• Non ci sono risultati.

Search for top-quark partners with charge 5/3 in the same-sign dilepton final state

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for top-quark partners with charge 5/3 in the same-sign dilepton final state"

Copied!
16
0
0

Testo completo

(1)

Search for Top-Quark Partners with Charge 5=3 in the Same-Sign Dilepton Final State

S. Chatrchyan et al.*

(CMS Collaboration)

(Received 9 December 2013; published 30 April 2014)

A search for the production of heavy partners of the top quark with charge5=3 is performed in events with a pair of same-sign leptons. The data sample corresponds to an integrated luminosity of19.5 fb−1and was collected atpffiffiffis¼ 8 TeV by the CMS experiment. No significant excess is observed in the data above the expected background, and the existence of top-quark partners with masses below 800 GeV is excluded at a 95% confidence level, assuming they decay exclusively totW. This is the first limit on these particles from the LHC, and it is significantly more restrictive than previous limits.

DOI:10.1103/PhysRevLett.112.171801 PACS numbers: 14.65.Jk, 12.60.-i, 13.85.Qk

Various extensions of the standard model (SM) address the hierarchy problem, caused by the quadratic divergences in the quantum-loop corrections to the Higgs boson mass, by proposing new heavy particles. Since the largest correction arises from the top-quark loop, a class of these models, based on composite Higgs scenarios [1–4], pre-dicts the existence of heavy partners of the top quark to explain the cancellation of this correction. These “top-quark partners” are expected to have masses close to the electroweak symmetry breaking scale and thus would be accessible at the CERN Large Hadron Collider (LHC), located near Geneva, Switzerland. They may also have exotic charge (5e=3, where −e is the charge of the electron) and in this case would not contribute to the coupling of the Higgs boson to gluons [5]. Searches for such top-quark partners explore parameter space that is not excluded by the recent observation of a Higgs boson with properties consistent with those of the SM Higgs particle [6–14]. Theoretical predictions suggest that searches in the mass region from 500 GeV to 1.5 TeV present the greatest potential for discovery at the LHC[2,15].

This Letter presents a search for exotic top-quark partners using LHC pp collision data collected by the Compact Muon Solenoid (CMS) experiment at a center-of-mass energypffiffiffis¼ 8 TeV. The analysis is based on a data sample corresponding to an integrated luminosity of 19.5 fb−1. We look for theT

5=3, an exotic top-quark partner with charge5e=3. We assume that the T5=3is pair produced via either gluon fusion or quark annihilation and decays via T5=3→ tWþ followed by t → Wþb (charge conjugate modes are implied throughout this Letter). Single T5=3 production is not considered because it is more model dependent and presents a different event topology [2].

We focus on the dilepton final state wherein, for one or both of theT5=3, its twoW bosons both decay into leptons, which will have the same charge. Because of the presence of the two bottom quarks and the possibility of hadronic decays for one of the top-quark partners, this final state also includes significant jet activity. The leptons considered in this analysis are electrons and muons. The presence of leptons with the same electric charge (same-sign leptons) distinguishes this process fromt¯t, making the contribution of the latter comparable to backgrounds with much smaller cross sections: t¯tW, t¯tWW, t¯tZ, WWW, and same-sign WW. Because of its large cross section, t¯t still contributes to the overall background through instrumental effects such as charge misidentification in dilepton decays, as well as throught¯t events where the W boson from one top quark decays leptonically and the second lepton arises from a b-quark decay. Additional processes that contribute to the expected background include QCD multijets,W=Z þ jets, and dibosons (WZ and ZZ). A previous search using a signature of same-sign leptons, multiple jets, and missing transverse energy was performed by the CDF experiment and excludes T5=3 masses below 365 GeV at the 95% confidence level (C.L.)[16]. The CDF Collaboration also set a limit on the production of exotic quarks with charge −4e=3[17].

The central feature of the CMS apparatus is a super-conducting solenoid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the superconducting solenoid volume are a silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintillator hadron calorimeter. Muons are measured in gas-ionization detectors embedded in the steel flux return yoke outside the solenoid. In addition, the CMS detector has extensive forward calorimetry. A more detailed description of the CMS detector can be found else-where[18].

Simulation of the pair production of top-quark partners was performed with the MADGRAPH 5.1.1 [19] event generator, and 12 samples corresponding to values of the * Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published articles title, journal citation, and DOI.

(2)

T5=3 mass from 350 GeV to 1 TeV were produced. The PYTHIA6.426 [20]generator was used for parton shower-ing, hadronization, and simulation of the underlying event. The CTEQ6L[21]parton distribution functions were used, and the PYTHIAparameters for the underlying event were set to theZ2[22]tune. The detector response was modeled usingGEANT4[23]. The next-to-next-to-leading-order cross section for T5=3 pair production was found using TOP++

[24]to vary from 5.3 pb at the mass of 350 GeV to 3.4 fb at the mass of 1 TeV. The uncertainty on the cross section in the mass range used for the analysis is about 5%.

The background processes include t¯t, Wð→ lνÞ þ jets, Z=γð→ llÞ þ jets, and dibosons (WZ and ZZ). Additional low-rate SM processes were also considered: WW, WWW, t¯tW, t¯tWW, and t¯tZ. These were all simulated by means of MADGRAPH withPYTHIA used for hadronization. Next-to-leading-order or, where available, next-to-next-to-leading-order cross sections were employed[25,26].

For all the simulated samples, the additional proton-proton interactions in each beam crossing (pileup) were modeled by superimposing minimum bias interactions (obtained using PYTHIAwith the Z2 tune) onto simulated events, with the multiplicity distribution matching the one observed in data. This analysis relies on the reconstruction of three physical objects: electrons, muons, and jets. The events are recon-structed using the CMS “particle-flow” event description algorithm[27,28]. Candidate events are required to have at least two leptons with the same charge that are within the detector acceptance (jηj < 2.4) and to have passed trig-gers based on dielectrons, dimuons, or electron-muon combinations. Here, η is the pseudorapidity defined as η ≡ − ln½tanðθ=2Þ, where θ is the polar angle with respect to the counterclockwise beam direction. Candidate events must also have at least one good reconstructed primary vertex matched to the track origins of the two selected leptons. Candidate electrons are reconstructed using energy deposits in the ECAL and a track from the silicon detectors. The shape of the shower in the ECAL must be consistent with that of an electron, and the shower must be well matched to the extrapolated track. Additional requirements are imposed to reject electrons produced by photon conversions. The charge of each electron candidate is measured using three different methods. Two of the measurements are based on two different tracking algorithms: the standard CMS track reconstruction algorithm [29] and the Gaussian sum filter algorithm[30], optimized to take into account the possible emission of bremsstrahlung photons in the silicon tracker. The third measurement is based on the relative position of the calorimeter cluster and the projected track from the pixel detector. All three measurements are required to be consistent with the electron hypothesis. Muon candidates are required to be reconstructed by both the silicon tracker and the muon system, and the combined fit of the track must be of good quality (χ2 per degree of freedom less than 10).

All selected leptons are required to be isolated. The isolation for each lepton is estimated by first computing the scalar sum of the transverse momenta of all neutral and charged reconstructed particle candidates, except the lepton itself, within a cone of sizeΔR ≡pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðΔϕÞ2þ ðΔηÞ2around the lepton, whereϕ is the azimuthal angle. This sum is then divided by the transverse momentum (pT) of the lepton to calculate the relative isolation (IR). The values for the cone size and the maximum allowedIR areΔR ¼ 0.3ð0.4Þ and IR¼ 0.15ð0.20Þ, respectively, for electrons (muons), as determined by optimization studies for CMS top-quark related analyses. An event-by-event correction is applied to the computation of the lepton isolation in order to account for the effect of pileup. Scale factors to correct for imperfect detector simulation are obtained using the tag-and-probe method [31] for lepton identification and isolation as a function of lepton pT and η. In addition, we define a category of“loose” leptons with some of the isolation and identification requirements relaxed. The IR threshold for these leptons is increased from 0.15 to 0.60 for electrons and from 0.20 to 0.40 for muons.

For the range ofT5=3masses accessible atpffiffiffis¼ 8 TeV, the analysis exploits advanced techniques in jet reconstruction for identifying highly boosted top quarks andW bosons that decay hadronically. In particular, if the top quarks are highly boosted (pT > 400 GeV), their decay products are collimated and merged into one jet. We use a “top-quark tagging” algorithm based on identifying jet substructure[32]to reconstruct such merged top-quark jets. Jets are clustered using the Cambridge-Aachen algorithm

[33,34], as implemented in FASTJETversion 3[35], with a distance parameter ofR ¼ 0.8 in η-ϕ space (CA8 jets). The CA8 top-quark jets are required to have pT > 400 GeV and more than two subjets found by the top-quark tagging algorithm. The jet mass must be consistent with the mass of the top quark, and the minimum pairwise mass of the three highestpT subjets is required to be greater than 50 GeV. The decay products ofW bosons from the T5=3decay or from a highly boosted top quark, for which theb quark is reconstructed independently, may also merge into a single jet. We use a “jet pruning” algorithm[36]to identify the hadronic decay of suchW bosons. This algorithm also uses CA8 jets as inputs with the pruning parameters taken from the original theoretical papers[37,38]. CA8 W-boson jets are required to havepT > 200 GeV, exactly two subjets, and their mass must be consistent with that of the W boson[39].

To account for W bosons and top quarks that are not highly boosted, jets are also reconstructed using the anti-kT algorithm [40] with a distance parameter of 0.5 (AK5). These jets are required to havepT > 30 GeV. If an AK5 jet overlaps with a top-quark jet or a W-boson jet (ΔR < 0.8), the AK5 jet is discarded.

All of the above categories of jets are required to have jηj < 2.4 and particle-flow jet identification[41]. Jet energy

(3)

corrections are applied to account for residual nonuniform-ity and nonlinearnonuniform-ity of the detector response. Jet energies are also corrected by subtracting the average contribution of particles from pileup [42,43]. For the simulated samples, additional smearing is applied to the jet pT (∼7%–19% depending on η) in order to reproduce the jet energy resolution observed in data. All jets must be ΔR ≥ 0.3 away from the selected leptons and, as mentioned above, ΔR ≥ 0.8 away from any other jet. A correction to account for differences in the identification efficiency of W-boson and top-quark jets between data and simulation is applied[44].

