• Non ci sono risultati.

Assessment of blood sample stability for complete blood count using the Sysmex XN-9000 and Mindray BC-6800 analyzers

N/A
N/A
Protected

Academic year: 2021

Condividi "Assessment of blood sample stability for complete blood count using the Sysmex XN-9000 and Mindray BC-6800 analyzers"

Copied!
15
0
0

Testo completo

(1)

revbrashematolhemoter.2016;38(3):225–239

w w w . r b h h . o r g

Revista

Brasileira

de

Hematologia

e

Hemoterapia

Brazilian

Journal

of

Hematology

and

Hemotherapy

Original

article

Assessment

of

blood

sample

stability

for

complete

blood

count

using

the

Sysmex

XN-9000

and

Mindray

BC-6800

analyzers

Sabrina

Buoro

a,∗

,

Tommaso

Mecca

a

,

Michela

Seghezzi

a

,

Barbara

Manenti

a

,

Lorenzo

Cerutti

a

,

Paola

Dominoni

a

,

Gavino

Napolitano

a

,

Stefano

Resmini

a

,

Alberto

Crippa

a

,

Cosimo

Ottomano

b

,

Giuseppe

Lippi

c

aHospitalPapaGiovanniXXIII,Bergamo,Italy bCAMCentroAnalisiMonza,Monza,Italy cUniversitaàdegliStudidiVerona,Verona,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received4April2016 Accepted30May2016 Availableonline23June2016

Keywords: XN-9000 BC-6800 Samplestability Completebloodcount Pre-analyticalphase

a

b

s

t

r

a

c

t

Background:Differenthematologicalanalyzershavedifferentanalyticalperformancesthat areoftenreflectedinthecriteriaforsamplestabilityofthecompletebloodcount.Thisstudy aimedtoassessthestabilityofseveralhematologicalparametersusingtheXN-9000Sysmex andBC-6800Mindrayanalyzers.

Methods:Theimpactofstorageatroomtemperatureand4◦Cwasevaluatedafter2,4,6, 8,24,36and48husingtennormaland40abnormalbloodsamples.Thevariationfrom thebaselinemeasurementwasevaluatedbytheSteel–Dwass–Critchlow–Flignertestandby Bland–Altmanplots,usingqualityspecificationsandcriticaldifferenceasthetotalallowable variation.

Results:Red bloodcells andreticulocyteparameters (i.e. hematocrit,mean corpuscular volume,mean corpuscularhemoglobinconcentration,redbloodcelldistributionwidth, immaturereticulocytefractions,low-fluorescencereticulocytes,middle-fluorescence retic-ulocytes,highfluorescencemononuclearcells)showedlessstabilitycomparedtoleukocyte andplateletparameters(exceptformonocytecountandmeanplateletvolume).Thebias forhematocrit,meancorpuscularvolume,meancorpuscularhemoglobinconcentration andredbloodcelldistributionwidthcoefficientofvariationwashigherthanthecritical differenceafter8husingbothanalyzers.

Conclusion: Bloodsamplesmeasuredwithbothanalyzersdonotshowanalytically signifi-cantchangesinupto2hofstorageatroomtemperatureand4◦C.However,themaximum timeforanalysiscanbeextendedforupto8hwhenthebiasiscomparedtothecritical difference.

©2016Associac¸ ˜aoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.Published byElsevierEditoraLtda.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthorat:ClinicalChemistryLaboratory,PapaGiovanniXXIIIHospital,SquareOMS,1-24127Bergamo,Italy. E-mailaddress:sbuoro@asst-pg23.it(S.Buoro).

http://dx.doi.org/10.1016/j.bjhh.2016.05.010

1516-8484/©2016Associac¸ ˜aoBrasileiradeHematologia,HemoterapiaeTerapiaCelular.PublishedbyElsevierEditoraLtda.Thisisan openaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

(2)

226

revbrashematolhemoter.2016;38(3):225–239

Introduction

Modern hematological analyzers not only enable accurate quantitativeandqualitativeassessmentofbloodcells,butalso provideavastarrayofhematologicalparametersthatmaybe usefulforthediagnosticandprognosticassessmentofmany bloodcelldisorders.Thevastmajorityoflaboratoryerrors(up to70%)emergefromthepre-analyticalphase.1Thisphaseis influencedbyanumberofvariables,includingthepreparation ofthepatientbeforetesting,theproceduresusedtocollect andtransportthebiologicalspecimens,aswell asthetime andstorageconditionsofbloodsamplesbeforeanalysis.In particular,itwasrecentlyproventhatthestabilityofmany hematologicalparametersisstronglyinfluencedbythe stor-agetemperatureofthesampleandthetimeelapsedbetween collectionandanalysis.2–4

Anotherfactorthatmayhaveaninfluenceonthe stabil-ityofhematologicalparametersisthetechnologyusedbythe differenthematologicalanalyzers.3Basically,theinstruments currentlyavailableonthemarketusedifferentmethodsand technologies toassess basicparameters such asred blood cell (RBC), platelet (PLT), total leukocyte (WBC) and leuko-cytesubclass[neutrophils(NE),lymphocytes(LY),monocytes (MO),eosinophils(EO),basophils(BA)]counts.5Itisforthis reason that a more profound knowledge of the potential impactoftime and storagetemperatureofsamples before analysisshould be regarded asa mainstaytoincrease the qualityofhematologicaltestingandtoimprovetheclinical interpretationofdataobtainedwithdifferentanalyzersand techniques.2–4Notably,thelatestgenerationofhematological analyzersprovidesanumberofinnovativequantitativeand qualitativeparameters,suchastheenumerationofhigh fluo-rescencemononuclearcells(HFC)5–7andnucleatedredblood cell(NRBC)count,7andtheRBCdistributionwidthexpressed asastandarddeviation(RDW-SD)orcoefficientofvariation (RDW-CV).8Moreover,theymayprovideplateletdistribution width(PDW),plateletcrit(PCT),meanplateletvolume(MPV), percentage of large platelet (P-LCR) parameters,5,9,10 along withthereticulocytecount(RET)andimmaturereticulocyte fractions[IRF, high-fluorescence (HFR), middle-fluorescence (MFR)andlow-fluorescencereticulocytes(LFR)],allofwhich areusefulforthediagnosisandclassificationofanemiaorfor monitoringbonemarrowerythropoiesis.11,12

Theimportanceofverifyingthestabilityofthe aforemen-tionedparametersisnowunquestionableandpublisheddata aboutbloodsamplestabilitybeforeanalysisisscarceforthe newgeneration ofhematological analyzers.Therefore, this studyaimedtoassessandcomparethe stabilityofa num-ber of hematological parameters in normal and abnormal bloodsamplesmeasuredusingtwonovelanalyzers,XN-9000 (SysmexCo.,Kobe,Japan)andBC-6800(Mindray,Shenzhen, China),accordingtotheGuidelinesoftheInternational Coun-cilforStandardizationofHaematology(ICSH)4andtheClinical andLaboratoryStandardsInstitute(CLSI)DocumentH26-P2.13 Bloodsamples

The study population consisted of ten adult and osten-sibly healthy volunteers recruited from the laboratory

staff (five women, mean age 37.5±0.8 years and five males, mean age 35.0±7.4 years). All subjects were Cau-casian,hadnodiabetesmellitus,hypertensionandhadnot taken any medication for onemonthbefore the study.Six venous blood samplesfrom each subjectwere collected in K3-ethylenediaminetetraaceticacid(K3-EDTA)tubes(Becton Dickinson, Franklin Lakes, NJ). All samples were analyzed immediatelyaftervenipuncture(i.e.,within30min).The anal-ysisoftheimpactofdifferentstoragetemperatureswasthen carriedoutbystoringthreebloodtubesfromeachindividualat roomtemperature(RT)andthreebloodtubesweredividedin sixaliquotsandstored(refrigerated)at4◦C.Repeated meas-ureswerethenperformedoneachsampleafter2h,4h,6h, 8h,24h,36hand48hofstorage.Anadditionalstudywas per-formedusing40routinesampleswithabnormalvalues,that is, containingatleastoneabnormalityofhemoglobin(Hb), platelet(PLT)orwhitebloodcell(WBC)countsor morpholog-icalalterations(i.e.,atleastonemorphologicalflagforWBC). CountabnormalitiesincludedHblowerthan70g/dL,PLTlower than100×109/Lorhigherthan400×109/L;WBClowerthan 1.00×109/Lorhigherthan12.00×109/L.Hematological test-ingwasperformedimmediatelyuponarrivalinthelaboratory (i.e.,within30min)andtheneachsamplewasdividedinto8 aliquots,fourwerestoredat4◦CandfourwerestoredatRT. Thetestswererepeatedafter4h,8h,24h36hand48hof stor-age.Allmeasures(i.e.,thebaselineandtherepeatedanalyses) wereperformedinduplicateandthefinalvaluewasexpressed asthemeanofthetwoanalysesateachtimepoint.

Studydesign

Thefollowingparameterswereassessedtocheckblood sam-ple stability: extended complete blood count (CBC) profile parameters, including all basic CBC parameters [RBC, Hb, hematocrit(HT)],meancorpuscularvolume(MCV),mean cor-puscularhemoglobin(MCH), mean corpuscularhemoglobin concentration (MCHC),RDW-SD, RDW-CVand NRBC. More-over,theextendeddifferentialcounts(DIFF)(includingWBC, NE,LY,MO,EO,BAandHFC),PLTprofileparameters(including PLT,PCT,MPV,PDWandP-LCR)andtheRETprofile(including RET,IRF,LFR,MFRandHFR)wereevaluated.

