• Non ci sono risultati.

Search for supersymmetry in pp collisions at √s=7TeV in events with two photons and missing transverse energy

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for supersymmetry in pp collisions at √s=7TeV in events with two photons and missing transverse energy"

Copied!
15
0
0

Testo completo

(1)

Search for Supersymmetry in

pp Collisions at

p

ffiffiffi

s

¼ 7 TeV in Events with Two Photons

and Missing Transverse Energy

S. Chatrchyan et al.* (CMS Collaboration)

(Received 4 March 2011; published 24 May 2011)

A search for supersymmetry in the context of general gauge-mediated breaking with the lightest neutralino as the next-to-lightest supersymmetric particle and the gravitino as the lightest is presented. The data sample corresponds to an integrated luminosity of36 pb1recorded by the CMS experiment at the LHC. The search is performed by using events containing two or more isolated photons, at least one hadronic jet, and significant missing transverse energy. No excess of events at high missing transverse energy is observed. Upper limits on the signal cross section for general gauge-mediated supersymmetry between 0.3 and 1.1 pb at the 95% confidence level are determined for a range of squark, gluino, and neutralino masses, excluding supersymmetry parameter space that was inaccessible to previous experiments.

DOI:10.1103/PhysRevLett.106.211802 PACS numbers: 12.60.Jv, 13.85.Rm, 14.80.Ly

Supersymmetry (SUSY), in particular the version based on gauge-mediated breaking [1–7], is of particular theo-retical interest for physics beyond the standard model (SM). Supersymmetry stabilizes the mass of the SM Higgs boson, drives the grand unification of forces, and incorporates dark matter candidates within its framework. Previous searches for SUSY with gauge-mediated break-ing [8–14] were performed by using a minimal model [15] as a benchmark. In that model, in order to reduce the number of free parameters, several assumptions, including gaugino mass unification, are made. These assumptions lead to a mass hierarchy in which strongly interacting SUSY partners are much heavier than the lightest chargino and neutralino. For example, the current best lower limit on the neutralino mass [9] of 175 GeV corresponds to gluino and squark mass limits of well above 1 TeV. In the more general case, the masses of strongly interacting SUSY partners can be much lighter, leading to large production cross sections at the LHC and allowing, even at low integrated luminosity, for the exploration of parameter space inaccessible at previous colliders.

In this Letter, we consider a general gauge-mediation (GGM) SUSY scenario [16,17], with the gravitino as the lightest SUSY particle and the lightest neutralino as the next-to-lightest (NLSP). In the following, it is assumed that the neutralino decays promptly to a gravitino and a photon. Cases with either a large neutralino lifetime or a large branching fraction into a Z and a gravitino are not consid-ered in this Letter. The gravitino escapes detection, leading

to missing transverse energy (EmissT ). If R parity [18] is conserved, strongly interacting SUSY particles are pair-produced. Their decay chain includes one or several quarks or gluons and a neutralino, which in turn decays to a photon and a gravitino. The topology of interest for this search is, therefore, two or more isolated photons with large trans-verse energy (ET), at least one hadronic jet, and large missing transverse energy EmissT .

A detailed description of the CMS detector can be found elsewhere [19]. The detector’s central feature is a super-conducting solenoid providing a 3.8 T axial magnetic field along the beam direction. Charged particle trajectories are measured by a silicon pixel and strip tracker system, cover-ing 0    2 in azimuth and jj < 2:5, where the pseudorapidity ¼  ln tan=2, and  is the polar angle with respect to the counterclockwise beam direction. A lead-tungstate crystal electromagnetic calorimeter (ECAL) and a brass/scintillator hadron calorimeter (HCAL) surround the tracker volume. For the barrel calorimeter (jj < 1:479), the modules are arranged in projective towers. Muons are measured in gas detectors embedded in the steel return yoke of the magnet. The detector is nearly hermetic, allowing for reliable measurement of Emiss

T . In the 2010 collision data, photons with energy

greater than 20 GeV are measured within the barrel ECAL with a resolution of better than 1%, which is domi-nated by intercalibration precision.

The data used in this analysis, corresponding to an integrated luminosity of 36 pb1, were recorded during the 2010 run at a center-of-mass energy (pffiffiffis) of 7 TeV at the Large Hadron Collider (LHC) at CERN. A two-level trigger system was used, based on the presence of at least one photon with a minimum transverse energy of 30 GeV. This data sample is used for the selection of both signal candidates and control samples used for background estimation. The efficiency for off-line

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

selected events to pass the trigger is estimated to be above 99%.

The photon candidates are reconstructed from clusters of energy in the ECAL. Candidates are required to have ET 

30 GeV and jj  1:4. The ECAL cluster shape is re-quired to be consistent with that expected from a photon, and the energy detected in the HCAL behind the photon shower is required not to exceed 5% of the ECAL energy. To suppress photons originating from quark or gluon ha-dronization, the photons are required to be isolated from other activity in the tracker, ECAL, and HCAL. The scalar sums of transverse energies of tracks and calorimeter deposits withinR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2¼ 0:4 of the can-didate’s direction are determined, after excluding the con-tribution from the candidate itself. These isolation sums are required to be  0:001  ET þ 2:0 GeV, 0:006  ET þ

4:2 GeV, and 0:0025  ETþ 2:2 GeV, with ET in GeV,

for the tracker, ECAL, and HCAL, respectively.

Photons that fail either the shower shape or track iso-lation requirement are referred to as fake photons. Most of these fake photons are quarks or gluons that have hadron-ized predominantly to 0’s decaying into photons. They are used for the background estimation derived from the data.

The criteria above are efficient for selection of both electrons and photons. To separate them reliably, we search for hit patterns in the pixel detector consistent with a track from an electron (pixel match). The candidates with (with-out) pixel match are considered to be electrons (photons) [20]. Events in the signal sample (referred to below as the  sample) are required to have at least two photon candidates.

Jets are reconstructed from energy deposits in the calo-rimeters by using the anti-kTclustering algorithm [21] with

a size parameter of 0.5. The jet energy is corrected by using reconstructed tracks [22]. Selected jets must have ET 

30 GeV and jj  2:6. In addition, to separate real jets from anomalous HCAL signals, the fraction of energy contributed to the jet shower by the highest energy HCAL channels must be  98%, the jet must have no single HCAL channel containing more than 90% of its total energy, and finally the ECAL energy fraction of the jet must be  1%. To be retained in the signal sample, events must contain at least one such jet isolated from both of the two highest-ET photon candidates byR  0:9.

The EmissT is determined by using calorimeter energy deposits. Corrections are applied by replacing calorimeter tower energies matched to charged hadrons and muons with their corresponding charged-track momenta [23].

Events are generated in the benchmark SUSY model [24] usingPYTHIA6.4 [25] in a three-dimensional grid of the NLSP, gluino, and squark masses. The soft masses of the squarks are taken to be degenerate. Sleptons and all other gauginos except the NLSP are assigned a mass of 1.5 TeV. The QCD production cross section at

next-to-leading order is calculated for these points by using

PROSPINO 2.1 [26] and is dominated by gluino-gluino, gluino-squark, and squark-squark production. The gener-ated events are passed through the CMS detector simu-lation program, which is based on the GEANT4 [27] package, and reconstructed by using the same program as for the collision data to ensure that all features of the data, such as trigger and reconstruction, are applied to the Monte Carlo (MC) simulated SUSY signal sample.

The SUSY signal can be mimicked in several ways. Irreducible backgrounds from SM processes such as Zð!  Þ and Wð! ‘Þ are negligible. The main backgrounds arise from SM processes with misidentified photons and/or mismeasured EmissT . The dominant contri-bution comes from mismeasurement of EmissT in QCD processes such as direct diphoton, photon plus jets, and multijet production, with jets mimicking photons in the latter two cases. This background is referred to as the QCD background. The strategy for determining this background is to use control samples that are kinematically similar to the candidate sample and that can be reasonably assumed to have no significant genuine EmissT . Two such samples are used. The first is a sample containing two fake photons, referred to as the ff sample below, comprising QCD multijet events. The second (ee) sample contains events with two electrons [28] with invariant mass between 70 and 110 GeV and is dominated by Z! ee decays.

The ET resolution for electrons and fake photons is

similar to the resolution for photons and is much better than the resolution for hadronic energy, so the EmissT reso-lution is dominated by the latter. The events in both control samples are reweighted to reproduce the diphoton trans-verse energy distribution in the candidate  sample and, therefore, the transverse energy of the hadronic recoil against the diphoton system; the reweighting factors range from 0.3 to 1.7. The shapes of the EmissT distributions obtained from both control samples are identical within the statistical and systematic uncertainties and are used to predict the EmissT background by normalizing to the number of events with EmissT < 20 GeV in the candidate sample.