The signal selection, optimized to yield the best signal sensitivity, requires the following. (i) At least two isolated same-sign leptons as defined above with pT > 30 GeV. Between each lepton and every top-quark jet, we require ΔR > 0.8. (ii) Dilepton Z-boson veto: MðeeÞ < 76 GeV or MðeeÞ > 106 GeV. This selection applies only to the dielectron channel. If the muon charge is mismeasured, its momentum will also be mismeasured, so a selected muon pair from aZ boson will not fall within this invariant mass range. (iii) TrileptonZ-boson veto: MðllÞ < 76 GeV orMðllÞ > 106 GeV, where MðllÞ is the invariant mass of either one of the selected leptons and any other same-flavor opposite-sign lepton in the event withpT > 15 GeV that satisfies the loose lepton criteria. (iv)Nc≥ 7, where Nc is the number of constituents identified in the event. For the purpose of this selection, each AK5 jet and each lepton count as one constituent. Since aW-boson jet is assumed to correspond to a W boson, each such jet counts as two constituents, corresponding to the W-boson decay prod-ucts. Likewise, each top-quark jet represents a top quark and counts as three constituents. (v)HT > 900 GeV, where HT is the scalar sum of the pT of all selected jets and leptons in the event. With these criteria, the signal effi-ciency is 10%–13% for T5=3 masses between 750 and 1000 GeV.

The backgrounds associated with this analysis fall into three main categories. First, they may originate from SM processes leading to prompt, same-sign dilepton signatures, including diboson production (WZ and ZZ), t¯tW, t¯tWW, t¯tZ, WW, andWWW. The contribution of these backgrounds is obtained from simulation.

The second category consists of events from processes with prompt, opposite-sign leptons, such as t¯t and Drell-Yan production, in which one of the leptons is misrecon-structed with the wrong charge, leading to a same-sign dilepton final state. For muons in thepTrange typical of the dominant backgrounds, the charge misidentification rate is extremely small (of order10−4) and its contribution to the background is negligible [45]. For electrons, the charge misidentification probability (∼10−3) is derived from a data sample dominated by Drell-Yan events obtained by select-ing dileptons with an invariant mass consistent with originating from theZ boson, using the ratio of same-sign

Z-boson candidates to the total number of candidates. The number of expected same-sign events due to charge misidentification is then estimated by considering the total number of events passing the full selection but having oppositely charged leptons. These events are weighted by the charge misidentification probability parametrized as a function of the electronpT andη to obtain the contribution of this background type.

The third category consists of events with one or more “nonprompt leptons.” This is the primary instrumental background arising from jets being misidentified as leptons and nonprompt leptons passing tight isolation selection criteria. This contribution is estimated using the “tight-loose” method described in Ref.[46].“Tight” leptons have the same definition as those used in the analysis, whereas “loose” leptons are defined earlier. The background is estimated by using events with one or more loose leptons weighted by the ratios of the numbers of tight leptons to the numbers of loose leptons expected for prompt and non-prompt leptons. The ratio for non-prompt leptons is determined from Drell-Yan events where the invariant mass of the leptons is within 10 GeV of the Z-boson mass. The nonprompt ratio is determined from a sample enriched in background by requiring exactly one lepton, low missing transverse energy (Emiss

T < 25 GeV), low transverse mass (MT < 25 GeV), and at least one jet (the “away jet”) with pT > 40 GeV and ΔR > 1.0 with respect to the lepton. The transverse mass is defined as MT≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2pl

TEmissT ð1 − cos ΔϕÞ p

, where Δϕ is the angle between the lepton transverse momentum (plT) and the direction associated withEmiss

T .

The systematic uncertainties that affect the signal and background acceptance include uncertainties in the effi-ciency of the trigger (1%), lepton reconstruction and identification efficiency (1% per lepton), pileup, and the jet energy scale (JES). The uncertainties due to the JES and pileup are obtained by varying the respective quantities in simulation. For the signal, the JES and pileup uncertainties in the acceptance correspond to 2% and 3%, respectively. For the simulated backgrounds, they range from 3% to 6%, depending on the sample. In addition, we assign a constant 3% uncertainty due to the JES of CA8 jets for all simulated samples [44]. The dominant uncertainty in the expected event yields due to backgrounds derived from simulation is the overall normalization uncertainty. TheZZ (5.1%), WZ (17%), and t¯tW (32%) normalization uncertainties are taken from Refs. [26,47,48], respectively. For the other rare backgrounds, we assume a conservative normalization uncertainty of 50%[49]. An uncertainty of 20% is assigned to the background contribution from charge misidentifica-tion, based on the difference in the charge misidentification rate between Drell-Yan data andt¯t simulation. Following Ref. [45], we also assign a conservative additional sys-tematic uncertainty of 50% in the estimation of back-grounds due to nonprompt leptons. This uncertainty is

(4)

based on closure tests using t¯t and W þ jets simulated samples and takes into account variations due to the away jetpT and the flavor composition of the background, thus also accounting for any potential dependence on kinematic parameters that alter the background composition (such as HT). We also include a 2.6% uncertainty due to the luminosity [50]for all event yields that are derived from simulation.

The final numbers of observed and expected events are reported in Table I for each of the three lepton channels (ee, eμ, and μμ) and their combination. Figure1shows the HT distribution for all channels combined.

No significant excess is observed. Exclusion limits are computed at 95% C.L. by using the ROOSTATS implementation [51] of the Bayesian approach. We use

a cut-and-count method and compare the numbers of observed events with the numbers of expected signal and background events. A flat prior is used for the signal production cross section. The event yields from all lepton channels are combined when setting the limits. Upper bounds are set on the production cross section of heavy top-quark partners, assuming a 100% branching fraction (BF) for the decay T5=3→ tW. The resulting expected and observed limits are shown in Fig.2. The expected lower limit on the mass of theT5=3 is 830 GeV, and the observed limit is 800 GeV.

The use of recently developed jet substructure techniques in this analysis for identifying boosted top quarks and W bosons enables us to probe cross sections of T5=3 pair production that are between 10%–20% lower than would otherwise be possible forT5=3 masses in the range 800– 1000 GeV. The reconstruction of theT5=3mass benefits as well, and this can, in the event of a discovery in the future, TABLE I. Summary table of expected and observed numbers of events for all channels. The background is composed of the same-sign component, the contribution due to charge misidentification, and that due to misreconstructed leptons. All systematic uncertainties are included. Also shown is the expected contribution from a T5=3with mass of 800 GeV.

Channel ee eμ μμ All

Same sign 0.8  0.2 1.9  0.4 1.3  0.3 4.0  0.8 Charge misidentification 0.06  0.02 0.04  0.01    0.11  0.02 Nonprompt 1.9  1.2 0.6  0.9 0.3  0.6 2.8  1.9 Total background 2.7  1.3 2.5  1.0 1.6  0.7 6.8  2.1 Observed events 0 6 3 9 T5=3 2.1  0.1 4.7  0.3 2.8  0.2 9.7  0.5 0 200 400 600 80010001200140016001800 Events / 200 GeV -1 10 1 10 2 10 Data ZZ ± W ± W WWW W t t WW t t Z t t WZ Charge misid. Non-prompt (0.8 TeV) 5/3 T = 8 TeV s -1 CMS L = 19.5 fb 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Pull -2-1 01 2 (GeV) T H

FIG. 1 (color online). The distribution ofHT for all channels combined after the full selection except for theHTrequirement itself. The shaded band represents the total uncertainty in the predicted backgrounds. The final bin includes all overflow events. The pull is defined as the difference between the observed and expected values divided by the total uncertainty.

mass (GeV) 5/3 T 400 500 600 700 800 900 1000 + X) (pb) ±l ± l → -W + Wt t → 5/3 T 5/3 BF(T× σ 10-3 -2 10 -1 10 1 Observed Limit Expected Limit σ 1 ± Expected Limit σ 2 ± Expected Limit Signal Cross Section

= 8 TeV s -1 CMS L = 19.5 fb ) = 100% + tW → 5/3 BF(T

FIG. 2 (color online). Expected and observed 95% C.L. limits on theT5=3production cross section times the branching fraction for decay to same-sign dileptons. The 1σ and 2σ combined statistical and systematic expected variations are shown as yellow (light) and green (dark) bands, respectively.

(5)

be used to distinguish a T5=3 from other exotic particles which decay in a similar manner[52].

In summary, a search for an exotic top partner with charge 5=3 in same-sign dileptonic events has been performed using 19.5 fb−1 of data collected by the CMS experiment at pffiffiffis¼ 8 TeV. No significant excess is observed in the data above the expected standard model background. An upper bound at the 95% confidence level is set on the production cross section of heavy top-quark partners, assuming a 100% branching fraction for the decay T5=3→ tW, and masses below 800 GeV are excluded. This is the first limit onT5=3production from the LHC, and it is significantly more restrictive than the 365 GeV limit set by previous searches.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/ IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, and RFBR (Russia); MESTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); and DOE and NSF (U.S.A.).

[1] A. De Simone, O. Matsedonskyi, R. Rattazzi, and A. Wulzer,J. High Energy Phys. 04 (2013) 004.

[2] J. Mrazek and A. Wulzer,Phys. Rev. D 81, 075006 (2010). [3] G. Dissertori, E. Furlan, F. Moortgat, and P. Nef, J. High

Energy Phys. 09 (2010) 019.

[4] R. Contino and G. Servant,J. High Energy Phys. 06 (2008) 026.

[5] A. Azatov and J. Galloway, Phys. Rev. D 85, 055013 (2012).

[6] ATLAS Collaboration,Phys. Lett. B 716, 1 (2012). [7] CMS Collaboration,Phys. Lett. B 716, 30 (2012). [8] CMS Collaboration,J. High Energy Phys. 06 (2013) 081.

[9] ATLAS Collaboration,Phys. Lett. B 726, 88 (2013). [10] ATLAS Collaboration,Phys. Lett. B 726, 120 (2013). [11] CMS Collaboration,Phys. Rev. Lett. 110, 081803 (2013). [12] CMS Collaboration,J. High Energy Phys. 01 (2014) 096.

[13] CMS Collaboration,arXiv:1312.5353.

[14] CMS Collaboration,arXiv:1401.6527.

[15] R. Contino, L. Da Rold, and A. Pomarol,Phys. Rev. D 75, 055014 (2007).

[16] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 104, 091801 (2010).

[17] T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett. 105, 101801 (2010).

[18] CMS Collaboration,JINST 3, S08004 (2008).

[19] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[20] T. Sjöstrand, S. Mrenna, and P. Z. Skands,J. High Energy Phys. 05 (2006) 026.

[21] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung,J. High Energy Phys. 07 (2002) 012.

