• Non ci sono risultati.

Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton–proton collisions at sqrt(s)=13TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton–proton collisions at sqrt(s)=13TeV"

Copied!
26
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Search

for

a

massive

resonance

decaying

to

a

pair

of

Higgs

bosons

in

the

four

b

quark

final

state

in

proton–proton

collisions

at

s

=

13 TeV

.

The

CMS

Collaboration



CERN,Switzerland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received13October2017

Receivedinrevisedform23March2018

Accepted29March2018

Availableonline4April2018

Editor: M.Doser Keywords: CMS Physics Extradimensions Graviton Radion

di-Higgsbosonresonance

AsearchforamassiveresonancedecayingintoapairofstandardmodelHiggsbosons,inafinalstate consisting of two b quark–antiquark pairs, is performed. A data sample of proton–proton collisions at acentre-of-massenergy of13 TeV isused, collectedby the CMSexperiment atthe CERN LHCin 2016,andcorrespondingtoanintegratedluminosityof35.9 fb−1.TheHiggsbosonsarehighly

Lorentz-boosted andare eachreconstructedasasinglelarge-areajet. Thesignalischaracterizedbyapeakin thedijetinvariantmassdistribution,aboveabackgroundfromthestandardmodelmultijetproduction. Theobservationsareconsistentwiththebackgroundexpectations,andareinterpretedasupperlimitson theproductsofthes-channelproductioncrosssectionsandbranchingfractionsofnarrowbulkgravitons andradionsinwarpedextra-dimensionalmodels.Thelimitsrangefrom126to1.4 fb at95%confidence levelforresonanceswithmassesbetween750and3000 GeV,andarethemoststringenttodate,over theexploredmassrange.

©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

In the standard model (SM), the pair production of Higgs bosons(H) [1–3] inproton–proton(pp) collisionsat

s

=

13 TeV isarareprocess [4].However,theexistenceofmassiveresonances decaying to Higgs boson pairs (HH) in many new physics mod-els mayenhancethisrateto a levelobservable attheCERN LHC using the current data. For instance, models with warped extra dimensions(WED) [5] containnewparticlessuchasthespin-0 ra-dion [6–8] andthespin-2firstKaluza–Klein(KK)excitationofthe graviton [9–11],whichhavesizeablebranchingfractionstoHH.

TheWEDmodelshaveanextraspatialdimensioncompactified between two branes, with the region between (called the bulk) warpedviaanexponentialmetric

κ

l,

κ

beingthewarpfactorand l the coordinateof theextra spatial dimension [12]. The reduced Planck scale (MPl

MPl

/

8

π

, MPl beingthe Planck scale) is

con-sideredafundamentalscale.Thefreeparametersofthemodelare

κ

/

MPlandtheultravioletcutoffofthetheory



R

6e−κlM Pl[6].

In pp collisionsatthe LHC,the graviton andthe radionare pro-ducedprimarilythrough gluon–gluon fusionandarepredictedto decaytoHH [13].

Other scenarios, such as the two-Higgs doublet models [14] (in particular, the minimal supersymmetric model [15]) andthe

 E-mailaddress:cms-publication-committee-chair@cern.ch.

Georgi–Machacek model [16] predict spin-0 resonances that are produced primarily through gluon–gluon fusion, anddecay toan HH pair.TheseparticleshavethesameLorentzstructureand effec-tive couplingstothe gluonsand, fornarrowwidths,resultinthe samekinematicdistributions asthoseforthebulk radion.Hence, theresultsofthispaperarealsoapplicabletothisclassofmodels. Searches for a new particle X in the HH decay channel have beenperformedby theATLAS [17–19] andCMS [20–24] Collabo-rations inpp collisions at

s

=

7 and8 TeV. More recently, the ATLAS Collaboration haspublished limitson the production of a KKbulkgraviton,decayingtoHH,inthebbbb finalstate,usingpp collisiondataat

s

=

13 TeV,correspondingtoanintegrated lumi-nosityof3.2 fb−1[25].Becausethelongitudinalcomponentsofthe W and Z bosonscoupletotheHiggsfieldintheSM, aresonance decaying to HH potentially also decays intoWW and ZZ, with a comparablebranching fraction forX

ZZ, andwitha branching fractionforX

WW thatistwiceaslarge.SearchesforX

WW andZZ havebeenperformedbyATLASandCMS [26–35].

This letter reportson the search for a massive resonance de-caying to an HH pair, in the bbbb final state (with a branching fraction

33% [36]),performedusinga datasetcorresponding to 35.9 fb−1 ofpp collisionsat

s

=

13 TeV.Thesearch significantly improves upon the CMS analysis performed using the LHC data collectedat

s

=

8 TeV [24],andextendsthesearchedmassrange to 750–3000 GeV. This search is conducted for both the radion

https://doi.org/10.1016/j.physletb.2018.03.084

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby

(2)

andthe graviton, whereas the earliersearch only considered the former.

In this search, the X

HH decay would result in highly Lorentz-boostedandcollimated decayproductsofH

bb,which are referred to asH jets. These are reconstructed using jet sub-structure and jet flavour-tagging techniques [37–39]. The back-ground consists mostly of SM multijet events, and is estimated using several control regions defined in the phase space of the massesandflavour-tagging discriminatorsof the two H jets, and the HH dijet invariant mass,allowing thebackground to be pre-dicted over the entire range of mX explored. The signal would

appearasa peak inthe HH dijet invariant massspectrum above asmoothbackgrounddistribution.

2. TheCMSdetectorandeventsimulations

TheCMSdetectorwithits coordinatesystemandtherelevant kinematic variables is described in Ref. [40]. The central feature of the CMS apparatus is a superconducting solenoid of 6 m in-ternal diameter, providing a magnetic field of 3.8 T. Within the field volume are siliconpixel andstrip trackers, alead tungstate crystalelectromagneticcalorimeter (ECAL), anda brass and scin-tillatorhadroncalorimeter(HCAL),eachcomposed ofabarreland twoendcapsections.The trackercoversa pseudorapidity

η

range from

2

.

5 to 2.5 withthe ECAL andthe HCAL extending up to

|

η

|

=

3. Forward calorimeters in the region up to

|

η

|

=

5 pro-vide almost hermetic detector coverage. Muons are detected in gas-ionization chambers embedded in the steel flux-return yoke outsidethesolenoid,coveringaregionof

|

η

|

<

2

.

4.

Events ofinterest are selected usinga two-tieredtrigger sys-tem [41].The firstlevel(L1),composed ofcustom hardware pro-cessors,uses informationfromthe calorimetersandmuon detec-torstoselecteventsatarateofaround100 kHz.Thesecondlevel, knownas thehigh-level trigger (HLT), consistsofa farm of pro-cessorsrunningaversionofthefulleventreconstructionsoftware optimizedforfastprocessing,andreducestheeventratetoaround 1 kHz beforedata storage.Eventsare selectedatthe triggerlevel bythepresenceofjetsofparticlesinthedetector.TheL1trigger algorithmsreconstructjetsfromenergydeposits inthe calorime-ters. At the HLT, physics objects (charged and neutral hadrons, electrons,muons,andphotons)arereconstructedusinga particle-flow(PF)algorithm [42].The anti-kT algorithm [43,44] isusedto

clustertheseobjectswithadistanceparameterof0.8(AK8jets)or 0.4(AK4jets).

Bulkgravitonandradionsignaleventsaresimulatedatleading orderusing the MadGraph5_amc@nlo 2.3.3 [45] eventgenerator formassesintherange750–3000 GeV andwidthsof1 MeV (nar-row width approximation). The NNPDF3.0 leading order parton distribution functions (PDFs) [46], taken from the LHAPDF6 PDF set [47–50], withthefour-flavour scheme,isused.Theshowering andhadronizationofpartonsissimulatedwith pythia 8.212 [51]. The herwig++ 2.7.1 [52] generatorisusedforanalternativemodel toevaluatethesystematicuncertaintyassociatedwiththeparton showerandhadronization.The tuneCUETP8M1-NNPDF2.3LO [53] is used for pythia 8, while the EE5C tune [54] is used for her-wig++.

Thebackgroundismodelledentirelyfromdata.However, sim-ulatedbackground samplesare used to develop and validate the background estimation techniques, prior to being applied to the data.These are multijetevents, generated atleading order using MadGraph5_amc@nlo,andtt

+

jets, generatedatnext-to-leading orderusing powheg 2.0 [55–57].Boththesebackgroundsare inter-facedto pythia 8forsimulatingthepartonshowerand hadroniza-tion.Studiesusingsimulations establishedthat themultijet

com-ponentismorethan99%ofthebackground,withtherestmostly fromtt

+

jets production.

Allgeneratedsampleswereprocessedthrougha Geant4-based [58,59] simulationoftheCMSdetector.Multiplepp collisionsmay occur in the same oradjacent LHC bunch crossings(pileup) and contribute totheoveralleventactivityinthedetector.Thiseffect isincludedinthesimulations,andthesamplesarereweightedto matchthenumberofpp interactionsobservedinthedata, assum-ingatotalinelasticpp collisioncrosssectionof69.2 mb [60].

3. Eventselection

Events were collected using several HLT algorithms. The first required the scalar pT sumof all AK4 jetsin the event (HT) to

be greaterthan800or900 GeV,depending ontheLHCbeam in-stantaneous luminosity. A second trigger criterion required HT

650 GeV, with a pair of AK4 jets with invariant mass above 900 GeV and a pseudorapidityseparation

|

η

|

<

1

.