The second background comes from events with real Emiss

T . It is dominated by events with a genuine or fake

photon and a W that decays into a neutrino and an electron, with the latter misidentified as a photon. This background is referred to as the electroweak background. An electron is misidentified as a photon if it satisfies all the photon selection criteria but has no matching hit pattern in the pixel detector. To model this background, an e candidate sample is defined, selected the same way as the  sample but requiring at least one electron and at least one photon instead of at least two photons. This sample is thus en-riched with W and W plus jets events (with real EmissT ) similar to those in the candidate  sample. The probabil-ity fe!to misidentify an electron as a photon is measured with Z! ee events to be ð1:4  0:4Þ%. The e sample is

(3)

then weighted by fe!=ð1  fe!Þ in order to estimate the contribution of this background to the signal sample.

Finally, high-energy muons from cosmic rays or beam halo can deposit a large amount of energy in the ECAL, leading to events with two photon candidates and EmissT . These events are suppressed to a negligible level by the jet requirement described above.

The EmissT distribution in the  sample is shown in Fig. 1, together with the estimates of the electroweak background and the total background using the QCD pre-diction from Z! ee and their uncertainties. Events with Emiss

T  20 GeV have negligible SUSY signal contribution

(0:022  0:009 event for the GGM SUSY sample point described below). The EmissT distributions for the ff and ee

samples are then scaled so that their integrals below 20 GeV match that of the  sample minus the estimated electroweak contribution. Their integrals above 50 GeV give predictions of the QCD background.

TableIsummarizes the number of  events observed and the numbers of background events expected with Emiss

T  50 GeV. The statistical and systematic

uncertain-ties on the background predictions due to reweighting and normalization are shown separately. One event is observed, while the total background is expected to be 0:53  0:37 (1:71  0:64) events by using the ff (ee) samples and including the electroweak background. These two consis-tent estimates are averaged, by using log-normal distribu-tions as probability density funcdistribu-tions while taking into account the common component from the electroweak background and the correlated uncertainty due to the nor-malization, to obtain a prediction of1:2  0:4 background events. An additional conservative systematic uncertainty of 0.7 events is assigned by taking the largest difference between the average and the individual measurements, resulting in a total background uncertainty of 0.8 events.

The efficiency for SUSY events to satisfy the selection criteria is determined by applying correction factors de-rived from the data to the MC simulation of the signal. Since there exists no large clean sample of isolated photons in the data, we rely on similarities between the detector response to electrons and photons to extract the photon efficiency. The difference between the efficiencies for electrons and photons according to the MC simulation is 0.5%. The ratio of the electron efficiency from Z! ee events that pass all photon identification criteria (except for the pixel match) to the corresponding electron MC effi-ciencies gives an MC efficiency scale factor of 0:967  0:015. This scale factor is applied to the efficiency to identify a photon from NLSP decay obtained with the MC simulation. The error on the scale factor also includes possible systematic effects from multiple interactions per bunch crossing (pileup), estimated to be less than 1%. The additional uncertainty on the efficiency of the requirement for no pixel match for a photon is estimated by varying the

(GeV) miss T E 0 20 40 60 80 100 120 140 Number of Events -1 10 1 10 2 10 3 10 4 10 CMS -1 36 pb = 7 TeV s γ γ Data -

Total BG (QCD shape from Z) Electroweak Background γ γ GGM - >100 GeV miss T Integral E

FIG. 1 (color online). EmissT distribution for  data, including

the jet requirement, compared with backgrounds and a possible GGM SUSY signal. The solid circles with error bars represent the data. The double-hatched blue band represents the contribu-tion of the electroweak background. The single-hatched red band shows the sum of the electroweak background with the QCD EmissT prediction obtained from the Z! ee sample. The widths of

the bands correspond to the sum of the statistical and systematic uncertainties on the backgrounds. The prediction of the GGM SUSY sample point described in the text is shown in the plot as the solid line histogram.

TABLE I. The number of events with EmissT  50 GeV from the  event sample as well as the

predicted number of background events with EmissT  50 GeV using either the fake-fake events

or the Z! ee data.

Type Number

of events

Stat error Reweight error

Normalization error

 events 1

Electroweak background estimate 0:04  0:03 0:02 0:0 0:01 QCD background estimate (ff) 0:49  0:37 0:36 0:06 0:07 QCD background estimate (ee) 1:67  0:64 0:46 0:38 0:23 Total background (using ff) 0:53  0:37

Total background (using ee) 1:71  0:64 Combined total background 1:2  0:8 Expected from GGM sample point 8:0  1:7

(4)

amount of tracker material in the detector simulation and is found to be equal to 0.5%. Other sources of systematic uncertainties in signal yield include the uncertainty on the integrated luminosity (11%) [29], parton distribution func-tion uncertainty (10%–40%), and renormalizafunc-tion scale uncertainty (10%–20%), depending on the SUSY masses. As a cross-check of the analysis method, in particular the determination of the QCD background contribution, the procedure is applied to a data sample selected in the same way as the e sample described above, except that there is no requirement on the number of jets. The check consists of estimating the QCD background, events with no true Emiss

T , in a sample populated with both QCD and events

from the two dominant SM processes, W and W plus jets, which have true EmissT . An excess in the observed number of events with large EmissT over the estimated QCD back-ground should be consistent with the yield from the W processes. The EmissT spectrum of the e events is shown in Fig. 2 and exhibits a clear deviation from the predicted QCD background alone but agrees well with the sum of the QCD and W backgrounds.

This measurement and the estimated acceptance times efficiency are used to set upper limits on the gluino and squark production cross sections, employing a Bayesian method described in Ref. [30]. Both the log-normal and gamma priors are used to integrate over nuisance parame-ters in order to incorporate uncertainties on the total back-ground rate, integrated luminosity, and total acceptance times efficiency. The observed 95% confidence level (C.L.) cross section limits, shown in Fig.3, vary between 0.3 and 1.1 pb for a neutralino mass of 150 GeV as a

function of squark and gluino masses. The variation in the limits is due to the dependence of the photon isolation efficiency on the number of jets in the event.

To illustrate the limit-setting procedure, a particular signal point, with a squark mass of 720 GeV, gluino mass of 720 GeV, and neutralino mass of 150 GeV, is considered. The next-to-leading order signal cross section for this point is 1.04 pb, the efficiency times acceptance is 0:203  0:004ðstatÞ  0:008ðsystÞ, and the parton distribution func-tion and scale uncertainties are each 13%. The upper limit obtained from this measurement is 0.585 pb, while the expected cross section upper limit at the 95% C.L. is 0.628 pb. The expected number of events for this SUSY sample point for an integrated luminosity of 36 pb1 is 8:0  1:7 events. For comparison, the total next-to-leading order SUSY production cross section at the Tevatron for the same model point is 0.3 fb, leading to an expectation of less than half of an event for analysis [9].

The benchmark GGM model used in this Letter can be used to interpret these cross section limits as lower limits on squark and gluino masses. For each mass point we compare the predicted cross section with the measured upper limit and claim exclusion if the former is greater than the latter. The exclusion contours for three different choices of neutralino mass are shown in Fig. 4, together with the expected exclusion limit for a 150 GeV neutralino mass. The predicted cross section has uncertainties due to the choice of parton distribution function and scale. We varied the predicted cross section by 1 standard deviation of its uncertainty to ascertain the impact on the exclusion region. The results for 150 GeV neutralino mass are pre-sented as a shaded band around the central value of the exclusion contour.

In summary, a search for evidence of GGM SUSY production in events that contain two or more high trans-verse energy isolated photons, one or more jets, and large

(GeV) miss T E 0 20 40 60 80 100 120 140 Number of Events 1 10 2 10 CMS -1 36 pb = 7 TeV s

(No Jet Requirement) γ

Data - e

Total SM Expectation

Predicted BG (QCD shape from Z) γ W W + jet >100 GeV miss T Integral E

FIG. 2 (color online). The EmissT distribution of the e

candi-dates (solid circles with error bars) is compared to the QCD expectation for this spectrum from Z! ee events (solid histo-gram). The W and W plus jet (with the jet misidentified as a photon) contributions are shown as dashed and dash-dotted histograms, respectively. The hatched red band represents the sum of all expected background components, and its width corresponds to the sum of the statistical and systematic uncer-tainties on the backgrounds.

FIG. 3. 95% C.L. upper limits for GGM production cross section as a function of squark (~q) and gluino (~g) masses for a neutralino mass of 150 GeV.

(5)

Emiss

T is presented. No such evidence is observed, leading to

upper limits on the GGM SUSY cross section between 0.3 and 1.1 pb at the 95% C.L. across the parameter space of a benchmark model, setting the world’s best direct lower limits on squark and gluino masses.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge sup-port from: FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] P. Fayet,Phys. Lett. 70B, 461 (1977).

