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99 A. Starodumov,99,ooB. Stieger,99M. Takahashi,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99 C. Urscheler,99R. Wallny,99H. A. Weber,99L. Wehrli,99C. Amsler,100,ppV. Chiochia,100S. De Visscher,100 C. Favaro,100M. Ivova Rikova,100B. Kilminster,100B. Millan Mejias,100P. Otiougova,100P. Robmann,100 H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101K. H. Chen,101C. Ferro,101C. M. Kuo,101S. W. Li,101

W. Lin,101Y. J. Lu,101A. P. Singh,101R. Volpe,101S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102 Y. W. Chang,102Y. Chao,102K. F. Chen,102C. Dietz,102U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102

Y. J. Lei,102R.-S. Lu,102D. Majumder,102E. Petrakou,102X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102 M. Wang,102B. Asavapibhop,103N. Srimanobhas,103A. Adiguzel,104M. N. Bakirci,104,qqS. Cerci,104,rrC. Dozen,104

I. Dumanoglu,104E. Eskut,104S. Girgis,104G. Gokbulut,104E. Gurpinar,104I. Hos,104E. E. Kangal,104 T. Karaman,104G. Karapinar,104,ssA. Kayis Topaksu,104G. Onengut,104K. Ozdemir,104S. Ozturk,104,tt A. Polatoz,104K. Sogut,104,uuD. Sunar Cerci,104,rrB. Tali,104,rrH. Topakli,104,qqL. N. Vergili,104M. Vergili,104 I. V. Akin,105T. Aliev,105B. Bilin,105S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105 A. Ozpineci,105M. Serin,105R. Sever,105U. E. Surat,105M. Yalvac,105E. Yildirim,105M. Zeyrek,105E. Gu¨lmez,106

B. Isildak,106,vvM. Kaya,106,wwO. Kaya,106,wwS. Ozkorucuklu,106,xxN. Sonmez,106,yyK. Cankocak,107 L. Levchuk,108J. J. Brooke,109E. Clement,109D. Cussans,109H. Flacher,109R. Frazier,109J. Goldstein,109 M. Grimes,109G. P. Heath,109H. F. Heath,109L. Kreczko,109S. Metson,109D. M. Newbold,109,mmK. Nirunpong,109 A. Poll,109S. Senkin,109V. J. Smith,109T. Williams,109L. Basso,110,zzK. W. Bell,110A. Belyaev,110,zzC. Brew,110 R. M. Brown,110D. J. A. Cockerill,110J. A. Coughlan,110K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110

E. Olaiya,110D. Petyt,110B. C. Radburn-Smith,110C. H. Shepherd-Themistocleous,110I. R. Tomalin,110 W. J. Womersley,110R. Bainbridge,111G. Ball,111R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111

M. Cutajar,111P. Dauncey,111G. Davies,111M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111 A. Gilbert,111A. Guneratne Bryer,111G. Hall,111Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111 G. Karapostoli,111L. Lyons,111A.-M. Magnan,111J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111

A. Nikitenko,111,ooA. Papageorgiou,111J. Pela,111M. Pesaresi,111K. Petridis,111M. Pioppi,111,aaa

D. M. Raymond,111S. Rogerson,111A. Rose,111M. J. Ryan,111C. Seez,111P. Sharp,111,aA. Sparrow,111M. Stoye,111 A. Tapper,111M. Vazquez Acosta,111T. Virdee,111S. Wakefield,111N. Wardle,111T. Whyntie,111M. Chadwick,112 J. E. Cole,112P. R. Hobson,112A. Khan,112P. Kyberd,112D. Leggat,112D. Leslie,112W. Martin,112I. D. Reid,112

P. Symonds,112L. Teodorescu,112M. Turner,112K. Hatakeyama,113H. Liu,113T. Scarborough,113O. Charaf,114 C. Henderson,114P. Rumerio,114A. Avetisyan,115T. Bose,115C. Fantasia,115A. Heister,115J. St. John,115

P. Lawson,115D. Lazic,115J. Rohlf,115D. Sperka,115L. Sulak,115J. Alimena,116S. Bhattacharya,116 G. Christopher,116D. Cutts,116Z. Demiragli,116A. Ferapontov,116A. Garabedian,116U. Heintz,116S. Jabeen,116