5.A third set oftriggers selectedeventswiththescalar pT sumofallAK8jets

greaterthan650or700 GeV andthepresenceofan AK8jetwith a “trimmedmass”above50 GeV,i.e.thejet massafterremoving remnants ofsoftradiationusingjet trimmingtechnique [61].The fourthtriggering condition wasbased onthe presenceofan AK8 jet with pT

>

360 GeV and trimmed mass greater than 30 GeV.

Thelast triggerselection acceptedeventscontainingtwoAK8jets having pT

>

280 and200 GeV with atleast onehaving trimmed

massgreaterthan30 GeV,togetherwithanAK4jetpassingaloose b-taggingcriterion.

The pp interaction vertex with the highest



p2

T of the

as-sociated clusters of physics objects is considered to be the one associatedwiththehardscatteringinteraction,theprimaryvertex. Thephysicsobjectsarethejets,clusteredusingthejetfinding al-gorithm [43,44] withthe tracksassigned tothe vertexasinputs, and the associated missing transverse momentum, taken as the negative vectorsumofthe pT ofthosejets. Theotherinteraction

verticesaredesignatedaspileupvertices.

Tomitigatetheeffectofpileup,particles areassignedweights usingthepileupper particleidentification(PUPPI)algorithm [62], withtheweightcorrespondingtoitsestimatedprobabilityto orig-inatefromapileupinteraction.Chargedparticlesfrompileup ver-ticesreceiveaweightofzerowhilethosefromtheprimaryvertex receiveaweightofone.Neutralparticlesareassignedaweight be-tweenzeroandone,withhighervaluesforthoselikelytooriginate fromtheprimaryvertex.ParticlesarethenclusteredintoAK8jets. Thevectorsumoftheweightedmomentaofallparticlesclustered inthejetistakentobethejetmomentum.Toaccount for detec-tor response nonlinearity,jet energy correctionsare applied as a functionofjet

η

andpT[63,64].Ineachevent,theleadingandthe

subleadingpTAK8jets,j1 andj2,respectively,arerequiredtohave

pT

>

300 GeV and

|

η

|

<

2

.

4.

Theremovalofeventscontainingisolatedleptons(electronsor muons) with pT

>

20 GeV and

|

η

|

<

2

.

4 helps suppresstt

+

jets

anddibosonbackgrounds.The isolationvariableis definedasthe scalar pT sum of the charged and neutral hadrons, and photons

in a cone of



R

=

0

.

3 for an electron or



R

=

0

.

4 fora muon, where



R



(

η

)

2

+ (φ)

2,

φ

beingtheazimuthal anglein

ra-dians.Theenergyfrompileupdepositedintheisolationcone,and the pT oftheleptonitself,is subtracted [65,66].The isolation

re-quirementremovesjetsmisidentifiedasleptons.Additionalquality criteria are applied to improve the purity of the isolated lepton samples.Electronspassingcombinedisolation andquality criteria correspondingtoaselectionefficiencyof90%(70%)aredesignated “loose” (“medium”)electrons.Forthe “loose”(“medium”)muons, the totalassociated efficiencyis 100% (95%).The probability ofa jet to be misidentified as an electron ora muon is in the range

(3)

0.5–2%,dependingonpT,

η

,andthechoiceofmediumorloose

se-lectioncriteria.Eventscontainingonemediumlepton,ortwoloose leptonsofthesameflavour,butofoppositecharge,arerejected.

The H

bb systemis reconstructed as a single high-pT AK8

jet, where the decay products have merged within the jet, and thetwohighest pT jetsintheeventare assumedtobe theHiggs

boson candidates. The jet is groomed [67] to remove soft and wide-angle radiation using the soft-drop algorithm [68,69], with the soft radiationfraction parameter z set to 0

.

1 andthe angu-lar exponent parameter

β

set to 0. The groomed jet is used to compute thesoft-drop jet mass,which peaksatthe Higgsboson massforsignaleventsandreducesthemassofbackground quark-andgluon-initiatedjets. Dedicated mass corrections [70], derived fromsimulationanddatainaregionenrichedwithtt eventswith merged W

qq decays, are applied to the jet mass inorder to remove residual dependenceon thejet pT,andto matchthe jet

massscaleandresolutionobservedindata.

Thesoft-dropmassesofj1 andj2arerequiredtobewithinthe

range105–135 GeV, withan efficiency ofabout 60–70%,for jets arisingfromasignal ofmassmX intherange750–3000 GeV.The

“N-subjettiness”algorithmisusedtodeterminetheconsistencyof the jet with two subjets froma two-pronged H

bb decay, by computing the inclusive jet shape variables

τ

1 and

τ

2 [71]. The

ratio

τ

21

τ

2

/

τ

1 witha valuemuch lessthan oneindicates ajet

with two subjets. The selection

τ

21

<

0

.

55 is used, having a jet

pT-dependentefficiencyof 50–70%,beforeapplying thesoft-drop

massrequirement.

For background events, j1 and j2 are often well separated in

η

,especiallyathighinvariant mass(mjj)ofj1 andj2.Incontrast,

signaleventsthatcontain aheavyresonancedecayingtotwo en-ergetic H jets are characterized bya small separationofthe two jetsin

η

. Events are thereforerequired to havea pseudorapidity separation

|

η

(

j1

,

j2

)

|

<

1

.

3.

Theefficiencyofthetriggercombinationismeasuredina sam-ple of multijet events, collected with a control trigger requiring a single AK4 jet with pT

>

260 GeV, and with the leading and

the subleading pT AK8 jets, j1 and j2, respectively, passing the

above selectionson pT,

η

,andthesoft-drop mass.The efficiency

isgreater than99% formjj

1100 GeV,andintherange40–99%

for750

<

mjj

<

1100 GeV.The triggerefficiencyofthe simulated

samplesiscorrectedusingascalefactortomatchtheobserved ef-ficiencyin the data. This scale factor isapplied asa function of

|

η

(

j1

,

j2

)

|

becauseithasamilddependenceonthisvariable.

Themainmethodtosuppressthemultijetbackgroundisb tag-ging: sincea true H

bb jet contains two b hadrons, the H jet candidatesareidentifiedusingthededicated“double-b tagger” al-gorithm [72]. The double-b tagger exploits the presence of two hadronized b quarks inside the H jet, anduses variables related tob hadronlifetimeandmass todistinguishbetweenH jets and thebackgroundfrommultijetproduction;italsoexploitsthefact thattheb hadronflightdirectionsarestronglycorrelatedwiththe axesusedtocalculatetheN-subjettinessobservables.Thedouble-b tagger is a multivariate discriminator with output between

1 and 1, with a higher value indicating a greater probability for the jet to contain a bb pair. The double-b tagger discriminator thresholds of 0.3 and 0.8 correspond to H jet tagging efficien-ciesof 80and 30%and are referred toas “loose”(L) and“tight” (T)requirements, respectively. Events musthave the two leading pT AK8jetssatisfyingtheloosedouble-b taggerrequirement.The

data-to-simulationscale factor forthe double-b tagger efficiency ismeasured inan eventsample enriched in bb pairsfromgluon splitting [72],andappliedtothesignalstoobtainthecorrect sig-nalyields.

The main variable used in the search for a HH resonance is the “reduced dijet invariant mass” mjj,red

mjj

− (

mj1

mH

)

Fig. 1. The soft-dropmass(upper),theN-subjettinessτ21(middle),andthedouble-b

taggerdiscriminator (lower) distributions ofthe selectedAK8 jets.The multijet

backgroundcomponentsfor thedifferentjet flavoursareshown:jetshavingtwo

Bhadrons(bb)orasingleone(b),jetshavingacharmhadron(c),andallother

jets(light).Alsoplottedarethedistributionsforthesimulatedbulkgravitonand

radionsignalsofmasses1400and2500 GeV.Thenumberofsignalandbackground

eventscorrespondtoanintegratedluminosityof35.9 fb−1.Asignalcrosssection

σ(pp→X→HH→bbbb)=20 pb isassumedforallthe masshypotheses.The

eventsarerequiredtohavepassedthetriggerselection,leptonrejection,theAK8

jet kinematicselectionspT>300 GeV and|η|<2.4,and |η(j1,j2)|<1.3.The

reduceddijetinvariantmassmjj,redisrequiredtobegreaterthan750 GeV.The

N-subjettinessrequirementofτ21<0.55 isappliedtotheupperandlowerfigures.

Thesoft-dropmassesofthetwojetsarebetween105–135 GeV forthemiddleand

lowerfigures.

(

mj2

mH

)

, where mj1 and mj2 are the soft-drop masses of the

leading and subleading H-tagged jets in the event, and mH

=

125

.

