• Non ci sono risultati.

A search for pair production of new light bosons decaying into muons

N/A
N/A
Protected

Academic year: 2021

Condividi "A search for pair production of new light bosons decaying into muons"

Copied!
23
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

A

search

for

pair

production

of

new

light

bosons

decaying

into

muons

.

CMS

Collaboration



CERN,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received31May2015

Receivedinrevisedform20October2015 Accepted25October2015

Availableonline3November2015 Editor:M.Doser Keywords: LHC CMS Muon NMSSM Hiddensectors Darkmatter

Asearchforthepairproductionofnewlightbosons,eachdecayingintoapairofmuons,isperformed with the CMS experiment at the LHC, using adataset corresponding to an integrated luminosity of 20.7 fb−1 collectedinproton–proton collisions atcenter-of-mass energy ofs=8 TeV. No excessis observedinthedatarelativetostandardmodelbackgroundexpectationandamodelindependent up-perlimitontheproductofthecrosssection,branchingfraction,andacceptanceisderived.Theresults are comparedwithtwo benchmarkmodels,thefirstoneinthecontextofthenext-to-minimal super-symmetricstandardmodel,andthesecondoneinscenarioscontainingahiddensector,includingthose predictinganonnegligiblelightbosonlifetime.

©2015CERNforthebenefitoftheCMSCollaboration.PublishedbyElsevierB.V.Thisisanopenaccess articleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

In July 2012 the ATLAS and CMS Collaborations at the CERN LHC announced thediscovery ofa particle [1–3] with properties consistent with the standard model (SM) Higgs boson [4–7]. Di-rectmeasurements oftheproductionanddecayratesofthe new particle,using SM decaychannels, haveso far played a key role in determining whether or not it is indeed consistent with the SM predictions.However,substantially increasing theprecision of thesemeasurements will requirefurtherdata. Searchesfor Higgs bosonsthrough productionmechanismsnotpredictedby theSM, ordecaymodesinvolvingparticlesnotincludedintheSM,provide acomplementaryapproachandhavetheadvantageofprobing spe-cifictypesofnewphysicsmodelswiththeexistingdata.

This letter presents a search for the pair production of new light bosons (denoted as ‘a’) decaying to pairs of isolated, op-positely charged muons (dimuons). One production mechanism for thesenew bosons is in the decay chain of a Higgs boson h, which can be SM-like or not: h

2a

+

X

4

μ

+

X, where X denotes possible additional particles from cascade decays of the Higgs boson. A range of new physics scenarios predict this de-caytopology,includingthenext-to-minimalsupersymmetric stan-dard model(NMSSM)[8]and modelswithhidden (ordark) sec-tors[9–11].

 E-mailaddress:cms-publication-committee-chair@cern.ch.

The NMSSM is an extension of the minimal supersymmet-ric standard model (MSSM) [12,13] that includes an additional gauge singletfield. It resolves the so-called

μ

problem [14] and significantly reduces the amount of fine tuning required in the MSSM [15]. The NMSSM Higgs sector consists of three CP-even neutralHiggsbosons h1,2,3,twoCP-oddneutralHiggsbosonsa1,2

andapairofchargedHiggsbosonsh±.Theh1 andh2 candecay

via h1,2

2a1,where eitherthe h1 or h2 can be the boson

ob-served at125 GeV.The a1 bosoncanbe light andcoupleweakly

to SM particles with a coupling to fermions proportional to the fermion mass.Thereforeit canhavea substantial branching frac-tion

B(

a1

μ

+

μ

)

ifits massis withintherange2mμ

<

ma1

<

2mτ [16,17](benchmark model1inthisletter).A searchforfinal statescontainingmuonpairsprovidessensitivitytomodelsofthis form.

Supersymmetry (SUSY) models withdark sectors (dark SUSY) offer an explanation for the excess in the ratio of the positron flux tothe combinedflux ofpositronsandelectrons observedby the satellite experiments [18–20] in primary cosmic rays aswell as predict cold dark matter with a scale of

O(

1 TeV

)

. A simple realizationof thesemodels includesa newU

(

1

)

D symmetry (the

subscript “D”stands for“Dark”)whichisbrokenandgivesriseto massivedarkphotons(denotedas

γ

D).Kineticmixingofthenew

U

(

1

)

DwiththeSMhyperchargeU

(

1

)

Yprovidesasmallmixing

be-tween

γ

D and the SM photon which allows

γ

D to decay to SM

particles[21].Dependingonthevalue

ε

ofthekineticmixing,the

γ

Dmayalsobelong-lived.Thelackofanantiprotontoprotonratio

excessofthemagnitudesimilartothepositronexcessinthe

mea-http://dx.doi.org/10.1016/j.physletb.2015.10.067

0370-2693/©2015CERNforthebenefitoftheCMSCollaboration.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

(2)

surementsofthecosmicrayspectrumconstrainsthemassof

γ

Dto

belessthantwicethemassoftheproton[22].Ifthehidden sec-tordirectlyor indirectlyinteractswiththe Higgsfield, a number ofpossiblescenariosmayberealized.Onesuchscenario,denoted in thisletter as benchmark model 2, is a model of SUSY where theSM-like Higgsbosoncandecayvia h

2n1,wheren1 isthe

lightestneutralinointhevisible(asopposedtohidden)partofthe SUSYspectrum.Then1 candecayvian1

nD

+

γ

D,wherenDisa

darkneutralinothatescapesdetection.Assumingthat

γ

Dcanonly

decaytoSM particles,thebranching fraction

B(

γ

D

μ

+

μ

)

can

beaslargeas45%,dependingonthemassof

γ

D[11].

Previoussearches forpairproduction ofnewlight bosons de-cayingintodimuonswereperformedattheTevatron[23]andthe LHC [24,25]. Searches for associated production of the light CP-oddscalarbosons havebeenperformedat e+e− colliders[26,27]

andthe Tevatron [28]. Direct a1 productionhas been studied at

theLHC[29],butthisisheavily suppressedby thetypically very weakcouplingsofthenewbosonstoSMparticles.Theconstraints onthe allowed NMSSM parameter spaceare driven by the mea-surements of relic density by WMAP [30] and more recently by PLANCK[31],whilespecificallyfortheHiggssectorthemost rele-vantmeasurementscomefromLEP[32–37],LHCmeasurementsof theSM-likeHiggsproperties,anddirectsearchesforh

aa [25]. In the framework of dark SUSY, experimental searches for dark photonshavefocused ontheir productionattheendofSUSY cas-cadesattheTevatron[38–40] andtheLHC[41,42]. Searchesata rangeoflowenergye+e−colliders(KLOE[43],BaBar[44]), heavy-ioncolliders (PHENIX [45]), fixed-target experiments (APEX [46], A1atMAMI[47],HADES[48]), aswell ascosmological measure-ments[49–51]andothers[52–56]provideconstraintson comple-mentaryregionsoftheavailableparameterspace.

Results are presented in this Letter in the context of the twobenchmark scenarios discussedearlier, one inthecontext of NMSSMandanotheroneintheframeworkofdarkSUSYscenarios. However,the searchhasbeen designedtobe independentofthe detailsofthesetwo specificmodels,andtheresultscanbe inter-pretedinthecontextofothermodelspredictingtheproductionof thesamefinal states.Comparedtothe previous version[25],the presentanalysishasbeenredesignedtobesensitivetosignatures withthe intermediate bosons traversing a nonnegligible distance beforedecayingintoapairofmuons.Suchsignaturescanbe real-izedindarkSUSYmodelsifthemixingofthedarkphotonwithits SMcounterpartissufficientlyweak.Inaddition,thepresent analy-sisusesadatasetfourtimeslargerthanthepreviousanalysis,and atahighercenter-of-massenergy,furtherextendingthereachfor signatureswithpromptmuons.

2. TheCMSdetector

This search is based on a data sample corresponding to an integratedluminosity of 20

.

7 fb−1 ofproton–proton collisions at a center-of-mass energy

s

=

8 TeV, recorded by the CMS de-tector in 2012. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter, providing a magneticfield of 3.8 T.Withinthe solenoidvolume area silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter,anda brass andscintillator hadron calorimeter, each composed ofa barrel andtwo endcap sections.Muonsare mea-suredingas-ionizationdetectorsembeddedinthesteelflux-return yokeoutsidethesolenoid. Extensiveforwardcalorimetry comple-mentsthe coverage providedby thebarrelandendcapdetectors. Muonsare measured in thepseudorapidity range

|

η

|

<

2

.

4, with detectionplanesmadeusingthreetechnologies:drift tubes, cath-odestripchambers, andresistiveplatechambers. Matchingmuon candidatesto tracksmeasured inthe silicontrackerresultsinan accurate measurement of the transverse momentum (pT). As an

example, formuonswith pT

<

10 GeV the relative pT resolution

isfound tobe 0.8%–3.0% (dependingon

|

η

|

) andformuonswith 20

<

pT

<

100 GeV itis1.3–2.0%inthebarrelandbetterthan6%

in theendcaps [57]. Amore detaileddescription ofthe CMS de-tector,togetherwithdefinitionsofthecoordinatesystemusedand therelevantkinematicvariables,canbefoundin[58].