[22] CMS Collaboration,J. High Energy Phys. 09 (2011) 109.

[23] S. Agostinelli et al. (GEANT4 Collaboration),Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[24] M. Czakon, P. Fiedler, and A. Mitov,Phys. Rev. Lett. 110, 252004 (2013).

[25] M. V. Garzelli, A. Kardos, C. G. Papadopoulos, and Z. Trocsanyi,J. High Energy Phys. 11 (2012) 056.

[26] J. M. Campbell, R. K. Ellis, and C. Williams,J. High Energy Phys. 07 (2011) 018.

[27] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-10-003, 2010.

[28] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-09-001, 2009.

[29] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-TRK-10-001, 2010.

[30] W. Adam, R. Frühwirth, A. Strandlie, and T. Todorov,J. Phys. G 31, N9 (2005).

[31] CMS Collaboration,J. High Energy Phys. 10 (2011) 132.

[32] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-09-001, 2009.

[33] M. Wobisch and T. Wengler,arXiv:hep-ph/9907280.

[34] Y. L. Dokshitzer, G. D. Leder, S. Moretti, and B. R. Webber,

J. High Energy Phys. 08 (1997) 001.

[35] M. Cacciari, G. P. Salam, and G. Soyez,Eur. Phys. J. C 72, 1896 (2012).

[36] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-013, 2010.

[37] S. D. Ellis, C. K. Vermilion, and J. R. Walsh,Phys. Rev. D 80, 051501 (2009).

[38] S. D. Ellis, C. K. Vermilion, and J. R. Walsh,Phys. Rev. D 81, 094023 (2010).

[39] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-13-006, 2013.

[40] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 063.

[41] CMS Collaboration,J. Instrum. 6, P11002 (2011). [42] M. Cacciari and G. P. Salam, Phys. Lett. B 659, 119

(6)

[43] M. Cacciari, G. P. Salam, and G. Soyez, J. High Energy Phys. 04 (2008) 005.

[44] CMS Collaboration,Phys. Rev. Lett. 111, 211804 (2013). [45] CMS Collaboration,J. High Energy Phys. 08 (2012) 110.

[46] CMS Collaboration,J. High Energy Phys. 06 (2011) 077.

[47] ATLAS Collaboration,Phys. Lett. B 709, 341 (2012). [48] J. M. Campbell and R. K. Ellis, J. High Energy Phys. 07

(2012) 052.

[49] CMS Collaboration,J. High Energy Phys. 03 (2013) 037;

CMS Collaboration,J. High Energy Phys. 07 (2013) 041.

[50] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-LUM-13-001, 2013.

[51] L. Moneta, K. Belasco, K. S. Cranmer, A. Lazzaro, D. Piparo, G. Schott, W. Verkerke, and M. Wolf, Proc. Sci., ACAT2010 (2010) 057 [arXiv:1009.1003].

[52] See Supplemental Material at http://link.aps.org/ supplemental/10.1103/PhysRevLett.112.171801for figures illustrating the agreement of data with background predic-tions and showing the reconstructed top partner mass.

S. Chatrchyan,1 V. Khachatryan,1 A. M. Sirunyan,1 A. Tumasyan,1 W. Adam,2 T. Bergauer,2 M. Dragicevic,2 J. Erö,2 C. Fabjan,2,bM. Friedl,2R. Frühwirth,2,bV. M. Ghete,2C. Hartl,2N. Hörmann,2J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2

V. Knünz,2 M. Krammer,2,bI. Krätschmer,2 D. Liko,2 I. Mikulec,2D. Rabady,2,c B. Rahbaran,2H. Rohringer,2 R. Schöfbeck,2 J. Strauss,2 A. Taurok,2 W. Treberer-Treberspurg,2 W. Waltenberger,2 C.-E. Wulz,2,b V. Mossolov,3 N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4 A. Knutsson,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4H. Van Haevermaet,4P. Van Mechelen,4 N. Van Remortel,4 A. Van Spilbeeck,4 F. Blekman,5 S. Blyweert,5 J. D’Hondt,5 N. Heracleous,5 A. Kalogeropoulos,5

J. Keaveney,5 T. J. Kim,5S. Lowette,5 M. Maes,5 A. Olbrechts,5 D. Strom,5 S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5C. Caillol,6B. Clerbaux,6G. De Lentdecker,6L. Favart,6A. P. R. Gay,6 T. Hreus,6 A. Léonard,6 P. E. Marage,6 A. Mohammadi,6 L. Perniè,6 T. Reis,6 T. Seva,6 L. Thomas,6 C. Vander Velde,6 P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7L. Benucci,7A. Cimmino,7S. Costantini,7S. Dildick,7G. Garcia,7B. Klein,7 J. Lellouch,7 J. Mccartin,7A. A. Ocampo Rios,7 D. Ryckbosch,7 M. Sigamani,7 N. Strobbe,7 F. Thyssen,7M. Tytgat,7

S. Walsh,7 E. Yazgan,7N. Zaganidis,7 S. Basegmez,8 C. Beluffi,8,dG. Bruno,8 R. Castello,8 A. Caudron,8 L. Ceard,8 G. G. Da Silveira,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,eJ. Hollar,8P. Jez,8M. Komm,8 V. Lemaitre,8 J. Liao,8 O. Militaru,8 C. Nuttens,8 D. Pagano,8 A. Pin,8 K. Piotrzkowski,8A. Popov,8,f L. Quertenmont,8 M. Selvaggi,8M. Vidal Marono,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10

M. Correa Martins Junior,10T. Martins,10 M. E. Pol,10M. H. G. Souza,10W. L. Aldá Júnior,11W. Carvalho,11 J. Chinellato,11,gA. Custódio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11 H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11J. Santaolalla,11

A. Santoro,11 A. Sznajder,11E. J. Tonelli Manganote,11,gA. Vilela Pereira,11C. A. Bernardes,12bF. A. Dias,12a,h T. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12aP. G. Mercadante,12bS. F. Novaes,12aSandra S. Padula,12a

V. Genchev,13,cP. Iaydjiev,13,c A. Marinov,13S. Piperov,13M. Rodozov,13G. Sultanov,13M. Vutova,13A. Dimitrov,14 I. Glushkov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15 H. S. Chen,15M. Chen,15R. Du,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15R. Plestina,15,iJ. Tao,15X. Wang,15 Z. Wang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16Q. Li,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16D. Wang,16

L. Zhang,16 W. Zou,16C. Avila,17C. A. Carrillo Montoya,17L. F. Chaparro Sierra,17C. Florez,17J. P. Gomez,17 B. Gomez Moreno,17J. C. Sanabria,17 N. Godinovic,18D. Lelas,18 D. Polic,18I. Puljak,18Z. Antunovic,19 M. Kovac,19 V. Brigljevic,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20L. Tikvica,20A. Attikis,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21 M. Finger,22M. Finger Jr.,22A. A. Abdelalim,23,jY. Assran,23,k S. Elgammal,23,jA. Ellithi Kamel,23,lM. A. Mahmoud,23,m A. Radi,23,n,o M. Kadastik,24M. Müntel,24M. Murumaa,24 M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Härkönen,26V. Karimäki,26R. Kinnunen,26

M. J. Kortelainen,26T. Lampén,26K. Lassila-Perini,26S. Lehti,26T. Lindén,26P. Luukka,26T. Mäenpää,26T. Peltola,26 E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26L. Wendland,26T. Tuuva,27M. Besancon,28F. Couderc,28M. Dejardin,28 D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28 P. Jarry,28E. Locci,28 J. Malcles,28A. Nayak,28J. Rander,28A. Rosowsky,28 M. Titov,28S. Baffioni,29 F. Beaudette,29

P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29

R. Granier de Cassagnac,29M. Haguenauer,29P. Miné,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29 P. Paganini,29D. Sabes,29 R. Salerno,29Y. Sirois,29C. Veelken,29Y. Yilmaz,29A. Zabi,29J.-L. Agram,30,p J. Andrea,30

(7)

D. Bloch,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,pF. Drouhin,30,pJ.-C. Fontaine,30,p D. Gelé,30 U. Goerlach,30C. Goetzmann,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30S. Gadrat,31S. Beauceron,32N. Beaupere,32 G. Boudoul,32S. Brochet,32J. Chasserat,32R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32J. Fan,32J. Fay,32 S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32S. Perries,32J. D. Ruiz Alvarez,32 L. Sgandurra,32V. Sordini,32M. Vander Donckt,32P. Verdier,32S. Viret,32H. Xiao,32Z. Tsamalaidze,33,qC. Autermann,34

S. Beranek,34M. Bontenackels,34B. Calpas,34M. Edelhoff,34 L. Feld,34O. Hindrichs,34K. Klein,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,fM. Ata,35 J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Güth,35T. Hebbeker,35C. Heidemann,35 K. Hoepfner,35D. Klingebiel,35S. Knutzen,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35K. Padeken,35 P. Papacz,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35D. Teyssier,35S. Thüer,35 M. Weber,35 V. Cherepanov,36 Y. Erdogan,36G. Flügge,36H. Geenen,36M. Geisler,36W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36 J. Lingemann,36,c A. Nowack,36I. M. Nugent,36L. Perchalla,36O. Pooth,36A. Stahl,36I. Asin,37N. Bartosik,37J. Behr,37 W. Behrenhoff,37U. Behrens,37 A. J. Bell,37M. Bergholz,37,rA. Bethani,37 K. Borras,37A. Burgmeier,37 A. Cakir,37 L. Calligaris,37A. Campbell,37S. Choudhury,37F. Costanza,37C. Diez Pardos,37S. Dooling,37T. Dorland,37G. Eckerlin,37 D. Eckstein,37T. Eichhorn,37G. Flucke,37A. Geiser,37A. Grebenyuk,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37 M. Hempel,37D. Horton,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37M. Krämer,37D. Krücker,37W. Lange,37 J. Leonard,37K. Lipka,37W. Lohmann,37,r B. Lutz,37R. Mankel,37I. Marfin,37I.-A. Melzer-Pellmann,37A. B. Meyer,37 J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37F. Nowak,37H. Perrey,37A. Petrukhin,37D. Pitzl,37 R. Placakyte,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37 M. Ö. Sahin,37J. Salfeld-Nebgen,37 R. Schmidt,37,rT. Schoerner-Sadenius,37M. Schröder,37M. Stein,37A. D. R. Vargas Trevino,37R. Walsh,37C. Wissing,37 M. Aldaya Martin,38V. Blobel,38H. Enderle,38J. Erfle,38E. Garutti,38M. Görner,38M. Gosselink,38J. Haller,38K. Heine,38 R. S. Höing,38H. Kirschenmann,38R. Klanner,38R. Kogler,38J. Lange,38I. Marchesini,38J. Ott,38T. Peiffer,38N. Pietsch,38 D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Seidel,38J. Sibille,38,sV. Sola,38 H. Stadie,38G. Steinbrück,38D. Troendle,38E. Usai,38L. Vanelderen,38C. Barth,39C. Baus,39 J. Berger,39C. Böser,39