[2] H. Baer, M. Brhlik, C. H. Chen, and X. Tata,Phys. Rev. D 55, 4463 (1997).

[3] H. Baer, P. G. Mercadante, X. Tata, and Y. L. Wang,Phys. Rev. D 60, 055001 (1999).

[4] S. Dimopoulos, S. Thomas, and J. D. Wells, Nucl. Phys. B488, 39 (1997).

[5] J. R. Ellis, J. L. Lopez, and D. V. Nanopoulos,Phys. Lett. B 394, 354 (1997).

[6] M. Dine, A. Nelson, Y. Nir, and Y. Shirman,Phys. Rev. D 53, 2658 (1996).

[7] G. F. Giudice and R. Rattazzi, in Perspectives on Supersymmetry (World Scientic, Singapore, 1998), p. 355. [8] T. Aaltonen et al., Phys. Rev. Lett. 104, 011801

(2010).

[9] V. M. Abazov et al., Phys. Rev. Lett. 105, 221802 (2010).

[10] A. Heister et al.,Eur. Phys. J. C 25, 339 (2002). [11] J. Abdallah et al.,Eur. Phys. J. C 38, 395 (2005). [12] P. Achard et al.,Phys. Lett. B 587, 16 (2004).

[13] G. Abbiendi et al. (OPAL Collaboration),Eur. Phys. J. C 46, 307 (2006).

[14] A. Aktas et al.,Phys. Lett. B 616, 31 (2005). [15] B. C. Allanach et al.,Eur. Phys. J. C 25, 113 (2002). [16] P. Meade, N. Seiberg, and D. Shih, Prog. Theor. Phys.

Suppl. 177, 143 (2009).

[17] M. Buican, P. Meade, N. Seiberg, and D. Shih, J. High Energy Phys. 03 (2009) 016.

[18] G. R. Farrar and P. Fayet,Phys. Lett. 76B, 575 (1978). [19] S. Chatrchyan et al. (CMS), JINST 3, S08004

(2008).

[20] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EGM-10-005, 2010.

[21] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[22] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-003, 2010.

[23] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-004, 2010.

[24] LHC New Physics Working Group, ‘‘Simplied Models for LHC New Physics Searches,’’ 2010, http:// www.lhcnewphysics.org/photons.

[25] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[26] W. Beenakker, R. Ho¨pker, M. Spira, and P. M. Zerwas,

Nucl. Phys. B492, 51 (1997).

[27] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).

[28] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EGM-10-004, 2010.

[29] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-EWK-10-004, 2010.

[30] K. Nakamura et al.,J. Phys. G 37, 075021 (2010).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2 C. Fabjan,2M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2

R. Scho¨fbeck,2J. Strauss,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2 ) (GeV) q ~ M( 400 600 800 1000 1200 1400 1600 1800 2000 ) (GeV) g~ M( 400 600 800 1000 1200 1400 1600 1800 2000 CMS -1 36 pb = 7 TeV s ) = 50 GeV 1 0 χ∼ M( ) = 150 GeV 1 0 χ∼ M( ) = 500 GeV 1 0 χ∼ M( Expected for ) = 150 GeV 1 0 χ∼ M(

FIG. 4 (color online). Lower 95% C.L. exclusion limits on the squark (~q) and gluino (~g) masses in the GGM benchmark model for 50, 150, and 500 GeV neutralino (~01) masses. The areas below and to the left of the lines are excluded. The expected exclusion limit for 150 GeV neutralino mass is shown by the dashed line. The shaded band represents1 standard deviation of theoretical uncertainty on the GGM cross section.

(6)

V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4E. A. De Wolf,4X. Janssen,4T. Maes,4 L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4F. Blekman,5S. Blyweert,5J. D’Hondt,5O. Devroede,5R. Gonzalez Suarez,5A. Kalogeropoulos,5 J. Maes,5M. Maes,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6 G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6

P. Vanlaer,6V. Adler,7A. Cimmino,7S. Costantini,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7 J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7P. Verwilligen,7S. Walsh,7N. Zaganidis,7

S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8E. Cortina Gil,8J. De Favereau De Jeneret,8C. Delaere,8,b D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8S. Ovyn,8D. Pagano,8 A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9T. Caebergs,9E. Daubie,9G. A. Alves,10D. De Jesus Damiao,10 M. E. Pol,10M. H. G. Souza,10W. Carvalho,11E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11

L. Mundim,11H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11 A. Sznajder,11F. Torres Da Silva De Araujo,11F. A. Dias,12T. R. Fernandez Perez Tomei,12E. M. Gregores,12,c C. Lagana,12F. Marinho,12P. G. Mercadante,12,cS. F. Novaes,12Sandra S. Padula,12N. Darmenov,13,bL. Dimitrov,13

V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13V. Tcholakov,13 R. Trayanov,13I. Vankov,13A. Dimitrov,14R. Hadjiiska,14A. Karadzhinova,14V. Kozhuharov,14L. Litov,14 M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15

X. Meng,15J. Tao,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15 Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16L. Zhang,16B. Zhu,16W. Zou,16 A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18

D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20 S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21

P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,eS. Khalil,23,fM. A. Mahmoud,23,gA. Hektor,24 M. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24V. Azzolini,25P. Eerola,25G. Fedi,25S. Czellar,26 J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26 S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26 L. Wendland,26K. Banzuzi,27A. Korpela,27T. Tuuva,27D. Sillou,28M. Besancon,29S. Choudhury,29M. Dejardin,29

D. Denegri,29B. Fabbro,29J. L. Faure,29F. Ferri,29S. Ganjour,29F. X. Gentit,29A. Givernaud,29P. Gras,29 G. Hamel de Monchenault,29P. Jarry,29E. Locci,29J. Malcles,29M. Marionneau,29L. Millischer,29J. Rander,29

A. Rosowsky,29I. Shreyber,29M. Titov,29P. Verrecchia,29S. Baffioni,30F. Beaudette,30L. Benhabib,30 L. Bianchini,30M. Bluj,30,hC. Broutin,30P. Busson,30C. Charlot,30T. Dahms,30L. Dobrzynski,30S. Elgammal,30

R. Granier de Cassagnac,30M. Haguenauer,30P. Mine´,30C. Mironov,30C. Ochando,30P. Paganini,30D. Sabes,30 R. Salerno,30Y. Sirois,30C. Thiebaux,30B. Wyslouch,30,iA. Zabi,30J.-L. Agram,31,jJ. Andrea,31D. Bloch,31 D. Bodin,31J.-M. Brom,31M. Cardaci,31E. C. Chabert,31C. Collard,31E. Conte,31,jF. Drouhin,31,jC. Ferro,31 J.-C. Fontaine,31,jD. Gele´,31U. Goerlach,31S. Greder,31P. Juillot,31M. Karim,31,jA.-C. Le Bihan,31Y. Mikami,31

P. Van Hove,31F. Fassi,32D. Mercier,32C. Baty,33S. Beauceron,33N. Beaupere,33M. Bedjidian,33O. Bondu,33 G. Boudoul,33D. Boumediene,33H. Brun,33R. Chierici,33D. Contardo,33P. Depasse,33H. El Mamouni,33J. Fay,33 S. Gascon,33B. Ille,33T. Kurca,33T. Le Grand,33M. Lethuillier,33L. Mirabito,33S. Perries,33V. Sordini,33S. Tosi,33

Y. Tschudi,33P. Verdier,33D. Lomidze,34G. Anagnostou,35M. Edelhoff,35L. Feld,35N. Heracleous,35 O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35A. Ostapchuk,35A. Perieanu,35F. Raupach,35

J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35M. Weber,35B. Wittmer,35M. Ata,36W. Bender,36 E. Dietz-Laursonn,36M. Erdmann,36J. Frangenheim,36T. Hebbeker,36A. Hinzmann,36K. Hoepfner,36 T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aC. Magass,36M. Merschmeyer,36A. Meyer,36

P. Papacz,36H. Pieta,36H. Reithler,36S. A. Schmitz,36L. Sonnenschein,36J. Steggemann,36D. Teyssier,36 M. Tonutti,36M. Bontenackels,37M. Davids,37M. Duda,37G. Flu¨gge,37H. Geenen,37M. Giffels,37W. Haj Ahmad,37

D. Heydhausen,37T. Kress,37Y. Kuessel,37A. Linn,37A. Nowack,37L. Perchalla,37O. Pooth,37J. Rennefeld,37 P. Sauerland,37A. Stahl,37M. Thomas,37D. Tornier,37M. H. Zoeller,37M. Aldaya Martin,38W. Behrenhoff,38 U. Behrens,38M. Bergholz,38,kA. Bethani,38K. Borras,38A. Cakir,38A. Campbell,38E. Castro,38D. Dammann,38