09 GeV [73,74] is theHiggs bosonmass.The quantity mjj,red

is usedratherthanmjj sinceby subtractingthe soft-dropmasses

of thetwo H-tagged jetsandaddingback the exactHiggs boson massmH,fluctuationsinmj1 andmj2 duetothejet mass

(4)

resolu-Fig. 2. The jetseparation|η(j1,j2)|(left)andthereduceddijetinvariantmassmjj,red(right)distributions.Themultijetbackgroundcomponentsforthedifferentjetflavours

areshown:eventscontainingatleastonejetwithtwoBhadrons(bb)orasingleone(b),eventscontainingajethavingacharmhadron(c),andallotherevents(light).Also

plottedarethedistributionsforthesimulatedbulkgravitonandradionsignalsofmasses1400and2500 GeV.Thenumbersofsignalandbackgroundeventscorrespondto

anintegratedluminosityof35.9 fb−1.Thesignalcrosssectionσ(pp→X→HH→bbbb)isassumedtobe20 pb forallthemasshypotheses.Theeventsarerequiredtohave

passedtheonlineselection,leptonrejection,theAK8jetkinematicselectionspT>300 GeV,|η|<2.4.Thesoft-dropmassesofthetwojetsarebetween105and135 GeV,

andtheN-subjettinessrequirementofτ21<0.55 andmjj,red>750 GeV areapplied.Themjj,reddistributions(right)require|η(j1,j2)|<1.3.

tionarecorrected,leadingto8–10%improvementinthedijetmass resolution.Arequirementofmjj,red

>

750 GeV isappliedfor

select-ingsignal-likeevents.

Thesoft-dropmass,

τ

21,anddouble-b taggerdiscriminator

dis-tributionsofthetwo leading pT jetsare showninFig.1 for

sim-ulatedevents after passing the onlineselection, lepton rejection, kinematicselection, andthe requirementmjj,red

>

750 GeV. Also,

the N-subjettiness requirement of

τ

21

<

0

.

55 is applied for the

soft-drop mass and the double-b tagger distributions, while the soft-drop mass requirement is applied to the

τ

21, and double-b

taggerdiscriminator distributions. Sincesome ofthe triggers im-poseatrimmedjetmassrequirement,thisaffectstheshapeofthe offlinesoft-dropjetmass,resultinginasteepriseabove

20 GeV. The distributions of the

|

η

(

j1

,

j2

)

|

and the mjj,red variables are

showninFig.2.Inthesefigures,themultijetbackgroundisshown fordifferentjet flavourcategories:jetshavingtwoBhadrons(bb) orasingle one (b),jetshavingacharm hadron(c),andall other jets(light).

Thedouble-b taggerdiscriminator ofthetwo leadingAK8jets mustexceed the loosethreshold. In addition,if both discrimina-torvaluesalsoexceedthetightthreshold,eventsareclassifiedin the“TT”category. Otherwise,they are classifiedin the“LL” cate-gory,which contains events withboth j1 andj2 failingthe tight

thresholdaswell aseventswitheitherj1 orj2 passingthe tight

thresholdwhiletheotherpassestheloosethresholdonly. The backgrounds are estimated separately for each category, andthecombinationofthelikelihoodsfortheTTandLLcategories givestheoptimalsignalsensitivityoverawiderangeofresonance masses,accordingtostudiesperformedusingsimulatedsignaland multijetsamples.TheTTcategoryhasagoodbackgroundrejection formX up to 2000 GeV. At higher resonance masses, where the

backgroundissmall, theLLcategory providesbetter signal sensi-tivity. The full event selection efficiencies forbulk gravitons and radionsofdifferentassumedmassesare showninFig. 3. The ra-dion has a smaller efficiency than the bulk graviton because its

|

η

(

j1

,

j2

)

|

distributionis considerablywider than that ofa bulk

gravitonofthesamemass,asshowninFig.2(left).

4. Signalandbackgroundmodelling

Themethodchosen forthebackgroundmodellingdependson whethertheresonancemassmXisbeloworabove1200 GeV,since

atlow masses thebackground doesnot fall smoothly as a

func-Fig. 3. The signalselectionefficienciesforthebulkgravitonandradionmodelsfor

differentmasshypothesesoftheresonances,shownfortheLLandtheTTsignal

eventcategories.Owingtothelargesamplesizesofthesimulatedevents,the

sta-tisticaluncertaintiesaresmall.

tion of mjj,red, because of the trigger requirements, while above

1200 GeV it does. The background estimation relies on a set of control regions to predict the total background shape and nor-malization in the signal regions. The entire range of the mjj,red

distributionabove750 GeV isusedfortheprediction.

For signals with mX

1200 GeV, the underlying background

distribution falls monotonically with mjj,red, thus allowing the

background shape to be modelled by a smooth function, above which alocalized signal issearched for.This smooth background modellinghelpstoreduceuncertaintiesinthebackground estima-tionfromlocalstatisticalfluctuationsinmjj,red,therebyimproving

the signal search sensitivity. The parameters of the function and itstotalnormalizationareconstrainedbyasimultaneousfitofthe signal andbackgroundmodelsto thedatain thecontrol andthe signalregions.FormX

1200 GeV,themjj,reddistributionsforthe

signalaremodelledusingthesumofaGaussianandaCrystalBall function [75],asshowninFig.4foronesignalcategory.Thesame modellingisusedfortheothersignalcategories,withdifferent pa-rametersfortheGaussianandtheCrystalBallfunctions.

Thesignalandcontrolregionsaredefinedbytwovariables re-latedtotheleading pTjetj1:(i)itssoft-dropmassmj1 and(ii)the

(5)

Fig. 4. The bulkgravitonsignalmjj,reddistributionfortheLLcategory,modelled

us-ingthesumofGaussianandCrystalBallfunctions.Thismodellingisperformedfor

signalsintherange1100<mjj,red<3000 GeV,wherethebackgrounddistribution

fallssmoothly.Noeventsareobservedwithmjj,redgreaterthan3000 GeV.

Table 1

Definitionofthesignal,the antitag,andthesidebandregionsusedforthe

back-groundestimation.Theregionsaredefinedintermsofthesoft-dropmassesofthe

leadingpT(j1)andthesubleadingpT(j2)AK8jets,andtheirdouble-btagger

dis-criminatorvalues.

Event category Jet Soft-drop mass (GeV) Double-b tagger discriminator

Signal (LL) j1 105–135 >0.3, but j2 not both>0.8 Signal (TT) j1 >0.8 j2 Antitag (LL) j1 105–135 <0.3 j2 0.3–0.8 Antitag (TT) j1 <0.3 j2 >0.8 Sideband j1 <105 or>135 >0.3, but

(LL, passing) j2 105–135 not both>0.8

Sideband j1 <105 or>135 >0.8 (TT, passing) j2 105–135 Sideband j1 <105 or>135 <0.3 (LL, failing) j2 105–135 0.3–0.8 Sideband j1 <105 or>135 <0.3 (TT, failing) j2 105–135 >0.8

is estimatedin bins of the mjj,red distribution. Considering these

twovariables,severalregionsaredefined.

The pre-tag region includes events fulfilling the selection re-quirements inSections 2–3 apart fromthose on mj1 andon the

j1 double-b tagger discriminator. The signal region is the subset

of pre-tag events where mj1 is inside the H jet mass window

of 105–135 GeV, and with the j1 double-b tagger discriminator

greaterthan0.3or0.8,fortheLLandTTregions,respectively.The antitag regionsrequirethej1 double-b taggerdiscriminatortobe

lessthan0.3, withtherequirementonj2 beingthesameasthat

for the corresponding LL or TT signal regions. The mj1 sideband

regionconsistsofeventsinthepre-tagregion,wheremj1 lies

out-side theH jetmass window.Based onwhetherj1 passesorfails

thedouble-b tagger discriminator threshold,the sidebandregion is divided into either “passing”or “failing”, respectively. The an-titagregionsare dominatedby themultijetbackground,andhave identicalkinematicdistributionstothemultijetbackgroundevents in the signal region, according to studies using simulations. The definitionsofthesignal,theantitag,andthesidebandregionsare giveninTable1.

Intheabsence ofacorrelation betweenmj1 andthe double-b

tagger discriminator values, one could measure in the mj1

side-band the ratio of the number of events passing and failing the

Fig. 5. The pass-failratioRp/foftheleadingpTjetfortheLL(upper)andTT(lower)

signalregioncategoriesasafunctionofthedifferencebetweenthesoft-dropmass

oftheleadingjetandtheHiggsbosonmass,mj1- mH.Themeasuredratioin

differ-entbinsofmj1−mHisusedinthefit(redsolidline),exceptintheregionaround

mj1−mH=0,whichcorrespondstothesignalregion(bluetriangularmarkers).The

fittedfunctionisinterpolatedtoobtainRp/finthesignalregion.Thehorizontalbars

onthedatapointsindicatethebinwidths.(Forinterpretationofthecoloursinthe

figure(s),thereaderisreferredtothewebversionofthisarticle.)

double-b tagger selection, Rp/f

Npass

/

Nfail,i.e.the“pass-fail

ra-tio”.Theyieldintheantitagregion(ineachmjj,redbin)couldthen

bescaledby Rp/f toobtainanestimateofthebackground

normal-ization inthesignal region.However, thereis asmallcorrelation betweenthedouble-b taggerdiscriminatorandmj1,whichistaken

intoaccountbymeasuring thepass-failratio Rp/f asafunctionof

mj1.Thesignalfractionwasfoundtobelessthan10−

3inthe

side-bandregionsusedtoevaluate Rp/f,assumingasignalcrosssection

σ

(

pp

X

HH

bbbb

)

of10 fb.