E. Butz,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39 M. Feindt,39M. Guthoff,39,cF. Hartmann,39,c T. Hauth,39,c H. Held,39K. H. Hoffmann,39U. Husemann,39 I. Katkov,39,fA. Kornmayer,39,c E. Kuznetsova,39 P. Lobelle Pardo,39 D. Martschei,39M. U. Mozer,39Th. Müller,39M. Niegel,39A. Nürnberg,39O. Oberst,39 G. Quast,39

K. Rabbertz,39 F. Ratnikov,39S. Röcker,39 F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39 R. Wolf,39M. Zeise,39G. Anagnostou,40G. Daskalakis,40T. Geralis,40 S. Kesisoglou,40A. Kyriakis,40D. Loukas,40A. Markou,40C. Markou,40E. Ntomari,40I. Topsis-giotis,40L. Gouskos,41 A. Panagiotou,41N. Saoulidou,41E. Stiliaris,41X. Aslanoglou,42I. Evangelou,42G. Flouris,42C. Foudas,42P. Kokkas,42

N. Manthos,42I. Papadopoulos,42E. Paradas,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,tF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,uA. J. Zsigmond,43N. Beni,44S. Czellar,44 J. Molnar,44J. Palinkas,44 Z. Szillasi,44

J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. K. Swain,46,v S. B. Beri,47V. Bhatnagar,47N. Dhingra,47 R. Gupta,47M. Kaur,47M. Z. Mehta,47M. Mittal,47N. Nishu,47A. Sharma,47J. B. Singh,47Ashok Kumar,48Arun Kumar,48 S. Ahuja,48A. Bhardwaj,48B. C. Choudhary,48 A. Kumar,48S. Malhotra,48M. Naimuddin,48K. Ranjan,48P. Saxena,48 V. Sharma,48R. K. Shivpuri,48S. Banerjee,49 S. Bhattacharya,49K. Chatterjee,49S. Dutta,49B. Gomber,49 Sa. Jain,49 Sh. Jain,49R. Khurana,49A. Modak,49S. Mukherjee,49D. Roy,49S. Sarkar,49M. Sharan,49A. P. Singh,49A. Abdulsalam,50 D. Dutta,50S. Kailas,50V. Kumar,50A. K. Mohanty,50,cL. M. Pant,50P. Shukla,50A. Topkar,50T. Aziz,51R. M. Chatterjee,51

S. Ganguly,51 S. Ghosh,51M. Guchait,51,w A. Gurtu,51,x G. Kole,51 S. Kumar,51M. Maity,51,y G. Majumder,51 K. Mazumdar,51G. B. Mohanty,51B. Parida,51K. Sudhakar,51N. Wickramage,51,zS. Banerjee,52S. Dugad,52H. Arfaei,53

H. Bakhshiansohi,53H. Behnamian,53 S. M. Etesami,53,aaA. Fahim,53,bb A. Jafari,53M. Khakzad,53

M. Mohammadi Najafabadi,53M. Naseri,53S. Paktinat Mehdiabadi,53B. Safarzadeh,53,ccM. Zeinali,53M. Grunewald,54 M. Abbrescia,55a,55bL. Barbone,55a,55bC. Calabria,55a,55bS. S. Chhibra,55a,55bA. Colaleo,55a D. Creanza,55a,55c N. De Filippis,55a,55c M. De Palma,55a,55b L. Fiore,55a G. Iaselli,55a,55c G. Maggi,55a,55cM. Maggi,55a B. Marangelli,55a,55b

S. My,55a,55c S. Nuzzo,55a,55bN. Pacifico,55a A. Pompili,55a,55b G. Pugliese,55a,55c R. Radogna,55a,55b G. Selvaggi,55a,55b L. Silvestris,55a G. Singh,55a,55b R. Venditti,55a,55bP. Verwilligen,55a G. Zito,55a G. Abbiendi,56a A. C. Benvenuti,56a

D. Bonacorsi,56a,56bS. Braibant-Giacomelli,56a,56bL. Brigliadori,56a,56b R. Campanini,56a,56bP. Capiluppi,56a,56b A. Castro,56a,56bF. R. Cavallo,56aG. Codispoti,56a,56bM. Cuffiani,56a,56bG. M. Dallavalle,56aF. Fabbri,56aA. Fanfani,56a,56b

(8)

D. Fasanella,56a,56bP. Giacomelli,56aC. Grandi,56aL. Guiducci,56a,56bS. Marcellini,56aG. Masetti,56aM. Meneghelli,56a,56b A. Montanari,56aF. L. Navarria,56a,56bF. Odorici,56aA. Perrotta,56aF. Primavera,56a,56bA. M. Rossi,56a,56bT. Rovelli,56a,56b G. P. Siroli,56a,56bN. Tosi,56a,56b R. Travaglini,56a,56bS. Albergo,57a,57bG. Cappello,57a M. Chiorboli,57a,57b S. Costa,57a,57b

F. Giordano,57a,c R. Potenza,57a,57bA. Tricomi,57a,57b C. Tuve,57a,57bG. Barbagli,58a V. Ciulli,58a,58b C. Civinini,58a R. D’Alessandro,58a,58bE. Focardi,58a,58b E. Gallo,58a S. Gonzi,58a,58bV. Gori,58a,58bP. Lenzi,58a,58bM. Meschini,58a S. Paoletti,58aG. Sguazzoni,58aA. Tropiano,58a,58bL. Benussi,59S. Bianco,59F. Fabbri,59D. Piccolo,59P. Fabbricatore,60a

R. Ferretti,60a,60bF. Ferro,60aM. Lo Vetere,60a,60b R. Musenich,60a E. Robutti,60a S. Tosi,60a,60bA. Benaglia,61a M. E. Dinardo,61a,61b S. Fiorendi,61a,61b,c S. Gennai,61a A. Ghezzi,61a,61bP. Govoni,61a,61b M. T. Lucchini,61a,61b,c S. Malvezzi,61aR. A. Manzoni,61a,61b,c A. Martelli,61a,61b,cD. Menasce,61a L. Moroni,61aM. Paganoni,61a,61bD. Pedrini,61a

S. Ragazzi,61a,61bN. Redaelli,61aT. Tabarelli de Fatis,61a,61bS. Buontempo,62a N. Cavallo,62a,62c F. Fabozzi,62a,62c A. O. M. Iorio,62a,62bL. Lista,62aS. Meola,62a,62d,cM. Merola,62aP. Paolucci,62a,cP. Azzi,63aN. Bacchetta,63aD. Bisello,63a,63b

A. Branca,63a,63bR. Carlin,63a,63b P. Checchia,63a T. Dorigo,63aU. Dosselli,63a M. Galanti,63a,63b,c F. Gasparini,63a,63b U. Gasparini,63a,63b P. Giubilato,63a,63bA. Gozzelino,63a K. Kanishchev,63a,63c S. Lacaprara,63a I. Lazzizzera,63a,63c

M. Margoni,63a,63b A. T. Meneguzzo,63a,63bM. Nespolo,63aM. Passaseo,63a J. Pazzini,63a,63bM. Pegoraro,63a N. Pozzobon,63a,63bP. Ronchese,63a,63bF. Simonetto,63a,63bE. Torassa,63aM. Tosi,63a,63bP. Zotto,63a,63bA. Zucchetta,63a,63b

G. Zumerle,63a,63b M. Gabusi,64a,64bS. P. Ratti,64a,64bC. Riccardi,64a,64bP. Vitulo,64a,64bM. Biasini,65a,65b G. M. Bilei,65a L. Fanò,65a,65b P. Lariccia,65a,65bG. Mantovani,65a,65bM. Menichelli,65a A. Nappi,65a,65b,a F. Romeo,65a,65b A. Saha,65a A. Santocchia,65a,65b A. Spiezia,65a,65bK. Androsov,66a,dd P. Azzurri,66a G. Bagliesi,66a J. Bernardini,66aT. Boccali,66a

G. Broccolo,66a,66c R. Castaldi,66a M. A. Ciocci,66a,ddR. Dell’Orso,66a F. Fiori,66a,66c L. Foà,66a,66c A. Giassi,66a M. T. Grippo,66a,dd A. Kraan,66a F. Ligabue,66a,66c T. Lomtadze,66aL. Martini,66a,66bA. Messineo,66a,66bC. S. Moon,66a,ee

F. Palla,66a A. Rizzi,66a,66bA. Savoy-Navarro,66a,ff A. T. Serban,66a P. Spagnolo,66a P. Squillacioti,66a,dd R. Tenchini,66a G. Tonelli,66a,66bA. Venturi,66a P. G. Verdini,66a C. Vernieri,66a,66c L. Barone,67a,67bF. Cavallari,67a D. Del Re,67a,67b

M. Diemoz,67a M. Grassi,67a,67bC. Jorda,67a E. Longo,67a,67b F. Margaroli,67a,67bP. Meridiani,67aF. Micheli,67a,67b S. Nourbakhsh,67a,67bG. Organtini,67a,67bR. Paramatti,67aS. Rahatlou,67a,67bC. Rovelli,67a L. Soffi,67a,67bP. Traczyk,67a,67b N. Amapane,68a,68b R. Arcidiacono,68a,68c S. Argiro,68a,68bM. Arneodo,68a,68c R. Bellan,68a,68bC. Biino,68a N. Cartiglia,68a

S. Casasso,68a,68bM. Costa,68a,68bA. Degano,68a,68b N. Demaria,68a C. Mariotti,68a S. Maselli,68a E. Migliore,68a,68b V. Monaco,68a,68bM. Musich,68aM. M. Obertino,68a,68cG. Ortona,68a,68bL. Pacher,68a,68bN. Pastrone,68aM. Pelliccioni,68a,c