(10)

T. Sinthuprasith,116T. Speer,116R. Breedon,117G. Breto,117M. Calderon De La Barca Sanchez,117S. Chauhan,117 M. Chertok,117J. Conway,117R. Conway,117P. T. Cox,117J. Dolen,117R. Erbacher,117M. Gardner,117R. Houtz,117 W. Ko,117A. Kopecky,117R. Lander,117O. Mall,117T. Miceli,117D. Pellett,117F. Ricci-tam,117B. Rutherford,117

M. Searle,117J. Smith,117M. Squires,117M. Tripathi,117R. Vasquez Sierra,117R. Yohay,117V. Andreev,118 D. Cline,118R. Cousins,118J. Duris,118S. Erhan,118P. Everaerts,118C. Farrell,118J. Hauser,118M. Ignatenko,118

C. Jarvis,118G. Rakness,118P. Schlein,118,aP. Traczyk,118V. Valuev,118M. Weber,118J. Babb,119R. Clare,119 M. E. Dinardo,119J. Ellison,119J. W. Gary,119F. Giordano,119G. Hanson,119G. Y. Jeng,119,bbbH. Liu,119 O. R. Long,119A. Luthra,119H. Nguyen,119S. Paramesvaran,119J. Sturdy,119S. Sumowidagdo,119R. Wilken,119

S. Wimpenny,119W. Andrews,120J. G. Branson,120G. B. Cerati,120S. Cittolin,120D. Evans,120A. Holzner,120 R. Kelley,120M. Lebourgeois,120J. Letts,120I. Macneill,120B. Mangano,120S. Padhi,120C. Palmer,120 G. Petrucciani,120M. Pieri,120M. Sani,120V. Sharma,120S. Simon,120E. Sudano,120M. Tadel,120Y. Tu,120

A. Vartak,120S. Wasserbaech,120,cccF. Wu¨rthwein,120A. Yagil,120J. Yoo,120D. Barge,121R. Bellan,121 C. Campagnari,121M. D’Alfonso,121T. Danielson,121K. Flowers,121P. Geffert,121F. Golf,121J. Incandela,121 C. Justus,121P. Kalavase,121D. Kovalskyi,121V. Krutelyov,121S. Lowette,121R. Magan˜a Villalba,121N. Mccoll,121

V. Pavlunin,121J. Ribnik,121J. Richman,121R. Rossin,121D. Stuart,121W. To,121C. West,121A. Apresyan,122 A. Bornheim,122Y. Chen,122E. Di Marco,122J. Duarte,122M. Gataullin,122Y. Ma,122A. Mott,122H. B. Newman,122

C. Rogan,122M. Spiropulu,122V. Timciuc,122J. Veverka,122R. Wilkinson,122S. Xie,122Y. Yang,122R. Y. Zhu,122 V. Azzolini,123A. Calamba,123R. Carroll,123T. Ferguson,123Y. Iiyama,123D. W. Jang,123Y. F. Liu,123M. Paulini,123

H. Vogel,123I. Vorobiev,123J. P. Cumalat,124B. R. Drell,124W. T. Ford,124A. Gaz,124E. Luiggi Lopez,124 J. G. Smith,124K. Stenson,124K. A. Ulmer,124S. R. Wagner,124J. Alexander,125A. Chatterjee,125N. Eggert,125

L. K. Gibbons,125B. Heltsley,125A. Khukhunaishvili,125B. Kreis,125N. Mirman,125G. Nicolas Kaufman,125 J. R. Patterson,125A. Ryd,125E. Salvati,125W. Sun,125W. D. Teo,125J. Thom,125J. Thompson,125J. Tucker,125 J. Vaughan,125Y. Weng,125L. Winstrom,125P. Wittich,125D. Winn,126S. Abdullin,127M. Albrow,127J. Anderson,127

L. A. T. Bauerdick,127A. Beretvas,127J. Berryhill,127P. C. Bhat,127K. Burkett,127J. N. Butler,127V. Chetluru,127 H. W. K. Cheung,127F. Chlebana,127V. D. Elvira,127I. Fisk,127J. Freeman,127Y. Gao,127D. Green,127O. Gutsche,127