3. Dataselection

Thedatawere collectedwithanonlinetriggerselectingevents containing atleast two muon candidates, one with pT

>

17 GeV

andanother with pT

>

8 GeV. In thisanalysisoffline muon

can-didates are definedas particle-flow (PF) muons [57]. The PF re-construction algorithm combines information from all CMS sub-detectors to identifyandreconstruct individual particles, such as electrons,photons,hadronsormuons.

Events are further selected by requiring at least four offline muoncandidateswithpT

>

8 GeV and

|

η

|

<

2

.

4 thatformtwo

op-positelychargedpairs.Atleastoneofthesemuonsmust addition-allysatisfy the requirementof pT

>

17 GeV and

|

η

|

<

0

.

9, which

ensures that the trigger efficiency is high and independent of theeventtopology,includingeffectsrelatedtooverlapsofnearby muontrajectories.Tracksassociatedwithapairofopposite-charge muon candidatesarefitforacommonvertexusingaKalman fil-teralgorithm [59]. Ifthe vertexis reconstructed, a muon pair is combined into a dimuon system if its invariant mass measured at the common vertex +μ

<

5 GeV and the vertex fit prob-ability Pv

(

μ

+

μ

) >

1%. Muon pairs failing these requirements

are still retained for the analysis if at the point of closest ap-proach of the two trajectories they are within



R

(

μ

+

, μ

)

=



(

η

μ+

η

μ

)

2

+ (φ

μ+

− φ

μ

)

2

<

0

.

01, where

φ

μ± are the az-imuthal anglesinradians. Thisrecoverystep isdesignedto com-pensate for the reduced efficiency of the vertex selection for dimuonsinwhichthetwomuontracksarenearlyparalleltoeach other,thereforeagoodefficiencyismaintainedfordimuonmasses down to the2mμ threshold (0.2114 GeV). Fordimuons in which this is the casethe point of closest approach is selected as the vertexposition,withtheadditionalselectionrequirementthatthe distancebetweenthe tracksbe

0

.

5 mm.The dimuonkinematic variablesaremeasuredatthedimuonvertexposition.Thereisno restriction on the number of ungrouped additional muons. Both dimuonsare requiredtohaveatleastone hitinthefirstlayer of thebarrelorendcapsofthepixeldetector,andthisdefinesan ef-fective“fiducial”region.Thisrequirement,alongwiththemuon pT

and

|

η

|

criteria, ensures hightrigger (

>

96%), reconstruction, and selection efficiencies, with a greatly reduced dependence on the pT,

η

,oropeninganglebetweenthemuons.

Theprojectedz coordinateofthedimuonsystematthepointof theclosestapproachtothebeamline(zμμ)isreconstructedusing thedimuonmomentum.Therequirement

|

z1μμ

z2μμ

|

<

1 mm is imposedtoensurethatbothdimuonsareconsistentwiththesame pp interaction; no explicitrequirements are madeon theimpact parameterorthe z coordinateatthe pointofclosestapproach to the beamlineof theindividual reconstructed muonsto preserve sensitivitytosignatureswithdisplacedmuons.

To suppress background eventsin which the muons are pro-ducedinthedecayofheavyquarks(andthusappearinjets),the dimuonsarerequiredtobeisolatedfromothereventactivityusing thecriterion Isum

<

2 GeV.TheisolationparameterIsumisdefined

asthescalar sumofthe pT ofcharged trackswith pT

>

0

.

5 GeV

withinaconeofsize



R

=

0

.

4 centeredonthemomentumvector ofthe dimuon system, excluding thetracks corresponding to the two muon candidates. The tracks used inthe calculation of Isum

mustalsohavea z coordinateatthe pointofclosestapproachto the beam line that lies within 1 mm of zμμ. The Isum selection

(3)

Table 1

Eventselectionefficiencies sim(mh1,ma1)and sim(mγD,cτγD),asobtainedfromsimulation,thegeometricandkinematicacceptancesαgen(mh1,ma1)andαgen(mγD,cτγD),

calculatedusingonlygenerator-levelinformation,andtheirratios(withstatisticaluncertainties),forafewrepresentativeNMSSManddarkSUSYbenchmarksamples.The experimentaldata-to-simulationscalefactor( data/ sim,describedlater)isnotapplied.

mh1[GeV] 90 125 125 ma1 [GeV] 2 0.5 3.55 sim[%] 11.0±0.1 21.1±0.1 17.3±0.1 αgen[%] 15.9±0.1 32.0±0.1 26.3±0.1 simgen 0.69±0.01 0.66±0.01 0.66±0.01 D[GeV] 0.25 1.0 cτγD[mm] 0 0.5 2 0 0.5 2 sim[%] 8.85±0.12 1.76±0.05 0.23±0.03 6.13±0.23 4.73±0.07 1.15±0.04 αgen[%] 14.32±0.14 2.7±0.06 0.31±0.03 8.89±0.28 6.98±0.09 1.68±0.05 simgen 0.62±0.01 0.65±0.02 0.74±0.13 0.69±0.03 0.68±0.01 0.68±0.03

suppressesthecontaminationfrombb productionbyabouta fac-tor of40, asestimatedusing a bb enriched control sample with onedimuonrecoilingoffajetcontaininganunpairedmuon,while rejectinglessthan20%ofeventswiththesignaltopology.

The invariant mass m1μμ always refers to the dimuon con-taininga muonwith pT

>

17 GeV and

|

η

|

<

0

.

9. Foreventswith

bothdimuon systemscontainingsuch amuon, theassignment of m1μμ andm2μμ israndomforcompatibilitywiththebackground modelingschemadescribed inSection 5.The invariant massesof bothreconstructeddimuons arerequiredtobecompatiblewithin the detectorresolution, specifically

|

m1μμ

m2μμ

|

<

0

.

13 GeV

+

0

.

065

(

m1μμ

+

m2μμ

)/

2,whichdefinesadiagonalsignal regionin theplaneoftheinvariantmassesofthetwodimuons.The numeri-calparametersintherequirementcorrespondtoatleastfivetimes thesizeofthecoreresolutioninthedimuonmass.

4. Signalmodeling

The resultsfromthisanalysisare designedto be model inde-pendent,butare alsopresentedinthecontextofthetwo bench-mark models introduced earlier. NMSSM simulation samples for benchmark model 1 are generated with pythia 6.4.26 [60], us-ingMSSMHiggsbosonproductionviagluon fusiongg

H0MSSM,

withtheHiggsbosonsdecayingviaH0

MSSM

2A0MSSM.Themasses

of the MSSM bosons H0

MSSM and A0MSSM are set to the desired

values for the h1 mass and a1 mass of the NMSSM bosons,

re-spectively.ThemassofH0MSSM isintherange90–150 GeV (mass

below90 GeV isexcluded byLEP [37]) andthemassofA0 MSSM is

in range 0

.

25–3

.

55 GeV. Both A0

MSSM bosons are forcedto decay

promptly to a pair of muons. Dark SUSY simulation samples for benchmarkmodel2are generatedwith MadGraph 4.5.2[61] us-ing SM Higgsboson production via gluon fusiongg

hSM, with

mhSM

=

125 GeV. The Bridge program [62] is used to force the

Higgs bosons to undergo a non-SM decay to a pair of neutrali-nos,eachofwhichdecaysvian1

nD

+

γ

D,wheremn1

=

10 GeV,

mnD

=

1 GeV, whichisrepresentative ofthe type ofmodels

con-sidered[42]. Dark photonsare generated withD in the range

0.25–2.0 GeV and a decaylength c

τ

γD in the rangeof0–20 mm.

Each ofthe two darkphotons is forced to decay to two muons, while both dark neutralinosescape detection. The narrow-width approximationisimposed by settingthewidthsofthedark pho-tonstoasmallvalue(10−3GeV).

All benchmark samplesare generatedusing the leading-order CTEQ6.6 [63] set of parton distribution functions (PDF), and are interfacedwith pythia usingtheZ2*tune[64] forthe underlying eventactivityattheLHCandtosimulatejetfragmentation.

Thesignalsamplesareprocessedthroughadetailedsimulation oftheCMSdetectorbased on Geant4[65] andarereconstructed

withthesamealgorithms usedfordata.

Table 1

showstheevent selection efficiencies

sim obtained using the simulated

bench-marksamples forafew representative choicesof

(

mh1

,

ma1

)

,and

(

D

,

c

τ

γD

)

.Toprovideasimplerecipeforfuturereinterpretations

oftheresults inthecontextofother models,thevariable

α

gen is

separately definedasthe geometric and kinematicacceptance of this analysis calculated using only generator-level information. It isdefinedbyselectingeventscontaining atleastfourmuonswith pT

>

8 GeV and

|

η

|

<

2

.

4,withatleastoneofthesemuonshaving

pT

>

17 GeV and

|

η

|

<

0

.