A. Potenza,68a,68bA. Romero,68a,68b M. Ruspa,68a,68c R. Sacchi,68a,68bA. Solano,68a,68bA. Staiano,68a U. Tamponi,68a S. Belforte,69a V. Candelise,69a,69bM. Casarsa,69a F. Cossutti,69a,c G. Della Ricca,69a,69bB. Gobbo,69a C. La Licata,69a,69b M. Marone,69a,69bD. Montanino,69a,69bA. Penzo,69aA. Schizzi,69a,69bT. Umer,69a,69bA. Zanetti,69aS. Chang,70T. Y. Kim,70 S. K. Nam,70D. H. Kim,71G. N. Kim,71J. E. Kim,71D. J. Kong,71S. Lee,71Y. D. Oh,71H. Park,71D. C. Son,71J. Y. Kim,72 Zero J. Kim,72S. Song,72S. Choi,73D. Gyun,73B. Hong,73M. Jo,73H. Kim,73Y. Kim,73K. S. Lee,73S. K. Park,73Y. Roh,73 M. Choi,74J. H. Kim,74C. Park,74I. C. Park,74S. Park,74G. Ryu,74Y. Choi,75Y. K. Choi,75J. Goh,75M. S. Kim,75 E. Kwon,75B. Lee,75J. Lee,75S. Lee,75H. Seo,75I. Yu,75A. Juodagalvis,76H. Castilla-Valdez,77E. De La Cruz-Burelo,77

I. Heredia-de La Cruz,77,gg R. Lopez-Fernandez,77 J. Martínez-Ortega,77A. Sanchez-Hernandez,77

L. M. Villasenor-Cendejas,77S. Carrillo Moreno,78F. Vazquez Valencia,78H. A. Salazar Ibarguen,79E. Casimiro Linares,80 A. Morelos Pineda,80 D. Krofcheck,81P. H. Butler,82 R. Doesburg,82S. Reucroft,82 H. Silverwood,82M. Ahmad,83 M. I. Asghar,83J. Butt,83H. R. Hoorani,83S. Khalid,83W. A. Khan,83T. Khurshid,83S. Qazi,83M. A. Shah,83M. Shoaib,83

H. Bialkowska,84M. Bluj,84,hhB. Boimska,84T. Frueboes,84M. Górski,84M. Kazana,84K. Nawrocki,84 K. Romanowska-Rybinska,84M. Szleper,84G. Wrochna,84P. Zalewski,84G. Brona,85K. Bunkowski,85M. Cwiok,85 W. Dominik,85K. Doroba,85A. Kalinowski,85M. Konecki,85J. Krolikowski,85M. Misiura,85W. Wolszczak,85P. Bargassa,86 C. Beirão Da Cruz E Silva,86P. Faccioli,86P. G. Ferreira Parracho,86M. Gallinaro,86F. Nguyen,86J. Rodrigues Antunes,86

J. Seixas,86,c J. Varela,86P. Vischia,86S. Afanasiev,87P. Bunin,87I. Golutvin,87I. Gorbunov,87V. Karjavin,87 V. Konoplyanikov,87G. Kozlov,87A. Lanev,87A. Malakhov,87V. Matveev,87P. Moisenz,87V. Palichik,87V. Perelygin,87

M. Savina,87S. Shmatov,87N. Skatchkov,87V. Smirnov,87A. Zarubin,87 V. Golovtsov,88Y. Ivanov,88V. Kim,88 P. Levchenko,88V. Murzin,88V. Oreshkin,88I. Smirnov,88V. Sulimov,88L. Uvarov,88S. Vavilov,88A. Vorobyev,88

An. Vorobyev,88Yu. Andreev,89 A. Dermenev,89S. Gninenko,89N. Golubev,89M. Kirsanov,89N. Krasnikov,89 A. Pashenkov,89D. Tlisov,89A. Toropin,89V. Epshteyn,90V. Gavrilov,90N. Lychkovskaya,90V. Popov,90G. Safronov,90

(9)

M. Kirakosyan,91A. Leonidov,91G. Mesyats,91S. V. Rusakov,91A. Vinogradov,91A. Belyaev,92E. Boos,92V. Bunichev,92 M. Dubinin,92,hL. Dudko,92A. Ershov,92V. Klyukhin,92O. Kodolova,92I. Lokhtin,92A. Markina,92S. Obraztsov,92 S. Petrushanko,92V. Savrin,92 A. Snigirev,92I. Azhgirey,93I. Bayshev,93S. Bitioukov,93V. Kachanov,93A. Kalinin,93 D. Konstantinov,93V. Krychkine,93V. Petrov,93R. Ryutin,93A. Sobol,93L. Tourtchanovitch,93S. Troshin,93N. Tyurin,93

A. Uzunian,93A. Volkov,93P. Adzic,94,ii M. Djordjevic,94M. Ekmedzic,94J. Milosevic,94M. Aguilar-Benitez,95 J. Alcaraz Maestre,95C. Battilana,95E. Calvo,95M. Cerrada,95M. Chamizo Llatas,95,c N. Colino,95B. De La Cruz,95 A. Delgado Peris,95D. Domínguez Vázquez,95C. Fernandez Bedoya,95J. P. Fernández Ramos,95A. Ferrando,95J. Flix,95

M. C. Fouz,95 P. Garcia-Abia,95O. Gonzalez Lopez,95S. Goy Lopez,95 J. M. Hernandez,95M. I. Josa,95G. Merino,95 E. Navarro De Martino,95J. Puerta Pelayo,95A. Quintario Olmeda,95 I. Redondo,95L. Romero,95M. S. Soares,95 C. Willmott,95C. Albajar,96 J. F. de Trocóniz,96H. Brun,97J. Cuevas,97J. Fernandez Menendez,97S. Folgueras,97 I. Gonzalez Caballero,97L. Lloret Iglesias,97J. A. Brochero Cifuentes,98I. J. Cabrillo,98A. Calderon,98S. H. Chuang,98 J. Duarte Campderros,98M. Fernandez,98G. Gomez,98J. Gonzalez Sanchez,98A. Graziano,98A. Lopez Virto,98J. Marco,98

R. Marco,98C. Martinez Rivero,98F. Matorras,98F. J. Munoz Sanchez,98J. Piedra Gomez,98T. Rodrigo,98 A. Y. Rodríguez-Marrero,98A. Ruiz-Jimeno,98L. Scodellaro,98I. Vila,98R. Vilar Cortabitarte,98D. Abbaneo,99E. Auffray,99

G. Auzinger,99 M. Bachtis,99 P. Baillon,99A. H. Ball,99D. Barney,99J. Bendavid,99L. Benhabib,99J. F. Benitez,99 C. Bernet,99,iG. Bianchi,99P. Bloch,99A. Bocci,99A. Bonato,99O. Bondu,99C. Botta,99H. Breuker,99T. Camporesi,99

G. Cerminara,99T. Christiansen,99J. A. Coarasa Perez,99S. Colafranceschi,99,jj M. D’Alfonso,99D. d’Enterria,99 A. Dabrowski,99A. David,99F. De Guio,99A. De Roeck,99 S. De Visscher,99 S. Di Guida,99M. Dobson,99 N. Dupont-Sagorin,99A. Elliott-Peisert,99J. Eugster,99G. Franzoni,99W. Funk,99M. Giffels,99D. Gigi,99 K. Gill,99 M. Girone,99 M. Giunta,99F. Glege,99R. Gomez-Reino Garrido,99S. Gowdy,99R. Guida,99J. Hammer,99M. Hansen,99

P. Harris,99A. Hinzmann,99V. Innocente,99P. Janot,99 E. Karavakis,99K. Kousouris,99 K. Krajczar,99P. Lecoq,99 C. Lourenço,99N. Magini,99L. Malgeri,99M. Mannelli,99L. Masetti,99F. Meijers,99S. Mersi,99E. Meschi,99F. Moortgat,99 M. Mulders,99P. Musella,99L. Orsini,99E. Palencia Cortezon,99E. Perez,99L. Perrozzi,99A. Petrilli,99G. Petrucciani,99 A. Pfeiffer,99M. Pierini,99M. Pimiä,99 D. Piparo,99M. Plagge,99A. Racz,99W. Reece,99 G. Rolandi,99,kk M. Rovere,99 H. Sakulin,99F. Santanastasio,99C. Schäfer,99C. Schwick,99S. Sekmen,99A. Sharma,99P. Siegrist,99P. Silva,99M. Simon,99 P. Sphicas,99,ll J. Steggemann,99B. Stieger,99M. Stoye,99A. Tsirou,99G. I. Veres,99,u J. R. Vlimant,99H. K. Wöhri,99

W. D. Zeuner,99W. Bertl,100 K. Deiters,100W. Erdmann,100 K. Gabathuler,100 R. Horisberger,100Q. Ingram,100 H. C. Kaestli,100 S. König,100D. Kotlinski,100U. Langenegger,100 D. Renker,100T. Rohe,100 F. Bachmair,101L. Bäni,101

L. Bianchini,101P. Bortignon,101M. A. Buchmann,101 B. Casal,101N. Chanon,101A. Deisher,101G. Dissertori,101 M. Dittmar,101M. Donegà,101 M. Dünser,101 P. Eller,101C. Grab,101 D. Hits,101 W. Lustermann,101B. Mangano,101 A. C. Marini,101P. Martinez Ruiz del Arbol,101D. Meister,101N. Mohr,101C. Nägeli,101,mmP. Nef,101F. Nessi-Tedaldi,101 F. Pandolfi,101L. Pape,101F. Pauss,101 M. Peruzzi,101 M. Quittnat,101F. J. Ronga,101M. Rossini,101A. Starodumov,101,nn

M. Takahashi,101 L. Tauscher,101,a K. Theofilatos,101D. Treille,101R. Wallny,101H. A. Weber,101 C. Amsler,102,oo V. Chiochia,102A. De Cosa,102 C. Favaro,102M. Ivova Rikova,102B. Kilminster,102B. Millan Mejias,102J. Ngadiuba,102

P. Robmann,102 H. Snoek,102S. Taroni,102M. Verzetti,102 Y. Yang,102 M. Cardaci,103 K. H. Chen,103C. Ferro,103 C. M. Kuo,103S. W. Li,103 W. Lin,103Y. J. Lu,103R. Volpe,103 S. S. Yu,103 P. Bartalini,104 P. Chang,104 Y. H. Chang,104

Y. W. Chang,104 Y. Chao,104 K. F. Chen,104P. H. Chen,104 C. Dietz,104 U. Grundler,104 W.-S. Hou,104Y. Hsiung,104 K. Y. Kao,104Y. J. Lei,104Y. F. Liu,104R.-S. Lu,104D. Majumder,104E. Petrakou,104X. Shi,104J. G. Shiu,104Y. M. Tzeng,104