Themeasurementsatthedifferenttimepointswere con-comitantly performed withboth the XN-9000 and BC-6800 analyzers. The mean analytical characteristics of the two analyzers are summarized in Table 1. Briefly, the XN-9000 andtheBC-6000analyzersperforma5-partDIFF,RETcount, NRBCcount,withflagsappearinginthepresenceofabnormal results.7,14,15Bothanalyzersuseacombinationofflow cytom-etryandfluorescencewithlysingbuffersforleukocyteDIFF andidentification ofabnormalcells.Aseparatechannelfor NRBCassessmentisalsoavailableintheBC-6800.

The between-run imprecision ofboth the XN-9000 and BC-6800wasevaluatedaccordingtotheCLSIdocument EP5-A3,16 byanalysisinduplicateofthreelevels(i.e., level1,2 and 3) ofcontrolmaterials(XN-CHECK;StreckLaboratories Inc.,Omaha,NE,USAandBC-6D,BC-BC-RETandNRBC; Shen-zhenMindrayBio-MedicalElectronics,Shenzhen,China)for 40 consecutive workingdays.Thestudy wascarried outin accordwiththeDeclarationofHelsinki,underthetermsofall

(3)

revbrashematolhemoter.2016;38(3):225–239

227

Table1–XN-9000andBC-6800parameterswithoptimalperformanceBias%andCriticalDifference%(CD).

Parameters XN-9000 BC-6800 Optimal performance Bias% Critical Difference% onXN-9000 Critical Difference%on BC-6800

Redbloodcell RBC RBC 0.9 9.1 9.3

Hemoglobin HGB HGB 0.9 7.9 8.1

Hematocrit HCT HCT 0.9 8.4 9.5

Meanvolume,redbloodcells MCV MCV 0.6 4.2 5.3

Meancorpuscularhemoglobin MCH MCH 0.7 5.0 5.4

Meancorpuscularhemoglobinconcentration MCHC MCHC 0.4 5.8 6.7

RBCdistributionwidth RDW-CV RDW-CV 0.9 9.8 9.9

RDW-SD RDW-SD NA NA NA

Nucleatedredbloodcell NRBC NRBC NA NA NA

Whitebloodcells WBC WBC 2.8 30.5 30.6

Neutrophil NEUT Neu 4.6 45.4 45.2

Lymphocyte LYMPH Lym 3.7 30.2 30.4

Monocyte MONO Mon 6.6 53.7 57.4

Eosinophil EO Eos 9.9 62.0 58.9

Basophil BASO Bas 7.7 77.9 88.1

Highfluorescencecells HFLC HFC NA NA NA

Platelet PLT PLT 3.0 26.1 26.2

Meanvolumeplatelet MPV MPV 1.2 12.3 12.6

PLTdistributionwidth PDW PDW NA NA NA

Plateletcrit PCT PCT NA NA NA

PLTlargercellratio P-LCR P-LCR NA NA NA

Reticulocyte RET RET 3.9 31.7 31.1

Immaturereticulocytefraction IRF IRF NA NA NA

Low-fluorescencereticulocyte LFR LFR NA NA NA

Medium-fluorescencereticulocyte MFR MFR NA NA NA

High-fluorescencereticulocyte HFR HFR NA NA NA

NA:notavailable.

relevantlocallegislationandwithpriorapprovaloftheLocal EthicsCommittee.

Statisticalanalysis

Thesignificanceofthedifferenceoftheparametersobtained in paired samples measured with the two analyzers was estimated according to the Steel–Dwass–Critchlow–Fligner test,withassessmentbytheHodges–Lehmannlocationshift formultiple comparisons of means and medians between differentgroups,afterverificationofvaluedistributionbythe Shapiro–Wilktest.Statisticalsignificancewassetforp-values

<0.05. The results were then reported as delta variations from baselineanalysis immediately aftercollection, asX (TX−T0), where “X” isthe different timing and “0” is the baselineresult.Percentagevariationsfromthebaselineresult (T0)insampleswithstatisticallysignificantdifferenceswere then analyzedusing Bland–Altmanplots (Bias%)and com-paredwiththecurrentqualityspecificationsforoptimalbias (OP-Bias%),17thatiscalculatedusingintra-individual biolog-icalvariability(CVi)andinter-individualbiologicalvariability (CVg)followingtheequation:OP-Bias%=0.250(CVi+CVg)1/2. Bias%wasalsocomparedwiththereferencechangevalues orcriticaldifference(CD)18,19whentheseindiceswere avail-able. The CD percentage is the highest relative difference betweentwo consecutive measurements,that, ata chosen levelofprobability, maystillbeduetothecombinedeffect oftheanalytical(Va)andbiological(Vi)variations.Itisgiven bythe followingequation: CD%=K×(Va2+Vi2)1/2, where K

dependsonthechosenprobability.Thecomparisonbetween Bias% and CD% was performed only forthose parameters exhibitingastatisticallysignificantdifferencebetweenBias% and OP-Bias% throughoutthe study period. The statistical analysis was performed using Analyse-it software version 3.90.1(Analyse-itSoftwareLtd.;Leeds,UK).

Results

Overall, 2480measurements were performed withthe XN-9000andBC-6800analyzers.Allresultsobtainedinthenormal samples group were included in the statistical analysis, whereas160measurementswereperformedintheabnormal samplesgroup. Unfortunately,severalmeasurements could notbeperformedduetothelowresidualsamplevolumein this second groupofsamples. Theresultsofthese studies andtherelativevariationsaccordingtothedifferentstorage conditionsareshowninTables2–5.

Redbloodcellparameters

Themedianvaluesobtainedatbaseline(i.e.,T0)inthenormal sample group did not significantly differ between the two analyzersforalltheparameterstested,exceptforMCHand MCHC(Table2).Inthisgroupofnormalsamples,thevalues ofWBC,RBC,HB,MCHandNRBCwerefoundtobestableup to48hatRTand4◦Cusingbothanalyzers.Conversely,theHT valuesdisplayedastatisticallysignificantincrease48hafter

(4)

228

rev bras hema tol hemoter. 2 0 1 6; 3 8(3) :225–239

Table2–SamplesstabilityofgroupofnormalsamplesforCBCandRETprofilesparameters.MedianHodges–Lehmannlocationshift(X);Bias%(B%)betweenbaseline (T0)andthetimepoint(2hupto48h)at4Candroomtemperature(RT)comparisonofOP-Bias%toCriticalDifference%(CD).

Temp T0

medianvalue (95%CI)

X(TX−T0)Hodges–Lehmannlocationshift Xwith

p-value<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 2h 4h 6h 8h 24h 36h 48h WBC (109/L) XN-9000 RT 7.67(5.91to9.40) 0.03 0.05 −0.03 0.06 0.07 −0.08 −0.10 NS 1.4(−1.0to3.7); p=0.2192;48h NE 4◦C 0.13 0.02 0.22 0.14 0.08 0.10 −0.03 NS 3.0(−1.4to7.5); p=0.9109;48h NE BC-6800 RT 7.15(5.60to7.95) 0.02 0.00 0.04 0.14 0.16 0.19 0.01 NS −0.2(−2.5to2.0); p=0.0105;48h NE 4◦C 0.01 0.16 0.02 0.03 0.03 0.04 −0.03 NS 0.2(−1.0to1.5); p=0.0013;48h NE RBC (1012/L) XN-9000 RT 4.60(4.23to5.22) −0.01 −0.01 −0.02 0.01 0.02 0.01 0.00 NS −0.1(−0.6to0.5) p<0.0001;48hb NE 4◦C 0.12 0.10 0.13 0.15 0.11 0.16 0.15 NS 2.7(0.9to4.5) p=0.0522;48h NE BC-6800 RT 4.57(4.20to4.89) 0.00 0.09 0.05 −0.08 −0.06 −0.04 −0.04 NS −0.6(−3.9to2.7); p=0.3477;48h NE 4◦C 0.06 0.08 0.06 0.09 0.09 0.08 0.09 NS 1.6(0.4to2.9); p=0.2163;24h NE Hb(g/L) XN-9000 RT 142(126to151) 0.10 0.20 0.10 0.20 0.30 0.20 0.10 NS 1.0(0.6to1.4) p=0.5780;48h NE 4◦C 0.40 0.35 0.40 0.30 0.35 0.35 0.40 NS 3.7(2.0to5.4); p<0.0001c −0.6(−1.4to0.6); p<0.0001;48hd BC-6800 RT 146(134to151) 0.00 0.00 0.00 −0.20 −0.15 −0.20 −0.10 NS −1.4(−4.3to1.5); p=0.1119;48h NE 4◦C 0.20 0.20 0.10 0.20 0.20 0.20 0.20 NS 1.3(0.9to1.6); p=0.0640;48h NE HT (%) XN-9000 RT 41.6(37.2to43.7) −0.37 −0.63 −0.56 −0.40 2.11 3.25 6.12 48h 0.9(−1.6to3.5); p=0.9747;8h 4.9(2.2to7.6); p<0.0001;24hd 4◦C 0.25 0.25 0.40 0.80 0.95 1.35 1.90 NS 2.3(0.8to3.9); p=0.0740;24h 4.7(3.3to6.4); p<0.0001;48hd BC-6800 RT 41.4(40.2to44.1) −0.05 0.35 0.20 −0.60 2.15 3.90 6.00 48h 1.9(−1.0to4.8); p=0.4791;8h 4.9(1.9to8.0) p<0.0001;24hd 4◦C 0.20 0.40 0.00 0.50 0.90 1.30 2.00 NS 1.6(0.7to2.6); p=0.1300;24h 4.1(3.2to5.0); p<0.0001;48hd