9.The newlightboson mustalsodecay

withtransversedecaylength Lxy

<

4

.

4 cm andlongitudinaldecay

lengthLz

<

34

.

5 cm (bothdefinedinthedetectorreferenceframe),

tosatisfy the“fiducial”regionoftheanalysis.

Table 1

shows

α

gen

alongwiththeratio

sim

/

α

gen.

5. Backgroundestimation

TheSMbackgroundforthissearchisdominatedbybb produc-tionandhassmallcontributionsfromtheelectroweakproduction offourmuonsanddirectJ

pairproduction.Theleading partof thebb contributionisduetob quarkdecaysthatresultinapairof muons,viaeitherthesemileptonicdecaysofboththeb quarkand theresultingc quark,orviaresonances,i.e.

ω

,

ρ

,

φ

,J

.Asmaller contributioncomes fromeventswithonegenuine dimuon candi-dateandaseconddimuoncandidatecontainingonemuonfroma semileptonicb quarkdecayandachargedhadronmisidentifiedas anothermuon.

Usingdatacontrolsamples,thebb backgroundismodeledasa two-dimensional (2D) template Bbb

(

m1μμ

,

m2μμ

)

inthe plane of theinvariantmassesofthetwodimuons.Thetemplatedescribing the 2D probability densityfunction is constructed asa Cartesian product B17

(

m1μμ

)

B8

(

m2μμ

)

, where the B17 and B8 templates

modeltheinvariantmassdistributionsfordimuonswithand with-out therequirementthat thedimuoncontains atleastonemuon satisfyingpT

>

17 GeV and

|

η

|

<

0

.

9 respectively.TheB17shapeis

measuredusingadatasampleenrichedwithbb eventscontaining exactlyone dimuonandoneadditionalmuon,underthe assump-tion that the decay of one of the b quarks results in a dimuon paircontainingatleastonemuonwithpT

>

17 GeV and

|

η

|

<

0

.

9,

while the other b quark decays semileptonically resulting in the additionalmuonwithpT

>

8 GeV.FortheB8shape,asimilar

sam-ple and procedure is used but the dimuon is required to have both prongs with pT

>

8 GeV, while the additional muon must

have pT

>

17 GeV and

|

η

|

<

0

.

9.The two templates are required

as the shape of the dimuon invariant mass distribution depends on the pT thresholdsused to selectthe muonsand whetherthe

muonsarerestrictedtothecentral

(

|

η

|

<

0

.

9

)

regionorcanbein thefullacceptancerange(

|

η

|

<

2

.

4),asaresultofthedifferences

(4)

Fig. 1. Distributionoftheinvariantmassesm1μμvs.m2μμfortheisolateddimuon

eventsfollowingthe application ofallconstraintsexceptthe m1μμm2μμ

re-quirementofcompatibilitywithinthedetectorresolution.Thecompatiblediagonal signalregion(outlinedwith dashed lines) containsone dataevent (triangle) at

m1μμ=0.33 GeV andm2μμ=0.22 GeV.Therearealsonine dataevents(white

circles)whichfailthem1μμm2μμcompatibilityrequirement.Thecolorscale

in-dicatestheexpectedSMbackgroundinrange2mμ<m1μμ,m2μμ<2mτ.

inthemomentum resolutionofthebarrelandendcapregions of thetracker. The B17 and B8 distributions are fitted witha

para-metric analytical function using a sum of Bernstein polynomials andCrystalBallfunctions[66] describingresonances.Theseevent samplesdonotoverlapwiththe samplecontaining two dimuons that is usedfor the main analysisand they havenegligible con-tributions from non-bb backgrounds. Once the Bbb

(

m1μμ

,

m2μμ

)

templateisconstructed,itis usedtoprovidea descriptionofthe bb backgroundshapeinthesignalregion.Thistechniqueassumes thateachb quarkfragmentsindependentlyandthatiftheshapes ofthesedistributionsaremeasuredusingdatasampleswith kine-matics very similar to that of the background events then the effectsofresidualkinematically-inducedcorrelationsaresmall (al-beitweaklyinduced,theshapedependsontheb jetpTandthepT

ofthetwob jetsinbackgroundbb eventstendtobesimilar).The backgroundtemplateisvalidatedinaregionwherebothdimuons failthe Isum

<

2 GeV requirementandgoodagreementwithdata

isobserved.

Thedata eventsthat satisfy all analysisselectionsbutfail the m1μμ



m2μμ requirement are used to normalizethe Bbb

(

m1μμ

,

m2μμ

)

template. This selection yields nine events in the off-diagonal sideband region of the

(

m1μμ

,

m2μμ

)

plane, leading in thediagonal signal region to an expectedrate ofbb background eventsof2

.

0

±

0

.

7.Thisisessentially

(

9

±

9

)

×

0

.

18

/

0

.

82,where 0

.

18 and 0

.

82 correspond to the integral of the areasunder the backgroundtemplateinsideandoutsidethesignaldiagonalregion, respectively.Thesenineeventsintheoff-diagonalsidebandsofthe

(

m1μμ

,

m2μμ

)

planeareshownaswhitecirclesin

Fig. 1

.

Thecontribution fromdirectJ

pair productionisestimated usinganotherdatacontrolsample.Eventsareselectedwitha trig-ger that requires at least three muon candidates, two of which haveacommonvertexandaninvariantmassconsistentwiththat oftheJ

particle.Eventsarefurtherrequiredtocontainatleast fourreconstructedmuonswith pT

>

3

.

5 GeV,whichformdimuon

pairs. This control sample does not specifically require that the dimuonssatisfy the requirement Isum

<

2 GeV since Isum isused

toseparate thecontribution of “prompt” and“nonprompt” (from b quark decays) J

in data. Finally, both dimuons are required to have an invariant mass between 2.8 and 3.3 GeV. Following these requirements the data sample consists of events contain-ingpromptandnonpromptJ

.Tosubtractthenonprompt

com-ponent, two independent methods have been studied: the first one divides the control sample based on the values of the iso-lation variable Isum for each of the two dimuons in each event.

Thenumberofeventsinwhichbothdimuons satisfythe require-ment Isum

<

2 GeV is extrapolated fromthe regions in which at

least one of the dimuons fails thisrequirement. The second ap-proach uses the lifetime of the J

candidate, calculated under the hypothesis of it being produced at the beam line, as a dis-criminatingvariable.Thedatadistributionisfittedintheisolated region using prompt and nonprompt templates from simulation and nonisolated sideband in data, respectively. Both approaches giveconsistentresultswithintheassociateduncertaintiesandthe resultsoftheisolation-basedmethodareusedinthefinalanalysis. There are two mechanisms forthe production of prompt double J

events: single- and double-parton scattering (SPS and DPS, respectively), corresponding to whether the two J

mesons are produced from one or two independent parton interactions. The number of prompt events in the control region is further sepa-ratedintoSPSandDPScomponentsusingtheJ

rapidity differ-enceasthediscriminatingvariable.Finally,thedata-to-simulation normalizationfactorandthefractionofSPSandDPSeventsare ex-trapolatedfromthecontroltothesignalregion,resultinginafinal estimationforthecontributionfrompromptdoubleJ

eventsof 0

.

06

±

0

.

03 events.

The contribution from other SM processes (low mass Drell– Yan production and pp

Z

/

γ

4

μ

) is estimated with the CalcHEP 3.6.18 generator [67] using the HEPMDB infrastruc-ture [68], and is found to be 0

.

15

±

0

.

03 events in the entire signal region.Thecombinedexpectedbackgroundcontribution to thediagonal signalregion is2

.

2

±

0

.

7 events.This backgroundis representedbythecolorscalein

Fig. 1

.

6. Systematicuncertainties

The selection efficiencies for the offline muon reconstruction, trigger,anddimuonisolationrequirementsareobtainedfrom sim-ulation,andarecorrectedwithscalefactorsderivedfrom compar-isonbetweendataandsimulationusing Z

μμ

andJ

μμ

samples. The scale factor per event is found to be

data

/

sim

=

0

.

93

±

0

.