The Rp/ffortheLLsignalregionismeasuredusingratioofthe

numberofeventsinthe“LL,passing”and“LL,failing”sideband re-gions, asdefined in Table 1.Likewise, the Rp/f for the TT signal

regionusestheratioofthenumberofeventsinthe“TT,passing” tothe“TT,failing”sidebandregions.ThevariationofRp/fasa

func-tionofmj1 ineachmj1sidebandisfittedwithaquadraticfunction.

Thefittothepass-failratioisinterpolatedtotheregionwheremj1

lieswithintheH jetmasswindowof105–135 GeV.Analternative fitusingathirdorderpolynomialwas foundtogivethesame in-terpolatedvalueofRp/fintheHiggsjetmasswindow.Everyevent

in theantitagregionisscaled by thepass-failratio evaluatedfor themj1 ofthat event,to obtainthebackground predictioninthe

signalregion.

Fig.5showsthequadraticfitinthemj1 sidebandsofthe

pass-fail ratio Rp/f as a function ofmj1, as obtained in the data. The

backgroundpredictionusingthismethod,alongwiththenumber ofobservedeventsinthesignalregionisshowninFig.6.

(6)

Fig. 6. The reducedmass distributionsmjj,red for theLL(upper)and TT(lower)

signalregioncategories.Thepointswithbarsshowthedata,thehistogramwith

shaded band shows the estimated background and associated uncertainty. The

mjj,redspectrumforthebackgroundisobtainedbyweightingthemjj,red spectrum

intheantitagregionbytheratioRp/fofFig.5.Thesignalpredictionsforabulk

gravitonofmass1000 GeV,areoverlaidforcomparison,assumingacrosssection

σ(pp→X→HH→bbbb)of10 fb.Thelastbinsofthedistributionscontainall

eventswithmjj,red>3000 GeV.Thedifferencesbetweenthedataandthepredicted

background,dividedbythedatastatisticaluncertainty(dataunc.)asgivenbythe

Garwoodinterval [76],areshowninthelowerpanels.

Forresonancemassesof1200 GeV andabove,thebackground estimation is improved by simultaneously fitting a parametric model for the background and signal to the data in the signal andtheantitagregions formjj,red

1100 GeV.Inthefit,theratio

Rp/f obtainedfromthesidebandsisusedtoconstrain therelative

numberofbackground eventsin thetwo regions. Toaccount for possible Rp/fdependenceonmjj,redathighmjj,red values,the Rp/f

obtainedfromthefitsshowninFig.5isalsoparametrizedasa lin-earfunctionofmjj,red.Thesignalnormalizationisunconstrainedin

thefit,while theuncertaintiesintheparameters ofthe functions used to model the background and Rp/f are treated asnuisance

parameters. For the background modelling, a choice among an exponentialfunction Nea mjj,red,a “levelled exponential” function

Nea mjj,red/(1+a b mjj,red),anda“quadraticlevelled exponential

func-tion”Ne[−a mjj,red/(1+a b mjj,red)]−[−c m2jj,red/(1+b c m 2

jj,red)] wasmade,using

aFisher F-test [77]. Ataconfidencelevel of95%,thelevelled ex-ponentialfunctionwasfoundtobeoptimal. Sincethebackground shapes in the signal regions, as predicted using the antitag

re-gions,werefoundtobesimilar(Fig.6),theparametricbackground modellingwas tested usingthe antitagregion inthe databefore applyingittothesignalregion.

The simultaneous fits to the antitag and the signal regions are shown in Figs. 7 and 8, respectively, using the background modelonly.Thesearelabelledas“post-fit”curveswiththesignal region background yields constrained to be Rp/f times the

back-ground yields from the antitag regions. The “pre-fit” curves, ob-tained by fitting the antitagandthe signal regions separately to thebackground-onlymodel,withthebackgroundeventyields un-constrained,arealsoshownforcomparison.Inthepost-fitresults, the Rp/fdependenceonmjj,redwasfoundtobenegligible.

Amongthefourfittedregions,correspondingtotheantitagand thesignalregionsintheLLandTTcategories, theeventswiththe highestvalueofmjj,redoccur intheantitagregionoftheLL

cate-gory,ataroundmjj,red

=

2850 GeV. Asthe parametricbackground

model is only reliable within the range of observed events, the likelihoodis onlyevaluated uptomjj,red

=

3000 GeV.Thisresults

inatruncationofthesignaldistributionforresonanceshavingmX

of2800 GeV andabove,withsignalefficiencylossesincreasingto 30%formX

=

3000 GeV,asshowninFig.4.

Closuretestsofthebackgroundestimationmethodswere per-formed using simulated multijet samples withsignals of various crosssections.Thetestsindicatedagoodconsistencybetweenthe expectedandtheassumedsignalstrengths.

5. Systematicuncertainties

The following sources ofsystematicuncertainty affectthe ex-pectedsignalyields. Noneoftheseleadtoa significantchangein thesignalshape.

Trigger response modelling uncertainties are particularly im-portant formjj,red

<

1200 GeV,where thetriggerefficiency drops

below99%.Ascalefactorisappliedtocorrectforthedifferencein efficiencyobservedbetweenthe dataandsimulation.Thecontrol triggerusedtomeasurethisscalefactorrequiresasingle AK4jet withpT

>

260 GeV,andittooissubjecttosomeinefficiencywhen

mjj,rediscloseto750 GeV,becauseofadifferencebetweenthejet

energyscaleusedinthetriggerandthatusedintheoffline recon-struction.Thisinefficiencyismeasuredusingsimulations,andhas anassociatedtotaluncertaintyofbetween1%and15%.

Thejetenergyscaleandresolutionuncertaintyisabout1% [63,

64].Thejetmassscaleandresolution,and

τ

21selectionefficiency

data-to-simulation scale factor are measured using a sample of mergedW jetsinsemileptonictt events.Thecorresponding uncer-taintiesareextrapolatedtoahigher pT rangethanthatassociated

withtt events,usingsimulations.Acorrectionfactorisappliedto account forthe difference in the jet shower profile of W

qq and H

bb decays, by comparing the ratio of the efficiency of H and W jets using the pythia 8 and herwig++ shower gener-ators. The jet mass scale and resolution has a 2% effect on the signal yields becauseof a changeinthe meanof theH jet mass distribution. The

τ

21 selection efficiency uncertainty amounts to

a

+

30

/

26% change in the signal yields. The uncertainty in the H tagging correction factor is in the range 7–20% depending on theresonancemassmX.The double-b taggerefficiencyscale

fac-toruncertainty isabout2–5%,depending onthe double-b tagger requirementthreshold andjet pT, andis propagated to the total

uncertaintyinthesignalyield.

Theimpact ofthePDFsandthetheoretical scaleuncertainties areestimatedtobe0.1–2%,usingthePDF4LHCprocedure [50],and affecttheproductofthesignalacceptanceandtheefficiency.The PDF and scale uncertainties have negligibleimpact on the signal

(7)

Fig. 7. The reducedmassmjj,reddistributionsintheantitagregionfortheLL(left)andTT(right)categories.Theblackmarkersarethedatawhilethecurvesshowthepre-fit

andpost-fitbackgroundshapes.Thedifferencesbetweenthedataandthepre-fitbackgrounddistribution,dividedbythestatisticaluncertaintyinthedata(dataunc.)as

givenbytheGarwoodinterval [76],areshowninthelowerpanels.

Fig. 8. The reducedmassmjj,red distributionsinthesignalregionfortheLL(left)andtheTT(right)categories.Theblackmarkersarethedatawhilethecurvesshow

thepre-fitandpost-fitbackgroundshapes.Thecontributionofbulkgravitonsofmasses1600and2500 GeV inthe signalregionareshownassumingacross section

σ(pp→X→HH→bbbb)of10 fb.Thedifferencesbetweenthedataandthepre-fitbackgrounddistribution,dividedbythestatisticaluncertaintyinthedata(dataunc.)as

givenbytheGarwoodinterval [76],areshowninthelowerpanels.

withthepileupmodelling(2%)andtheintegratedluminosity de-termination(2.5%) [78],areappliedtothesignalyield.

Themainsource ofuncertaintyforthe multijetbackgroundin theregion mjj,red

<

1200 GeV is duetothe statisticaluncertainty

in the fit to the Rp/f ratio performed in the H jet mass

side-bands. This uncertainty, amounting to 2.6% for the LL, and 6.8% for the TT signal categories, is fully correlated between all bins ofaparticularestimate.Furthermore,thestatisticaluncertaintyin the antitag region is propagated to the signal region when the estimate is made. This is uncorrelated from bin to bin,and the Barlow–Beeston Lite [79,80] method is used to treat the bin-by-bin statistical uncertainty in the data. These uncertainties affect both the shape of the background in the mjj,red distribution and

thetotalbackgroundyield.

For mjj,red

1200 GeV, the overall background uncertainty is

obtainedfrom the uncertainty in the four simultaneous fits per-formed for the antitag andthe signal regions in the LL andthe

Table 2

Summaryofsystematicuncertaintiesinthesignalandbackgroundyields.

Source Uncertainty (%)

Signal yield

Trigger efficiency 1–15

H jet energy scale and resolution 1

H jet mass scale and resolution 2

H jetτ21selection +30/−26

H-tagging correction factor 7–20

Double-b tagger discriminator 2–5

Pileup modelling 2

PDF and scales 0.1–2

Luminosity 2.5

Background yield

Rp/ffit 2.6 (LL category) 6.8 (TT category)

TT categories. The dependenceof Rp/f onmjj,red isaccountedfor,

althoughthiswasfoundtobenegligible.