(5)

rev bras hema tol hemoter. 2 0 1 6; 3 8(3) :225–239

229

Table2–(Continued) Temp T0 medianvalue (95%CI)

X(TX−T0)Hodges–Lehmannlocationshift Xwith

p-value<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 2h 4h 6h 8h 24h 36h 48h MCV (fL) XN-9000 RT 87.45(86.2to90.5) −0.42 −1.24 −1.02 −1.27 3.51 6.10 13.1 24h 0.5(0.2to0.7); p=0.3676;2h −1.5(−2.1to −0.8); p<0.0001;8hd 4◦C −1.25 −1.30 −1.40 −1.00 0.10 0.50 2.00 NS 0.3(−0.2to0.8); p=0.2932;24h 2.0(1.3to2.7); p<0.0001;48hd BC-6800 RT 89.8(88.2to92.7) −0.25 −0.45 −0.50 −0.35 5.70 8.80 13.4 24h −0.2(−0.8to0.5); p=0.1688;8h −0.2(−0.8to0.5); p<0.0001;8hd 4◦C −1.50 −1.40 −1.55 −1.10 −0.15 0.70 1.55 NS 0.8(0.3to1.4); p=0.3793;36h 2.1(1.3to2.9); p<0.0001;48hd MCHa (pg) XN-9000 RT 30.0(29.0to30.6) 0.30 0.40 0.50 0.40 0.50 0.30 0.30 NS 1.1(0.6to1.6); p=0.1069;48h NE 4◦C 0.40 0.40 0.40 0.30 0.20 0.10 0.20 NS 0.6(0.1to1.1); p=0.7434;48h NE BC-6800 RT 31.4(30.7to32.3) −0.20 −0.30 −0.30 −0.30 −0.30 −0.50 −0.30 NS 0.9(0.2to1.6); p=0.5672;48h NE 4◦C −0.30 −0.30 −0.10 −0.30 −0.30 −0.30 −0.30 NS 0.8(0.1to1.8); p=0.8085;48h NE MCHCa (g/dL) XN-9000 RT 34.2(33.4to34.4) 0.60 0.80 1.00 0.90 −0.80 −1.90 −4.20 4h 1.7(1.1to2.6); p<0.0001c −2.4(−3.5to −1.3); p<0.0001;8hd 4◦C 1.10 0.90 1.10 0.80 0.40 0.10 −0.50 2h 3.1(2.5to3.7); p<0.0001c 1.4(0.6to2.2); p<0.0001;48hd BC-6800 RT 35.6(33.4to36.2) −0.10 −0.30 −0.10 −0.20 −2.30 −3.50 −4.90 24h −0.7(−1.2to−0.2); p=0.2126;8h −0.7(−1.2to −0.2); p<0.0001;8hd 4◦C 0.20 0.10 0.30 0.00 −0.40 −0.60 −1.10 48h 0.9(0.3to1.4); p=0.1027;24h 2.9(2.1to3.7); p<0.0001;48hd RDW-CV (%) XN-9000 RT 12.9(12.7to13.1) 0.00 0.00 0.10 0.10 0.70 1.20 1.50 24h 0.9(0.4to1.4); p=0.9785;8h 8.7(7.6to9.8); p<0.0001;48hd 4◦C −0.10 −0.10 −0.10 −0.10 −0.30 −0.30 −0.30 24h 0.9(0.6to1.3); p=0.8055;8h 2.3(1.4to3.1); p<0.0001;48hd BC-6800 RT 12.9(12.4to13.2) 0.00 0.20 0.30 0.30 1.20 1.60 1.90 24h 0.5(0.1to0.8); p<0.0001;2hb 2.7(2.0to3.3); p<0.0001;8hd 4◦C 0.10 0.20 0.20 0.20 −0.10 0.00 −0.10 NS 0.3(−0.3to1.0); p=0.0912;48h NE RDW-SD (fL) XN-9000 RT 41.4(39.4to43.2) −0.10 −0.70 −0.25 −0.55 4.40 7.00 12.0 24h 10.2(8.6to11.8) CD%datanot available 4◦C −1.10 −1.20 −1.10 −1.10 −1.20 −1.10 −0.50 NS 0.9(−0.4to2.2) BC-6800 RT 40.5(39.5to41.5) 0.00 0.50 0.70 0.90 7.15 10.1 12.8 24h 14.9(12.5to17.4) 4◦C −0.15 0.00 0.00 0.10 −0.20 0.50 0.50 NS 0.9(0.0to1.9)

(6)

230

rev bras hema tol hemoter. 2 0 1 6; 3 8(3) :225–239 Table2–(Continued) Temp T0 medianvalue (95%CI)

X(TX−T0)Hodges–Lehmannlocationshift Xwith

p-value<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 2h 4h 6h 8h 24h 36h 48h NRBC (109/L) XN-9000 RT 0.0(0.0to0.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS 20.0(−31.7to71.7) 4◦C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS 0.0(−42.9to42.9) BC-6800 RT 0.0(0.0to0.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS 0.0(0.0to0.0) 4◦C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS 0.0(0.0to0.0) RETa (109/L) XN-9000 RT 48.1(35.1to60.3) 0.63 −0.89 −1.05 −1.50 −3.71 −0.59 −1.77 NS 2.5(−1.5to6.6); p=0.4964;48h NE 4◦C 1.01 1.15 0.36 0.08 −0.07 0.27 −0.11 NS 0.3(−3.9to4.4); p=0.0840;48h NE BC-6800 RT 37.4(26.8to44.4) 0.85 1.55 0.30 −1.10 0.45 −1.20 −2.60 NS 6.1(0.3to12.0); p=0.4344;36h 9.8(4.5to15.1); p<0.0001;48hd 4◦C 0.00 0.50 −1.30 0.25 1.30 1.65 3.45 NS 5.0(1.2to8.8); p=0.5394;36h 10.7(6.2to15.2); p<0.0001;48hd IRFa (%) XN-9000 RT 9.3(6.9to10.3) −0.81 −0.49 −1.08 −1.37 −1.94 −1.85 −2.07 24h −25.1(−38.7to−11.5) CD%datanot available 4◦C 0.15 −0.98 −0.42 −0.96 −0.64 −0.66 0.45 NS 4.0(−5.3to13.4) BC-6800 RT 3.4(2.5to4.3) 0.20 0.20 0.20 −0.20 −0.85 −1.35 −2.00 36h −90.2(−110.8to−69.6) 4◦C 0.0 −0.80 −0.60 −0.70 0.10 0.50 0.90 NS 22.1(4.4to39.6) LFRa (%) XN-9000 RT 90.7(89.7to93.1) 0.81 0.48 1.08 1.37 1.94 1.85 2.07 24h 2.1(1.0to3.2) 4◦C −0.16 0.98 0.42 0.96 0.64 0.66 −0.45 NS −0.5(−1.4to0.4) BC-6800 RT 96.5(95.7to97.5) −0.20 −0.20 −0.20 0.20 0.85 1.35 2.00 36h 2.1(1.5to2.7) 4◦C 0.00 0.80 0.60 0.70 −0.10 −0.50 −0.90 NS −0.8(−1.3to−0.2) MFRa (%) XN-9000 RT 8.4(6.5to8.9) −0.72 −0.43 −1.02 −1.20 −1.58 −1.70 −1.68 24h −23.7(−37.6to−9.7) 4◦C 0.15 −0.78 −0.48 −0.82 −0.77 −0.66 0.04 NS −0.9(−11.2to9.5) BC-6800 RT 3.4(2.5to4.3) 0.20 0.20 0.20 −0.20 −0.85 −1.35 −2.00 36h −90.2(−67.9to−35.5) 4◦C 0.00 −0.80 −0.60 −0.70 0.10 0.50 0.90 NS 22.0(4.4to39.7) HFRa (%) XN-9000 RT 0.9(0.6to1.3) 0.00 0.00 −0.10 −0.10 −0.30 −0.10 −0.30 NS −51.1(−79.2to−23.0) 4◦C 0.10 −0.15 0.10 −0.10 0.10 0.10 0.40 NS 46.8(21.2to72.4) BC-6800 RT 0.0(0.0to0.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS 0.0(0.0to0.0) 4◦C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS 0.0(0.0to0.0)

WBC:whitebloodcells;RBC:redbloodcell;RT:Roomtemperature;Hb:hemoglobin;HT:hematocrit;MCV:meancorpuscularvolume;MCH:meancorpuscularhemoglobin;MCHC:meancorpuscular hemoglobinconcentration;RDW-CV:distribution-coefficientofvariation;RDW-SD:RBCdistributionwidth-standarddeviation;NRBC:nucleatedredbloodcell;RET:reticulocyte;IRF:immature reticulocytefraction;LFR:low-fluorescencereticulocyte;MFR:medium-fluorescencereticulocyte;HFR:high-fluorescencereticulocyte;NS:Xnotsignificantthroughoutthestudyperiod;NE:not evaluated;Temp:Temperature.

a ParameterswithmedianvalueaT0significantdifferencebetweentwoanalyzerinthesamesampleswithp<0.0001. b Bias%(betweenbaselineT0andthetimepointX)islowerthanOP-Bias%.

c Bias%(betweenbaselineT0andthetimepointX)isalwayshigherthanOP-Bias%. d Bias%(betweenbaselineT0andthetimepointX)islowerthanCD%.