J. Hanlon,127R. M. Harris,127J. Hirschauer,127B. Hooberman,127S. Jindariani,127M. Johnson,127U. Joshi,127 B. Klima,127S. Kunori,127S. Kwan,127C. Leonidopoulos,127,dddJ. Linacre,127D. Lincoln,127R. Lipton,127 J. Lykken,127K. Maeshima,127J. M. Marraffino,127S. Maruyama,127D. Mason,127P. McBride,127K. Mishra,127 S. Mrenna,127Y. Musienko,127,eeeC. Newman-Holmes,127V. O’Dell,127O. Prokofyev,127E. Sexton-Kennedy,127

S. Sharma,127W. J. Spalding,127L. Spiegel,127L. Taylor,127S. Tkaczyk,127N. V. Tran,127L. Uplegger,127 E. W. Vaandering,127R. Vidal,127J. Whitmore,127W. Wu,127F. Yang,127J. C. Yun,127D. Acosta,128P. Avery,128

D. Bourilkov,128M. Chen,128T. Cheng,128S. Das,128M. De Gruttola,128G. P. Di Giovanni,128D. Dobur,128 A. Drozdetskiy,128R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128J. Gartner,128J. Hugon,128B. Kim,128

J. Konigsberg,128A. Korytov,128A. Kropivnitskaya,128T. Kypreos,128J. F. Low,128K. Matchev,128 P. Milenovic,128,fffG. Mitselmakher,128L. Muniz,128M. Park,128R. Remington,128A. Rinkevicius,128P. Sellers,128 N. Skhirtladze,128M. Snowball,128J. Yelton,128M. Zakaria,128V. Gaultney,129S. Hewamanage,129L. M. Lebolo,129

S. Linn,129P. Markowitz,129G. Martinez,129J. L. Rodriguez,129T. Adams,130A. Askew,130J. Bochenek,130 J. Chen,130B. Diamond,130S. V. Gleyzer,130J. Haas,130S. Hagopian,130V. Hagopian,130M. Jenkins,130 K. F. Johnson,130H. Prosper,130V. Veeraraghavan,130M. Weinberg,130M. M. Baarmand,131B. Dorney,131

M. Hohlmann,131H. Kalakhety,131I. Vodopiyanov,131F. Yumiceva,131M. R. Adams,132I. M. Anghel,132 L. Apanasevich,132Y. Bai,132V. E. Bazterra,132R. R. Betts,132I. Bucinskaite,132J. Callner,132R. Cavanaugh,132 O. Evdokimov,132L. Gauthier,132C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132F. Lacroix,132C. O’Brien,132

C. Silkworth,132D. Strom,132P. Turner,132N. Varelas,132U. Akgun,133E. A. Albayrak,133B. Bilki,133,ggg W. Clarida,133F. Duru,133J.-P. Merlo,133H. Mermerkaya,133,hhhA. Mestvirishvili,133A. Moeller,133J. Nachtman,133

C. R. Newsom,133E. Norbeck,133Y. Onel,133F. Ozok,133,iiiS. Sen,133P. Tan,133E. Tiras,133J. Wetzel,133 T. Yetkin,133K. Yi,133B. A. Barnett,134B. Blumenfeld,134S. Bolognesi,134D. Fehling,134G. Giurgiu,134 A. V. Gritsan,134Z. J. Guo,134G. Hu,134P. Maksimovic,134M. Swartz,134A. Whitbeck,134P. Baringer,135A. Bean,135

G. Benelli,135R. P. Kenny Iii,135M. Murray,135D. Noonan,135S. Sanders,135R. Stringer,135G. Tinti,135 J. S. Wood,135A. F. Barfuss,136T. Bolton,136I. Chakaberia,136A. Ivanov,136S. Khalil,136M. Makouski,136 Y. Maravin,136S. Shrestha,136I. Svintradze,136J. Gronberg,137D. Lange,137F. Rebassoo,137D. Wright,137 A. Baden,138B. Calvert,138S. C. Eno,138J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138M. Kirn,138

(11)