(8)

Fig. 9. The limitsforthespin-0radion(upper)andthespin-2bulkgraviton(lower)

models.Theresultfor mX<1200 GeV usesthebackgroundpredictedusingthe

controlregions,whileformX≥1200 GeV thebackgroundisderivedfroma

com-binedsignalandbackgroundfittothedatainthecontrolandthesignalregions.

Thepredictedtheoreticalcrosssectionsforanarrowradionorabulkgravitonare

alsoshown.

6. Results

AsshowninFigs.6and

8

,forthesignalregions,theobserved

mjj,red distribution is consistent with the estimated background.

Theresultsare interpreted intermsof upperlimitsonthe prod-uct of the production cross sections andthe branching fractions

σ

(

pp

X

)B(

X

HH

bbbb

)

forradionandbulkgravitonof var-iousmasshypotheses.Theasymptoticapproximationofthe mod-ifiedfrequentist approachforconfidence levels,takingtheprofile likelihoodasateststatistic [81–83],isused.Thelimitsareshown inFig.9fora narrowwidth radionorabulk graviton. Theseare comparedwiththe theoretical valuesofthe productof thecross sectionsandbranchingfractionsforthe benchmarks

κ

/

MPl

=

0

.

5

and



R

=

3 TeV, where the narrow width approximation for a

signal is valid, and where the corresponding HH decay branch-ing fractions in the mass range of interest are 10 and 23%, for thegraviton andtheradion,respectively [13].Theexpectedlimits onthebulkgraviton aremorestringentthanthoseontheradion becauseof thehigher efficiencyofthe

|

η

(

j1

,

j2

)

|

separation re-quirementfortheformersignal.

The upperlimits on the productionof the cross sectionsand branchingfractionliesin therange126–1.4 fb fora narrow reso-nanceX ofmass 750

<

mX

<

3000 GeV.Assuming



R

=

3 TeV, a

bulkradionwithamassbetween970and1400 GeV isexcludedat 95%confidencelevel,exceptina smallregion closeto1200 GeV, wheretheobservedlimit is11.4 pb,thetheoreticalprediction be-ing11.2 pb.

7. Summary

A search for a narrow massive resonance decaying to two standardmodelHiggsbosonsisperformedusingtheLHCproton– proton collision data collected at a centre-of-mass energy of 13 TeV by theCMS detector,and corresponding to an integrated luminosityof35.9 fb−1.Thefinalstateconsistsofeventswithboth Higgs bosons decaying to b quark–antiquark pairs, which were identifiedusingjetsubstructureandb-taggingtechniquesapplied to large-area jets. The data are found to be consistent withthe standard model expectations, dominated by multijet events. Up-perlimitsaresetontheproductsoftheresonantproductioncross sections ofa Kaluza–Klein bulk graviton anda Randall–Sundrum radion, and their branching fraction to HH

bbbb. The limits range from 126 to 1.4 fb at 95% confidence level for bulk gravi-tonsandradionsin themassrange 750–3000 GeV.Forthe mass scale



R

=

3 TeV, a radionof mass between970 and1400 GeV

(except in a small region close to 1200 GeV) is excluded. These limitson the bulk graviton andthe radiondecaying to a pair of standardmodelHiggsbosonsarethemoststringenttodate,over themassrangeexplored.

Acknowledgements

WecongratulateourcolleaguesintheCERNaccelerator depart-ments for the excellent performance of the LHC and thank the technicalandadministrative staffsatCERN andatother CMS in-stitutes for their contributions to the success of the CMS effort. Inaddition,wegratefullyacknowledgethecomputingcentresand personneloftheWorldwideLHCComputingGridfordeliveringso effectivelythe computinginfrastructureessential to ouranalyses. Finally, we acknowledge the enduring support for the construc-tionandoperation oftheLHC andtheCMSdetectorprovidedby thefollowingfundingagencies:BMWFWandFWF(Austria);FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MOST, and NSFC (China); COLCIEN-CIAS(Colombia);MSESandCSF(Croatia);RPF(Cyprus);SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Fin-land,MEC,andHIP(Finland);CEAandCNRS/IN2P3(France);BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hun-gary);DAEandDST(India);IPM(Iran);SFI(Ireland);INFN(Italy); MSIPandNRF(RepublicofKorea);LAS (Lithuania);MOEandUM (Malaysia); BUAP, CINVESTAV,CONACYT, LNS, SEP, andUASLP-FAI (Mexico); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland);FCT(Portugal);JINR(Dubna);MON,ROSATOM,RAS,RFBR andRAEP(Russia);MESTD (Serbia);SEIDI,CPAN, PCTIandFEDER (Spain);SwissFundingAgencies(Switzerland);MST(Taipei); ThEP-Center, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey);NASUandSFFR(Ukraine); STFC(United Kingdom);DOE andNSF(USA).

Individuals have received support from the Marie-Curie pro-gramme and the European Research Council and Horizon 2020 Grant,contract No. 675440 (EuropeanUnion);the Leventis Foun-dation;the A. P. Sloan Foundation; the Alexandervon Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pourlaFormationàlaRecherchedansl’Industrieetdans l’Agricul-ture (FRIA-Belgium); the Agentschapvoor Innovatie door Weten-schap en Technologie (IWT-Belgium); the Ministry of Education, YouthandSports(MEYS)oftheCzechRepublic;theCouncilof Sci-enceandIndustrialResearch,India;theHOMINGPLUSprogramme of the Foundation for Polish Science, cofinanced from European Union,Regional DevelopmentFund, theMobilityPlusprogramme oftheMinistryofScienceandHigherEducation,theNational Sci-ence Center (Poland), contracts Harmonia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543, 2014/15/B/ST2/03998, and 2015/19/

(9)

B/ST2/02861,Sonata-bis2012/07/E/ST2/01406; the National Prior-itiesResearchProgrambyQatar NationalResearchFund;the Pro-grama Severo Ochoa del Principado de Asturias; the Thalis and Aristeia programmes cofinanced by EU-ESF andthe Greek NSRF; theRachadapisekSompotFundforPostdoctoralFellowship, Chula-longkornUniversityandtheChulalongkornAcademicintoIts 2nd CenturyProjectAdvancement Project(Thailand);theWelch Foun-dation,contractC-1845;andtheWestonHavensFoundation(USA).

References

[1] ATLASCollaboration,Observationofanewparticleinthesearchforthe

Stan-dardModelHiggsbosonwiththeATLASdetectorattheLHC,Phys.Lett.B716

(2012)01,https://doi.org/10.1016/j.physletb.2012.08.020,arXiv:1207.7214.

[2] CMSCollaboration,Observationofanewboson atamassof125GeVwith

theCMSexperimentattheLHC,Phys.Lett.B716(2012)30,https://doi.org/10.

1016/j.physletb.2012.08.021,arXiv:1207.7235.

[3] CMSCollaboration,Observationofanewbosonwithmassnear125GeVin

ppcollisionsat√s=7 and8TeV,J.HighEnergyPhys.06(2013)081,https://

doi.org/10.1007/JHEP06(2013)081,arXiv:1303.4571.

[4] D. deFlorian,J.Mazzitelli,Higgsboson pair productionat

next-to-next-to-leadingorderinQCD,Phys.Rev.Lett.111(2013)201801,https://doi.org/10.

1103/PhysRevLett.111.201801,arXiv:1309.6594.

[5] L.Randall,R.Sundrum,Alargemasshierarchyfromasmallextradimension,

Phys. Rev.Lett. 83(1999) 3370,https://doi.org/10.1103/PhysRevLett.83.3370,

arXiv:hep-ph/9905221.

[6] W.D.Goldberger,M.B.Wise,Modulusstabilizationwithbulkfields,Phys.Rev.

Lett.83(1999)4922, https://doi.org/10.1103/PhysRevLett.83.4922,arXiv:hep

-ph/9907447.

[7] C.Csaki,M.Graesser,L.Randall,J.Terning,Cosmologyofbranemodelswith

radion stabilization,Phys. Rev.D62(2000)045015, https://doi.org/10.1103/

PhysRevD.62.045015,arXiv:hep-ph/9911406.

[8] C.Csaki,M.L.Graesser,G.D.Kribs,Radiondynamicsandelectroweakphysics,

Phys. Rev.D63 (2001) 065002,https://doi.org/10.1103/PhysRevD.63.065002,

arXiv:hep-th/0008151.

[9] H.Davoudiasl,J.L.Hewett,T.G.Rizzo,PhenomenologyoftheRandall–Sundrum

gaugehierarchymodel,Phys.Rev.Lett.84(2000)2080,https://doi.org/10.1103/

PhysRevLett.84.2080,arXiv:hep-ph/9909255.

[10] O.DeWolfe,D.Z.Freedman,S.S.Gubser,A.Karch,Modelingthefifth

dimen-sionwithscalarsandgravity,Phys.Rev.D62(2000)046008,https://doi.org/

10.1103/PhysRevD.62.046008,arXiv:hep-th/9909134.

[11] K.Agashe,H.Davoudiasl,G.Perez,A.Soni,WarpedgravitonsattheLHCand

beyond,Phys.Rev.D76(2007)036006,https://doi.org/10.1103/PhysRevD.76.