(7)

revbrashematolhemoter.2016;38(3):225–239

231

Table3–Samplesstabilityongroupofpathologicalsamplesfor:CBCandRETprofilesparameters.Median

Hodges–Lehmannlocationshift(X);Bias%(B%)betweenbaseline(T0)andthetimepoint(4hupto8h)at4Candroom temperature(RT)comparisonofOP-Bias%toCriticalDifference%(CD).

Temp T0medianvalue (95%CI) X(TX−T0) Hodges–Lehmann locationshift Xwith p-value<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 4h 8h WBC (109/L) XN-9000 RT 5.3(4.3to7.2) 0.00 −0.10 NS −0.8(−6.8to5.2); p=0.2229;8h NE 4◦C 8.6(6.5to10.1) 0.06 0.04 NS 0.6(−4.5to5.6); p=0.37625;8h NE BC-6800 RT 5.4(4.1to7.1) 0.05 −0.10 NS 2.3(−0.9to5.5); p=0.3274;8h NE 4◦C 8.5(6.4to9.9) 0.20 −1.22 NS 1.8(0.7to2.9); p=0.0774;4h 18.4(7.2to29.7); p<0.0001;8ha RBC (1012/L) XN-9000 RT 4.8(3.8to5.6) 0.01 −0.16 NS −4.0(−17.8to9.8); p=0.4582;8h NE 4◦C 3.6(3.5to3.9) −0.02 −0.02 NS −0.4(−2.1to1.2); p=0.1161;8h NE BC-6800 RT 4.6(3.7to5.3) −0.02 −0.01 NS 0.3(−1.1to1.8); p=0.4194;8h NE 4◦C 3.5(3.3to3.8) −0.01 0.26 NS 8.5(−0.5to17.5); p=0.0945;8h NE Hb (g/L) XN-9000 RT 141.0(123.0to152.0) 0.10 −0.70 NS −5.2(−19.7to9.2); p=0.3370;8h NE 4◦C 113.0(101.0to116.0) 0.00 0.00 NS 0.5(−0.4to1.3); p=3067;8h NE BC-6800 RT 141.0(123.0to154.0) −0.10 −0.20 NS −0.8(−4.3to2.7); p=0.3108;8h NE 4◦C 111.0(103.0to117.0) 0.00 1.30 NS 1.6(0.07to3.12); p=0.3546;8h NE HT (%) XN-9000 RT 40.7(35.3to46.5) 0.40 −1.40 NS −3.5(−17.4to10.3); p=0.5044;8h NE 4◦C 33.9(31.5to35.5) 0.00 0.00 NS 0.1(−0.7to0.9); p=0.0614;8h NE BC-6800 RT 39.7(34.5to44.3) 0.00 0.00 NS 1.3(−0.3to2.9); p=0.5982;8h NE 4◦C 32.6(30.6to34.4) 0.00 0.02 NS 8.6(−0.5to17.7); p=0.0921;8h NE MCV (fL) XN-9000 RT 84.8(84.0to88.4) 0.60 0.30 NS 0.5(0.1to0.8); p=0.4860;8h NE 4◦C 89.9(87.7to92.5) 0.40 0.40 NS 0.5(−0.3to1.4); p=0.8606;8h NE BC-6800 RT 85.8(84.5to88.7) 0.60 0.80 NS 0.5(0.4to0.7); p=0.3379;4h 1.0(0.8to1.2); p<0.0001;8ha 4◦C 92.4(87.1to93.5) 0.20 0.10 NS 0.1(0.0to0.3); p<0.0001;8hb NE MCH (pg) XN-9000 RT 28.9(27.3to29.8) 0.07 −0.33 NS 1.2(0.1to2.4); p=0.3425;8h NE 4◦C 29.6(27.2to30.9) 0.20 0.00 NS −0.1(−1.0to0.8); p=0.0961;8h NE BC-6800 RT 30.3(28.9to31.4) 0.00 0.10 NS −1.1(−4.0to1.8); p=0.2119;8h NE 4◦C 31.3(28.2to32.4) 0.10 0.85 NS 0.20(−0.07to0.05); p=0.1530;4h 3.9(2.8to5.4) p<0.0001;8ha

(8)

232

revbrashematolhemoter.2016;38(3):225–239

Table3–(Continued)

Temp T0medianvalue (95%CI) X(TX−T0) Hodges–Lehmann locationshift Xwith p-value<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 4h 8h MCHC (g/dL) XN-9000 RT 33.6(32.5to34.5) −0.10 −0.60 NS 0.5(−0.3to1.2); p=0.8634;4h NE 4◦C 32.9(32.4to33.5) 0.02 −0.20 NS 0.6(0.3to0.9); p=0.1932;8h NE BC-6800 RT 35.3(34.7to35.6) −0.35 −0.40 NS p−2.1=0.812;(−5.08toh0.8); NE 4◦C 34.1(33.7to34.3) 0.10 0.85 8h 0.0(−0.3to0.3); p<0.0001b;4h 3.8(1.6to6.1); p<0.0001;8ha RDW-CV (%) XN-9000 RT 13.3(13.1to15.9) 0.20 0.35 NS 2.8(−9.7to15.4); p<0.7469;8h NE 4◦C 14.2(13.4to14.6) 0.10 0.10 NS 0.7(0.1to1.2); p=0.4190;8h NE BC-6800 RT 13.4(13.0to15.6) 0.30 0.50 NS 2.1p<0.0001(1.8toc2.4); 3.6(2.9to4.2); p<0.0001;8ha 4◦C 13.7(13.4to14.1) 0.10 0.25 NS 0.9(0.5to1.2); p=0.9609;4h 2.1(1.2to2.9); p<0.0001;8ha RDW-SD (fL) XN-9000 RT 42.3(41.1to44.3) 1.00 1.85 NS 3.6(−9.0to16.2); p=0.6544;8h CD%datanot available 4◦C 44.2(43.1to48.4) 0.50 0.60 NS 1.2(−0.2to2.5); p=0.6629;8h BC-6800 RT4C 41.542.7(41.9(40.3toto43.3)47.8) 0.401.20 0.902.00 NS8h 4.32.0(3.6(1.0toto5.1)2.9) NRBC (109/L) XN-9000 RT4C 0.00.0(0.0(0.0toto0.0)0.0) 0.000.01 0.020.01 48hh 103.3129.9(41.9(95.5toto164.8)164.4) BC-6800 RT 0.0(0.0to0.0) 0.00 0.00 NS 78.6(26.4to130.8) 4◦C 0.0(0.0to0.0) 0.00 0.02 8h 124.0(78.5to169.6) RET (109/L) XN-9000 RT 53.1(46.3to72.1) 0.11 −3.39 NS −4.4(−24.8to16.1); p=0.3996;8h NE 4◦C 54.0(46.0to68.1) 1.20 1.50 NS 3.0(−0.1to6.1); p=0.5427;8h NE BC-6800 RT 41.5(31.9to55.2) 2.30 3.55 NS p7.3=0.0912;(3.3to11.4);8h NE 4◦C 52.2(41.1to60.1) 1.14 3.45 NS 5.4(−5.2to16.0); p=0.7652;8h NE IRF (%) XN-9000 RT 6.6(4.1to7.9) 0.00 0.60 NS 6.1(−28.3to40.5) CD%datanot available 4◦C 15.5(11.5to20.5) 0.20 0.10 NS −0.1(−6.5to6.3) BC-6800 4RTC 1.78.4(0.9(5.0toto12.9)2.5) −0.20 −0.30 NS −8.5(−28.5to11.5) −0.60 −0.80 NS −21.5(−44.7to1.7) LFR (%) XN-9000 RT4C 93.484.6(79.5(92.1toto95.9)88.5) −0.200.00 −0.10−0.60 NSNS −0.7−0.7((−2.6−6.5toto5.0)1.1) BC-6800 RT 98.3(97.5to99.1) 0.20 0.30 NS 0.1(−0.5to0.6) 4◦C 91.7(87.1to95.0) 0.60 0.80 NS 0.7(0.2to1.2) MFR (%) XN-9000 RT 6.1(4.0to6.9) 0.15 0.60 NS 6.8(−22.5to36.2) 4◦C 12.0(10.6to13.8) −0.55 −0.40 NS −5.6(−10.7to−0.5) BC-6800 RT 1.7(0.9to2.5) −0.20 −0.30 NS −8.9(−28.9to11.1) 4◦C 8.0(5.0to11.6) −0.30 −0.60 NS −18.9(−42.5to4.8) HFR (%) XN-9000 RT 0.5(0.1to1.0) 0.00 0.00 NS 6.9(−56.2to70.0) 4◦C 2.8(1.4to7.9) 0.40 0.30 NS 19.0(−2.1to40.1) BC-6800 RT 0.0(0.0to0.0) 0.00 0.00 NS 2.6(−1.7to6.9) 4◦C 0.0(0.0to1.2) 0.00 0.00 NS −38.8(−70.2to−7.4)

WBC:whitebloodcells;RBC:redbloodcell;RT:Roomtemperature;Hb:hemoglobin;HT:hematocrit;MCV:meancorpuscularvolume;MCH: meancorpuscularhemoglobin;MCHC:meancorpuscularhemoglobinconcentration;RDW-CV:distribution-coefficientofvariation;RDW-SD: RBCdistributionwidth-standarddeviation;NRBC:nucleatedredbloodcell;RET:reticulocyte;IRF:immaturereticulocytefraction;LFR: low-fluorescencereticulocyte;MFR:medium-fluorescencereticulocyte;HFR:high-fluorescencereticulocyte;NS:Xnotsignificantthroughoutthe studyperiod;NE:notevaluated;Temp:Temperature.

a Bias%(betweenbaselineT0andthetimepointX)islowerthanCD%. b Bias%(betweenbaselineT0andthetimepointX)islowerthanOP-Bias%. c Bias%(betweenbaselineT0andthetimepointX)isalwayshigherthanOP-Bias%.