M. Wang,104R. Wilken,104 B. Asavapibhop,105N. Suwonjandee,105A. Adiguzel,106 M. N. Bakirci,106,pp S. Cerci,106,qq C. Dozen,106 I. Dumanoglu,106E. Eskut,106S. Girgis,106 G. Gokbulut,106 E. Gurpinar,106 I. Hos,106 E. E. Kangal,106 A. Kayis Topaksu,106G. Onengut,106,rrK. Ozdemir,106S. Ozturk,106,pp A. Polatoz,106K. Sogut,106,ssD. Sunar Cerci,106,qq B. Tali,106,qqH. Topakli,106,ppM. Vergili,106I. V. Akin,107T. Aliev,107B. Bilin,107S. Bilmis,107M. Deniz,107H. Gamsizkan,107 A. M. Guler,107 G. Karapinar,107,tt K. Ocalan,107 A. Ozpineci,107M. Serin,107 R. Sever,107U. E. Surat,107M. Yalvac,107

M. Zeyrek,107 E. Gülmez,108B. Isildak,108,uuM. Kaya,108,vvO. Kaya,108,vv S. Ozkorucuklu,108,ww N. Sonmez,108,xx H. Bahtiyar,109,yy E. Barlas,109 K. Cankocak,109Y. O. Günaydin,109,zz F. I. Vardarlı,109 M. Yücel,109 L. Levchuk,110 P. Sorokin,110 J. J. Brooke,111E. Clement,111D. Cussans,111 H. Flacher,111 R. Frazier,111J. Goldstein,111 M. Grimes,111

G. P. Heath,111 H. F. Heath,111 J. Jacob,111L. Kreczko,111C. Lucas,111 Z. Meng,111 D. M. Newbold,111,aaa S. Paramesvaran,111 A. Poll,111S. Senkin,111V. J. Smith,111T. Williams,111K. W. Bell,112A. Belyaev,112,bbbC. Brew,112 R. M. Brown,112D. J. A. Cockerill,112J. A. Coughlan,112K. Harder,112 S. Harper,112J. Ilic,112E. Olaiya,112D. Petyt,112

(10)

C. H. Shepherd-Themistocleous,112A. Thea,112I. R. Tomalin,112 W. J. Womersley,112 S. D. Worm,112 M. Baber,113 R. Bainbridge,113O. Buchmuller,113D. Burton,113D. Colling,113N. Cripps,113M. Cutajar,113P. Dauncey,113G. Davies,113

M. Della Negra,113 W. Ferguson,113 J. Fulcher,113 D. Futyan,113A. Gilbert,113A. Guneratne Bryer,113 G. Hall,113 Z. Hatherell,113J. Hays,113G. Iles,113M. Jarvis,113G. Karapostoli,113M. Kenzie,113R. Lane,113R. Lucas,113,aaaL. Lyons,113 A.-M. Magnan,113J. Marrouche,113 B. Mathias,113R. Nandi,113J. Nash,113 A. Nikitenko,113,nn J. Pela,113M. Pesaresi,113 K. Petridis,113M. Pioppi,113,cccD. M. Raymond,113 S. Rogerson,113 A. Rose,113C. Seez,113 P. Sharp,113,a A. Sparrow,113 A. Tapper,113M. Vazquez Acosta,113T. Virdee,113S. Wakefield,113N. Wardle,113J. E. Cole,114P. R. Hobson,114A. Khan,114 P. Kyberd,114D. Leggat,114D. Leslie,114W. Martin,114 I. D. Reid,114 P. Symonds,114L. Teodorescu,114M. Turner,114

J. Dittmann,115K. Hatakeyama,115 A. Kasmi,115 H. Liu,115T. Scarborough,115O. Charaf,116 S. I. Cooper,116 C. Henderson,116P. Rumerio,116 A. Avetisyan,117 T. Bose,117C. Fantasia,117A. Heister,117 P. Lawson,117 D. Lazic,117 J. Rohlf,117 D. Sperka,117J. St. John,117L. Sulak,117J. Alimena,118S. Bhattacharya,118 G. Christopher,118D. Cutts,118

Z. Demiragli,118A. Ferapontov,118A. Garabedian,118U. Heintz,118 S. Jabeen,118 G. Kukartsev,118E. Laird,118 G. Landsberg,118M. Luk,118M. Narain,118M. Segala,118T. Sinthuprasith,118T. Speer,118 J. Swanson,118 R. Breedon,119 G. Breto,119M. Calderon De La Barca Sanchez,119S. Chauhan,119M. Chertok,119J. Conway,119R. Conway,119P. T. Cox,119 R. Erbacher,119M. Gardner,119W. Ko,119A. Kopecky,119R. Lander,119T. Miceli,119D. Pellett,119J. Pilot,119F. Ricci-Tam,119 B. Rutherford,119M. Searle,119 S. Shalhout,119 J. Smith,119 M. Squires,119M. Tripathi,119S. Wilbur,119 R. Yohay,119

V. Andreev,120 D. Cline,120R. Cousins,120S. Erhan,120 P. Everaerts,120C. Farrell,120M. Felcini,120J. Hauser,120 M. Ignatenko,120C. Jarvis,120 G. Rakness,120 P. Schlein,120,a E. Takasugi,120 V. Valuev,120M. Weber,120 J. Babb,121 R. Clare,121J. Ellison,121J. W. Gary,121G. Hanson,121J. Heilman,121P. Jandir,121F. Lacroix,121H. Liu,121O. R. Long,121

A. Luthra,121M. Malberti,121H. Nguyen,121A. Shrinivas,121J. Sturdy,121S. Sumowidagdo,121 S. Wimpenny,121 W. Andrews,122J. G. Branson,122G. B. Cerati,122S. Cittolin,122R. T. D’Agnolo,122D. Evans,122A. Holzner,122R. Kelley,122

D. Kovalskyi,122 M. Lebourgeois,122J. Letts,122I. Macneill,122S. Padhi,122C. Palmer,122 M. Pieri,122 M. Sani,122 V. Sharma,122 S. Simon,122E. Sudano,122M. Tadel,122Y. Tu,122A. Vartak,122S. Wasserbaech,122,dddF. Würthwein,122 A. Yagil,122J. Yoo,122D. Barge,123C. Campagnari,123T. Danielson,123K. Flowers,123P. Geffert,123C. George,123F. Golf,123 J. Incandela,123C. Justus,123R. Magaña Villalba,123N. Mccoll,123V. Pavlunin,123J. Richman,123R. Rossin,123D. Stuart,123 W. To,123C. West,123A. Apresyan,124A. Bornheim,124J. Bunn,124Y. Chen,124E. Di Marco,124J. Duarte,124D. Kcira,124

A. Mott,124H. B. Newman,124C. Pena,124 C. Rogan,124M. Spiropulu,124 V. Timciuc,124 R. Wilkinson,124 S. Xie,124 R. Y. Zhu,124 V. Azzolini,125 A. Calamba,125R. Carroll,125T. Ferguson,125Y. Iiyama,125 D. W. Jang,125M. Paulini,125 J. Russ,125H. Vogel,125 I. Vorobiev,125J. P. Cumalat,126 B. R. Drell,126 W. T. Ford,126 A. Gaz,126E. Luiggi Lopez,126 U. Nauenberg,126 J. G. Smith,126 K. Stenson,126K. A. Ulmer,126S. R. Wagner,126J. Alexander,127A. Chatterjee,127 N. Eggert,127L. K. Gibbons,127W. Hopkins,127A. Khukhunaishvili,127B. Kreis,127N. Mirman,127G. Nicolas Kaufman,127 J. R. Patterson,127A. Ryd,127E. Salvati,127W. Sun,127W. D. Teo,127J. Thom,127J. Thompson,127J. Tucker,127Y. Weng,127

L. Winstrom,127 P. Wittich,127 D. Winn,128S. Abdullin,129M. Albrow,129J. Anderson,129 G. Apollinari,129 L. A. T. Bauerdick,129A. Beretvas,129 J. Berryhill,129P. C. Bhat,129 K. Burkett,129J. N. Butler,129V. Chetluru,129 H. W. K. Cheung,129F. Chlebana,129S. Cihangir,129V. D. Elvira,129I. Fisk,129J. Freeman,129Y. Gao,129E. Gottschalk,129 L. Gray,129D. Green,129 O. Gutsche,129D. Hare,129R. M. Harris,129 J. Hirschauer,129 B. Hooberman,129S. Jindariani,129 M. Johnson,129U. Joshi,129K. Kaadze,129B. Klima,129S. Kwan,129J. Linacre,129D. Lincoln,129R. Lipton,129J. Lykken,129

K. Maeshima,129J. M. Marraffino,129V. I. Martinez Outschoorn,129S. Maruyama,129D. Mason,129 P. McBride,129 K. Mishra,129 S. Mrenna,129 Y. Musienko,129,eeeS. Nahn,129C. Newman-Holmes,129V. O’Dell,129O. Prokofyev,129 N. Ratnikova,129 E. Sexton-Kennedy,129S. Sharma,129W. J. Spalding,129 L. Spiegel,129L. Taylor,129 S. Tkaczyk,129 N. V. Tran,129 L. Uplegger,129E. W. Vaandering,129 R. Vidal,129 J. Whitmore,129W. Wu,129 F. Yang,129 J. C. Yun,129 D. Acosta,130P. Avery,130D. Bourilkov,130T. Cheng,130S. Das,130M. De Gruttola,130G. P. Di Giovanni,130D. Dobur,130

R. D. Field,130M. Fisher,130Y. Fu,130 I. K. Furic,130J. Hugon,130 B. Kim,130 J. Konigsberg,130 A. Korytov,130 A. Kropivnitskaya,130 T. Kypreos,130 J. F. Low,130 K. Matchev,130P. Milenovic,130,fff G. Mitselmakher,130L. Muniz,130

A. Rinkevicius,130 L. Shchutska,130N. Skhirtladze,130 M. Snowball,130J. Yelton,130M. Zakaria,130V. Gaultney,131 S. Hewamanage,131S. Linn,131P. Markowitz,131 G. Martinez,131J. L. Rodriguez,131 T. Adams,132A. Askew,132 J. Bochenek,132J. Chen,132B. Diamond,132J. Haas,132 S. Hagopian,132 V. Hagopian,132K. F. Johnson,132 H. Prosper,132 V. Veeraraghavan,132M. Weinberg,132M. M. Baarmand,133B. Dorney,133M. Hohlmann,133H. Kalakhety,133F. Yumiceva,133 M. R. Adams,134L. Apanasevich,134V. E. Bazterra,134R. R. Betts,134I. Bucinskaite,134R. Cavanaugh,134O. Evdokimov,134