07 and it accounts for the differences in the efficiency ofthetrigger,theefficiencyofthemuonreconstructionand iden-tificationforeachofthefourmuoncandidates,andthecombined efficiencyoftheisolation requirementforthetwo dimuon candi-dates. The estimate accountsfor correlationsassociated withthe presence of multiple muons per event. The main systematic un-certaintyistheofflinemuonreconstruction(4.1%),whichincludes an uncertainty (1% per muon) to cover variations of the scale factorasa functionofthe muon pT and

η

.Other systematic

un-certainties include: the uncertainty in dimuon reconstruction ef-fects related to overlaps of muon trajectories in the tracker and in the muon system(3.5%), the trigger efficiency(1.5%), the un-certainty in the efficiency caused by the modeling of the tails in the dimuon invariant mass distribution that arises from the requirement that the two dimuon massesare compatible (1.5%), andthedimuonisolation(negligible).Theuncertaintyinthe inte-grated luminosityofthe datasample(2.6%) [69] isalsoincluded. Alluncertaintiesquotedabovearerelatedtovariationsinthe sig-nal efficiencydueto experimental selection andsumup to 6.3%. The uncertainties related to variations in the signal acceptance due to the model include: the uncertainties related to the PDFs and the knowledge of the strong coupling constant

α

s, which

are estimatedbycomparing the PDFsinCTEQ6.6[63] withthose in NNPDF2.0 [70] and MSTW2008 [71], following the PDF4LHC recommendations[72,73]. Usingtheanalysisbenchmark samples, they are found to be 3% for the signal acceptance.The variation

(5)

oftherenormalizationandfactorizationscaleshasanegligible ef-fect.In additionare-weighting procedureisapplied totheHiggs boson pT spectra in the benchmark signal samples to reproduce

theNNLO

+

NNLLprediction[74] andaccountforpossiblechanges to the analysisacceptance.Only a weak sensitivity tothis is ex-pectedandtheresultofthere-weighting procedureislimitedby thestatisticaluncertaintyofthesimulatedsamples(2%),whichis thereforeincludedasaconservativesystematicuncertaintyonthis effect.Thus, the totalsystematic uncertaintyin thesignal accep-tanceandselectionefficiencyis7.3%.

7. Results

Afterthe full analysisselection isapplied to thedata sample, one eventisobserved in thediagonal signal region,asshown in

Fig. 1. Thisis consistentwiththe expectedbackground contribu-tionof2

.

2

±

0

.

7 events.

Forfuturereinterpretations ofthisanalysis, theresultscan be presentedasa 95% confidencelevel(CL) upperlimit on

σ

(

pp

2a

+

X

)

B

2

(

a

2

μ

) α

gen

=

N

(

mμμ

)/

(L¯

r

)

, where

α

gen is the

generator-level kinematic and geometric acceptance defined ear-lier.Thecalculation usesthe integratedluminosity

L

=

20

.

7 fb−1 andcentral value

¯

r ofthe ratior

=

data

/

α

gen

=

0

.

63

±

0

.

07.The

ratioincludesascalefactorcorrectingforexperimentaleffectsnot included in the simulation and its uncertainty covers the varia-tion inthe ratio over all the benchmark modelpoints used. The limit is calculated as a function of the dimuon mass using the CLS approach [75,76]. The chosen test statistic is based on the

profile likelihood ratio andis used to determine how signal- or background-like the data are. Systematic uncertainties are incor-poratedintheanalysisvianuisanceparameterswithalog-normal probability densityfunction andaretreatedaccordingto the fre-quentistparadigm.Theoverallstatisticalmethodologyusedinthis analysiswas developed by the ATLAS and CMSCollaborations in thecontextoftheLHCHiggsCombinationGroupandisdescribed in[3,77].The obtained limit asa function of dimuonmass mμμ can be conveniently approximated as a constant everywhere ex-ceptthevicinityoftheobservedevent,whereitfollowsaGaussian distribution: N

(

mμμ

)

3

.

1

+

1

.

2 exp



(

mμμ

0

.

32

)

2 2

×

0

.

032



,

resultingin

σ

(

pp

2a

+

X

)

B

2

(

a

2

μ

)

α

gen

0

.

24

+

0

.

09 exp



(

mμμ

0

.

32

)

2 2

×

0

.

032



,

wheremμμ ismeasuredinGeV andthecross-section limitis ex-pressedinfemtobarns.Thislimitisapplicabletomodelswithtwo pairsofmuonscomingfromlightbosonsofthesametypewitha massintherange 2mμ

<

ma

<

2mτ ,wherethe newlight bosons

are typicallyisolated andspatially separated(so astosatisfy the isolationrequirements).

Theweakmodeldependenceoftheratior allowsforasimple reinterpretationoftheresultsinothermodels.Thisrequires calcu-lating

α

gen,asdefinedearlier,andthenthefullefficiency

datacan

becalculatedbymultiplying

α

gen bytheratior.

There are certain subtleties that must be taken into account whenreinterpreting themodel-independentresults ofthis analy-sis inthecontext ofother models,particularlywiththe isolation requirement.Aneventshouldbeconsideredtosatisfytheselection requirementsifthereareatleasttwowellisolated

γ

Ddecayingto

muon pairs. Experimentally, isolation is based on charged tracks

butitmaybeinsufficienttojustrequiretheabsenceof generator-levelchargedparticlesintheisolationcone.Forexampleaneutral piondecayingtoapairofphotons,thatconvertintoelectrons,may resultinthereconstruction ofone ormore tracks.Thiswouldbe particularlyrelevantformodelswithmorethantwodarkphotons producedinthesameevent,someofwhichmaydecaytohadrons or electrons. In this case the safest approach is to require that there are no particleswith pT

>

0

.

5 GeV within the

γ

D isolation

cone.Thisrestrictionwouldresultinamoreconservativelimitbut itwouldberobustagainsttheseeffects.

Theresultsfromthisanalysisarealsointerpretedinthecontext oftheNMSSMandthedarkSUSYbenchmarkmodels,and95% CL upper limits on the product of the cross section and branching fraction are derived. In these models both the Higgs boson pro-duction crosssectionandthebranching fractionscanvary signif-icantly, depending onthechoiceofparameters. Intheabsenceof broadly acceptedbenchmark scenarios, the production cross sec-tions in theseexamples are normalizedto that of the SM Higgs bosonwithamassof125 GeV[78].

InthecaseoftheNMSSMbenchmarkscenario,theproduction crosssectionsandbranchingfractionsforh1andh2canvary

sub-stantiallydependingonthechosenparameters.Anexact interpre-tationoftheseresultsrequiresevaluatingtheexperimental accep-tanceusingthegenerator-levelacceptanceforeachofthetwoh1,2

bosons, andthen using themeasured upperlimit on the sumof twocontributionstoderivelimitsforanychoiceofNMSSMmodel parameters.Topresentresultsinafashionallowingfor straightfor-wardinterpretation,wenotethatifoneofthetwoCP-evenHiggs bosons is the125 GeV state observedatthe LHC,then theother one is either lighter orheavier. In the NMSSM it is typical that oneofthetwohasapproximatelytheSMproductioncrosssection andasmall

B(

hi

2a

)

,whereasthe otherone hasasuppressed

productionrateandlarge

B(

hi

2a

)

duetoitslargesinglet

frac-tion. In Fig. 2 (left) the limit at each mass point is calculated taking the CP-evenHiggs boson withthe corresponding mass as theonlysourceofsignalevents;thecurvebelow125 GeV applies to NMSSM models in which mh1

<

mh2

=

125 GeV, with h1

de-caysdominatingtherateof4

μ

events.Thelimitatmh

=

125 GeV

corresponds tothecasewhere125 GeV

=

mh1

<

mh2,withh1

de-cays still responsible for the vast majority of signal-like events. The points above 125 GeV correspondtomodel points forwhich only h2 (mh2

>

mh1

=

125 GeV) isallowedtohaveasizeablerate

ofobservable 4

μ

events.Finally,formodelswithmh2

>

150 GeV,

thelimitat150 GeV canbeusedasaconservativeestimateofthe productionratelimit.Ineachofthesescenariositispossiblethat the other Higgs boson also contributes some fraction of the 4

μ

signal events,inwhichcasethelimitshownismoreconservative thanwouldbegivenbyanexactevaluation.

In the case of the dark SUSY scenario, a 95% CL limit on the product ofthe Higgsboson productioncross section andthe branching fractions of the Higgsboson (cascade) decay to a pair ofdarkphotonsisdetermined.Thelimit setinthe

(

D

, ε)

plane

fromthisanalysisisshownin

Fig. 2

(right),alongwithlimitsfrom other experimentalsearches,wherethelifetimeisdirectlyrelated to thekineticmixingparameter

ε

andthemassofthedark pho-tonD via

τ

γD

(

ε

,

D

)

=

ε

2f

(

D

)

,where f

(

D

)

isafunction

that dependsonlyon themass ofthedarkphoton [79].The sig-nificant vertical structures in the limits visible in Fig. 2 (right) arise becausethetotalwidthofthedarkphoton variesrapidlyin thosemassregionsduetoresonantdecaystohadrons.Thissearch constrains alarge,previously unconstrainedarea oftheparameter space. Unlike theother results inthe figure, theCMSand ATLAS limitsare model-dependentandonlyvalidunderthe assumption that

B(

h

2n1

4

μ

+

X

)

=

0. The recent ATLAS analysis[42]

(6)

Fig. 2. Leftforbenchmarkmodel1:95% CLupperlimitsfromthissearchfortheNMSSMscenarioswithma1=0.25 GeV (dashedcurve),ma1=2 GeV (dash-dottedcurve)

andma1=3.55 GeV (dottedcurve)onσ(pp→h1/2→2a1)B

2(a

1→2μ)asafunctionofmh1 intherange86<mh1<125 GeV andofmh2 formh2>125 GeV.Asan

illustration,thelimitsarecomparedtothepredictedrate(solidcurve)obtainedusingasimplifiedscenariowithσ(pp→hi2a1)=0.008σSM,whichyieldspredictions fortheratesofdimuonpaireventscomparabletotheobtainedexperimentallimits,andB(a1→2μ)=7.7%.ThechosenB(a1→2μ)istakenfrom[17]forma1=2 GeV

andtanβ=20.Rightforbenchmarkmodel2:95%CLupperlimits(blacksolidcurves)fromthissearchonσ(pp→h→2γD+X)B(h→2γD+X)(withmn1=10 GeV,

mnD=1 GeV)intheplaneoftwooftheparameters(εandD)forthedarkSUSYscenarios,alongwithconstraintsfromotherexperiments[42–56]showingthe90%CL

exclusioncontours.ThecoloredcontoursrepresentdifferentvaluesofB(h→2γD+X)intherange0.1–40%.

focused on highly displaced objects andthesesearches therefore probedifferentregionsoftheavailableparameterspace.