(9)

rev bras hema tol hemoter. 2 0 1 6; 3 8(3) :225–239

233

Table4–Samplesstabilityofgroupofnormalsamplesfor:DIFFandPLTprofilesparameters.MedianHodges–Lehmannlocationshift(X);Bias%(B%)betweenbaseline (T0)andthetimepoint(2hupto48h)at4Candroomtemperature(RT)comparisonofOP-Bias%toCriticalDifference%(CD).

Temp T0medianvalue (95%CI)

X(TX−T0)Hodges–Lehmannlocationshift Xwithp<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 2h 4h 6h 8h 24h 36h 48h NE (109/L) XN-9000 RT 4.4(3.5to4.7) 0.01 0.08 −0.02 0.00 0.21 0.06 0.00 NS 0.5(−3.1to4.1); p=0.0273;48h NE 4◦C 0.07 0.07 0.09 0.06 0.04 0.14 0.13 NS 2.5(−3.4to8.3); p=0.4509;48h NE BC-6800 RT 4.0(3.0to4.6) 0.17 0.12 0.09 0.21 0.40 0.27 0.42 NS 3.5(0.9to6.1); p=0.3950;48h NE 4◦C 0.02 0.10 0.00 0.05 0.23 0.34 0.51 NS 11.0(7.1to14.8); p=0.1137;24h NE LY (109/L) XN-9000 RT 2.3(1.7to2.5) −0.02 −0.02 −0.07 −0.05 0.00 0.03 0.05 NS 1.1(−1.7to3.9); p=0.0626;48h NE 4◦C −0.03 0.01 −0.02 0.00 −0.09 −0.06 −0.11 NS 7.6(3.1to12.1); p=0.0885;48h NE BC-6800 RT 2.0(1.6to2.3) 0.01 0.00 0.02 0.02 0.02 0.00 −0.01 NS 1.0(−2.7to4.7); p=0.1480;48h NE 4◦C −0.01 −0.02 −0.03 0.00 −0.13 0.12 0.24 NS 0.3(−2.9to−3.47); p=0.0372;8h 16.4(11.1to21.7); p<0.0001;48hb MOa (109/L) XN-9000 RT 0.6(0.6to0.9) 0.00 0.00 −0.01 −0.01 −0.12 −0.15 −0.03 NS 16.0(5.0to27.0); p=0.0884;48h NE 4◦C 0.02 0.00 0.02 0.02 −0.01 −0.06 −0.17 NS 8.8(1.94to−15.7); p=0.5053;24h 28.1(19.1to37.1); p<0.0001;48hb BC-6800 RT 0.5(0.4to0.7) 0.00 0.00 0.01 0.00 −0.04 −0.04 −0.12 48h 12.3(5.1to19.4); p=0.1128;36h 33.2(24.7to41.6); p<0.0001;48hb 4◦C 0.02 0.03 0.02 0.01 −0.01 −0.07 −0.13 48h 3.4(−1.5to8.2); p=0.1816;24h 36.7(28.6to44.8); p<0.0001;48hb EO (109/L) XN-9000 RT 0.2(0.1to0.3) 0.00 0.01 0.02 0.03 −0.02 −0.05 −0.01 NS 14.5(2.0to−26.9); p=0.4507;48h NE 4◦C 0.00 0.00 0.01 0.00 0.01 0.00 0.00 NS 0.4(−11.7to12.5); p=0.1175;48h NE BC-6800 RT 0.1(0.1to0.3) 0.01 0.00 0.01 0.01 0.00 0.01 0.00 NS 6.1(−1.2to13.4); p=0.2908;48h NE 4◦C 0.01 0.01 0.00 0.01 0.01 0.01 0.01 NS 10.01(0.9to19.3); p=0.966;48h NE BA (109/L) XN-9000 RT 0.1(0.0to0.1) 0.00 0.00 0.00 0.00 0.01 0.01 0.01 NS 20.2(−4.5to44.9); p=0.3032;48h NE 4◦C 0.00 0.00 0.00 0.00 0.00 0.00 0.01 NS 26.1(1.3to50.9); p=0.1362;48h NE

(10)

234

rev bras hema tol hemoter. 2 0 1 6; 3 8(3) :225–239 Table4–(Continued)

Temp T0medianvalue (95%CI)

X(TX−T0)Hodges–Lehmannlocationshift Xwithp<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 2h 4h 6h 8h 24h 36h 48h BC-6800 RT 0.0(0.0to0.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS 3.8(−9.9to17.4); p=0.5552;48h NE 4◦C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS 10.5(−10.8to30.9); p=0.7777;48h NE HFC (109/L) XN-9000 RT 0.0(0.0to0.0) 0.00 0.00 0.00 0.00 −0.01 −0.01 −0.01 NS −88.3(−134.8to−41.9) CD%datanot available 4◦C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS −26.7(−73.9to20.6) BC-6800 RT 0.0(0.0to0.0) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS −28.7(−84.4to27.1) 4◦C 0.00 0.00 0.00 0.00 0.00 0.00 0.00 NS −58.0(−112.1to−3.9) PLT (109/L) XN-9000 RT 262.0(231.0to 299.0) −1.0 3.0 −3.0 −1.0 −19.0 −15.0 −10.0 NS 5.2(1.9to8.5); p=0.1847;48h NE 4◦C −14.5 −16.5 −20.5 −19.0 −21.0 −19.5 −23.0 NS 6.0(4.0to8.0); p<0.0001c 9.5(6.1to12.8); p<0.0001;48hb BC-6800 RT 250.0(227.0to 279.0) 9.0 7.0 12.0 6.5 3.0 7.0 5.0 NS 4.0(1.2to6.8); p=0.0045;48h NE 4◦C 4.0 3.0 4.0 −1.0 −3.0 −2.0 −5.0 NS −0.6(−2.9to1.7); p=0.4497;48h NE MPVa(fL) XN-9000 RT 10.8(10.2to11.3) 0.40 0.50 0.60 0.60 1.30 1.50 0.90 24h 3.7(2.9to4.5);p<0.0001 c 9.2(6.9to1.0); p<0.0001;48hb 4◦C 0.00 −0.10 0.20 0.10 0.50 0.60 0.90 48h 0.8(−0.4to1.5); p=0.1719.8h 5.7(4.3to7.0); p<0.0001;48hb BC-6800 RT 9.5(9.1to9.9) 0.60 0.80 1.00 0.80 0.80 0.80 1.10 4h 6.1(4.9to7.2);p<0.0001 c 8.8(5.7to11.9); p<0.05;24hb 4◦C 0.60 0.50 0.70 0.60 0.90 1.00 1.20 24h 1.3(1.1to1.4); p=0.5307;48h 1.3(1.1to1.4); p<0.0001;48hb PDWa (fL) XN-9000 RT 12.5(11.8to14.0) 0.70 0.90 1.00 0.90 1.30 3.40 2.05 24h 19.7(14.7to24.3) CD%datanot available 4◦C 0.20 −0.20 0.40 0.00 1.00 1.30 2.00 48h 13.7(10.9to16.4) BC-6800 RT 10.95(10.40to 11.30) 0.80 1.10 1.20 1.10 1.30 1.20 1.50 24h 1.3(0.5to2.0) 4◦C 1.00 0.60 1.25 1.30 1.60 1.60 2.10 24h 1.7(1.1to2.3) PCTa(%) XN-9000 RT 0.28(0.25to0.33) 0.01 0.01 0.01 0.01 0.02 0.03 0.02 NS 7.2(3.9to10.5) 4◦C −0.02 −0.02 0.02 −0.02 −0.01 −0.01 0.00 NS −2.3(−4.8to0.3) BC-6800 RT 0.2(0.2to0.3) 0.02 0.02 0.03 0.03 0.02 0.02 0.03 NS 15.4(10.5to20.4) 4◦C 0.02 0.01 0.02 0.01 0.02 0.03 0.30 NS 11.6(8.5to14.7) P-LCRa (%) XN-9000 RT 32.3(27.4to36.0) 3.65 4.20 5.00 4.45 10.70 12.00 7.40 24h 30.3(23.2to37.3) 4◦C 0.05 −0.70 1.25 0.40 3.55 5.00 6.95 48h 20.1(18.1to22.2) BC-6800 RT 23.4(19.8to25.5) 3.80 5.00 6.00 5.30 5.05 5.00 6.80 6h 30.1(19.1to41.0) 4◦C 3.95 3.00 4.65 4.20 6.40 6.90 8.25 24h 33.0(28.0to38.0)

NE:neutrophil;LY:lymphocyte;MO:monocyte;RT:Roomtemperature;EO:eosinophil;BA:basophil;HFC:HIGHfluorescencecells;PLT:platelet;MPV:meanvolumeplatelet;PDW:PLTdistributionwidth; PCT:plateletcrit;P-LCR:PLTlargercellratio;NS:Xnotsignificantthroughoutthestudyperiod;NE:notevaluated;Temp:Temperature.

a ParameterswithmedianvalueaT0significantdifferencebetweentwoanalyzerinthesamesampleswithp<0.0001. b Bias%(betweenbaselineT0andthetimepointX)islowerthanCD%.