(11)

L. Gauthier,134C. E. Gerber,134D. J. Hofman,134S. Khalatyan,134P. Kurt,134D. H. Moon,134C. O’Brien,134C. Silkworth,134 P. Turner,134 N. Varelas,134U. Akgun,135E. A. Albayrak,135,yyB. Bilki,135,ggg W. Clarida,135 K. Dilsiz,135 F. Duru,135

J.-P. Merlo,135 H. Mermerkaya,135,hhhA. Mestvirishvili,135A. Moeller,135 J. Nachtman,135 H. Ogul,135Y. Onel,135 F. Ozok,135,yy S. Sen,135 P. Tan,135 E. Tiras,135J. Wetzel,135 T. Yetkin,135,iii K. Yi,135B. A. Barnett,136 B. Blumenfeld,136

S. Bolognesi,136D. Fehling,136A. V. Gritsan,136 P. Maksimovic,136C. Martin,136 M. Swartz,136 A. Whitbeck,136 P. Baringer,137 A. Bean,137G. Benelli,137R. P. Kenny III,137M. Murray,137D. Noonan,137S. Sanders,137J. Sekaric,137 R. Stringer,137Q. Wang,137J. S. Wood,137A. F. Barfuss,138I. Chakaberia,138A. Ivanov,138S. Khalil,138M. Makouski,138 Y. Maravin,138L. K. Saini,138S. Shrestha,138I. Svintradze,138J. Gronberg,139D. Lange,139F. Rebassoo,139D. Wright,139 A. Baden,140B. Calvert,140S. C. Eno,140 J. A. Gomez,140 N. J. Hadley,140R. G. Kellogg,140T. Kolberg,140 Y. Lu,140 M. Marionneau,140A. C. Mignerey,140K. Pedro,140A. Skuja,140J. Temple,140M. B. Tonjes,140S. C. Tonwar,140A. Apyan,141 R. Barbieri,141G. Bauer,141W. Busza,141 I. A. Cali,141M. Chan,141L. Di Matteo,141V. Dutta,141G. Gomez Ceballos,141 M. Goncharov,141D. Gulhan,141M. Klute,141Y. S. Lai,141Y.-J. Lee,141A. Levin,141P. D. Luckey,141T. Ma,141C. Paus,141 D. Ralph,141C. Roland,141G. Roland,141G. S. F. Stephans,141F. Stöckli,141K. Sumorok,141D. Velicanu,141J. Veverka,141 B. Wyslouch,141M. Yang,141A. S. Yoon,141M. Zanetti,141V. Zhukova,141B. Dahmes,142A. De Benedetti,142A. Gude,142 S. C. Kao,142 K. Klapoetke,142Y. Kubota,142J. Mans,142 N. Pastika,142 R. Rusack,142 A. Singovsky,142 N. Tambe,142

J. Turkewitz,142 J. G. Acosta,143L. M. Cremaldi,143R. Kroeger,143 S. Oliveros,143L. Perera,143 R. Rahmat,143 D. A. Sanders,143 D. Summers,143 E. Avdeeva,144 K. Bloom,144S. Bose,144D. R. Claes,144 A. Dominguez,144 R. Gonzalez Suarez,144J. Keller,144I. Kravchenko,144J. Lazo-Flores,144S. Malik,144F. Meier,144G. R. Snow,144J. Dolen,145

A. Godshalk,145I. Iashvili,145 S. Jain,145A. Kharchilava,145 A. Kumar,145S. Rappoccio,145 Z. Wan,145G. Alverson,146 E. Barberis,146D. Baumgartel,146M. Chasco,146 J. Haley,146 A. Massironi,146D. Nash,146T. Orimoto,146D. Trocino,146 D. Wood,146J. Zhang,146A. Anastassov,147K. A. Hahn,147A. Kubik,147L. Lusito,147N. Mucia,147N. Odell,147B. Pollack,147 A. Pozdnyakov,147 M. Schmitt,147 S. Stoynev,147K. Sung,147 M. Velasco,147 S. Won,147 D. Berry,148A. Brinkerhoff,148 K. M. Chan,148A. Drozdetskiy,148M. Hildreth,148C. Jessop,148D. J. Karmgard,148J. Kolb,148K. Lannon,148W. Luo,148

S. Lynch,148 N. Marinelli,148 D. M. Morse,148 T. Pearson,148M. Planer,148R. Ruchti,148J. Slaunwhite,148N. Valls,148 M. Wayne,148 M. Wolf,148L. Antonelli,149B. Bylsma,149L. S. Durkin,149 S. Flowers,149C. Hill,149 R. Hughes,149 K. Kotov,149 T. Y. Ling,149D. Puigh,149 M. Rodenburg,149G. Smith,149C. Vuosalo,149B. L. Winer,149 H. Wolfe,149 H. W. Wulsin,149E. Berry,150P. Elmer,150V. Halyo,150P. Hebda,150J. Hegeman,150A. Hunt,150P. Jindal,150S. A. Koay,150 P. Lujan,150D. Marlow,150T. Medvedeva,150M. Mooney,150J. Olsen,150P. Piroué,150X. Quan,150A. Raval,150H. Saka,150 D. Stickland,150C. Tully,150J. S. Werner,150S. C. Zenz,150A. Zuranski,150E. Brownson,151A. Lopez,151H. Mendez,151 J. E. Ramirez Vargas,151E. Alagoz,152D. Benedetti,152G. Bolla,152 D. Bortoletto,152M. De Mattia,152A. Everett,152

Z. Hu,152M. Jones,152 K. Jung,152 M. Kress,152 N. Leonardo,152 D. Lopes Pegna,152V. Maroussov,152 P. Merkel,152 D. H. Miller,152 N. Neumeister,152 B. C. Radburn-Smith,152I. Shipsey,152D. Silvers,152A. Svyatkovskiy,152F. Wang,152 W. Xie,152L. Xu,152H. D. Yoo,152J. Zablocki,152Y. Zheng,152N. Parashar,153A. Adair,154B. Akgun,154K. M. Ecklund,154

F. J. M. Geurts,154 W. Li,154 B. Michlin,154 B. P. Padley,154R. Redjimi,154 J. Roberts,154J. Zabel,154B. Betchart,155 A. Bodek,155 R. Covarelli,155 P. de Barbaro,155 R. Demina,155Y. Eshaq,155 T. Ferbel,155A. Garcia-Bellido,155 P. Goldenzweig,155J. Han,155A. Harel,155D. C. Miner,155G. Petrillo,155D. Vishnevskiy,155M. Zielinski,155A. Bhatti,156 R. Ciesielski,156L. Demortier,156K. Goulianos,156G. Lungu,156S. Malik,156C. Mesropian,156S. Arora,157A. Barker,157

J. P. Chou,157 C. Contreras-Campana,157E. Contreras-Campana,157D. Duggan,157 D. Ferencek,157 Y. Gershtein,157 R. Gray,157E. Halkiadakis,157D. Hidas,157A. Lath,157S. Panwalkar,157M. Park,157R. Patel,157V. Rekovic,157J. Robles,157

S. Salur,157S. Schnetzer,157 C. Seitz,157 S. Somalwar,157 R. Stone,157 S. Thomas,157P. Thomassen,157M. Walker,157 K. Rose,158S. Spanier,158 Z. C. Yang,158A. York,158O. Bouhali,159,jjj R. Eusebi,159 W. Flanagan,159J. Gilmore,159 T. Kamon,159,kkkV. Khotilovich,159V. Krutelyov,159R. Montalvo,159I. Osipenkov,159Y. Pakhotin,159A. Perloff,159J. Roe,159

A. Safonov,159 T. Sakuma,159 I. Suarez,159A. Tatarinov,159D. Toback,159N. Akchurin,160C. Cowden,160J. Damgov,160 C. Dragoiu,160P. R. Dudero,160K. Kovitanggoon,160S. Kunori,160S. W. Lee,160T. Libeiro,160I. Volobouev,160E. Appelt,161

A. G. Delannoy,161 S. Greene,161A. Gurrola,161W. Johns,161C. Maguire,161Y. Mao,161A. Melo,161M. Sharma,161 P. Sheldon,161B. Snook,161 S. Tuo,161J. Velkovska,161 M. W. Arenton,162 S. Boutle,162 B. Cox,162B. Francis,162

J. Goodell,162R. Hirosky,162A. Ledovskoy,162C. Lin,162C. Neu,162J. Wood,162S. Gollapinni,163 R. Harr,163 P. E. Karchin,163C. Kottachchi Kankanamge Don,163P. Lamichhane,163A. Sakharov,163D. A. Belknap,164L. Borrello,164

(12)

A. Hervé,164P. Klabbers,164J. Klukas,164A. Lanaro,164 R. Loveless,164 A. Mohapatra,164I. Ojalvo,164 T. Perry,164 G. A. Pierro,164G. Polese,164I. Ross,164T. Sarangi,164A. Savin164 and W. H. Smith164

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2

Institut für Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Belarus 4

Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6

Université Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium 8

Université Catholique de Louvain, Louvain-la-Neuve, Belgium

9Université de Mons, Mons, Belgium 10

Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil

11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12a

Universidade Estadual Paulista, São Paulo, Brazil

12bUniversidade Federal do ABC, São Paulo, Brazil 13

Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15

Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17

Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19

University of Split, Split, Croatia

20Institute Rudjer Boskovic, Zagreb, Croatia 21

University of Cyprus, Nicosia, Cyprus

22Charles University, Prague, Czech Republic 23

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia

25Department of Physics, University of Helsinki, Helsinki, Finland 26

Helsinki Institute of Physics, Helsinki, Finland

27Lappeenranta University of Technology, Lappeenranta, Finland 28

DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31

Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32Université de Lyon, Université Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucléaire de Lyon, Villeurbanne, France 33

Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 37

Deutsches Elektronen-Synchrotron, Hamburg, Germany

38University of Hamburg, Hamburg, Germany 39

Institut für Experimentelle Kernphysik, Karlsruhe, Germany

40Institute of Nuclear and Particle Physics (INPP), NCSR Demokritos, Aghia Paraskevi, Greece 41