G. Eckerlin,38D. Eckstein,38A. Flossdorf,38G. Flucke,38A. Geiser,38J. Hauk,38H. Jung,38,bM. Kasemann,38 I. Katkov,38,lP. Katsas,38C. Kleinwort,38H. Kluge,38A. Knutsson,38M. Kra¨mer,38D. Kru¨cker,38E. Kuznetsova,38 W. Lange,38W. Lohmann,38,kR. Mankel,38M. Marienfeld,38I.-A. Melzer-Pellmann,38A. B. Meyer,38J. Mnich,38

(7)

A. Mussgiller,38J. Olzem,38D. Pitzl,38A. Raspereza,38A. Raval,38M. Rosin,38R. Schmidt,38,k T. Schoerner-Sadenius,38N. Sen,38A. Spiridonov,38M. Stein,38J. Tomaszewska,38R. Walsh,38C. Wissing,38

C. Autermann,39V. Blobel,39S. Bobrovskyi,39J. Draeger,39H. Enderle,39U. Gebbert,39K. Kaschube,39 G. Kaussen,39R. Klanner,39J. Lange,39B. Mura,39S. Naumann-Emme,39F. Nowak,39N. Pietsch,39C. Sander,39 H. Schettler,39P. Schleper,39M. Schro¨der,39T. Schum,39J. Schwandt,39H. Stadie,39G. Steinbru¨ck,39J. Thomsen,39

C. Barth,40J. Bauer,40V. Buege,40T. Chwalek,40W. De Boer,40A. Dierlamm,40G. Dirkes,40M. Feindt,40 J. Gruschke,40C. Hackstein,40F. Hartmann,40M. Heinrich,40H. Held,40K. H. Hoffmann,40S. Honc,40 J. R. Komaragiri,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40O. Oberst,40A. Oehler,40 J. Ott,40T. Peiffer,40D. Piparo,40G. Quast,40K. Rabbertz,40F. Ratnikov,40N. Ratnikova,40M. Renz,40C. Saout,40

A. Scheurer,40P. Schieferdecker,40F.-P. Schilling,40M. Schmanau,40G. Schott,40H. J. Simonis,40F. M. Stober,40 D. Troendle,40J. Wagner-Kuhr,40T. Weiler,40M. Zeise,40V. Zhukov,40,lE. B. Ziebarth,40G. Daskalakis,41 T. Geralis,41K. Karafasoulis,41S. Kesisoglou,41A. Kyriakis,41D. Loukas,41I. Manolakos,41A. Markou,41 C. Markou,41C. Mavrommatis,41E. Ntomari,41E. Petrakou,41L. Gouskos,42T. J. Mertzimekis,42A. Panagiotou,42 E. Stiliaris,42I. Evangelou,43C. Foudas,43P. Kokkas,43N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43 A. Aranyi,44G. Bencze,44L. Boldizsar,44C. Hajdu,44,bP. Hidas,44D. Horvath,44,mA. Kapusi,44K. Krajczar,44,n F. Sikler,44,bG. I. Veres,44,nG. Vesztergombi,44,nN. Beni,45J. Molnar,45J. Palinkas,45Z. Szillasi,45V. Veszpremi,45

P. Raics,46Z. L. Trocsanyi,46B. Ujvari,46S. Bansal,47S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47 M. Jindal,47M. Kaur,47J. M. Kohli,47M. Z. Mehta,47N. Nishu,47L. K. Saini,47A. Sharma,47A. P. Singh,47 J. B. Singh,47S. P. Singh,47S. Ahuja,48S. Bhattacharya,48B. C. Choudhary,48P. Gupta,48S. Jain,48S. Jain,48

A. Kumar,48K. Ranjan,48R. K. Shivpuri,48R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49 A. K. Mohanty,49,bL. M. Pant,49P. Shukla,49T. Aziz,50M. Guchait,50,oA. Gurtu,50M. Maity,50,pD. Majumder,50

G. Majumder,50K. Mazumdar,50G. B. Mohanty,50A. Saha,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51 S. Dugad,51N. K. Mondal,51H. Arfaei,52H. Bakhshiansohi,52,qS. M. Etesami,52A. Fahim,52,qM. Hashemi,52

A. Jafari,52,qM. Khakzad,52A. Mohammadi,52,rM. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52 B. Safarzadeh,52M. Zeinali,52,sM. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53bA. Colaleo,53a D. Creanza,53a,53cN. De Filippis,53a,53c,bM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53b G. Maggi,53a,53cM. Maggi,53aN. Manna,53a,53bB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53b

G. A. Pierro,53aA. Pompili,53a,53bG. Pugliese,53a,53cF. Romano,53a,53cG. Roselli,53a,53bG. Selvaggi,53a,53b L. Silvestris,53aR. Trentadue,53aS. Tupputi,53a,53bG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54aD. Bonacorsi,54a

S. Braibant-Giacomelli,54a,54bL. Brigliadori,54aP. Capiluppi,54a,54bA. Castro,54a,54bF. R. Cavallo,54a M. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54aP. Giacomelli,54a M. Giunta,54aS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54bA. Montanari,54aF. L. Navarria,54a,54b

F. Odorici,54aA. Perrotta,54aF. Primavera,54aA. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54b R. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b,bS. Costa,55a,55bA. Tricomi,55a,55b C. Tuve,55aG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56b

E. Gallo,56aS. Gonzi,56a,56bP. Lenzi,56a,56bM. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,b L. Benussi,57aS. Bianco,57aS. Colafranceschi,57a,tF. Fabbri,57aD. Piccolo,57aP. Fabbricatore,58aR. Musenich,58a

A. Benaglia,59a,59bF. De Guio,59a,59b,bL. Di Matteo,59a,59bA. Ghezzi,59a,59bS. Malvezzi,59aA. Martelli,59a,59b A. Massironi,59a,59bD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59bN. Redaelli,59a

S. Sala,59aT. Tabarelli de Fatis,59a,59bV. Tancini,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a,b N. Cavallo,60a,uA. De Cosa,60a,60bF. Fabozzi,60a,uA. O. M. Iorio,60a,bL. Lista,60aM. Merola,60a,60bP. Paolucci,60a

P. Azzi,61aN. Bacchetta,61aP. Bellan,61a,61bD. Bisello,61a,61bA. Branca,61aR. Carlin,61a,61bP. Checchia,61a M. De Mattia,61a,61bT. Dorigo,61aU. Dosselli,61aF. Fanzago,61aF. Gasparini,61a,61bU. Gasparini,61a,61b S. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bM. Mazzucato,61aA. T. Meneguzzo,61a,61bM. Nespolo,61a,b

L. Perrozzi,61a,bN. Pozzobon,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61b S. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bP. Baesso,62a,62bU. Berzano,62aS. P. Ratti,62a,62bC. Riccardi,62a,62b P. Torre,62a,62bP. Vitulo,62a,62bC. Viviani,62a,62bM. Biasini,63a,63bG. M. Bilei,63aB. Caponeri,63a,63bL. Fano`,63a,63b

P. Lariccia,63a,63bA. Lucaroni,63a,63b,bG. Mantovani,63a,63bM. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63b A. Santocchia,63a,63bS. Taroni,63a,63b,bM. Valdata,63a,63bP. Azzurri,64a,64cG. Bagliesi,64aJ. Bernardini,64a,64b T. Boccali,64a,bG. Broccolo,64a,64cR. Castaldi,64aR. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64bL. Foa`,64a,64c

(8)

G. Segneri,64aA. T. Serban,64aP. Spagnolo,64aR. Tenchini,64aG. Tonelli,64a,64b,bA. Venturi,64a,bP. G. Verdini,64a L. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65bE. Di Marco,65a,65bM. Diemoz,65aD. Franci,65a,65bM. Grassi,65a,b

E. Longo,65a,65bS. Nourbakhsh,65aG. Organtini,65a,65bF. Pandolfi,65a,65b,bR. Paramatti,65aS. Rahatlou,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aC. Botta,66a,66b,b

N. Cartiglia,66aR. Castello,66a,66bM. Costa,66a,66bN. Demaria,66aA. Graziano,66a,66b,bC. Mariotti,66a M. Marone,66a,66bS. Maselli,66aE. Migliore,66a,66bG. Mila,66a,66bV. Monaco,66a,66bM. Musich,66a,66b M. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66a,66bA. Romero,66a,66bM. Ruspa,66a,66cR. Sacchi,66a,66b

V. Sola,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66a,66bS. Belforte,67aF. Cossutti,67a G. Della Ricca,67a,67bB. Gobbo,67aD. Montanino,67a,67bA. Penzo,67aS. G. Heo,68S. K. Nam,68S. Chang,69 J. Chung,69D. H. Kim,69G. N. Kim,69J. E. Kim,69D. J. Kong,69H. Park,69S. R. Ro,69D. Son,69D. C. Son,69 T. Son,69Zero Kim,70J. Y. Kim,70S. Song,70S. Choi,71B. Hong,71M. S. Jeong,71M. Jo,71H. Kim,71J. H. Kim,71

