• Non ci sono risultati.

Critical role of large-conductance calcium- and voltage-activated potassium channels in leptin-induced neuroprotection of N-methyl-d-aspartate-exposed cortical neurons

N/A
N/A
Protected

Academic year: 2021

Condividi "Critical role of large-conductance calcium- and voltage-activated potassium channels in leptin-induced neuroprotection of N-methyl-d-aspartate-exposed cortical neurons"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Pharmacological

Research

jo u r n al hom e p ag e :w w w . e l s e v i e r . c o m / lo c a t e / y p h r s

Critical

role

of

large-conductance

calcium-

and

voltage-activated

potassium

channels

in

leptin-induced

neuroprotection

of

N-methyl-d-aspartate-exposed

cortical

neurons

Maria

Mancini

a,b,c

,

Maria

Virginia

Soldovieri

a

,

Guido

Gessner

c

,

Bianka

Wissuwa

d

,

Vincenzo

Barrese

e

,

Francesca

Boscia

e

,

Agnese

Secondo

e

,

Francesco

Miceli

e

,

Cristina

Franco

e

,

Paolo

Ambrosino

a

,

Lorella

Maria

Teresa

Canzoniero

b

,

Michael

Bauer

d

,

Toshinori

Hoshi

f

,

Stefan

H.

Heinemann

c

,

Maurizio

Taglialatela

a,e,∗

aDepartmentofMedicineandHealthScience,UniversityofMolise,Campobasso,Italy

bDepartmentofScienceandTechnology,UniversityofSannio,Benevento,Italy

cCenterforMolecularBiomedicine,DepartmentofBiophysics,FriedrichSchillerUniversityandJenaUniversityHospital,Jena,Germany

dCenterforSepsisControlandCare,JenaUniversityHospital,Jena,Germany

eDepartmentofNeuroscience,UniversityofNaples“FedericoII”,Naples,Italy

fDepartmentofPhysiology,UniversityofPennsylvania,Philadelphia,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received21May2014

Receivedinrevisedform17June2014

Accepted18June2014

Availableonline26June2014

Keywords:

Calcium-andvoltage-activatedpotassium

channels(BKchannels) Leptin N-methyl-d-aspartate(NMDA) Neuroprotection Paxilline Iberiotoxin Corticalneurons IntracellularCa2+concentration

a

b

s

t

r

a

c

t

Inthepresentstudy,theneuroprotectiveeffectsoftheadipokineleptin,andthemolecularmechanism involved,havebeenstudiedinratandmicecorticalneuronsexposedtoN-methyl-d-aspartate(NMDA) invitro.Inratcorticalneurons,leptinelicitedneuroprotectiveeffectsagainstNMDA-inducedcelldeath, whichwereconcentration-dependent(10–100ng/ml)andlargestwhentheadipokinewaspreincubated for2hbeforetheneurotoxicstimulus.Inbothratandmousecorticalneurons,leptin-induced neuropro-tectionwasfullyantagonizedbypaxilline(Pax,0.01–1␮M)andiberiotoxin(Ibtx,1–100nM),withEC50sof 38±10nMand5±2nMforPaxandIbtx,respectively,closetothosereportedforPax-andIbtx-induced Ca2+-andvoltage-activatedK+channels(Slo1BKchannels)blockade;theBKchannelopenerNS1619 (1–30␮M)inducedaconcentration-dependentprotectionagainstNMDA-inducedexcitotoxicity. More-over,corticalneuronsfrommicelackingoneorbothallelescodingforSlo1BKchannelpore-forming subunitswereinsensitivetoleptin-inducedneuroprotection.Finally,leptinexposuredose-dependently (10–100ng/ml)increasedintracellularCa2+levelsinratcorticalneurons.Inconclusion,ourresults sug-gestthatSlo1BKchannelactivationfollowingincreasesinintracellularCa2+levelsisacriticalstepfor leptin-inducedneuroprotectioninNMDA-exposedcorticalneuronsinvitro,thushighlighting leptin-basedinterventionviaBKchannelactivationasapotentialstrategytocounteractneurodegenerative diseases.