(11)

revbrashematolhemoter.2016;38(3):225–239

235

Table5–SamplesstabilityofgroupofpathologicalsamplesforDIFFandPLTprofilesparameters.Median

Hodges–Lehmannlocationshift(X);Bias%(B%)betweenbaseline(T0)andthetimepoint(4hupto8h)at4Candroom temperature(RT)comparisonofOP-Bias%toCriticalDifference%(CD).

Temp T0medianvalue (95%CI) X(TX−T0) Hodges–Lehmann locationshift Xwith p-value<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 4h 8h NE (109/L) XN-9000 RT 2.9(2.3to4.5) −0.03 −0.09 NS 0.2(−8.9to9.3); p=0.3146;8h NE 4◦C 5.8(4.2to7.6) 0.07 0.03 NS 1.0(−1.2to3.1); p=0.015;8h NE BC-6800 RT 3.0(2.3to4.6) 0.01 −0.03 NS 1.2(−1.8to4.3); p=0.0324;8h NE 4◦C 5.9(4.3to7.7) 0.12 −0.87 NS 2.2(0.8to3.6); p=0.0017;4h 18.7(6.9to30.6); p<0.0001;8ha LY (109/L) XN-9000 RT 1.6(0.9to2.2) 0.02 −0.02 NS −2.8(−33.2to27.5); p=0.6514;8h NE 4◦C 1.2(1.0to1.8) −0.01 0.00 NS −1.7(−15.1to11.8); p=0.4237;8h NE BC-6800 RT 1.6(0.9to2.2) −0.02 −0.04 NS 4.4(0.2to8.5); p=0.7316;8h NE 4◦C 1.2(0.9to1.7) −0.01 −0.17 NS 0.9(−1.9to−3.7); p=0.0559;4h 13.3(4.7to21.4); p<0.0001;8ha MO (109/L) XN-9000 RT 0.5(0.4to0.7) 0.01 −0.02 NS −4.9(−17.0to7.2); p=0.0618;8h NE 4◦C 0.8(0.6to0.9) 0.01 −0.02 NS 2.3(−4.2to8.7); p=0.1814;8h NE BC-6800 RT 0.4(0.3to0.5) 0.01 −0.01 NS 5.5(−0.6to11.7); p=0.7159;8h NE 4◦C 0.6(0.5to0.7) 0.02 −0.13 NS 3.0(−0.2to6.2); p=0.0279;4h 25.1(7.9to42.3); p<0.0001;8ha EO (109/L) XN-9000 RT 0.1(0.0to0.4) 0.01 0.01 NS 43.4(−16.0to102.7); p=0.2463;8h NE 4◦C 0.1(0.1to0.1) 0.01 0.02 NS 8.9(1.7to16.0); p=0.7689;4h 31.5(16.2to46.7); p<0.0001;8ha BC-6800 RT 0.1(0.0to0.4) 0.01 0.01 NS 29.0(−6.0to65.2); p=0.0716;4h 29.6(−6.2to 65.3); p<0.05;8ha 4◦C 0.1(0.1to0.2) 0.01 0.00 NS 7.3(−19.7to34.4); p=0.8439;8h NE BA (109/L) XN-9000 RT 0.0(0.0to0.0) 0.00 0.01 NS 32.7(−8.2to73.6); p=0.2113;8h NE 4◦C 0.0(0.0to0.0) 0.00 0.01 NS 15.5(−2.0to33.0); p=0.3737;4h 30.3(17.8to42.8); p<0.0001;8ha BC-6800 RT 0.0(0.0to0.0) 0.00 0.00 NS 0.7(−15.9to17.3); p=0.3829;8h NE 4◦C 0.0(0.0to0.0) 0.00 0.00 NS 7.1(−16.1to30.4); p=0.9604;8h NE HFC (109/L) XN-9000 RT 0.0(0.0to0.0) 0.00 0.00 NS −40.0(−125.8to45.8) CD%datanot available 4◦C 0.0(0.0to0.0) 0.00 0.00 NS −21.3(−54.8to12.3) BC-6800 RT 0.0(0.0to0.0) 0.00 0.00 NS 33.3(−26.1to92.8) 4◦C 0.0(0.0to0.0) 0.00 0.00 NS 4.3(−59.0to67.5) PLT (109/L) XN-9000 RT 264(211to309) 0.8 16.4 NS p4.0=0.8577;(−7.6to815.5);h NE 4◦C 237(188to270) 1.1 −1.7 NS −0.6(−5.7to4.4); p=0.1548;8h NE BC-6800 RT 249(209to286) 0.5 −8.0 NS −3.7(−7.5to0.1); p=0.7113;8h NE 4◦C 235(178to276) −2.0 −9.0 NS −8.2(−17.7to1.3); p=0.2672;8h NE

(12)

236

revbrashematolhemoter.2016;38(3):225–239

Table5–(Continued)

Temp T0medianvalue (95%CI) X(TX−T0) Hodges–Lehmann locationshift Xwith p-value<0.0001 atthetime[h] B%(95%CI)a timeofstability; p-value B%vs.OP-Bias%; Stableuntil[h] B%(95%CI); p-value B%vs.CD%; Stableuntil[h] 4h 8h MPV (fL) XN-9000 RT 10.7(10.2to11.3) 0.10 0.05 NS 0.3(−4.0to4.6); p=0.6606;8h NE 4◦C 11.2(10.6to12.0) 0.11 0.30 NS 1.0(0.3to1.6); p=0.4789;4h 2.6%(1.4to3.8); p<0.0001;8ha BC-6800 RT 9.7(8.7to10.2) 0.30 0.40 NS 2.6p<0.0001(1.5tob3.7); 3.7%(2.7to4.7); p<0.0001;8ha 4◦C 9.9(9.4to10.5) 0.20 0.50 NS 2.7(2.1to3.3); p<0.0001b 4.7%(3.7to5.9); p<0.0001;8ha PDW (fL) XN-9000 RT 13.0(11.3to15.1) 0.29 0.10 NS 0.3(−7.4to8.1) CD%datanot available 4◦C 13.2(12.2to15.1) 0.20 0.60 NS 4.6(2.1to7.2) BC-6800 RT 15.9(15.4to16.1) −0.05 0.00 NS 0.0(−0.6to0.5) 4◦C 15.8(15.7to16.1) 0.00 0.00 NS 0.1(−0.5to0.7) PCT (%) XN-9000 RT4C 0.30.3(0.3(0.2toto0.3)0.3) 0.000.00 0.010.01 NSNS 4.42.1((−6.1to14.9) −3.4to7.5) BC-6800 RT4C 0.20.2(0.2(0.2toto0.2)0.3) 0.000.00 0.000.00 NSNS −4.2−0.1(−4.0(−13.8toto3.8)5.4) P-LCR (%) XN-9000 RT 31.3(25.9to36.5) 1.36 0.72 NS 1.7(−9.7to13.1) 4◦C 34.3(29.4to40.3) 0.74 2.24 NS 6.5(3.7to9.4) BC-6800 RT 23.8(15.5to29.7) −0.20 −0.30 NS 9.2(6.7to11.7) 4◦C 24.5(21.0to29.4) 1.40 3.95 NS 12.8(8.8to16.7)

NE:neutrophil;RT:Roomtemperature;LY:lymphocyte;MO:monocyte;EO:eosinophil;BA:basophil;HFC:highfluorescencecells;PLT:platelet; MPV:meanvolumeplatelet;PDW:PLTdistributionwidth;PCT:plateletcrit;P-LCR:PLTlargercellratio;NS:Xnotsignificantthroughoutthe studyperiod;NE:notevaluated;Temp:Temperature.

a Bias%(betweenbaselineT0andthetimepointX)islowerthanCD%.

b Bias%(betweenbaselineT0andthetimepointX)isalwayshigherthanOP-Bias%.

collectioninsamplesstoredatRT(butnotinthosestoredat 4◦C)whenmeasuredwithbothanalyzers.Thecomparison oftheBias%atdifferenttimepoints(TX)withtheOP-Bias% showedthatHTisstableatroomtemperatureforupto8h usingboththeXN-9000(Bias%:0.9)andBC-6800(Bias%:1.9), whereastheBias%forHTinsamplesstoredatRTremained lower than the CD% for up to 24h. The same analysis in samplesstoredat4◦C showedgood stabilityforupto24h aftercollectionwhencomparedwiththeOP-Bias%,whereas theBias%alwaysremainedlowerthantheCD%throughout thestudyperiod(i.e.,upto48h)usingbothanalyzers.