T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71H. B. Rhee,71E. Seo,71S. Shin,71K. S. Sim,71M. Choi,72 S. Kang,72H. Kim,72C. Park,72I. C. Park,72S. Park,72G. Ryu,72Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73 E. Kwon,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74D. Martisiute,74

P. Petrov,74T. Sabonis,74H. Castilla-Valdez,75E. De La Cruz-Burelo,75R. Lopez-Fernandez,75 R. Magan˜a Villalba,75A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78 D. Krofcheck,79J. Tam,79P. H. Butler,80R. Doesburg,80H. Silverwood,80M. Ahmad,81I. Ahmed,81M. I. Asghar,81 H. R. Hoorani,81W. A. Khan,81T. Khurshid,81S. Qazi,81G. Brona,82M. Cwiok,82W. Dominik,82K. Doroba,82

A. Kalinowski,82M. Konecki,82J. Krolikowski,82T. Frueboes,83R. Gokieli,83M. Go´rski,83M. Kazana,83 K. Nawrocki,83K. Romanowska-Rybinska,83M. Szleper,83G. Wrochna,83P. Zalewski,83N. Almeida,84 P. Bargassa,84A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84P. Musella,84A. Nayak,84 J. Seixas,84J. Varela,84S. Afanasiev,85I. Belotelov,85P. Bunin,85I. Golutvin,85A. Kamenev,85V. Karjavin,85 G. Kozlov,85A. Lanev,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85V. Smirnov,85A. Volodko,85

A. Zarubin,85V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86I. Smirnov,86 V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86A. Vorobyev,86Yu. Andreev,87A. Dermenev,87 S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87A. Toropin,87 S. Troitsky,87V. Epshteyn,88V. Gavrilov,88V. Kaftanov,88,aM. Kossov,88,bA. Krokhotin,88N. Lychkovskaya,88

V. Popov,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88E. Boos,89M. Dubinin,89,w L. Dudko,89A. Ershov,89A. Gribushin,89O. Kodolova,89I. Lokhtin,89A. Markina,89S. Obraztsov,89M. Perfilov,89

S. Petrushanko,89L. Sarycheva,89V. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90I. Dremin,90 M. Kirakosyan,90A. Leonidov,90S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91S. Bitioukov,91V. Grishin,91,b

V. Kachanov,91D. Konstantinov,91A. Korablev,91V. Krychkine,91V. Petrov,91R. Ryutin,91S. Slabospitsky,91 A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,x M. Djordjevic,92D. Krpic,92,xJ. Milosevic,92M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93

E. Calvo,93M. Cepeda,93M. Cerrada,93M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93 C. Diez Pardos,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93 J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93

G. Merino,93J. Puerta Pelayo,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93C. Willmott,93 C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94J. Cuevas,95J. Fernandez Menendez,95S. Folgueras,95 I. Gonzalez Caballero,95L. Lloret Iglesias,95J. M. Vizan Garcia,95J. A. Brochero Cifuentes,96I. J. Cabrillo,96

A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,yM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96C. Jorda,96P. Lobelle Pardo,96A. Lopez Virto,96J. Marco,96R. Marco,96

C. Martinez Rivero,96F. Matorras,96F. J. Munoz Sanchez,96J. Piedra Gomez,96,zT. Rodrigo,96 A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96M. Sobron Sanudo,96I. Vila,96 R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97P. Baillon,97A. H. Ball,97D. Barney,97 A. J. Bell,97,aaD. Benedetti,97C. Bernet,97,dW. Bialas,97P. Bloch,97A. Bocci,97S. Bolognesi,97M. Bona,97 H. Breuker,97K. Bunkowski,97T. Camporesi,97G. Cerminara,97J. A. Coarasa Perez,97B. Cure´,97D. D’Enterria,97 A. De Roeck,97S. Di Guida,97A. Elliott-Peisert,97B. Frisch,97W. Funk,97A. Gaddi,97S. Gennai,97G. Georgiou,97

H. Gerwig,97D. Gigi,97K. Gill,97D. Giordano,97F. Glege,97R. Gomez-Reino Garrido,97M. Gouzevitch,97 P. Govoni,97S. Gowdy,97L. Guiducci,97M. Hansen,97C. Hartl,97J. Harvey,97J. Hegeman,97B. Hegner,97

(9)

H. F. Hoffmann,97A. Honma,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97P. Lecoq,97C. Lourenc¸o,97 T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97A. Maurisset,97F. Meijers,97S. Mersi,97 E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97E. Nesvold,97,bM. Nguyen,97T. Orimoto,97L. Orsini,97 E. Perez,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97G. Polese,97A. Racz,97J. Rodrigues Antunes,97 G. Rolandi,97,bbT. Rommerskirchen,97C. Rovelli,97,ccM. Rovere,97H. Sakulin,97C. Scha¨fer,97C. Schwick,97 I. Segoni,97A. Sharma,97P. Siegrist,97M. Simon,97P. Sphicas,97,ddM. Spiropulu,97,wM. Stoye,97P. Tropea,97

A. Tsirou,97P. Vichoudis,97M. Voutilainen,97W. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98 K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98 F. Meier,98D. Renker,98T. Rohe,98J. Sibille,98,eeA. Starodumov,98,ffP. Bortignon,99L. Caminada,99,ggN. Chanon,99

Z. Chen,99S. Cittolin,99G. Dissertori,99M. Dittmar,99J. Eugster,99K. Freudenreich,99C. Grab,99A. Herve´,99 W. Hintz,99P. Lecomte,99W. Lustermann,99C. Marchica,99,ggP. Martinez Ruiz del Arbol,99P. Meridiani,99 P. Milenovic,99,hhF. Moortgat,99C. Na¨geli,99,ggP. Nef,99F. Nessi-Tedaldi,99L. Pape,99F. Pauss,99T. Punz,99 A. Rizzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99M.-C. Sawley,99B. Stieger,99L. Tauscher,99,a

A. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99M. Weber,99L. Wehrli,99J. Weng,99 E. Aguilo´,100C. Amsler,100V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100

P. Otiougova,100C. Regenfus,100P. Robmann,100A. Schmidt,100H. Snoek,100Y. H. Chang,101K. H. Chen,101 C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101R. Volpe,101J. H. Wu,101S. S. Yu,101 P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102W.-S. Hou,102Y. Hsiung,102 K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102J. G. Shiu,102Y. M. Tzeng,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,ii S. Cerci,103,jjC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103Y. Guler,103E. Gurpinar,103

I. Hos,103E. E. Kangal,103T. Karaman,103A. Kayis Topaksu,103A. Nart,103G. Onengut,103K. Ozdemir,103 S. Ozturk,103A. Polatoz,103K. Sogut,103,kkD. Sunar Cerci,103,jjB. Tali,103H. Topakli,103,iiD. Uzun,103

L. N. Vergili,103M. Vergili,103C. Zorbilmez,103I. V. Akin,104T. Aliev,104S. Bilmis,104M. Deniz,104 H. Gamsizkan,104A. M. Guler,104K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104 E. Yildirim,104M. Zeyrek,104M. Deliomeroglu,105D. Demir,105,llE. Gu¨lmez,105B. Isildak,105M. Kaya,105,mm O. Kaya,105,mmS. Ozkorucuklu,105,nnN. Sonmez,105,ooL. Levchuk,106F. Bostock,107J. J. Brooke,107T. L. Cheng,107

E. Clement,107D. Cussans,107R. Frazier,107J. Goldstein,107M. Grimes,107M. Hansen,107D. Hartley,107 G. P. Heath,107H. F. Heath,107J. Jackson,107L. Kreczko,107S. Metson,107D. M. Newbold,107,ppK. Nirunpong,107

A. Poll,107S. Senkin,107V. J. Smith,107S. Ward,107L. Basso,108,qqK. W. Bell,108A. Belyaev,108,qqC. Brew,108 R. M. Brown,108B. Camanzi,108D. J. A. Cockerill,108J. A. Coughlan,108K. Harder,108S. Harper,108 B. W. Kennedy,108E. Olaiya,108D. Petyt,108B. C. Radburn-Smith,108C. H. Shepherd-Themistocleous,108 I. R. Tomalin,108W. J. Womersley,108S. D. Worm,108R. Bainbridge,109G. Ball,109J. Ballin,109R. Beuselinck,109

O. Buchmuller,109D. Colling,109N. Cripps,109M. Cutajar,109G. Davies,109M. Della Negra,109W. Ferguson,109 J. Fulcher,109D. Futyan,109A. Gilbert,109A. Guneratne Bryer,109G. Hall,109Z. Hatherell,109J. Hays,109G. Iles,109 M. Jarvis,109G. Karapostoli,109L. Lyons,109B. C. MacEvoy,109A.-M. Magnan,109J. Marrouche,109B. Mathias,109