036006,arXiv:hep-ph/0701186.

[12] G.F.Giudice,R.Rattazzi,J.D.Wells,Graviscalarsfromhigherdimensional

met-ricsandcurvatureHiggsmixing,Nucl.Phys.B595(2001)250,https://doi.org/

10.1016/S0550-3213(00)00686-6,arXiv:hep-ph/0002178.

[13]A.Oliveira,Gravityparticlesfromwarpedextradimensions,areview.Parti– KKgraviton,arXiv:1404.0102,2014.

[14] G.C.Branco,P.M.Ferreira,L.Lavoura,M.N.Rebelo,M.Sher,J.P.Silva,Theory

andphenomenologyoftwo-Higgs-doubletmodels,Phys.Rep.516(2012)01,

https://doi.org/10.1016/j.physrep.2012.02.002,arXiv:1106.0034.

[15] A. Djouadi, The anatomy ofelectroweak symmetrybreaking. Tome II: the

Higgsbosonsinthe minimalsupersymmetricmodel,Phys. Rep.459(2008)

01,https://doi.org/10.1016/j.physrep.2007.10.005,arXiv:hep-ph/0503173.

[16] H.Georgi,M.Machacek,DoublychargedHiggsbosons,Nucl.Phys.B262(1985)

463,https://doi.org/10.1016/0550-3213(85)90325-6.

[17] ATLASCollaboration,SearchforHiggsbosonpairproductionintheγ γb¯b final

stateusing pp collisiondataat √s=8 TeV fromthe ATLASdetector,Phys.

Rev.Lett.114(2015)081802,https://doi.org/10.1103/PhysRevLett.114.081802,

arXiv:1406.5053.

[18] ATLASCollaboration,SearchforHiggsbosonpairproductionintheb¯bb¯b final

statefromppcollisionsat√s=8 TeVwiththeATLASdetector,Eur.Phys.J.

C75(2015)412,https://doi.org/10.1140/epjc/s10052-015-3628-x,arXiv:1506. 00285.

[19] ATLASCollaboration,SearchesforHiggsbosonpair productioninthehh

bbτ τ,γ γW W,γ γbb,bbbb channelswiththeATLASdetector,Phys.Rev.D92

(2015)092004,https://doi.org/10.1103/PhysRevD.92.092004,arXiv:1509.04670.

[20] CMS Collaboration, Searches for heavy Higgs bosons intwo-Higgs-doublet

modelsandfortch decayusingmultileptonanddiphotonfinalstatesin

pp collisionsat8TeV,Phys.Rev.D90(2014)112013,https://doi.org/10.1103/ PhysRevD.90.112013,arXiv:1410.2751.

[21] CMSCollaboration,SearchforresonantpairproductionofHiggsbosons

decay-ingtotwobottomquark–antiquarkpairsinproton–protoncollisionsat8TeV,

Phys. Lett. B749 (2015) 560, https://doi.org/10.1016/j.physletb.2015.08.047,

arXiv:1503.04114.

[22] CMSCollaboration,SearchesforaheavyscalarbosonHdecayingtoapairof

125GeVHiggsbosonshhorforaheavypseudoscalarbosonAdecayingtoZh,

inthefinalstateswithh→τ τ,Phys.Lett.B755(2016)217,https://doi.org/

10.1016/j.physletb.2016.01.056,arXiv:1510.01181.

[23] CMSCollaboration,SearchfortwoHiggsbosonsinfinalstatescontainingtwo

photonsand twobottomquarksinproton–protoncollisionsat 8TeV,Phys.

Rev.D94(2016)052012,https://doi.org/10.1103/PhysRevD.94.052012, arXiv:

1603.06896.

[24] CMSCollaboration,SearchforheavyresonancesdecayingtotwoHiggsbosons

infinalstatescontainingfourbquarks,Eur.Phys.J.C76(2016)371,https://

doi.org/10.1140/epjc/s10052-016-4206-6,arXiv:1602.08762.

[25] ATLASCollaboration,SearchforpairproductionofHiggsbosonsintheb¯bbb¯

finalstate using proton–proton collisionsat √s=13 TeV with the ATLAS

detector,Phys.Rev.D94(2016)052002,https://doi.org/10.1103/PhysRevD.94.

052002,arXiv:1606.04782.

[26] ATLAS Collaboration,Search for high-massdiboson resonanceswith

boson-taggedjetsinproton–protoncollisionsat√s=8 TeVwiththeATLASdetector,

J.HighEnergyPhys.12(2015)055,https://doi.org/10.1007/JHEP12(2015)055,

arXiv:1506.00962.

[27] ATLASCollaboration,SearchforproductionofW W/W Z resonancesdecaying

toalepton,neutrinoandjetsinpp collisionsat√s=8 TeVwiththeATLAS

de-tector,Eur.Phys.J.C75(2015)209,https://doi.org/10.1140/epjc/s10052-015

-3425-6,arXiv:1503.04677, Erratum:https://doi.org/10.1140/epjc/s10052-015

-3593-4.

[28] ATLASCollaboration,Searchforresonantdibosonproductioninthe q¯q final

stateinpp collisionsat√s=8 TeVwiththeATLASdetector,Eur.Phys.J.C75

(2015)69,https://doi.org/10.1140/epjc/s10052-015-3261-8,arXiv:1409.6190.

[29] CMSCollaboration,Searchformassiveresonancesindijetsystemscontaining

jetstaggedasWorZ bosondecaysinpp collisionsat√s=8 TeV,J.High

EnergyPhys. 08(2014)173,https://doi.org/10.1007/JHEP08(2014)173,arXiv:

1405.1994.

[30] CMS Collaboration, Search for massive resonances decaying into pairs of

boostedbosonsinsemi-leptonicfinalstatesat√s=8 TeV,J.HighEnergyPhys.

08(2014)174,https://doi.org/10.1007/JHEP08(2014)174,arXiv:1405.3447.

[31] ATLASCollaboration,Searchfordibosonresonanceswithboson-taggedjetsin

pp collisionsat√s=13 TeV withtheATLASdetector,Phys.Lett.B777(2018) 91,https://doi.org/10.1016/j.physletb.2017.12.011,arXiv:1708.04445.

[32] ATLASCollaboration,Searchfor W W/W Z resonanceproductionin νqq

fi-nalstatesin pp collisionsat √s=13 TeV withthe ATLASdetector,J.High

EnergyPhys. 03(2017)042,https://doi.org/10.1007/JHEP03(2018)042,arXiv:

1710.07235.

[33] ATLASCollaboration,Searchesforheavy Z Z andZ W resonancesinthe qq

andννqq finalstatesinpp collisionsat√s=13 TeV withtheATLASdetector,

J.HighEnergyPhys.03(2018)009,https://doi.org/10.1007/JHEP03(2018)009,

arXiv:1708.09638,2017.

[34] CMSCollaboration,Combinationofsearchesforhearyresonancesdecayingto

WW,WZ,ZZ,andZHbosonpairsinproton–protoncollisionsat √s=8 and

13 TeV,Phys.Lett.B774(2017)533,https://doi.org/10.1016/j.physletb.2017.

09.083,arXiv:1705.09171.

[35]CMSCollaboration,SearchformassiveresonancesdecayingintoWW,WZ,ZZ, qW,andqZwithdijetfinalstatesat√s=13 TeV,arXiv:1708.05379,Phys.Rev. D(2018),submittedforpublication.

[36] D. deFlorian,etal.,Handbook ofLHCHiggsCross Sections:4.Deciphering

theNatureoftheHiggsSector,CERNReportCERN-2017-002-M,CERN,2016,

https://doi.org/10.23731/CYRM-2017-002,arXiv:1610.07922.

[37] J.M.Butterworth,A.R.Davison,M.Rubin,G.P.Salam,Jetsubstructureasanew

HiggssearchchannelattheLHC,Phys.Rev.Lett.100(2008)242001,https://

doi.org/10.1103/PhysRevLett.100.242001,arXiv:0802.2470.

[38] B.Cooper,N.Konstantinidis,L.Lambourne,D.Wardrope,Boostedhhb¯bbb:¯

a newtopologyinsearchesforTeV-scaleresonancesattheLHC,Phys.Rev.D88

(2013)114005,https://doi.org/10.1103/PhysRevD.88.114005,arXiv:1307.0407.

[39] M.Gouzevitch,A.Oliveira, J. Rojo,R.Rosenfeld,G.P. Salam,V.Sanz,

Scale-invariant resonance tagging in multijet events and new physics in Higgs

pairproduction,J.HighEnergyPhys.07(2013)148,https://doi.org/10.1007/

JHEP07(2013)148,arXiv:1303.6636.

[40] CMSCollaboration,TheCMSexperimentattheCERNLHC,J.Instrum.3(2008)

S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[41] CMS Collaboration, The CMStrigger system,J. Instrum. 12 (2017) P01020,

https://doi.org/10.1088/1748-0221/12/01/P01020,arXiv:1609.02366.

[42] CMS Collaboration,Particle-flowreconstruction andglobalevent description

withtheCMSdetector,J.Instrum.12(2017)P10003,https://doi.org/10.1088/

1748-0221/12/10/P10003,arXiv:1706.04965.