T. Kolberg,138Y. Lu,138M. Marionneau,138A. C. Mignerey,138K. Pedro,138A. Skuja,138J. Temple,138 M. B. Tonjes,138S. C. Tonwar,138A. Apyan,139G. Bauer,139J. Bendavid,139W. Busza,139E. Butz,139I. A. Cali,139

M. Chan,139V. Dutta,139G. Gomez Ceballos,139M. Goncharov,139Y. Kim,139M. Klute,139K. Krajczar,139,jjj A. Levin,139P. D. Luckey,139T. Ma,139S. Nahn,139C. Paus,139D. Ralph,139C. Roland,139G. Roland,139 M. Rudolph,139G. S. F. Stephans,139F. Sto¨ckli,139K. Sumorok,139K. Sung,139D. Velicanu,139E. A. Wenger,139 R. Wolf,139B. Wyslouch,139M. Yang,139Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139V. Zhukova,139S. I. Cooper,140

B. Dahmes,140A. De Benedetti,140G. Franzoni,140A. Gude,140S. C. Kao,140K. Klapoetke,140Y. Kubota,140 J. Mans,140N. Pastika,140R. Rusack,140M. Sasseville,140A. Singovsky,140N. Tambe,140J. Turkewitz,140 L. M. Cremaldi,141R. Kroeger,141L. Perera,141R. Rahmat,141D. A. Sanders,141E. Avdeeva,142K. Bloom,142

S. Bose,142D. R. Claes,142A. Dominguez,142M. Eads,142J. Keller,142I. Kravchenko,142J. Lazo-Flores,142 S. Malik,142G. R. Snow,142A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143A. Kumar,143 S. Rappoccio,143G. Alverson,144E. Barberis,144D. Baumgartel,144M. Chasco,144J. Haley,144D. Nash,144 D. Trocino,144D. Wood,144J. Zhang,144A. Anastassov,145K. A. Hahn,145A. Kubik,145L. Lusito,145N. Mucia,145

N. Odell,145R. A. Ofierzynski,145B. Pollack,145A. Pozdnyakov,145M. Schmitt,145S. Stoynev,145M. Velasco,145 S. Won,145L. Antonelli,146D. Berry,146A. Brinkerhoff,146K. M. Chan,146M. Hildreth,146C. Jessop,146 D. J. Karmgard,146J. Kolb,146K. Lannon,146W. Luo,146S. Lynch,146N. Marinelli,146D. M. Morse,146T. Pearson,146 M. Planer,146R. Ruchti,146J. Slaunwhite,146N. Valls,146M. Wayne,146M. Wolf,146B. Bylsma,147L. S. Durkin,147 C. Hill,147R. Hughes,147K. Kotov,147T. Y. Ling,147D. Puigh,147M. Rodenburg,147C. Vuosalo,147G. Williams,147

B. L. Winer,147E. Berry,148P. Elmer,148V. Halyo,148P. Hebda,148J. Hegeman,148A. Hunt,148P. Jindal,148 S. A. Koay,148D. Lopes Pegna,148P. Lujan,148D. Marlow,148T. Medvedeva,148M. Mooney,148J. Olsen,148 P. Piroue´,148X. Quan,148A. Raval,148H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148A. Zuranski,148 E. Brownson,149A. Lopez,149H. Mendez,149J. E. Ramirez Vargas,149E. Alagoz,150V. E. Barnes,150D. Benedetti,150

G. Bolla,150D. Bortoletto,150M. De Mattia,150A. Everett,150Z. Hu,150M. Jones,150O. Koybasi,150M. Kress,150 A. T. Laasanen,150N. Leonardo,150V. Maroussov,150P. Merkel,150D. H. Miller,150N. Neumeister,150I. Shipsey,150 D. Silvers,150A. Svyatkovskiy,150M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150S. Guragain,151

N. Parashar,151A. Adair,152B. Akgun,152C. Boulahouache,152K. M. Ecklund,152F. J. M. Geurts,152W. Li,152 B. P. Padley,152R. Redjimi,152J. Roberts,152J. Zabel,152B. Betchart,153A. Bodek,153Y. S. Chung,153 R. Covarelli,153P. de Barbaro,153R. Demina,153Y. Eshaq,153T. Ferbel,153A. Garcia-Bellido,153P. Goldenzweig,153