8. Summary

Asearch forpairs ofnew light bosons producedin thedecay ofa Higgs boson, that subsequently decay to pairs of oppositely chargedmuons,is presented.Oneeventisobservedinthe signal region,with2

.

2

±

0

.

7 eventsexpectedfromthe SMbackgrounds. Amodelindependentupperlimitat95%CLontheproductofthe crosssection,branchingfraction, andacceptanceisobtained.This limitisvalidforlightbosonmassesintherange2mμ

<

ma

<

2mτ .

Theobtainedresultsallowastraightforward interpretationwithin abroadrangeofphysicsmodelsthatpredictthesametypeof sig-nature.Theresults arecompared withtwobenchmark modelsin thecontextoftheNMSSManddarkSUSY,includingscenarios pre-dictinganonnegligiblelightbosonlifetime.

Acknowledgments

We would like to thank J. Ruderman for his guidance with thetheoreticallymotivated benchmarksamplesofdarkSUSY. We congratulate ourcolleagues inthe CERN accelerator departments forthe excellent performance of the LHC and thank the techni-calandadministrativestaffs atCERNandatother CMSinstitutes fortheir contributions to the success ofthe CMSeffort. In addi-tion, we gratefully acknowledge the computingcentres and per-sonnel of the Worldwide LHC Computing Grid for delivering so effectivelythecomputinginfrastructure essential toour analyses. Finally, we acknowledge the enduring support for the construc-tionandoperationofthe LHCandtheCMSdetectorprovided by thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES(Bulgaria);CERN;CAS,MOST,andNSFC(China);COLCIENCIAS (Colombia);MSESandCSF(Croatia);RPF(Cyprus);MoER,ERCIUT andERDF(Estonia); AcademyofFinland,MEC, andHIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic ofKorea); LAS (Lithuania);MOE andUM (Malaysia); CINVESTAV, CONACYT,SEP,andUASLP-FAI(Mexico);MBIE(NewZealand);PAEC

(Pakistan);MSHEandNSC (Poland);FCT(Portugal);JINR(Dubna); MON,RosAtom,RASandRFBR(Russia);MESTD(Serbia);SEIDIand CPAN(Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEPCenter,IPST, STARandNSTDA(Thailand);TUBITAKandTAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNationalScienceFoundation (USA).

Individuals have received support from the Marie-Curie pro-grammeand theEuropean Research CouncilandEPLANET (Euro-peanUnion);theLeventisFoundation;theAlfredP.Sloan Founda-tion; the Alexander von Humboldt Foundation; the Belgian Fed-eral Science Policy Office; the Fonds pour la Formation à la Recherchedansl’Industrieetdansl’Agriculture(FRIA-Belgium);the AgentschapvoorInnovatiedoorWetenschapenTechnologie (IWT-Belgium); theMinistry ofEducation, YouthandSports (MEYS) of theCzechRepublic;theCouncilofScienceandIndustrialResearch, India;theHOMINGPLUSprogrammeoftheFoundation forPolish Science, cofinanced from European Union, Regional Development Fund;the CompagniadiSan Paolo(Torino); the Consorzioper la Fisica (Trieste); MIURproject20108T4XTM (Italy);the Thalisand Aristeia programmes cofinanced by EU-ESF andthe Greek NSRF; andtheNationalPrioritiesResearchProgrambyQatarNational Re-searchFund.

References

[1] ATLASCollaboration,Observationofanewparticleinthesearchforthe stan-dardmodelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716 (2012)1,http://dx.doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214. [2] CMSCollaboration,Observationofanewbosonatamassof125GeVwith

theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,http://dx.doi.org/ 10.1016/j.physletb.2012.08.021,arXiv:1207.7235.

[3] CMSCollaboration,Observationofanewbosonwithmassnear125GeVin ppcollisionsat√s=7 and8TeV,J.HighEnergyPhys.06(2013)081,http:// dx.doi.org/10.1007/JHEP06(2013)081,arXiv:1303.4571.

[4] F.Englert,R.Brout,Brokensymmetryandthemassofgaugevectormesons, Phys.Rev.Lett.13(1964)321,http://dx.doi.org/10.1103/PhysRevLett.13.321. [5] P.W.Higgs,Brokensymmetries,masslessparticlesandgaugefields,Phys.Lett.

12(1964)132,http://dx.doi.org/10.1016/0031-9163(64)91136-9.

[6] P.W.Higgs,Brokensymmetriesandthemassesofgaugebosons,Phys.Rev.Lett. 13(1964)508,http://dx.doi.org/10.1103/PhysRevLett.13.508.

[7] G.S. Guralnik, C.R. Hagen, T.W.B. Kibble, Global conservation laws and massless particles,Phys. Rev.Lett. 13(1964) 585,http://dx.doi.org/10.1103/ PhysRevLett.13.585.

(7)

[8] U.Ellwanger, M.RauschdeTraubenberg,C.A.Savoy, Phenomenologyof su-persymmetric models with a singlet, Nucl. Phys. B 492(1997) 21, http:// dx.doi.org/10.1016/S0550-3213(97)80026-0,arXiv:hep-ph/9611251.

[9] N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer, N. Weiner, A theory of dark matter, Phys. Rev. D 79 (2009) 015014, http://dx.doi.org/10.1103/ PhysRevD.79.015014,arXiv:0810.0713.

[10] M.Baumgart,C.Cheung,J.T.Ruderman,L.-T.Wang,I.Yavin,Non-abeliandark sectorsandtheircollidersignatures,J.HighEnergyPhys.04(2009)014,http:// dx.doi.org/10.1088/1126-6708/2009/04/014,arXiv:0901.0283.

[11] A. Falkowski, J.T. Ruderman, T. Volansky, J. Zupan, Hidden Higgsdecaying toleptonjets,J.HighEnergyPhys.05(2010)077,http://dx.doi.org/10.1007/ JHEP05(2010)077,arXiv:1002.2952.

[12] H.P.Nilles,Supersymmetry,supergravityandparticlephysics,Phys. Rep.110 (1984)1,http://dx.doi.org/10.1016/0370-1573(84)90008-5.

[13] D.J.H. Chung, L.L. Everett, G.L. Kane, S.F. King, J. Lykken, L.-T. Wang, Thesoft supersymmetry-breakingLagrangian: theoryandapplications,Phys. Rep.407(2005)1,http://dx.doi.org/10.1016/j.physrep.2004.08.032, arXiv:hep-ph/0312378.

[14] J.E.Kim,H.P.Nilles,Theμ-problemandthestrongCP-problem,Phys.Lett.B 138(1984)150,http://dx.doi.org/10.1016/0370-2693(84)91890-2.

[15] J.A.Casas,J.R.Espinosa,I.Hidalgo,TheMSSMfinetuningproblem:awayout, J.HighEnergyPhys.01(2004)008,http://dx.doi.org/10.1088/1126-6708/2004/ 01/008,arXiv:hep-ph/0310137.

[16] A.Belyaev,J.Pivarski,A.Safonov,S.Senkin,A.Tatarinov,LHCdiscovery po-tentialofthelightestNMSSMHiggsbosonintheh1→a1a1→4μchannel, Phys.Rev.D81(2010)075021,http://dx.doi.org/10.1103/PhysRevD.81.075021, arXiv:1002.1956.

[17] R.Dermisek,J.F.Gunion,NewconstraintsonalightCP-oddHiggsbosonand relatedNMSSMidealHiggsscenarios,Phys.Rev.D81(2010)075003,http:// dx.doi.org/10.1103/PhysRevD.81.075003,arXiv:1002.1971.

[18] M.Ackermann,etal., FermiLAT,Measurementofseparatecosmic-ray elec-tronandpositronspectrawiththeFermilargeareatelescope,Phys.Rev.Lett. 108 (2012) 011103, http://dx.doi.org/10.1103/PhysRevLett.108.011103, arXiv: 1109.0521.

[19] L.Accardo,etal., AMS,Highstatisticsmeasurementofthepositronfraction inprimarycosmicraysof0.5–500GeVwiththealphamagneticspectrometer ontheinternationalspacestation,Phys.Rev.Lett.113(2014)121101,http:// dx.doi.org/10.1103/PhysRevLett.113.121101.