ThevaluesofMCVandRDW-SDdisplayedsignificant differ-encesafter24hofstorageatRT,whereastheresultsremained substantiallyunchangedforupto48haftercollectionin sam-plesstoreda4◦C.Interestingly,theBias%ofMCVexceeded theOP-Bias%after2hofstorageatRTwiththeXN-9000and after8hofstorageatRTwiththeBC-6800,respectively.The Bias%ofMCVwaslowerthantherelativeCD%forupto8h ofstorageusingbothanalyzersatRT.Atvariance,theBias% alwaysremainedlowerthanCD%throughoutthestudyperiod insamplesstoredat4◦C.TheRDW-CVexhibitedsignificant variationsafter24hfromcollectionusingbothanalyzersat RT,whereassignificantdifferenceswereobservedafter24h ofstorageinsamplesstoredat4◦Cusing theXN-9000 but notwiththeBC-6800(Table2).Whencomparedwiththe OP-Bias%,RDW-CVvalueswerefoundtobestableforupto8h atbothRTand4◦CusingtheXN-9000,andforupto2hat

RTwiththeBC-6800.TheBias%ofRDW-CVwasalwayslower than the OP-Bias%for up to48h ofstorageusing the BC-6800.

Atvariancewithpreviousparameters,thevaluesofMCHC displayed a specific and instrument-dependent variation. Morespecifically,significantdifferenceswereobservedafter 4hofstorageatRTand2hofstorageat4◦CwiththeXN-9000. Accordingly,theBias%exceededtheOP-Bias%at2hofstorage atbothtemperatures,whereastheBias%didnotexceedthe CD%forupto8hofstorageatRTandforupto48hofstorage at4◦C.AsregardsMCHCvaluesobtainedwiththeBC-6800, significantdifferenceswerefoundafter24hofstorageatRT andatthe48htimepointafterstorageat4◦C.TheOP-Bias% wasexceededafter8hofstorageatRTand24hofstorage at4◦C,whereastheBias%remainedlowerthantheCD%for upto8hofstorageatRTandforupto48hofstorageat4◦C (Table2).

Alltheseparametersappearedtobesubstantiallystablefor upto8hatbothRTand4◦Cintheabnormalsamplesgroup usingbothanalyzers.Themostrelevantexceptionsare sum-marizedinTable3.Specifically,theNRBCmeasuredwiththe XN-9000showedsignificantvariations8haftercollectionin samplesstoredatRTand4haftercollectioninthosestored at4◦C,whereassignificantvariationsofNRBCmeasuredwith theBC-6800couldonlybeobservedafter8hofstorageat4◦C. ThecomparisonbetweentheBias%andOP-Bias%fortheMCH andRDW-CVmeasuredwiththeBC-6800showedasignificant

(13)

revbrashematolhemoter.2016;38(3):225–239

237

variationafter4hofstorageat4◦C.AsregardstheXN-9000, onlytheBias%forMCHCincreasedovertheOP-Bias%after4h ofstorageatRT.Interestingly,theBias%wasfoundtobealways lowerthantheCD%forallparameterswithbothanalyzersfor upto8hofstorageatbothtemperatures.

Reticulocytes

The baselinevalues of the different RET parameters were foundtobealwaysdifferentoncomparingthemeasurements ofthetwohematologicalanalyzers(Table2).Inthegroupof normalbloodsamples,RETandpercentageofHFRwerefound tobestableforupto48husingbothanalyzersandatboth tem-peratures.TheBias%ofRETwasfoundtobehigherthanthe OP-Bias%after36hofstorageatbothtemperatures.The per-centagesofIRF,LFRandMFRwerefoundtobehigherthanthe T0valuesafter24hofstorageatRTwiththeXN-9000andafter 36hofstorageatRTwiththeBC-6800(Table4).Inthegroupof abnormalbloodsamplesalltheRETparameterswerefound tobestableforup to8h usingbothanalyzersand atboth temperatures(Table3).

Leukocytecountanddifferential

The baseline values of Leukocytes and DIFF counts did notexhibitstatisticallysignificantvariationsthroughoutthe studyperiodinthesubgroupofnormalsamples,usingboth analyzersandatbothtemperatures,withtheonlyexception oftheMOmeasuredwiththeBC-6800atthe48-htimepoint (Table4).Accordingly,theBias%ofMOincreasedoverthe OP-Bias%after36–48hofstorageatRTandafter24hofstorageat 4◦C.Importantly,theBias%wasfoundtobealwayslowerthan theCD%throughoutthestudyperiod,usingbothanalyzers andatbothtemperatures.

Inthe abnormalsamplesgroup the various parameters werealsofoundtobestableupto8hofstorageusingboth ana-lyzersandatbothtemperatures(Table5).TheOP-Bias%was exceededafter4hforNE,LYandMOat4◦C,andEOatRTusing theBC-6800.TheBias%ofEOalsoexceededtheOP-Bias%after 8hofstorageat4◦CusingtheXN-9000(Table5).

Platelets

Withthe exception ofPLT and PCT, the baselinevalues of allthePLTparameterswerefoundtobesignificantly differ-entbetweenthetwoanalyzersinthegroupofnormalblood samples(Table4).Inthisgroupofspecimens,PLTandPCT parameters were foundto bestable forup to48hat both RT and 4◦C using bothanalyzers (Table 4).The remaining parameters(MPV,PDW,PCTandP-LCR)showed instrument-dependentvariations.

TheBias%ofthePLTcountmeasuredwiththeXN-9000was foundtobehigherthantheOP-Bias%after2hofstorageat 4◦C,butremainedalwayslowerthantheCD%forupto48hof storageatthistemperature.ThevaluesofMPVmeasuredwith theXN-9000significantlyincreasedafter24hofstorageatRT andat48hofstorageat4◦C.However,thevariationoftheMPV wasfoundtobehigherthantheOP-Bias%startingfrom2hof storageatRTand8hofstorageat4◦C(Table4).Importantly, theBias%oftheMPVneverexceededtheCD%throughoutthe

48hofstorage.AsregardstheBC-6800,theMPVvalueswere significantlyincreasedafter4hofstorageatRTand24hof storageat4◦C.ABias%largerthantheOP-Bias%wasobserved after2hofstorageatRT,althoughitremainedlowerthanthe CD%throughoutthe24hofstorageatRT(Table4).Thevalues ofthePDWmeasuredwithbothanalyzerswerefoundtobe significantlydifferentafter24hofstorageatRT,whereas sig-nificantdifferencesinsamplesstoredat4◦Cwereobserved after24hofstoragewiththeBC-6800andafter48hofstorage withtheXN-9000(Table4).

Inthegroupofabnormalsamples,thePLTparameterswere foundtobestableforupto8husingbothanalyzersatboth temperatures (Table5).Nevertheless, theBias%oftheMPV measuredwiththeBC-6800wasfoundtobehigherthanthe OP-Bias%after2hofstorageatbothtemperatures,whereas theBias%oftheMPVmeasuredwiththeXN-9000exceeded theOP-Bias%after4hofstorageat4◦C.Innocase,however, theBias%wasfoundtobehigherthantheCD%inupto8hof storageatbothtemperatures(Table5).

Discussion

Theongoingreorganizationoflaboratoryservicesaroundthe globefrequentlyentailstheconsolidationofsmalllabsinto larger facilities.20 Thisprocess poses serious challenges to sample quality, assometimes blood specimensneed tobe transportedoverlongdistancesandforlongperiodsoftime.21 Therefore, the aimofour study wastoobtain information about sample stability for many hematological parameters measured withboththe XN-9000andBC-6800 analyzers.It ishencenotsurprisingthatthestabilitydataobtainedinthis studywerequitesimilar.Analyzer-specifictrendswereonly observedforafewparameterssuchasMCHC,MPVandMO. Morespecifically,MCHCwasfoundtobestableforlongerat bothRT and4◦C usingtheBC-6800, whereas theMPVwas foundtobestableforlongerat4◦CwiththeXN-9000.Asthe analyzers use rather similar analytical techniques,the dif-ferencesseemtobeattributabletoadifferenttechnological approachusedtoassessMCHCandMPV.

Overall,thestabilityappearedgreaterfornormalsamples whentheywerestoredat4◦CcomparedtoRT.Asimilartrend was observed for abnormalsamples, except forthe NRBC countasthisparametermeasuredwiththeXN-9000showed asignificantvariationafter4hofstorageat4◦Candafter8h ofstorageatRT.WhenmeasuredwiththeBC-6800,theNRBC countwasfoundtobestablethroughoutthestudyperiodat RT,whereasasignificantchangewasfoundafter8hofstorage at4◦C(Table3).

For the SysmexXN-series, inaccordwithprevious data publishedbyBriggsetal.,7thevaluesofWBC,NRBCand leuko-cyte DIFFwere foundtobestable upto48hwhennormal sampleswerestoredat4◦C.Tanakaetal.publisheddataon thestabilityofthePLTcount,22whichareoverallsimilarto theresultsobservedinthisstudy(PLTseemtobestablefor upto48hinbloodsamplesstoredatbothRTandat4◦C). Dis-crepantdatawereinsteadfoundcomparingourresultswith thoseobtainedbyDavesetal.23andbyImerietal.2usingthe SysmexXN-series.Specifically,largerdifferenceswerefound forsomeRBCparametersinnormalbloodsamples(i.e.,MCH,

(14)

238

revbrashematolhemoter.2016;38(3):225–239

MCV,RDW-SD,PLTcountandMPV).Inthesepublished inves-tigations,thestabilitywasfoundtobelessthaninthecurrent studyinbloodsamplesstoredatbothRTand4◦C.