R. Nandi,109J. Nash,109A. Nikitenko,109,ffA. Papageorgiou,109M. Pesaresi,109K. Petridis,109M. Pioppi,109,rr D. M. Raymond,109S. Rogerson,109N. Rompotis,109A. Rose,109M. J. Ryan,109C. Seez,109P. Sharp,109 A. Sparrow,109A. Tapper,109S. Tourneur,109M. Vazquez Acosta,109T. Virdee,109S. Wakefield,109N. Wardle,109

D. Wardrope,109T. Whyntie,109M. Barrett,110M. Chadwick,110J. E. Cole,110P. R. Hobson,110A. Khan,110 P. Kyberd,110D. Leslie,110W. Martin,110I. D. Reid,110L. Teodorescu,110K. Hatakeyama,111T. Bose,112 E. Carrera Jarrin,112C. Fantasia,112A. Heister,112J. St. John,112P. Lawson,112D. Lazic,112J. Rohlf,112D. Sperka,112

L. Sulak,112A. Avetisyan,113S. Bhattacharya,113J. P. Chou,113D. Cutts,113A. Ferapontov,113U. Heintz,113 S. Jabeen,113G. Kukartsev,113G. Landsberg,113M. Narain,113D. Nguyen,113M. Segala,113T. Sinthuprasith,113 T. Speer,113K. V. Tsang,113R. Breedon,114M. Calderon De La Barca Sanchez,114S. Chauhan,114M. Chertok,114 J. Conway,114P. T. Cox,114J. Dolen,114R. Erbacher,114E. Friis,114W. Ko,114A. Kopecky,114R. Lander,114H. Liu,114

S. Maruyama,114T. Miceli,114M. Nikolic,114D. Pellett,114J. Robles,114S. Salur,114T. Schwarz,114M. Searle,114 J. Smith,114M. Squires,114M. Tripathi,114R. Vasquez Sierra,114C. Veelken,114V. Andreev,115K. Arisaka,115 D. Cline,115R. Cousins,115A. Deisher,115J. Duris,115S. Erhan,115C. Farrell,115J. Hauser,115M. Ignatenko,115

C. Jarvis,115C. Plager,115G. Rakness,115P. Schlein,115,aJ. Tucker,115V. Valuev,115J. Babb,116A. Chandra,116 R. Clare,116J. Ellison,116J. W. Gary,116F. Giordano,116G. Hanson,116G. Y. Jeng,116S. C. Kao,116F. Liu,116

(10)

S. Sumowidagdo,116R. Wilken,116S. Wimpenny,116W. Andrews,117J. G. Branson,117G. B. Cerati,117 E. Dusinberre,117D. Evans,117F. Golf,117A. Holzner,117R. Kelley,117M. Lebourgeois,117J. Letts,117 B. Mangano,117S. Padhi,117C. Palmer,117G. Petrucciani,117H. Pi,117M. Pieri,117R. Ranieri,117M. Sani,117 V. Sharma,117S. Simon,117Y. Tu,117A. Vartak,117S. Wasserbaech,117,ssF. Wu¨rthwein,117A. Yagil,117J. Yoo,117

D. Barge,118R. Bellan,118C. Campagnari,118M. D’Alfonso,118T. Danielson,118K. Flowers,118P. Geffert,118 J. Incandela,118C. Justus,118P. Kalavase,118S. A. Koay,118D. Kovalskyi,118V. Krutelyov,118S. Lowette,118 N. Mccoll,118V. Pavlunin,118F. Rebassoo,118J. Ribnik,118J. Richman,118R. Rossin,118D. Stuart,118W. To,118 J. R. Vlimant,118A. Apresyan,119A. Bornheim,119J. Bunn,119Y. Chen,119M. Gataullin,119Y. Ma,119A. Mott,119 H. B. Newman,119C. Rogan,119K. Shin,119V. Timciuc,119P. Traczyk,119J. Veverka,119R. Wilkinson,119Y. Yang,119

R. Y. Zhu,119B. Akgun,120R. Carroll,120T. Ferguson,120Y. Iiyama,120D. W. Jang,120S. Y. Jun,120Y. F. Liu,120 M. Paulini,120J. Russ,120H. Vogel,120I. Vorobiev,120J. P. Cumalat,121M. E. Dinardo,121B. R. Drell,121 C. J. Edelmaier,121W. T. Ford,121A. Gaz,121B. Heyburn,121E. Luiggi Lopez,121U. Nauenberg,121J. G. Smith,121

K. Stenson,121K. A. Ulmer,121S. R. Wagner,121S. L. Zang,121L. Agostino,122J. Alexander,122D. Cassel,122 A. Chatterjee,122S. Das,122N. Eggert,122L. K. Gibbons,122B. Heltsley,122W. Hopkins,122A. Khukhunaishvili,122 B. Kreis,122G. Nicolas Kaufman,122J. R. Patterson,122D. Puigh,122A. Ryd,122E. Salvati,122X. Shi,122W. Sun,122 W. D. Teo,122J. Thom,122J. Thompson,122J. Vaughan,122Y. Weng,122L. Winstrom,122P. Wittich,122A. Biselli,123

G. Cirino,123D. Winn,123S. Abdullin,124M. Albrow,124J. Anderson,124G. Apollinari,124M. Atac,124 J. A. Bakken,124S. Banerjee,124L. A. T. Bauerdick,124A. Beretvas,124J. Berryhill,124P. C. Bhat,124I. Bloch,124 F. Borcherding,124K. Burkett,124J. N. Butler,124V. Chetluru,124H. W. K. Cheung,124F. Chlebana,124S. Cihangir,124

W. Cooper,124D. P. Eartly,124V. D. Elvira,124S. Esen,124I. Fisk,124J. Freeman,124Y. Gao,124E. Gottschalk,124 D. Green,124K. Gunthoti,124O. Gutsche,124J. Hanlon,124R. M. Harris,124J. Hirschauer,124B. Hooberman,124 H. Jensen,124M. Johnson,124U. Joshi,124R. Khatiwada,124B. Klima,124K. Kousouris,124S. Kunori,124S. Kwan,124 C. Leonidopoulos,124P. Limon,124D. Lincoln,124R. Lipton,124J. Lykken,124K. Maeshima,124J. M. Marraffino,124 D. Mason,124P. McBride,124T. Miao,124K. Mishra,124S. Mrenna,124Y. Musienko,124,ttC. Newman-Holmes,124

V. O’Dell,124R. Pordes,124O. Prokofyev,124N. Saoulidou,124E. Sexton-Kennedy,124S. Sharma,124 W. J. Spalding,124L. Spiegel,124P. Tan,124L. Taylor,124S. Tkaczyk,124L. Uplegger,124E. W. Vaandering,124

R. Vidal,124J. Whitmore,124W. Wu,124F. Yang,124F. Yumiceva,124J. C. Yun,124D. Acosta,125P. Avery,125 D. Bourilkov,125M. Chen,125M. De Gruttola,125G. P. Di Giovanni,125D. Dobur,125A. Drozdetskiy,125 R. D. Field,125M. Fisher,125Y. Fu,125I. K. Furic,125J. Gartner,125B. Kim,125J. Konigsberg,125A. Korytov,125

A. Kropivnitskaya,125T. Kypreos,125K. Matchev,125G. Mitselmakher,125L. Muniz,125C. Prescott,125 R. Remington,125M. Schmitt,125B. Scurlock,125P. Sellers,125N. Skhirtladze,125M. Snowball,125D. Wang,125 J. Yelton,125M. Zakaria,125C. Ceron,126V. Gaultney,126L. Kramer,126L. M. Lebolo,126S. Linn,126P. Markowitz,126

G. Martinez,126D. Mesa,126J. L. Rodriguez,126T. Adams,127A. Askew,127D. Bandurin,127J. Bochenek,127 J. Chen,127B. Diamond,127S. V. Gleyzer,127J. Haas,127S. Hagopian,127V. Hagopian,127M. Jenkins,127 K. F. Johnson,127H. Prosper,127L. Quertenmont,127S. Sekmen,127V. Veeraraghavan,127M. M. Baarmand,128 B. Dorney,128S. Guragain,128M. Hohlmann,128H. Kalakhety,128R. Ralich,128I. Vodopiyanov,128M. R. Adams,129

I. M. Anghel,129L. Apanasevich,129Y. Bai,129V. E. Bazterra,129R. R. Betts,129J. Callner,129R. Cavanaugh,129 C. Dragoiu,129L. Gauthier,129C. E. Gerber,129D. J. Hofman,129S. Khalatyan,129G. J. Kunde,129F. Lacroix,129