J. Han,153A. Harel,153D. C. Miner,153D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154 L. Demortier,154K. Goulianos,154G. Lungu,154S. Malik,154C. Mesropian,154S. Arora,155A. Barker,155 J. P. Chou,155C. Contreras-Campana,155E. Contreras-Campana,155D. Duggan,155D. Ferencek,155Y. Gershtein,155

R. Gray,155E. Halkiadakis,155D. Hidas,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155V. Rekovic,155 J. Robles,155K. Rose,155S. Salur,155S. Schnetzer,155C. Seitz,155S. Somalwar,155R. Stone,155S. Thomas,155

M. Walker,155G. Cerizza,156M. Hollingsworth,156S. Spanier,156Z. C. Yang,156A. York,156R. Eusebi,157 W. Flanagan,157J. Gilmore,157T. Kamon,157,kkkV. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157 A. Perloff,157J. Roe,157A. Safonov,157T. Sakuma,157S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157 N. Akchurin,158J. Damgov,158C. Dragoiu,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158 T. Libeiro,158Y. Roh,158I. Volobouev,158E. Appelt,159A. G. Delannoy,159C. Florez,159S. Greene,159A. Gurrola,159

W. Johns,159P. Kurt,159C. Maguire,159A. Melo,159M. Sharma,159P. Sheldon,159B. Snook,159S. Tuo,159 J. Velkovska,159M. W. Arenton,160M. Balazs,160S. Boutle,160B. Cox,160B. Francis,160J. Goodell,160R. Hirosky,160

A. Ledovskoy,160C. Lin,160C. Neu,160J. Wood,160S. Gollapinni,161R. Harr,161P. E. Karchin,161 C. Kottachchi Kankanamge Don,161P. Lamichhane,161A. Sakharov,161M. Anderson,162D. Belknap,162 L. Borrello,162D. Carlsmith,162M. Cepeda,162S. Dasu,162E. Friis,162L. Gray,162K. S. Grogg,162M. Grothe,162

R. Hall-Wilton,162M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162A. Lanaro,162C. Lazaridis,162 R. Loveless,162A. Mohapatra,162I. Ojalvo,162F. Palmonari,162G. A. Pierro,162I. Ross,162A. Savin,162

W. H. Smith,162and J. Swanson162 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

(12)

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg,

Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules,

CNRS/IN2P3, Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3,

Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39

Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece 41University of Athens, Athens, Greece

42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53c

Politecnico di Bari, Bari, Italy

54aINFN Sezione di Bologna, Bologna, Italy 54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

(13)

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

61a

INFN Sezione di Padova, Padova, Italy

61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67b

Universita` di Trieste, Trieste, Italy

68Kangwon National University, Chunchon, Korea 69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90

P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland 99

Institute for Particle Physics, ETH Zurich, Zurich, Switzerland

100Universita¨t Zu¨rich, Zurich, Switzerland 101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

(14)

104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey

107Istanbul Technical University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109University of Bristol, Bristol, United Kingdom

110Rutherford Appleton Laboratory, Didcot, United Kingdom 111Imperial College, London, United Kingdom 112

Brunel University, Uxbridge, United Kingdom

113Baylor University, Waco, Texas, USA

114The University of Alabama, Tuscaloosa, Alabama, USA 115Boston University, Boston, Massachusetts, USA 116Brown University, Providence, Rhode Island, USA 117University of California, Davis, Davis, California, USA 118University of California, Los Angeles, Los Angeles, California, USA

119University of California, Riverside, Riverside, California, USA 120University of California, San Diego, La Jolla, California, USA 121University of California, Santa Barbara, Santa Barbara, California, USA

122California Institute of Technology, Pasadena, California, USA 123Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 124University of Colorado at Boulder, Boulder, Colorado, USA

125Cornell University, Ithaca, New York, USA 126Fairfield University, Fairfield, Connecticut, USA 127Fermi National Accelerator Laboratory, Batavia, Illinois, USA

128

University of Florida, Gainesville, Florida, USA

129Florida International University, Miami, Florida, USA 130Florida State University, Tallahassee, Florida, USA 131Florida Institute of Technology, Melbourne, Florida, USA 132University of Illinois at Chicago (UIC), Chicago, Illinois, USA