University of Athens, Athens, Greece

42University of Ioánnina, Ioánnina, Greece 43

Wigner Research Centre for Physics, Budapest, Hungary

44Institute of Nuclear Research ATOMKI, Debrecen, Hungary 45

University of Debrecen, Debrecen, Hungary

46National Institute of Science Education and Research, Bhubaneswar, India 47

Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49

Saha Institute of Nuclear Physics, Kolkata, India

50Bhabha Atomic Research Centre, Mumbai, India 51

(13)

52Tata Institute of Fundamental Research - HECR, Mumbai, India 53

Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

54University College Dublin, Dublin, Ireland 55a

INFN Sezione di Bari, Bari, Italy

55bUniversità di Bari, Bari, Italy 55c

Politecnico di Bari, Bari, Italy

56aINFN Sezione di Bologna, Bologna, Italy 56b

Università di Bologna, Bologna, Italy

57aINFN Sezione di Catania, Catania, Italy 57b

Università di Catania, Catania, Italy

57cCSFNSM, Catania, Italy 58a

INFN Sezione di Firenze, Firenze, Italy

58bUniversità di Firenze, Firenze, Italy 59

INFN Laboratori Nazionali di Frascati, Frascati, Italy

60aINFN Sezione di Genova, Genova, Italy 60b

Università di Genova, Genova, Italy

61aINFN Sezione di Milano-Bicocca, Milano, Italy 61b

Università di Milano-Bicocca, Milano, Italy

62aINFN Sezione di Napoli, Napoli, Italy 62b

Università di Napoli‘Federico II’, Napoli, Italy

62cUniversità della Basilicata (Potenza), Napoli, Italy 62d

Università G. Marconi (Roma), Napoli, Italy

63aINFN Sezione di Padova, Padova, Italy 63b

Università di Padova, Padova, Italy

63cUniversità di Trento (Trento), Padova, Italy 64a

INFN Sezione di Pavia, Pavia, Italy

64bUniversità di Pavia, Pavia, Italy 65a

INFN Sezione di Perugia, Perugia, Italy

65bUniversità di Perugia, Perugia, Italy 66a

INFN Sezione di Pisa, Pisa, Italy

66bUniversità di Pisa, Pisa, Italy 66c

Scuola Normale Superiore di Pisa, Pisa, Italy

67aINFN Sezione di Roma, Roma, Italy 67b

Università di Roma, Roma, Italy

68aINFN Sezione di Torino, Torino, Italy 68b

Università di Torino, Torino, Italy

68cUniversità del Piemonte Orientale (Novara), Torino, Italy 69a

INFN Sezione di Trieste, Trieste, Italy

69bUniversità di Trieste, Trieste, Italy 70

Kangwon National University, Chunchon, Korea

71Kyungpook National University, Daegu, Korea 72

Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea

73Korea University, Seoul, Korea 74

University of Seoul, Seoul, Korea

75Sungkyunkwan University, Suwon, Korea 76

Vilnius University, Vilnius, Lithuania

77Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 78

Universidad Iberoamericana, Mexico City, Mexico

79Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 80

Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico

81University of Auckland, Auckland, New Zealand 82

University of Canterbury, Christchurch, New Zealand

83National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 84

National Centre for Nuclear Research, Swierk, Poland

85Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 86

Laboratório de Instrumentação e Física Experimental de Partículas, Lisboa, Portugal

87Joint Institute for Nuclear Research, Dubna, Russia 88

Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia

89Institute for Nuclear Research, Moscow, Russia 90

(14)

91P.N. Lebedev Physical Institute, Moscow, Russia 92

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

93State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 94

University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

95Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain 96

Universidad Autónoma de Madrid, Madrid, Spain

97Universidad de Oviedo, Oviedo, Spain 98

Instituto de Física de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain

99CERN, European Organization for Nuclear Research, Geneva, Switzerland 100

Paul Scherrer Institut, Villigen, Switzerland

101Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 102

Universität Zürich, Zurich, Switzerland

103National Central University, Chung-Li, Taiwan 104

National Taiwan University (NTU), Taipei, Taiwan

105Chulalongkorn University, Bangkok, Thailand 106

Cukurova University, Adana, Turkey

107Middle East Technical University, Physics Department, Ankara, Turkey 108

Bogazici University, Istanbul, Turkey

109Istanbul Technical University, Istanbul, Turkey 110

National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine

111University of Bristol, Bristol, United Kingdom 112

Rutherford Appleton Laboratory, Didcot, United Kingdom

113Imperial College, London, United Kingdom 114

Brunel University, Uxbridge, United Kingdom

115Baylor University, Waco, USA 116

The University of Alabama, Tuscaloosa, USA

117Boston University, Boston, USA 118

Brown University, Providence, USA

119University of California, Davis, Davis, USA 120

University of California, Los Angeles, USA

121University of California, Riverside, Riverside, USA 122

University of California, San Diego, La Jolla, USA

123University of California, Santa Barbara, Santa Barbara, USA 124

California Institute of Technology, Pasadena, USA

125Carnegie Mellon University, Pittsburgh, USA 126

University of Colorado at Boulder, Boulder, USA

127Cornell University, Ithaca, USA 128

Fairfield University, Fairfield, USA

129Fermi National Accelerator Laboratory, Batavia, USA 130

University of Florida, Gainesville, USA

131Florida International University, Miami, USA 132

Florida State University, Tallahassee, USA

133Florida Institute of Technology, Melbourne, USA 134

University of Illinois at Chicago (UIC), Chicago, USA

135The University of Iowa, Iowa City, USA 136

Johns Hopkins University, Baltimore, USA

137The University of Kansas, Lawrence, USA 138

Kansas State University, Manhattan, USA

139Lawrence Livermore National Laboratory, Livermore, USA 140

University of Maryland, College Park, USA

141Massachusetts Institute of Technology, Cambridge, USA 142

University of Minnesota, Minneapolis, USA

143University of Mississippi, Oxford, USA 144

University of Nebraska-Lincoln, Lincoln, USA

145State University of New York at Buffalo, Buffalo, USA 146

Northeastern University, Boston, USA

147Northwestern University, Evanston, USA 148

University of Notre Dame, Notre Dame, USA

149The Ohio State University, Columbus, USA 150

(15)

151University of Puerto Rico, Mayaguez, USA 152

Purdue University, West Lafayette, USA

153Purdue University Calumet, Hammond, USA 154

Rice University, Houston, USA

155University of Rochester, Rochester, USA 156

The Rockefeller University, New York, USA

157Rutgers, The State University of New Jersey, Piscataway, USA 158

University of Tennessee, Knoxville, USA

159Texas A&M University, College Station, USA 160

Texas Tech University, Lubbock, USA

161Vanderbilt University, Nashville, USA 162

University of Virginia, Charlottesville, USA

163Wayne State University, Detroit, USA 164

University of Wisconsin, Madison, USA aDeceased.

b

Also at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. d

Also at Institut Pluridisciplinaire Hubert Curien, Université de Strasbourg, Université de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France.

e

Also at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia.

fAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. g

Also at Universidade Estadual de Campinas, Campinas, Brazil. hAlso at California Institute of Technology, Pasadena, USA.

i

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. jAlso at Zewail City of Science and Technology, Zewail, Egypt.

k

Also at Suez Canal University, Suez, Egypt. lAlso at Cairo University, Cairo, Egypt. m

Also at Fayoum University, El-Fayoum, Egypt. nAlso at British University in Egypt, Cairo, Egypt. o

Now at Ain Shams University, Cairo, Egypt.

pAlso at Université de Haute Alsace, Mulhouse, France. q

Also at Joint Institute for Nuclear Research, Dubna, Russia. rAlso at Brandenburg University of Technology, Cottbus, Germany. s

Also at The University of Kansas, Lawrence, USA.

tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. u

Also at Eötvös Loránd University, Budapest, Hungary.

vAlso at Tata Institute of Fundamental Research - EHEP, Mumbai, India. w

Also at Tata Institute of Fundamental Research - HECR, Mumbai, India. xNow at King Abdulaziz University, Jeddah, Saudi Arabia.

y

Also at University of Visva-Bharati, Santiniketan, India. zAlso at University of Ruhuna, Matara, Sri Lanka. aa

Also at Isfahan University of Technology, Isfahan, Iran. bbAlso at Sharif University of Technology, Tehran, Iran.

cc

Also at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ddAlso at Università degli Studi di Siena, Siena, Italy.

ee

Also at Centre National de la Recherche Scientifique (CNRS) - IN2P3, Paris, France. ffAlso at Purdue University, West Lafayette, USA.

gg

Also at Universidad Michoacana de San Nicolas de Hidalgo, Morelia, Mexico. hhAlso at National Centre for Nuclear Research, Swierk, Poland.

ii

Also at Faculty of Physics, University of Belgrade, Belgrade, Serbia. jjAlso at Facoltà Ingegneria, Università di Roma, Roma, Italy. kk

Also at Scuola Normale e Sezione dell’INFN, Pisa, Italy. llAlso at University of Athens, Athens, Greece.

mm

Also at Paul Scherrer Institut, Villigen, Switzerland.

nnAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. oo

Also at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. ppAlso at Gaziosmanpasa University, Tokat, Turkey.

qq

Also at Adiyaman University, Adiyaman, Turkey. rrAlso at Cag University, Mersin, Turkey.

Figura

FIG. 2 (color online). Expected and observed 95% C.L. limits on the T 5=3 production cross section times the branching fraction for decay to same-sign dileptons

Riferimenti

Documenti correlati

FSRQs (red circles in Figure 9 ) mostly cluster in the soft spectral index region, while BL Lacs (blue circles) primarily occupy the hard spectral index region, confirming the

In the left-hand panel of the figure the individual and luminosity binned Planck SZ signal measured at the location of MCXC clusters are shown as a function of luminosity together

- to della ricerca PRIN “Adaptive Design e Innovazioni Tecnologiche per la Rige- nerazione Resiliente dei Distretti Urbani in Regime di Cambiamento Climatico” con l’obiettivo

The objective of this retrospective study was to evaluate the efficacy and safety of pegfilgrastim in relapsed and refractory MM patients, in treatment with courses of

Results: The analysis of quantitative and qualitative parameters confirmed different CPFE clinical entities with a greater severity in CPFE group with pattern UIP to the lower

Another important design and operational problem concerns the mismatch between the energy demand (the load) and the energy supply (both renewable and conventional energy sources) and

Dose-response curves are shown for (left) untreated cells and (right) cells treated with 20 nM cAMP pulses. In both cases, cells were tested after 4–5 hours starvation. White

The original standard was in terms of two Fortran commonblocks where information could be stored, while the actual usage has tended to be mainly in terms of files with