[20] O. Adriani, et al., Cosmic-ray positron energy spectrum measured by PAMELA, Phys. Rev. Lett. 111 (2013) 081102, http://dx.doi.org/10.1103/ PhysRevLett.111.081102.

[21] B.Holdom,TwoU(1)’sand chargeshifts,Phys.Lett.B166(1986)196,http:// dx.doi.org/10.1016/0370-2693(86)91377-8.

[22] O.Adriani,etal.,PAMELA,PAMELAresultsonthecosmic-rayantiprotonflux from60MeVto180GeVinkineticenergy,Phys.Rev.Lett.105(2010)121101,

http://dx.doi.org/10.1103/PhysRevLett.105.121101,arXiv:1007.0821.

[23] V.M. Abazov, et al., D0,Search for next-to-minimal supersymmetric Higgs bosons in the h→aa→μμμμ,μμτ τ channels using pp collisions¯ at

s=1.96 TeV,Phys.Rev.Lett.103(2009)061801,http://dx.doi.org/10.1103/ PhysRevLett.103.061801,arXiv:0905.3381.

[24] ATLAS Collaboration, Search for displaced muonic lepton jets from light Higgs boson decay in proton–proton collisions at √s=7 TeV with the ATLAS detector, Phys. Lett. B 721 (2013) 32, http://dx.doi.org/10.1016/ j.physletb.2013.02.058,arXiv:1210.0435.

[25] CMSCollaboration,Searchforanon-standard-modelHiggsbosondecayingto apairofnewlightbosonsinfour-muonfinalstates,Phys.Lett.B726(2013) 564,http://dx.doi.org/10.1016/j.physletb.2013.09.009,arXiv:1210.7619. [26] W.Love,etal., CLEO,SearchforverylightCP-oddHiggsbosoninradiative

decaysofϒ(1S),Phys.Rev.Lett.101(2008)151802,http://dx.doi.org/10.1103/ PhysRevLett.101.151802,arXiv:0807.1427.

[27] B. Aubert,et al., BABAR,Search for dimuondecays ofa lightscalar boson inradiativetransitionsϒγA0,Phys.Rev.Lett.103(2009)081803,http://

dx.doi.org/10.1103/PhysRevLett.103.081803,arXiv:0905.4539.

[28] T. Aaltonen,etal., CDF,Search fora verylight CP-oddHiggsboson intop quarkdecaysfrompp collisions¯ at1.96TeV,Phys.Rev.Lett.107(2011)031801,

http://dx.doi.org/10.1103/PhysRevLett.107.031801,arXiv:1104.5701.

[29] CMSCollaboration,SearchforalightpseudoscalarHiggsbosoninthedimuon decay channel inpp collisionsat √s=7 TeV, Phys. Rev.Lett. 109(2012) 121801,http://dx.doi.org/10.1103/PhysRevLett.109.121801,arXiv:1206.6326. [30] G.Hinshaw,et al.,WMAP,Nine-yearWilkinsonmicrowaveanisotropyprobe

(WMAP)observations:cosmologicalparameterresults,Astrophys.J.Suppl.Ser. 208(2013)19,http://dx.doi.org/10.1088/0067-0049/208/2/19,arXiv:1212.5226. [31] P.A.R. Ade, et al., Planck, Planck 2013 results. XVI. Cosmological parame-ters,Astron.Astrophys.571(2014)A16,http://dx.doi.org/10.1051/0004-6361/ 201321591,arXiv:1303.5076.

[32] G.Abbiendi,et al.,OPAL,Decay modeindependentsearches fornewscalar bosonswiththeOPALdetectoratLEP,Eur.Phys. J.C27(2003)311,http:// dx.doi.org/10.1140/epjc/s2002-01115-1,arXiv:hep-ex/0206022.

[33] G.Abbiendi,etal.,OPAL,SearchforalowmassCP-oddHiggsbosonine+e− collisionswiththeOPALdetectoratLEP-2,Eur.Phys.J.C27(2003)483,http:// dx.doi.org/10.1140/epjc/s2003-01139-y,arXiv:hep-ex/0209068.

[34] G.Abbiendi,etal.,OPAL,SearchforneutralHiggsbosoninCP-conservingand CP-violatingMSSMscenarios,Eur.Phys. J.C37(2004)49,http://dx.doi.org/ 10.1140/epjc/s2004-01962-6,arXiv:hep-ex/0406057.

[35] J.Abdallah,etal.,DELPHI,SearchesforneutralHiggsbosonsinextended mod-els,Eur.Phys.J.C38(2004)1,http://dx.doi.org/10.1140/epjc/s2004-02011-4, arXiv:hep-ex/0410017.

[36] S.Schael, etal., ALEPH,Searchfor neutralHiggsbosonsdecayinginto four tausat LEP2, J.HighEnergy Phys. 05(2010)049,http://dx.doi.org/10.1007/ JHEP05(2010)049,arXiv:1003.0705.

[37] S. Schael, et al., ALEPH, DELPHI,L3, OPAL, LEP Working Group for Higgs BosonSearches, Search for neutral MSSM Higgs bosonsat LEP, Eur. Phys. J. C47 (2006)547, http://dx.doi.org/10.1140/epjc/s2006-02569-7, arXiv:hep-ex/0602042.

[38] V.M. Abazov,etal., D0,Searchfor darkphotonsfrom supersymmetric hid-den valleys, Phys. Rev. Lett. 103 (2009) 081802, http://dx.doi.org/10.1103/ PhysRevLett.103.081802,arXiv:0905.1478.

[39] V.M.Abazov,etal.,D0,Searchforeventswithleptonicjetsandmissing trans-verseenergyinpp collisions¯ at √s=1.96 TeV, Phys.Rev.Lett.105(2010) 211802,http://dx.doi.org/10.1103/PhysRevLett.105.211802,arXiv:1008.3356. [40] T.Aaltonen,etal.,CDF,Searchforanomalousproductionofmultipleleptons

inassociationwithWandZbosonsatCDF,Phys.Rev.D85(2012)092001,

http://dx.doi.org/10.1103/PhysRevD.85.092001,arXiv:1202.1260.

[41] CMSCollaboration,Searchforlightresonancesdecayingintopairsofmuonsas asignalofnewphysics,J.HighEnergyPhys.07(2011)098,http://dx.doi.org/ 10.1007/JHEP07(2011)098,arXiv:1106.2375.

[42] ATLASCollaboration,Searchforlong-livedneutralparticlesdecayinginto lep-tonjetsinproton–protoncollisionsat √s=8 TeV withthe ATLASdetector, J. HighEnergyPhys.11(2014)088,http://dx.doi.org/10.1007/JHEP11(2014)088, arXiv:1409.0746.

[43] D.Babusci,etal.,KLOE-2,Searchforlightvectorbosonproductionine+e−→

μ+μγinteractionswiththeKLOEexperiment,Phys.Lett.B736(2014)459,

http://dx.doi.org/10.1016/j.physletb.2014.08.005,arXiv:1404.7772.

[44] J.P. Lees, et al., BaBar, Search for a dark photon in e+e− collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801, http://dx.doi.org/10.1103/ PhysRevLett.113.201801,arXiv:1406.2980.

[45] A.Adare,etal.,PHENIX,Searchfordarkphotonsfromneutralmesondecaysin

p+p andd+Au collisionsat√sNN=200 GeV,Phys.Rev.C91(2015)031901,

http://dx.doi.org/10.1103/PhysRevC.91.031901,arXiv:1409.0851.

[46] S.Abrahamyan,etal.,APEX,Searchforanewgaugebosoninelectron–nucleus fixed-targetscatteringbythe APEX experiment,Phys. Rev.Lett.107(2011) 191804,http://dx.doi.org/10.1103/PhysRevLett.107.191804,arXiv:1108.2750. [47] H.Merkel,etal.,A1,SearchattheMainzmicrotronforlightmassivegauge

bosonsrelevantforthemuong-2anomaly,Phys.Rev.Lett.112(2014)221802,

http://dx.doi.org/10.1103/PhysRevLett.112.221802,arXiv:1404.5502.

[48] G. Agakishiev, et al., HADES, Searching a darkphoton with HADES, Phys. Lett.B731(2014)265,http://dx.doi.org/10.1016/j.physletb.2014.02.035,arXiv: 1311.0216.

[49] A. Fradette, M. Pospelov, J. Pradler, A. Ritz, Cosmological constraints on verydarkphotons,Phys.Rev.D90(2014)035022,http://dx.doi.org/10.1103/ PhysRevD.90.035022,arXiv:1407.0993.

[50]J.B.Dent,F.Ferrer,L.M.Krauss,Constraintsonlighthiddensectorgaugebosons fromsupernovacooling,arXiv:1201.2683,2012.

[51] H.K.Dreiner,J.-F.Fortin,C.Hanhart,L.Ubaldi,SupernovaconstraintsonMeV darksectorsfrome+e−annihilations,Phys.Rev.D89(2014)105015,http:// dx.doi.org/10.1103/PhysRevD.89.105015,arXiv:1310.3826.