133The University of Iowa, Iowa City, Iowa, USA 134Johns Hopkins University, Baltimore, Maryland, USA

135The University of Kansas, Lawrence, Kansas, USA 136Kansas State University, Manhattan, Kansas, USA

137Lawrence Livermore National Laboratory, Livermore, California, USA 138University of Maryland, College Park, Maryland, USA 139Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

140University of Minnesota, Minneapolis, Minnesota, USA 141University of Mississippi, Oxford, Mississippi, USA 142University of Nebraska-Lincoln, Lincoln, Nebraska, USA 143State University of New York at Buffalo, Buffalo, New York, USA

144Northeastern University, Boston, Massachusetts, USA 145Northwestern University, Evanston, Illinois, USA 146University of Notre Dame, Notre Dame, Indiana, USA

147The Ohio State University, Columbus, Ohio, USA 148Princeton University, Princeton, New Jersey, USA 149University of Puerto Rico, Mayaguez, Puerto Rico, USA

150Purdue University, West Lafayette, Indiana, USA 151

Purdue University Calumet, Hammond, Indiana, USA

152Rice University, Houston, Texas, USA 153University of Rochester, Rochester, New York, USA 154The Rockefeller University, New York, New York, USA

155Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 156University of Tennessee, Knoxville, Tennessee, USA

157Texas A&M University, College Station, Texas, USA 158Texas Tech University, Lubbock, Texas, USA 159Vanderbilt University, Nashville, Tennessee, USA 160

University of Virginia, Charlottesville, Virginia, USA

161Wayne State University, Detroit, Michigan, USA 162University of Wisconsin, Madison, Wisconsin, USA

(15)

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, California, USA.

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at British University, Cairo, Egypt. mNow at Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. o

Also at Universite´ de Haute-Alsace, Mulhouse, France.

pAlso at Joint Institute for Nuclear Research, Dubna, Russia. qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at The University of Kansas, Lawrence, Kansas, USA.

tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. uAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

vAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India wNow at King Abdulaziz University, Jeddah, Saudi Arabia.

xAlso at University of Visva-Bharati, Santiniketan, India. yAlso at Sharif University of Technology, Tehran, Iran. zAlso at Isfahan University of Technology, Isfahan, Iran. aaAlso at Shiraz University, Shiraz, Iran.

bbAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ccAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

dd

Also at Universita` della Basilicata, Potenza, Italy.

eeAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ffAlso at Universita` degli Studi di Siena, Siena, Italy.

ggAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. hhAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

iiAlso at University of California, Los Angeles, Los Angeles, California, USA. jjAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

kkAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy. llAlso at University of Athens, Athens, Greece.

mmAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. nnAlso at Paul Scherrer Institut, Villigen, Switzerland.

ooAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ppAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. qqAlso at Gaziosmanpasa University, Tokat, Turkey.

rr

Also at Adiyaman University, Adiyaman, Turkey.

ssAlso at Izmir Institute of Technology, Izmir, Turkey. ttAlso at The University of Iowa, Iowa City, Iowa, USA. uuAlso at Mersin University, Mersin, Turkey.

vvAlso at Ozyegin University, Istanbul, Turkey. wwAlso at Kafkas University, Kars, Turkey.

xxAlso at Suleyman Demirel University, Isparta, Turkey. yyAlso at Ege University, Izmir, Turkey.

zzAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. aaaAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

bbbAlso at University of Sydney, Sydney, Australia. cccAlso at Utah Valley University, Orem, Utah, USA.

(16)

dddNow at University of Edinburgh, Scotland, Edinburgh, United Kingdom. eeeAlso at Institute for Nuclear Research, Moscow, Russia.

fffAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. gggAlso at Argonne National Laboratory, Argonne, Illinois, USA.

hhhAlso at Erzincan University, Erzincan, Turkey.

iiiAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey.

jjjAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. kkkAlso at Kyungpook National University, Daegu, Korea.

Figura

FIG. 3 (color online). The 95% confidence level exclusion region in the (M W R , M N  ) plane, assuming the model described in the text

Riferimenti

Documenti correlati

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and