Conversely,thestabilityofMCHCvalueswasfoundtobe lessinourinvestigationthaninthestudypublishedbyDaves etal.23Thedifferencesareprobablyattributabletotheuseof differentpre-analytical proceduresbetweenstudies.Infact, ourinvestigationwasdesignedusingstrictcriteriaforthe pre-analyticalphase(especiallyforcollectionandtransportation ofnormalsamples), accordingto whichthe collection and transportation ofhealthy sampleswas directly handled by laboratorypersonnel.Similarevidenceisunavailable inthe studiesofDaveset al.23 andImeri etal.,2 whopreferred to followadifferentapproach(i.e.,bloodcollectionandhandling bynurses),whichisprobablyclosertotherealityofroutine healthcarepractices.Notably,nopreviousinformationis avail-ableforbloodsamplestabilityassessedwiththeBC-6800,so thatadirectcomparisonisunfeasible.

Interestingresultsemergefromthecomparisonbetween theBias%ofthedifferentanalytesatdifferenttimesand tem-peratureconditions,whichmaybeusefulfordefiningthebest practiceforthepre-analyticalphaseofroutinehematological testing.Inthe analysisofnormalsamples,theMCV exhib-itedaBias%of−1.5%withtheXN-9000andaBias%of−0.15% withtheBC-6800inasamplestoredfor8hatRT.However, theBias%ofMCHCandRDW-CVmeasuredwiththeBC-6800 were−0.7%and2.7%after8hofstorageatRTandtheBias% ofMCHCmeasuredwiththeXN-9000was−2.4%after8hof storageatRT.TheHTexhibitedaBias%of4.9%withboththe analyzersafter24hatRT.Aftertheseperiodsofstorage,the variationoftheparameterswasfoundtobehigherthanthe CD%.

Themajorlimitationofthisstudywastheabsenceof stabil-ityevaluationofpathologicalsamplesupto72h(i.e.,12h,24h, 36hand72h)assuggestedintheICSHguidelines.3,4Thiswas notpossiblebecausetheamountofeachpathological sam-pleincludedinthisstudywaslimited(onlyonetubeforeach samplecomparedtothreetubesfornormalsamples).

Theresults of this study show that the time and tem-perature of storage can have an impact on the quality of hematologicaltesting,withresultsthatmaysignificantly devi-atefromtheclinicallyallowablebias.Overall,wecanhence suggest thatthe blood samplesshouldalways beanalyzed within2hfromcollectionregardlessofstoragetemperature. WhentheBias%iscomparedtotheCD%,themaximumtime forsampleanalysiscanhowever beextendedtoupto 8h. Over8hitisnotadvisabletoreportthetimeor temperature-sensitiveparameters.

Conflicts

of

interest

Theauthorsdeclarenoconflictsofinterest.

r

e

f

e

r

e

n

c

e

s

1. LippiG,GuidiGC,MatiuzziC,PlebaniM.Preanalytical variability:thedarksideofthemooninlaboratorytesting. ClinChemLabMed.2006;44(4):358–65.

2.ImeriF,HerklotzR,RischL,ArbetsleitnerC,ZerlauthM,Risch GM,etal.Stabilityofhematologicalanalytesdependsonthe hematologyanalyserused:astabilitystudywithBayerAdvia 120,BeckmanCoulterLH750andSysmexXE2100.ClinChim Acta.2008;397(1/2):68–71.

3.ZiniG.Stabilityofcompletebloodcountparameterswith storage:towarddefinedspecificationsfordifferentdiagnostic applications.IntJLabHematol.2014;36(2):111–3.

4.BriggsC,CulpN,DavisB,d’OnofrioG,ZiniG,MachinSJ.ICSH guidelinesfortheevaluationofbloodcellanalysersincluding thoseusedfordifferentialleucocyteandreticulocyte counting.IntJLabHematol.2014;36(6):613–27. 5.BriggsC.Qualitycounts:newparametersinbloodcell

counting.IntJLabHematol.2009;31(3):277–97.

6.ArnethBM,RagallerM,HommelK,TiebelO,Menschikowski M,SiegertG.Novelparametersofextendedcompleteblood cellcountunderfluorescenceflowcytometryinpatientswith sepsis.JClinLabAnal.2014;28(2):130–5.

7.BriggsC,LongairI,KumarP,SinghD,MachinSJ.Performance evaluationoftheSysmexhaematologyXNmodularsystem.J ClinPathol.2012;65(11):1024–30.

8.LippiG,PavesiF,BardiM,PipitoneS.Lackofharmonizationof redbloodcelldistributionwidth(RDW).Evaluationoffour hematologicalanalyzers.ClinBiochem.2014;47(12): 1100–3.

9.D’SouzaC,BriggsC,MachinSJ.Platelets:thefew,theyoung, andtheactive.ClinLabMed.2015;35(1):123–31.

10.KaitoK,OtsuboH,UsuiN,YoshidaM,TannoJ,KuriharaE, etal.Plateletsizedeviationwidth,plateletlargecellratio, andmeanplateletvolumehavesufficientsensitivityand specificityinthediagnosisofimmunethrombocytopenia.BrJ Haematol.2005;128(5):698–702.

11.PivaE,BrugnaraC,SpolaoreF,PlebaniM.Clinicalutilityof reticulocyteparameters.ClinLabMed.2015;35(1): 133–63.

12.BrugnaraC,MohandasN.Redcellindicesinclassification andtreatmentofanemias:fromM.M.Wintrobes’soriginal 1934classificationtothethirdmillennium.CurrOpin Hematol.2013;20(3):222–30.

13.ClinicalLaboratoryStandardsInstitute,CLSIdocument H26-P2Validation,verificationandqualityassuranceof automatedhematologyanalyzers;Approvedstandard.2nd ed.Wayne,PA:ClinicalandLaboratoryStandardsInstitute; 2007.

14.GrilloneR,GrimaldiE,ScopacasaF,ConticelliM,DenteB. EvaluationofthereticulocytecountingbytheMindrayBC 6800automatedhematologyanalyzer:comparisonwithABX Pentra120,CoulterLH750,andmicroscopy.IntJLabHematol. 2015;37(1):3–6.

15.FusterÓ,AndinoB,LaizB.Performanceevaluationoflow plateletcountandplateletclumpsdetectiononMindray BC-6800hematologyanalyzer.ClinChemLabMed. 2016;54(2):49–51.

16.ClinicalandLaboratoryStandardsInstitute.Evaluationof precisionofquantitativemeasurementprocedures;Approved guideline.3rded.Wayne,PA:ClinicalandLaboratory StandardsInstitute;2014.CLSIdocumentEP05-A3. 17.PetersenPH,FraserCG,WestgardJO,LarsenML.Analytical

goal-settingformonitoringpatientswhentwoanalytical methodsareused.ClinChem.1992;38(11):

2256–60.

18.FraserCG,FogartyY.Interpretinglaboratoryresults.BMJ. 1989;298(6689):1659–60.

19.RicósC,CavaF,García-LarioJV,HernándezA,IglesiasN, JiménezCV,etal.Thereferencechangevalue:aproposalto interpretlaboratoryreportsinserialtestingbasedon biologicalvariation.ScandJClinLabInvest.2004;64(3): 175–84.

(15)

revbrashematolhemoter.2016;38(3):225–239

239

20.PlebaniM,LippiG.Islaboratorymedicineadyingprofession? Blessedarethosewhohavenotseenandyethavebelieved. ClinBiochem.2010;43(12):939–41.

21.LippiG,SimundicAM.Laboratorynetworkingandsample quality:astillrelevantissueforpatientsafety.ClinChemLab Med.2012;50(10):1703–5.

22.TanakaY,GondoK,MarukiY,KondoT,AsaiS,MatsushitaH, etal.Performanceevaluationofplateletcountingbynovel

fluorescentdyestainingintheXN-seriesautomated hematologyanalyzers.JClinLabAnal.2014;28(5): 341–8.

23.DavesM,ZaglerEM,CeminR,GnechF,JoosA,PlatzgummerS, etal.Samplestabilityforcompletebloodcellcountusingthe SysmexXNhematologicalanalyser.BloodTransfus.

Riferimenti

Documenti correlati

Their two-dimensional approach computes the expansion of AGN-driven shocks in a galaxy disc with an exponential gas profile, the outflow expansion in different directions with

Restricting the sample to the 8 countries for which data at the regional level are available (columns 4-5, Table 2) confirm the mixed findings about the association of

Furthermore, since chromosome organization in the nucleus could affect meiotic segregation, we decided to study X-Y chromosome segregation in river buffalo sperm and developed a

A new phase transition microextraction method was developed for determination of trace amount of arsenic ions in water samples in this work.. The method is based on

L’uso combinato di analizzatori ad accesso random (ARCHITECT Abbott) e a micropiastra (BEPIII Dade-Behring) e di due strumenti dedicati (DELTA Radim per TAS e VIDAS bioMérieux

In the CTS patient groups we performed sensory (median, ulnar, radial) and motor (median, ulnar) nerves conduction studies, and CuSP was recorded from thenar (digit II

Complete blood count and white blood cells differentials were performed on BC 6800 hematological analyzer (BC-6800, Mindray, China) (figure 1).. Microscopic review of May

Interestingly, the levels of soluble TREM2 (the secreted ectodomain of TREM2, sTREM2) were higher in cerebrospinal fluid (CSF) from Alzheimer’s disease (AD) patients than