M. Malek,129C. O’Brien,129C. Silvestre,129A. Smoron,129D. Strom,129N. Varelas,129U. Akgun,130 E. A. Albayrak,130B. Bilki,130W. Clarida,130F. Duru,130C. K. Lae,130E. McCliment,130J.-P. Merlo,130 H. Mermerkaya,130,uuA. Mestvirishvili,130A. Moeller,130J. Nachtman,130C. R. Newsom,130E. Norbeck,130 J. Olson,130Y. Onel,130F. Ozok,130S. Sen,130J. Wetzel,130T. Yetkin,130K. Yi,130B. A. Barnett,131B. Blumenfeld,131

A. Bonato,131C. Eskew,131D. Fehling,131G. Giurgiu,131A. V. Gritsan,131G. Hu,131P. Maksimovic,131 S. Rappoccio,131M. Swartz,131N. V. Tran,131A. Whitbeck,131P. Baringer,132A. Bean,132G. Benelli,132 O. Grachov,132R. P. Kenny Iii,132M. Murray,132D. Noonan,132S. Sanders,132J. S. Wood,132V. Zhukova,132

A. f. Barfuss,133T. Bolton,133I. Chakaberia,133A. Ivanov,133S. Khalil,133M. Makouski,133Y. Maravin,133 S. Shrestha,133I. Svintradze,133Z. Wan,133J. Gronberg,134D. Lange,134D. Wright,134A. Baden,135 M. Boutemeur,135S. C. Eno,135D. Ferencek,135J. A. Gomez,135N. J. Hadley,135R. G. Kellogg,135M. Kirn,135

Y. Lu,135A. C. Mignerey,135K. Rossato,135P. Rumerio,135F. Santanastasio,135A. Skuja,135J. Temple,135 M. B. Tonjes,135S. C. Tonwar,135E. Twedt,135B. Alver,136G. Bauer,136J. Bendavid,136W. Busza,136E. Butz,136

(11)

P. Harris,136Y. Kim,136M. Klute,136Y.-J. Lee,136W. Li,136C. Loizides,136P. D. Luckey,136T. Ma,136S. Nahn,136 C. Paus,136D. Ralph,136C. Roland,136G. Roland,136M. Rudolph,136G. S. F. Stephans,136F. Sto¨ckli,136 K. Sumorok,136K. Sung,136E. A. Wenger,136S. Xie,136M. Yang,136Y. Yilmaz,136A. S. Yoon,136M. Zanetti,136 S. I. Cooper,137P. Cushman,137B. Dahmes,137A. De Benedetti,137P. R. Dudero,137G. Franzoni,137J. Haupt,137

K. Klapoetke,137Y. Kubota,137J. Mans,137V. Rekovic,137R. Rusack,137M. Sasseville,137A. Singovsky,137 L. M. Cremaldi,138R. Godang,138R. Kroeger,138L. Perera,138R. Rahmat,138D. A. Sanders,138D. Summers,138

K. Bloom,139S. Bose,139J. Butt,139D. R. Claes,139A. Dominguez,139M. Eads,139J. Keller,139T. Kelly,139 I. Kravchenko,139J. Lazo-Flores,139H. Malbouisson,139S. Malik,139G. R. Snow,139U. Baur,140A. Godshalk,140

I. Iashvili,140S. Jain,140A. Kharchilava,140A. Kumar,140S. P. Shipkowski,140K. Smith,140G. Alverson,141 E. Barberis,141D. Baumgartel,141O. Boeriu,141M. Chasco,141S. Reucroft,141J. Swain,141D. Trocino,141 D. Wood,141J. Zhang,141A. Anastassov,142A. Kubik,142N. Odell,142R. A. Ofierzynski,142B. Pollack,142 A. Pozdnyakov,142M. Schmitt,142S. Stoynev,142M. Velasco,142S. Won,142L. Antonelli,143D. Berry,143 M. Hildreth,143C. Jessop,143D. J. Karmgard,143J. Kolb,143T. Kolberg,143K. Lannon,143W. Luo,143S. Lynch,143

N. Marinelli,143D. M. Morse,143T. Pearson,143R. Ruchti,143J. Slaunwhite,143N. Valls,143M. Wayne,143 J. Ziegler,143B. Bylsma,144L. S. Durkin,144J. Gu,144C. Hill,144P. Killewald,144K. Kotov,144T. Y. Ling,144 M. Rodenburg,144G. Williams,144N. Adam,145E. Berry,145P. Elmer,145D. Gerbaudo,145V. Halyo,145P. Hebda,145 A. Hunt,145J. Jones,145E. Laird,145D. Lopes Pegna,145D. Marlow,145T. Medvedeva,145M. Mooney,145J. Olsen,145 P. Piroue´,145X. Quan,145H. Saka,145D. Stickland,145C. Tully,145J. S. Werner,145A. Zuranski,145J. G. Acosta,146

X. T. Huang,146A. Lopez,146H. Mendez,146S. Oliveros,146J. E. Ramirez Vargas,146A. Zatserklyaniy,146 E. Alagoz,147V. E. Barnes,147G. Bolla,147L. Borrello,147D. Bortoletto,147A. Everett,147A. F. Garfinkel,147 L. Gutay,147Z. Hu,147M. Jones,147O. Koybasi,147M. Kress,147A. T. Laasanen,147N. Leonardo,147C. Liu,147 V. Maroussov,147P. Merkel,147D. H. Miller,147N. Neumeister,147I. Shipsey,147D. Silvers,147A. Svyatkovskiy,147

H. D. Yoo,147J. Zablocki,147Y. Zheng,147P. Jindal,148N. Parashar,148C. Boulahouache,149V. Cuplov,149 K. M. Ecklund,149F. J. M. Geurts,149B. P. Padley,149R. Redjimi,149J. Roberts,149J. Zabel,149B. Betchart,150

A. Bodek,150Y. S. Chung,150R. Covarelli,150P. de Barbaro,150R. Demina,150Y. Eshaq,150H. Flacher,150 A. Garcia-Bellido,150P. Goldenzweig,150Y. Gotra,150J. Han,150A. Harel,150D. C. Miner,150D. Orbaker,150 G. Petrillo,150D. Vishnevskiy,150M. Zielinski,150A. Bhatti,151R. Ciesielski,151L. Demortier,151K. Goulianos,151

G. Lungu,151S. Malik,151C. Mesropian,151M. Yan,151O. Atramentov,152A. Barker,152D. Duggan,152 Y. Gershtein,152R. Gray,152E. Halkiadakis,152D. Hidas,152D. Hits,152A. Lath,152S. Panwalkar,152R. Patel,152

A. Richards,152K. Rose,152S. Schnetzer,152S. Somalwar,152R. Stone,152S. Thomas,152G. Cerizza,153 M. Hollingsworth,153S. Spanier,153Z. C. Yang,153A. York,153J. Asaadi,154R. Eusebi,154J. Gilmore,154 A. Gurrola,154T. Kamon,154V. Khotilovich,154R. Montalvo,154C. N. Nguyen,154I. Osipenkov,154Y. Pakhotin,154

J. Pivarski,154A. Safonov,154S. Sengupta,154A. Tatarinov,154D. Toback,154M. Weinberger,154N. Akchurin,155 C. Bardak,155J. Damgov,155C. Jeong,155K. Kovitanggoon,155S. W. Lee,155Y. Roh,155A. Sill,155I. Volobouev,155 R. Wigmans,155E. Yazgan,155E. Appelt,156E. Brownson,156D. Engh,156C. Florez,156W. Gabella,156M. Issah,156

W. Johns,156P. Kurt,156C. Maguire,156A. Melo,156P. Sheldon,156B. Snook,156S. Tuo,156J. Velkovska,156 M. W. Arenton,157M. Balazs,157S. Boutle,157B. Cox,157B. Francis,157R. Hirosky,157A. Ledovskoy,157C. Lin,157

C. Neu,157R. Yohay,157S. Gollapinni,158R. Harr,158P. E. Karchin,158P. Lamichhane,158M. Mattson,158 C. Milste`ne,158A. Sakharov,158M. Anderson,159M. Bachtis,159J. N. Bellinger,159D. Carlsmith,159S. Dasu,159 J. Efron,159K. Flood,159L. Gray,159K. S. Grogg,159M. Grothe,159R. Hall-Wilton,159M. Herndon,159P. Klabbers,159

J. Klukas,159A. Lanaro,159C. Lazaridis,159J. Leonard,159R. Loveless,159A. Mohapatra,159F. Palmonari,159 D. Reeder,159I. Ross,159A. Savin,159W. H. Smith,159J. Swanson,159and M. Weinberg159

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Republic of Belarus 4Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

(12)

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15Institute of High Energy Physics, Beijing, China 16

State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China

17Universidad de Los Andes, Bogota, Colombia 18Technical University of Split, Split, Croatia

19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics,

Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 29DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

30Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 31

Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

32Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 33Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon,