[43] M.Cacciari,G.P.Salam,G.Soyez,Theanti-ktjetclusteringalgorithm,J.High

EnergyPhys. 04(2008) 063,https://doi.org/10.1088/1126-6708/2008/04/063,

arXiv:0802.1189.

[44] M.Cacciari,G.P.Salam,G.Soyez,FastJetusermanual,Eur.Phys.J.C72(2012)

1896,https://doi.org/10.1140/epjc/s10052-012-1896-2,arXiv:1111.6097.

[45] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.S.

Shao, T. Stelzer, P. Torrielli,M. Zaro,The automated computation of

(10)

toparton showersimulations,J. HighEnergy Phys. 07(2014) 079,https:// doi.org/10.1007/JHEP07(2014)079,arXiv:1405.0301.

[46] R.D.Ball,etal.,NNPDFCollaboration,PartondistributionsfortheLHCRunII,

J.HighEnergyPhys.04(2015)040,https://doi.org/10.1007/JHEP04(2015)040,

arXiv:1410.8849.

[47] L.A.Harland-Lang,A.D.Martin,P.Motylinski,R.S.Thorne,Partondistributions

intheLHCera:MMHT2014PDFs,Eur.Phys.J.C75(2015)204,https://doi.

org/10.1140/epjc/s10052-015-3397-6,arXiv:1412.3989.

[48] A. Buckley, J. Ferrando,S. Lloyd, K. Nordström, B. Page, M. Rüfenacht,M.

Schönherr,G.Watt,LHAPDF6:partondensityaccessintheLHCprecisionera,

Eur.Phys.J.C75(2015)132,https://doi.org/10.1140/epjc/s10052-015-3318-8,

arXiv:1412.7420.

[49] S.Carrazza,J.I.Latorre,J.Rojo,G.Watt,Acompressionalgorithmforthe

com-binationofPDFsets,Eur.Phys.J.C75(2015)474,https://doi.org/10.1140/epjc/ s10052-015-3703-3,arXiv:1504.06469.

[50] J.Butterworth, et al.,PDF4LHC recommendationsfor LHCRunII, J.Phys. G

43(2016)023001,https://doi.org/10.1088/0954-3899/43/2/023001,arXiv:1510. 03865.

[51] T.Sjöstrand,S. Ask,J.R.Christiansen,R.Corke,N. Desai,P.Ilten, S.Mrenna,

S.Prestel,C.O.Rasmussen,P.Z.Skands,AnIntroductiontoPYTHIA8.2,

Com-put.Phys.Commun.191(2015)159,https://doi.org/10.1016/j.cpc.2015.01.024,

arXiv:1410.3012.

[52] M.Bähr,S.Gieseke,M.A.Gigg,D.Grellscheid,K.Hamilton,O.Latunde-Dada,

S.Plätzer,P.Richardson,M.H.Seymour,A.Sherstnev,B.R.Webber,Herwig++

physicsandmanual,Eur.Phys.J.C58(2008)639,https://doi.org/10.1140/epjc/

s10052-008-0798-9,arXiv:0803.0883.

[53] CMSCollaboration,Eventgeneratortunesobtainedfromunderlyingeventand

multipartonscatteringmeasurements,Eur.Phys.J.C76(2016)155,https://

doi.org/10.1140/epjc/s10052-016-3988-x,arXiv:1512.00815.

[54] S.Gieseke,C.Rohr,A.Siodmok,ColourreconnectionsinHerwig++,Eur.Phys.

J. C72 (2012)2225, https://doi.org/10.1140/epjc/s10052-012-2225-5, arXiv:

1206.0041.

[55] S.Frixione,G.Ridolfi,P.Nason,Apositive-weightnext-to-leading-ordermonte

carloforheavyflavourhadroproduction,J.HighEnergyPhys.09(2007)126,

https://doi.org/10.1088/1126-6708/2007/09/126,arXiv:0707.3088.

[56] S.Frixione,P.Nason,C.Oleari,MatchingNLOQCDcomputationswithParton

Showersimulations:thePOWHEGmethod,J.HighEnergyPhys.11(2007)070,

https://doi.org/10.1088/1126-6708/2007/11/070,arXiv:0709.2092.

[57] S.Alioli, P.Nason, C. Oleari,E.Re, Ageneral framework for implementing

NLOcalculationsinshowerMonteCarloprograms:thePOWHEGBOX,J.High

Energy Phys.06(2010)043,https://doi.org/10.1007/JHEP06(2010)043, arXiv:

1002.2581.

[58] S.Agostinelli,etal.,GEANT4Collaboration,GEANT4—asimulationtoolkit,Nucl.

Instrum.MethodsPhys.Res.,Sect.A506(2003)250,https://doi.org/10.1016/

S0168-9002(03)01368-8.

[59] J.Allison,etal.,Geant4developmentsandapplications,IEEETrans.Nucl.Sci.

53(2006)270,https://doi.org/10.1109/TNS.2006.869826.

[60]CMSCollaboration,Measurementoftheinelasticproton–protoncrosssection at√s=13 TeV,arXiv:1802.02613,J.HighEnergyPhys.(2018),submittedfor publication.

[61] D.Krohn,J.Thaler,L.-T.Wang,Jet trimming,J.HighEnergyPhys.02(2010)

084,https://doi.org/10.1007/JHEP02(2010)084,arXiv:0912.1342.

[62] D.Bertolini,P.Harris,M.Low,N.Tran,Pileupperparticleidentification,J.High

Energy Phys.10(2014)059,https://doi.org/10.1007/JHEP10(2014)059, arXiv:

1407.6013.

[63] CMSCollaboration,JetenergyscaleandresolutionintheCMSexperimentin

ppcollisionsat8TeV,J.Instrum.12(2017)P02014,https://doi.org/10.1088/

1748-0221/12/02/P02014,arXiv:1607.03663.

[64] CMSCMSCollaboration, JetEnergy Scaleand ResolutionPerformances with

13 TeVData, CMSDetectorPerformanceSummaryCMS-DP-2016-020,CERN,

2016,https://cds.cern.ch/record/2160347.

[65] CMSCollaboration,Performanceofelectronreconstructionandselectionwith

the CMSdetectorinproton–protoncollisions at√s=8 TeV,J.Instrum. 10

(2015) P06005, https://doi.org/10.1088/1748-0221/10/06/P06005, arXiv:1502.

02701.

[66] CMSCollaboration,PerformanceofCMSmuonreconstructioninppcollision

eventsat √s=7 TeV, J.Instrum.7(2012) P10002,https://doi.org/10.1088/

1748-0221/7/10/P10002,arXiv:1206.4071.

[67] G.P.Salam,Towardsjetography,Eur.Phys.J.C67(2010)637,https://doi.org/10.

1140/epjc/s10052-010-1314-6,arXiv:0906.1833.

[68] M.Dasgupta,A.Fregoso,S.Marzani,G.P.Salam,Towardsanunderstandingof

jet substructure,J.HighEnergyPhys.09(2013)029,https://doi.org/10.1007/

JHEP09(2013)029,arXiv:1307.0007.

[69] A.J.Larkoski,S.Marzani,G.Soyez,J.Thaler,Softdrop,J.HighEnergyPhys.05

(2014)146,https://doi.org/10.1007/JHEP05(2014)146,arXiv:1402.2657.

[70] CMSCollaboration,Jet algorithmsperformancein13TeVdata,CMSPhysics

Analysis Summary CMS-PAS-JME-16-003, CERN, 2017, https://cds.cern.ch/

record/2256875.

[71] J.Thaler,K.VanTilburg, Maximizingboostedtopidentificationby

minimiz-ingN-subjettiness,J.HighEnergyPhys.02(2012)093,https://doi.org/10.1007/

JHEP02(2012)093,arXiv:1108.2701.

[72]CMSCollaboration,Identificationofheavy-flavourjetswiththeCMSdetectorin ppcollisionsat13 TeV,arXiv:1712.07158,2017,J.Instrum.(2018),submitted forpublication.

[73] ATLASandCMSCollaborations, Combinedmeasurementofthe Higgsboson

massinpp collisionsat√s=7 and8tevwiththeATLASandCMS

experi-ments,Phys.Rev.Lett.114(2015)191803,https://doi.org/10.1103/PhysRevLett.

114.191803,arXiv:1503.07589.

[74] CMS Collaboration, Measurements ofproperties ofthe Higgs boson

decay-inginto thefour-leptonfinalstate inpp collisionsat √s=13 TeV,J. High

Energy Phys. 11(2017) 047,https://doi.org/10.1007/JHEP11(2017)047,arXiv:

1706.09936,2017.

[75] M.Oreglia,A Studyofthe Reactionsψ→γ γψ, Ph.D. thesis,SLAC,1980,

http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html.

[76] F.Garwood,(i)FiduciallimitsforthePoissondistribution,Biometrika28(1936)

437,https://doi.org/10.1093/biomet/28.3-4.437.

[77] R.G. Lomax,D.L.Hahs-Vaughn, StatisticalConcepts: ASecondCourse, Taylor

andFrancis,Hoboken,NJ,2012,https://cds.cern.ch/record/1487958.

[78]CMSCollaboration, CMSLuminosity Measurementforthe 2016DataTaking Period,CMSPhysicsAnalysisSummaryCMS-PAS-LUM-17-001,CERN,2017,in preparation.