[52]R.Essig,etal.,Darksectorsandnew,light,weakly-coupledparticles,arXiv: 1311.0029,2013.

[53] J. Blumlein, J. Brunner, New exclusion limits for dark gauge forces from beam-dump data, Phys. Lett. B 701 (2011) 155, http://dx.doi.org/10.1016/ j.physletb.2011.05.046,arXiv:1104.2747.

[54] R.Essig,R. Harnik,J. Kaplan,N.Toro,Discovering newlightstates at neu-trinoexperiments,Phys. Rev.D82(2010)113008,http://dx.doi.org/10.1103/ PhysRevD.82.113008,arXiv:1008.0636.

[55] B. Batell,M.Pospelov,A.Ritz, Exploringportalstoahiddensectorthrough fixed targets, Phys. Rev. D 80 (2009) 095024, http://dx.doi.org/10.1103/ PhysRevD.80.095024,arXiv:0906.5614.

[56] S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays,Phys. Lett. B 713(2012) 244,http:// dx.doi.org/10.1016/j.physletb.2012.06.002,arXiv:1204.3583.

[57] CMSCollaboration,PerformanceofCMSmuonreconstructioninpp collision eventsat√s=7 TeV,J.Instrum.7(2012)P10002,http://dx.doi.org/10.1088/ 1748-0221/7/10/P10002,arXiv:1206.4071.

(8)

[58] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008) S08004,http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[59] R. Luchsinger, C. Grab, Vertex reconstruction by means of the method ofKalman filter,Comput. Phys. Commun.76 (1993) 263,http://dx.doi.org/ 10.1016/0010-4655(93)90055-H.

[60] T.Sjöstrand,S.Mrenna,P.Z.Skands,PYTHIA6.4physicsandmanual,J.High EnergyPhys.05(2006)026,http://dx.doi.org/10.1088/1126-6708/2006/05/026, arXiv:hep-ph/0603175.

[61] J.Alwall,P.Demin,S.deVisscher,R.Frederix,M.Herquet,F.Maltoni,T.Plehn, D.L.Rainwater,T.Stelzer,MadGraph/MadEventv4:the newwebgeneration, J.HighEnergyPhys.09(2007)028,http://dx.doi.org/10.1088/1126-6708/2007/ 09/028,arXiv:0706.2334.

[62]P.Meade,M.Reece,BRIDGE:branchingratioinquiry/decaygeneratedevents, arXiv:hep-ph/0703031,2007.

[63] P.M.Nadolsky,H.-L.Lai,Q.-H.Cao,J.Huston,J.Pumplin,D.Stump,W.-K.Tung, C.-P.Yuan,ImplicationsofCTEQglobalanalysisforcolliderobservables,Phys. Rev.D78(2008)013004,http://dx.doi.org/10.1103/PhysRevD.78.013004,arXiv: 0802.0007.

[64] CMSCollaboration,MeasurementoftheunderlyingeventactivityattheLHC with√s=7 TeV andcomparisonwith√s=0.9 TeV,J.HighEnergyPhys.09 (2011)109,http://dx.doi.org/10.1007/JHEP09(2011)109,arXiv:1107.0330. [65] S.Agostinelli, et al., GEANT4, GEANT4—asimulation toolkit, Nucl. Instrum.

MethodsPhys.Res.,Sect.A,Accel.Spectrom.Detect.Assoc.Equip.506(2003) 250,http://dx.doi.org/10.1016/S0168-9002(03)01368-8.

[66] M.J.Oreglia,Astudyofthereactionsψ→γ γψ,Ph.D.thesis,Stanford Univer-sity,1980,http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html,SLAC ReportSLAC-R-236,AppendixD.

[67] A.Belyaev,N.D.Christensen,A.Pukhov,CalcHEP3.4forcolliderphysicswithin andbeyond theStandardModel,Comput.Phys. Commun.184(2013)1729,

http://dx.doi.org/10.1016/j.cpc.2013.01.014,arXiv:1207.6082.

[68]M.Bondarenko,A.Belyaev,L.Basso,E.Boos,V.Bunichev,etal.,Highenergy physicsmodeldatabase—HEPMDB:towardsdecodingoftheunderlying the-oryattheLHC,arXiv:1203.1488,2012,includedinLesHouches2011:Physics atTeVCollidersNewPhysicsWorkingGroupReport.

[69] CMSCollaboration, CMSluminosity basedon pixelclustercounting– Sum-mer2013update,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-13-001,CERN, Geneva,2013,https://cds.cern.ch/record/1598864/.

[70] R.D.Ball,L.DelDebbio, S. Forte,A.Guffanti,J.I. Latorre,J.Rojo,M. Ubiali, A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys.B 838(2010) 136,http://dx.doi.org/10.1016/ j.nuclphysb.2010.05.008,arXiv:1002.4407.

[71] A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189, http://dx.doi.org/10.1140/epjc/ s10052-009-1072-5,arXiv:0901.0002.

[72]S.Alekhin,etal.,ThePDF4LHCWorkingGroupinterimreport,arXiv:1101.0536, 2011.

[73]M. Botje,J.Butterworth, A.Cooper-Sarkar,A.deRoeck,J. Feltesse,S.Forte, A. Glazov,J.Huston,R.McNulty,T.Sjöstrand,R.S.Thorne,ThePDF4LHC Work-ingGroupinterimrecommendations,arXiv:1101.0538,2011.

[74] D.deFlorian,G.Ferrera,M.Grazzini,D.Tommasini,Higgsbosonproduction attheLHC:transversemomentumresummationeffectsintheH→2γ,HWWlνlν and HZZ4l decaymodes,J.HighEnergyPhys.06(2012) 132,http://dx.doi.org/10.1007/JHEP06(2012)132,arXiv:1203.6321.

[75] T.Junk,Confidencelevelcomputationforcombiningsearcheswithsmall statis-tics, Nucl.Instrum.MethodsPhys.Res., Sect.A,Accel.Spectrom.Detect. As-soc.Equip.434(1999)435,http://dx.doi.org/10.1016/S0168-9002(99)00498-2, arXiv:hep-ex/9902006.

[76] A.L.Read,Presentationofsearchresults:theCLs technique,J.Phys.G,Nucl.

Part.Phys.28(2002)2693,http://dx.doi.org/10.1088/0954-3899/28/10/313. [77] ATLAS and CMS Collaborations, LHC Higgs Combination Group, Procedure

for the LHC Higgs boson search combination in Summer 2011, Techni-cal Report ATL-PHYS-PUB-2011-011, ATL-COM-PHYS-2011-818, CMS-NOTE-2011-005,CERN,Geneva,2011,https://cds.cern.ch/record/1379837.

[78]LHCHiggsCrossSectionWorkingGroup,S.Dittmaier,etal.,HandbookofLHC Higgscross sections:1. Inclusiveobservables,CERNReport CERN-2011-002, 2011,arXiv:1101.0593.

[79] B. Batell,M.Pospelov,A.Ritz, ProbingasecludedU(1)at Bfactories,Phys. Rev.D79(2009)115008,http://dx.doi.org/10.1103/PhysRevD.79.115008,arXiv: 0903.0363.

CMSCollaboration

V. Khachatryan,

A.M. Sirunyan,

A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam,

E. Asilar,

T. Bergauer,

J. Brandstetter,

E. Brondolin,

M. Dragicevic,

J. Erö,

M. Flechl,

M. Friedl,

R. Frühwirth

1

,

V.M. Ghete,

C. Hartl,

N. Hörmann,

J. Hrubec,

M. Jeitler

1

,

V. Knünz,

A. König,

M. Krammer

1

,

I. Krätschmer,

D. Liko,

T. Matsushita,

I. Mikulec,

D. Rabady

2

,

B. Rahbaran,

H. Rohringer,

J. Schieck

1

,

R. Schöfbeck,

J. Strauss,

W. Treberer-Treberspurg,

W. Waltenberger,

C.-E. Wulz

1

InstitutfürHochenergiephysikderOeAW,Wien,Austria

V. Mossolov,

N. Shumeiko,

J. Suarez Gonzalez

NationalCentreforParticleandHighEnergyPhysics,Minsk,Belarus

S. Alderweireldt,

T. Cornelis,

E.A. De Wolf,

X. Janssen,

A. Knutsson,

J. Lauwers,

S. Luyckx,

S. Ochesanu,

R. Rougny,

M. Van De Klundert,

H. Van Haevermaet,

P. Van Mechelen,

N. Van Remortel,

A. Van Spilbeeck

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,

F. Blekman,

J. D’Hondt,

N. Daci,

I. De Bruyn,

K. Deroover,

N. Heracleous,

J. Keaveney,

S. Lowette,

L. Moreels,

A. Olbrechts,

Q. Python,

D. Strom,

S. Tavernier,

W. Van Doninck,

P. Van Mulders,

G.P. Van Onsem,

I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

P. Barria,

C. Caillol,

B. Clerbaux,

G. De Lentdecker,

H. Delannoy,

D. Dobur,

G. Fasanella,

L. Favart,

A.P.R. Gay,

A. Grebenyuk,

T. Lenzi,

A. Léonard,

T. Maerschalk,

A. Mohammadi,

L. Perniè,

A. Randle-conde,

T. Reis,

T. Seva,

L. Thomas,

C. Vander Velde,

P. Vanlaer,

J. Wang,

F. Zenoni,

F. Zhang

3

(9)