Villeurbanne, France

34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research - EHEP, Mumbai, India 51Tata Institute of Fundamental Research - HECR, Mumbai, India 52

Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

53INFN Sezione di Bari, Universita` di Bari, Politecnico di Bari, Bari, Italy 53aINFN Sezione di Bari, Bari, Italy

53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy

54INFN Sezione di Bologna, Universita` di Bologna, Bologna, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy

55INFN Sezione di Catania, Universita` di Catania, Catania, Italy 55a

INFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy

56INFN Sezione di Firenze, Universita` di Firenze, Firenze, Italy 56aINFN Sezione di Firenze, Firenze, Italy

(13)

57aINFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

59INFN Sezione di Milano-Biccoca, Universita` di Milano-Bicocca, Milano, Italy 59aINFN Sezione di Milano-Biccoca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy

60INFN Sezione di Napoli, Universita` di Napoli ‘‘Federico II,’’ Napoli, Italy 60aINFN Sezione di Napoli, Napoli, Italy

60bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy 61

INFN Sezione di Padova, Universita` di Padova, Universita` di Trento (Trento), Padova, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy 62INFN Sezione di Pavia, Universita` di Pavia, Pavia, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy

63INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy

64INFN Sezione di Pisa, Universita` di Pisa, Scuola Normale Superiore di Pisa, Pisa, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy 65aINFN Sezione di Roma, Roma, Italy

65b

Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy

66INFN Sezione di Torino, Universita` di Torino, Universita` del Piemonte Orientale (Novara), Torino, Italy 66aINFN Sezione di Torino, Torino, Italy

66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67INFN Sezione di Trieste, Universita` di Trieste, Trieste, Italy

67aINFN Sezione di Trieste, Trieste, Italy 67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

83

Soltan Institute for Nuclear Studies, Warsaw, Poland

84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P. N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

(14)

97CERN, European Organization for Nuclear Research, Geneva, Switzerland 98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105

Bogazici University, Istanbul, Turkey

106National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 107University of Bristol, Bristol, United Kingdom

108Rutherford Appleton Laboratory, Didcot, United Kingdom 109Imperial College, London, United Kingdom 110Brunel University, Uxbridge, United Kingdom

111Baylor University, Waco, Texas, USA 112Boston University, Boston, Massachusetts, USA 113Brown University, Providence, Rhode Island, USA 114University of California, Davis, Davis, California, USA 115University of California, Los Angeles, Los Angeles, California, USA

116University of California, Riverside, Riverside, California, USA 117University of California, San Diego, La Jolla, California, USA 118University of California, Santa Barbara, Santa Barbara, California, USA

119California Institute of Technology, Pasadena, California, USA 120Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 121

University of Colorado at Boulder, Boulder, Colorado, USA

122Cornell University, Ithaca, New York, USA 123Fairfield University, Fairfield, Connecticut, USA 124Fermi National Accelerator Laboratory, Batavia, Illinois, USA

125University of Florida, Gainesville, Florida, USA 126Florida International University, Miami, Florida, USA

127Florida State University, Tallahassee, Florida, USA 128Florida Institute of Technology, Melbourne, Florida, USA 129University of Illinois at Chicago (UIC), Chicago, Illinois, USA

130The University of Iowa, Iowa City, Iowa, USA 131Johns Hopkins University, Baltimore, Maryland, USA

132The University of Kansas, Lawrence, Kansas, USA 133Kansas State University, Manhattan, Kansas, USA

134Lawrence Livermore National Laboratory, Livermore, California, USA 135University of Maryland, College Park, Maryland, USA 136Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

137University of Minnesota, Minneapolis, Minnesota, USA 138University of Mississippi, University, Mississippi, USA 139University of Nebraska–Lincoln, Lincoln, Nebraska, USA 140State University of New York at Buffalo, Buffalo, New York, USA

141Northeastern University, Boston, Massachusetts, USA 142Northwestern University, Evanston, Illinois, USA 143University of Notre Dame, Notre Dame, Indiana, USA

144

The Ohio State University, Columbus, Ohio, USA

145Princeton University, Princeton, New Jersey, USA 146University of Puerto Rico, Mayaguez, Puerto Rico, USA

147Purdue University, West Lafayette, Indiana, USA 148Purdue University Calumet, Hammond, Indiana, USA

149Rice University, Houston, Texas, USA 150University of Rochester, Rochester, New York, USA 151The Rockefeller University, New York, New York, USA

152Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 153

University of Tennessee, Knoxville, Tennessee, USA

154Texas A&M University, College Station, Texas, USA 155Texas Tech University, Lubbock, Texas, USA 156Vanderbilt University, Nashville, Tennessee, USA 157University of Virginia, Charlottesville, Virginia, USA

(15)

158Wayne State University, Detroit, Michigan, USA 159University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. cAlso at Universidade Federal do ABC, Santo Andre, Brazil.

dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. eAlso at Suez Canal University, Suez, Egypt.

fAlso at British University, Cairo, Egypt. gAlso at Fayoum University, El-Fayoum, Egypt.

hAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.

iAlso at Massachusetts Institute of Technology, Cambridge, MA, USA. jAlso at Universite´ de Haute-Alsace, Mulhouse, France.

kAlso at Brandenburg University of Technology, Cottbus, Germany. l

Also at Moscow State University, Moscow, Russia.

mAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. nAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

oAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. pAlso at University of Visva-Bharati, Santiniketan, India.

qAlso at Sharif University of Technology, Tehran, Iran. rAlso at Shiraz University, Shiraz, Iran.

sAlso at Isfahan University of Technology, Isfahan, Iran.

tAlso at Facolta` Ingegneria Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. uAlso at Universita` della Basilicata, Potenza, Italy.

vAlso at Universita` degli studi di Siena, Siena, Italy.

wAlso at California Institute of Technology, Pasadena, CA, USA. xAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. yAlso at University of California, Los Angeles, Los Angeles, CA, USA. zAlso at University of Florida, Gainesville, FL, USA.

aa

Also at Universite´ de Gene`ve, Geneva, Switzerland.

bbAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

ccAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. ddAlso at University of Athens, Athens, Greece.

eeAlso at The University of Kansas, Lawrence, KS, USA.

ffAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ggAlso at Paul Scherrer Institut, Villigen, Switzerland.

hhAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. iiAlso at Gaziosmanpasa University, Tokat, Turkey.

jjAlso at Adiyaman University, Adiyaman, Turkey. kkAlso at Mersin University, Mersin, Turkey.

llAlso at Izmir Institute of Technology, Izmir, Turkey. mmAlso at Kafkas University, Kars, Turkey.

nnAlso at Suleyman Demirel University, Isparta, Turkey. ooAlso at Ege University, Izmir, Turkey.

pp

Also at Rutherford Appleton Laboratory, Didcot, United Kingdom.

qqAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. rrAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

ssAlso at Utah Valley University, Orem, UT, USA. ttAlso at Institute for Nuclear Research, Moscow, Russia. uuAlso at Erzincan University, Erzincan, Turkey.

Figura

FIG. 1 (color online). E miss T distribution for  data, including
FIG. 3. 95% C.L. upper limits for GGM production cross section as a function of squark ( ~q) and gluino (~g) masses for a neutralino mass of 150 GeV.
FIG. 4 (color online). Lower 95% C.L. exclusion limits on the squark (~q) and gluino (~g) masses in the GGM benchmark model for 50, 150, and 500 GeV neutralino ( ~ 0 1 ) masses

Riferimenti

Documenti correlati

an approximate admission rate to acute psychiatric wards, including voluntary and involuntary patients, of 31.8 per 10,000 residents in the city of Rome in 2002.. Another

In conclusion, our analysis of patients with imatinib-treated chronic myeloid leukemia did not reveal a higher incidence of second primary malignancies; however, the outcome of

TOURBILLON Collana: Pagine: 32 Un libro basato sulle prime conoscenze: la nozione del tempo che passa (i giorni della settimana, la mattina, il pomeriggio, la sera), le prime

1ES 1959 +650 during the 9.5 yr period. The X-ray flares were sometimes not accompanied with an increasing activity in the γ -ray part of the spectrum and vice versa. In some cases,

In what follows, I will compare Angelina Buracci’s reflections on the cinema with the basic assumptions underlying the Italian male discourse on film and film spectatorship

(2014) and Planck Collaboration XXXIX (2016) who noted that the sub-mm flux densities of proto-cluster candidates measured by Planck are about 2 to 3 times larger than the

sono state lasciate in coltura per 1, 2, 3, 4, 5, 6, 8, 16, 24, 48 o 72 ore a seconda della necessità, al termine delle quali sono stati fatti saggi di vitalità cellulare, curve

In sintonia con questa impostazione teorica, il dibattito sviluppatosi nel corso degli ultimi anni nell'ambito della socio- logia dell'infanzia ha focalizzato la