[79] R.Barlow,C.Beeston,FittingusingfiniteMonteCarlosamples,Comput.Phys.

Commun.77(1993)219,https://doi.org/10.1016/0010-4655(93)90005-W.

[80] J.S.Conway,Incorporatingnuisanceparametersinlikelihoodsformultisource

spectra, in: Proceedings, PHYSTAT 2011 Workshop on StatisticalIssues

Re-latedtoDiscoveryClaimsinSearchExperimentsandUnfolding,CERN,Geneva,

Switzerland 17–20January2011,2011,p. 115,https://doi.org/10.5170/CERN

-2011-006.115,arXiv:1103.0354.

[81] A.L.Read,Presentationofsearchresults:theC Lstechnique,J.Phys.G28(2002)

2693,https://doi.org/10.1088/0954-3899/28/10/313.

[82] T. Junk, Confidence level computation for combining searches with small

statistics,Nucl.Instrum.MethodsPhys.Res.,Sect.A434(1999)435,https://

doi.org/10.1016/S0168-9002(99)00498-2,arXiv:hep-ex/9902006.

[83] G.Cowan,K.Cranmer,E.Gross,O.Vitells,Asymptoticformulaefor

likelihood-basedtestsofnewphysics,Eur.Phys.J.C71(2011)1554,https://doi.org/10.

1140/epjc/s10052-011-1554-0, arXiv:1007.1727, Erratum: https://doi.org/10. 1140/epjc/s10052-013-2501-z.

TheCMSCollaboration

A.M. Sirunyan,

A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam,

F. Ambrogi,

E. Asilar,

T. Bergauer,

J. Brandstetter,

E. Brondolin,

M. Dragicevic,

J. Erö,

M. Flechl,

M. Friedl,

R. Frühwirth

1

,

V.M. Ghete,

J. Grossmann,

J. Hrubec,

M. Jeitler

1

,

A. König,

N. Krammer,

I. Krätschmer,

D. Liko,

T. Madlener,

I. Mikulec,

E. Pree,

N. Rad,

H. Rohringer,

J. Schieck

1

,

R. Schöfbeck,

M. Spanring,

D. Spitzbart,

W. Waltenberger,

J. Wittmann,

C.-E. Wulz

1

,

M. Zarucki

(11)

V. Chekhovsky,

V. Mossolov,

J. Suarez Gonzalez

InstituteforNuclearProblems,Minsk,Belarus

E.A. De Wolf,

D. Di Croce,

X. Janssen,

J. Lauwers,

M. Van De Klundert,

H. Van Haevermaet,

P. Van Mechelen,

N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,

F. Blekman,

J. D’Hondt,

I. De Bruyn,

J. De Clercq,

K. Deroover,

G. Flouris,

D. Lontkovskyi,

S. Lowette,

S. Moortgat,

L. Moreels,

Q. Python,

K. Skovpen,

S. Tavernier,

W. Van Doninck,

P. Van Mulders,

I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

D. Beghin,

H. Brun,

B. Clerbaux,

G. De Lentdecker,

H. Delannoy,

B. Dorney,

G. Fasanella,

L. Favart,

R. Goldouzian,

A. Grebenyuk,

G. Karapostoli,

T. Lenzi,

J. Luetic,

T. Maerschalk,

A. Marinov,

A. Randle-conde,

T. Seva,

E. Starling,

C. Vander Velde,

P. Vanlaer,

D. Vannerom,

R. Yonamine,

F. Zenoni,

F. Zhang

2

UniversitéLibredeBruxelles,Bruxelles,Belgium

A. Cimmino,

T. Cornelis,

D. Dobur,

A. Fagot,

M. Gul,

I. Khvastunov

3

,

D. Poyraz,

C. Roskas,

S. Salva,

M. Tytgat,

W. Verbeke,

N. Zaganidis

GhentUniversity,Ghent,Belgium

H. Bakhshiansohi,

O. Bondu,

S. Brochet,

G. Bruno,

C. Caputo,

A. Caudron,

P. David,

S. De Visscher,

C. Delaere,

M. Delcourt,

B. Francois,

A. Giammanco,

M. Komm,

G. Krintiras,

V. Lemaitre,

A. Magitteri,

A. Mertens,

M. Musich,

K. Piotrzkowski,

L. Quertenmont,

A. Saggio,

M. Vidal Marono,

S. Wertz,

J. Zobec

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior,

F.L. Alves,

G.A. Alves,

L. Brito,

M. Correa Martins Junior,

C. Hensel,

A. Moraes,

M.E. Pol,

P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas,

W. Carvalho,

J. Chinellato

4

,

E. Coelho,

E.M. Da Costa,

G.G. Da Silveira

5

,

D. De Jesus Damiao,

S. Fonseca De Souza,

L.M. Huertas Guativa,

H. Malbouisson,

M. Melo De Almeida,

C. Mora Herrera,

L. Mundim,

H. Nogima,

L.J. Sanchez Rosas,

A. Santoro,

A. Sznajder,

M. Thiel,

E.J. Tonelli Manganote

4

,

F. Torres Da Silva De Araujo,

A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahuja

a

,

C.A. Bernardes

a

,

T.R. Fernandez Perez Tomei

a

,

E.M. Gregores

b

,

P.G. Mercadante

b

,

S.F. Novaes

a

,

Sandra S. Padula

a

,

D. Romero Abad

b

,

J.C. Ruiz Vargas

a

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov,

R. Hadjiiska,

P. Iaydjiev,

M. Misheva,

M. Rodozov,

M. Shopova,

G. Sultanov

InstituteforNuclearResearchandNuclearEnergyofBulgariaAcademyofSciences,Bulgaria

A. Dimitrov,

I. Glushkov,

L. Litov,

B. Pavlov,

P. Petkov

UniversityofSofia,Sofia,Bulgaria

(12)

BeihangUniversity,Beijing,China

M. Ahmad,

J.G. Bian,

G.M. Chen,

H.S. Chen,

M. Chen,

Y. Chen,

C.H. Jiang,

D. Leggat,

H. Liao,

Z. Liu,

F. Romeo,

S.M. Shaheen,

A. Spiezia,

J. Tao,

C. Wang,

Z. Wang,

E. Yazgan,

H. Zhang,

S. Zhang,

J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban,

G. Chen,

Q. Li,

S. Liu,

Y. Mao,

S.J. Qian,

D. Wang,

Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,

A. Cabrera,

L.F. Chaparro Sierra,

C. Florez,

C.F. González Hernández,

J.D. Ruiz Alvarez

UniversidaddeLosAndes,Bogota,Colombia

B. Courbon,

N. Godinovic,

D. Lelas,

I. Puljak,

P.M. Ribeiro Cipriano,

T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic,

M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,

D. Ferencek,

K. Kadija,

B. Mesic,

A. Starodumov

7

,

T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,

A. Attikis,

G. Mavromanolakis,

J. Mousa,

C. Nicolaou,

F. Ptochos,

P.A. Razis,

H. Rykaczewski

UniversityofCyprus,Nicosia,Cyprus

M. Finger

8

,

M. Finger Jr.

8

CharlesUniversity,Prague,CzechRepublic

E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

A.A. Abdelalim

9

,

10

,

Y. Mohammed

11

,

E. Salama

12

,

13

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

R.K. Dewanjee,

M. Kadastik,

L. Perrini,

M. Raidal,

A. Tiko,

C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,

H. Kirschenmann,

J. Pekkanen,

M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Havukainen,

J.K. Heikkilä,

T. Järvinen,

V. Karimäki,

R. Kinnunen,

T. Lampén,

K. Lassila-Perini,

S. Laurila,

S. Lehti,

T. Lindén,

P. Luukka,

H. Siikonen,

E. Tuominen,

J. Tuominiemi

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,

T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,

F. Couderc,

M. Dejardin,

D. Denegri,

J.L. Faure,

F. Ferri,

S. Ganjour,

S. Ghosh,

A. Givernaud,

P. Gras,

G. Hamel de Monchenault,

P. Jarry,

I. Kucher,

C. Leloup,

E. Locci,

M. Machet,

J. Malcles,

G. Negro,

J. Rander,

A. Rosowsky,

M.Ö. Sahin,

M. Titov

Riferimenti

Documenti correlati

More importantly, the role of cfDNA testing as an alternative to standard invasive testing in women considered to be at very high risk after combined screening (&gt; 1:10) but with

Obviamente, esta atribución depende del contexto extralingüístico, del cotexto lingüístico y de condiciones concretas de realización (entre ellas, la prosodia). Nivel 3 Nivel 2 Nivel

Cerato platanin is a non-catalytic protein with a six-stranded double-ψβ-barrel fold and is secreted by Ceratocystis platani, the causal agent of the canker stain of plane. Cerato

In this section we present the interpolation algorithm, which performs the tetra- hedral Shepard method (3) using the block-based partitioning structure and the associated

The EUSO-BALLOON mission has been proposed by a collaboration of three French laboratories (APC, IRAP and LAL) involved in the international JEM-EUSO consortium. The instrument

Dose-response curves are shown for (left) untreated cells and (right) cells treated with 20 nM cAMP pulses. In both cases, cells were tested after 4–5 hours starvation. White

Sin embargo, junto a la aplicación de los mencionados instrumentos convencionales de carácter tanto general como sectorial, cabe subrayar el desarrollo de mecanismos