K. Beernaert,

L. Benucci,

A. Cimmino,

S. Crucy,

A. Fagot,

G. Garcia,

M. Gul,

J. Mccartin,

A.A. Ocampo Rios,

D. Poyraz,

D. Ryckbosch,

S. Salva Diblen,

M. Sigamani,

N. Strobbe,

M. Tytgat,

W. Van Driessche,

E. Yazgan,

N. Zaganidis

GhentUniversity,Ghent,Belgium

S. Basegmez,

C. Beluffi

4

,

O. Bondu,

G. Bruno,

R. Castello,

A. Caudron,

L. Ceard,

G.G. Da Silveira,

C. Delaere,

D. Favart,

L. Forthomme,

A. Giammanco

5

,

J. Hollar,

A. Jafari,

P. Jez,

M. Komm,

V. Lemaitre,

A. Mertens,

C. Nuttens,

L. Perrini,

A. Pin,

K. Piotrzkowski,

A. Popov

6

,

L. Quertenmont,

M. Selvaggi,

M. Vidal Marono

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy,

T. Caebergs,

G.H. Hammad

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior,

G.A. Alves,

L. Brito,

M. Correa Martins Junior,

T. Dos Reis Martins,

C. Hensel,

C. Mora Herrera,

A. Moraes,

M.E. Pol,

P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas,

W. Carvalho,

J. Chinellato

7

,

A. Custódio,

E.M. Da Costa,

D. De Jesus Damiao,

C. De Oliveira Martins,

S. Fonseca De Souza,

L.M. Huertas Guativa,

H. Malbouisson,

D. Matos Figueiredo,

L. Mundim,

H. Nogima,

W.L. Prado Da Silva,

A. Santoro,

A. Sznajder,

E.J. Tonelli Manganote

7

,

A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahuja,

C.A. Bernardes

b

,

A. De Souza Santos,

S. Dogra

a

,

T.R. Fernandez Perez Tomei

a

,

E.M. Gregores

b

,

P.G. Mercadante

b

,

C.S. Moon

a

,

8

,

S.F. Novaes

a

,

Sandra S. Padula

a

,

D. Romero Abad,

J.C. Ruiz Vargas

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov,

V. Genchev

2

,

R. Hadjiiska,

P. Iaydjiev,

A. Marinov,

S. Piperov,

M. Rodozov,

S. Stoykova,

G. Sultanov,

M. Vutova

InstituteforNuclearResearchandNuclearEnergy,Sofia,Bulgaria

A. Dimitrov,

I. Glushkov,

L. Litov,

B. Pavlov,

P. Petkov

UniversityofSofia,Sofia,Bulgaria

M. Ahmad,

J.G. Bian,

G.M. Chen,

H.S. Chen,

M. Chen,

T. Cheng,

R. Du,

C.H. Jiang,

R. Plestina

9

,

F. Romeo,

S.M. Shaheen,

J. Tao,

C. Wang,

Z. Wang,

H. Zhang

InstituteofHighEnergyPhysics,Beijing,China

C. Asawatangtrakuldee,

Y. Ban,

Q. Li,

S. Liu,

Y. Mao,

S.J. Qian,

D. Wang,

Z. Xu,

W. Zou

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,

A. Cabrera,

L.F. Chaparro Sierra,

C. Florez,

J.P. Gomez,

B. Gomez Moreno,

J.C. Sanabria

UniversidaddeLosAndes,Bogota,Colombia

N. Godinovic,

D. Lelas,

D. Polic,

I. Puljak

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic,

M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,

K. Kadija,

J. Luetic,

L. Sudic

(10)

A. Attikis,

G. Mavromanolakis,

J. Mousa,

C. Nicolaou,

F. Ptochos,

P.A. Razis,

H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Bodlak,

M. Finger

10

,

M. Finger Jr.

10

CharlesUniversity,Prague,CzechRepublic

A. Ali

11

,

R. Aly,

S. Aly,

Y. Assran

12

,

A. Ellithi Kamel

13

,

A.M. Kuotb Awad

14

,

A. Lotfy,

R. Masod

11

,

A. Radi

15

,

11

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

B. Calpas,

M. Kadastik,

M. Murumaa,

M. Raidal,

A. Tiko,

C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,

M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,

V. Karimäki,

R. Kinnunen,

T. Lampén,

K. Lassila-Perini,

S. Lehti,

T. Lindén,

P. Luukka,

T. Mäenpää,

J. Pekkanen,

T. Peltola,

E. Tuominen,

J. Tuominiemi,

E. Tuovinen,

L. Wendland

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,

T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,

F. Couderc,

M. Dejardin,

D. Denegri,

B. Fabbro,

J.L. Faure,

C. Favaro,

F. Ferri,

S. Ganjour,

A. Givernaud,

P. Gras,

G. Hamel de Monchenault,

P. Jarry,

E. Locci,

M. Machet,

J. Malcles,

J. Rander,

A. Rosowsky,

M. Titov,

A. Zghiche

DSM/IRFU,CEA/Saclay,Gif-sur-Yvette,France

S. Baffioni,

F. Beaudette,

P. Busson,

L. Cadamuro,

E. Chapon,

C. Charlot,

T. Dahms,

O. Davignon,

N. Filipovic,

A. Florent,

R. Granier de Cassagnac,

S. Lisniak,

L. Mastrolorenzo,

P. Miné,

I.N. Naranjo,

M. Nguyen,

C. Ochando,

G. Ortona,

P. Paganini,

S. Regnard,

R. Salerno,

J.B. Sauvan,

Y. Sirois,

T. Strebler,

Y. Yilmaz,

A. Zabi

LaboratoireLeprince-Ringuet,EcolePolytechnique,IN2P3-CNRS,Palaiseau,France

J.-L. Agram

16

,

J. Andrea,

A. Aubin,

D. Bloch,

J.-M. Brom,

M. Buttignol,

E.C. Chabert,

N. Chanon,

C. Collard,

E. Conte

16

,

J.-C. Fontaine

16

,

D. Gelé,

U. Goerlach,

C. Goetzmann,

A.-C. Le Bihan,

J.A. Merlin

2

,

K. Skovpen,

P. Van Hove

InstitutPluridisciplinaireHubertCurien,UniversitédeStrasbourg,UniversitédeHauteAlsaceMulhouse,CNRS/IN2P3,Strasbourg,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,

C. Bernet

9

,

G. Boudoul,

E. Bouvier,

S. Brochet,

C.A. Carrillo Montoya,

J. Chasserat,

R. Chierici,

D. Contardo,

B. Courbon,

P. Depasse,

H. El Mamouni,

J. Fan,

J. Fay,

S. Gascon,

M. Gouzevitch,

B. Ille,

I.B. Laktineh,

M. Lethuillier,

L. Mirabito,

A.L. Pequegnot,

S. Perries,

J.D. Ruiz Alvarez,

D. Sabes,

L. Sgandurra,

V. Sordini,

M. Vander Donckt,

P. Verdier,

S. Viret,

H. Xiao

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

Z. Tsamalaidze

10

Figura

Fig. 1. Distribution of the invariant masses m 1 μμ vs. m 2 μμ for the isolated dimuon
Fig. 2. Left for benchmark model 1: 95% CL upper limits from this search for the NMSSM scenarios with m a 1 = 0

Riferimenti

Documenti correlati

Anche se tale capacità esiste, essa ha uno scarsissimo signifcato in condizioni normali nei processi riparativi in quanto la perdita del muscolo viene sempre rimpiazzata da un

The corresponding gauge boson, a massless dark vector boson, can couple to the Higgs boson through renormalizable interactions involving scalar messengers, giving rise to effective

In alternativa, avviate l'applicazione Impostaz., toccate Assistenza dispositivo → Batteria → Ricarica, quindi toccate il cursore Ricarica rapida per attivare questa funzione.. •

14/09/2005), il sito di progetto rientra quindi nella categoria C (“Depositi di terreni a grana grossa mediamente addensati o terreni a grana fine mediamente consistenti, con spessori

In the present work the data extracted from meteorological stations located in the basin were analyzed in order to characterize the climate of the study area, to verify the

Through a case study analysis we would describe the emergence of a new logic in the Italian cultural heritage field and we attempt to analyse how participants in the

Blood clots appeared to occur much more frequently in relatively young women (45-50 yrs) undergoing Ad5-based vaccination, 8 in female subjects thrombocytopenia and micro-

 Sono previste disposizioni specifiche settoriali: sulle automobili, per le quali l’UE ha ottenuto un buon risultato non solo in relazione all’eliminazione dei dazi,