©2014ElsevierLtd.Allrightsreserved.

Abbreviations: NMDA,N-methyl-d-aspartate; BK channels,large-conductanceCa2+- andvoltage-activatedK+ channels;Pax,paxilline; Ibtx, iberiotoxin; OGD,

oxygen–glucosedeprivation;KATP, ATP-sensitiveK+ channels;E,embryonicage;HBSS,Hank’sBalanced SaltSolution;MEM,MinimumEssentialMedia;FBS,fetal

bovineserum;HS,horseserum;DIV,daysinvitro;HCSS,HEPEScontrolsaltsolution;MS,mediastock;HEK293Tcells,humanembryonickidney293Tcells;MTT,

3-[4,5-dimethylthiazol-2-yl]-2,5diphenyltetrazoliumbromide;DMEM,Dulbecco’smodifiedEagle’smedium;Fura2-AM,

1-[2-(5-carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(21-amino-51-methylphenoxy)-ethane-N,N,N1,N1-tetraaceticacidpenta-acetoxymethylester;EC50,effectiveconcentration50;[Ca2+]i,intracellularcalcium

concentration;PI3K,phosphatidylinositol3-kinase.

∗ Correspondingauthorat:DepartmentofMedicineandHealthSciences,UniversityofMolise,ViaDeSanctis,86100Campobasso,Italy.Tel.:+390874404851;

fax:+390874404778.

E-mailaddresses:m.taglialatela@unimol.it,mtaglial@unina.it(M.Taglialatela).

http://dx.doi.org/10.1016/j.phrs.2014.06.010

(2)

Introduction

Leptin, a 16-kDa peptide hormone produced by white adipocytes,controlsappetitivebehaviorsbyactingon hypothal-amic neurons involved in food intake and energy expenditure [1].Leptinreceptorsareexpressedindiversebrainregionssuch asthehippocampus,thecortex,andthecerebellum,beingoften locatedataxonalandsynapticsubcellularsites[2]. Extrahypotha-lamic actions of leptin are increasingly being recognized; for example,leptininfluencessynapticplasticityinhippocampal neu-rons[3,4]and inhibitsepileptiform-likeactivityinhippocampal [5–7]aswellasinneocorticalneurons[8].Severalstudieshave alsohighlighted theability of leptin toexertboth invitro and invivoneuroprotectiveeffectsagainstoxygen–glucosedeprivation, hypoxia,ischemia,neurotrophicfactorwithdrawal,andexcitotoxic oroxidativestimuli inneuronalpopulationsfromdistinctbrain areas[9–15].

Amongthemolecularmechanismsresponsiblefortheeffectsof leptin,neuronalsilencingviaactivationofpotassium(K+)channels appearstoplayamajorrole.Amongleptin-sensitiveK+channels, activationofATP-sensitiveK+channels(K

ATP)hasbeenproposedto mediateleptin-inducedsuppressionofexcitabilityofhypothalamic neurons[16,17].Similarly,leptin-inducedinsulinrelease suppres-sionfrompancreatic␤cellsalsodependsonKATPactivation[18]. Morerecently,pharmacologicalevidencehassuggestedthat large-conductance, Ca2+- and voltage-activatedK+ channels (Slo1 BK channels), which are particularlyabundantin axons and nerve terminals[19,20],wheretheystabilizetheneuronal membrane potentialandregulateexcitatoryneurotransmitterrelease[21–26], mediateatleastpartofleptin’seffectsofneuronalexcitability.In fact,activationofBKchannelsmediatesleptin-inducedinhibition ofgastricmucosalvagalafferents[27],andhippocampalneuronal firing[5]andepileptiform-likeevents[6].Notably,BKchannel acti-vationexertsstrongneuroprotectiveeffectsinanimalmodelsof cerebralischemia[28],andattenuatedcerebraledemaand neuro-logicmotorimpairmentaftertraumaticbraininjury[29].Activation ofBKchannelsalsoseemstomediateleptineffectsonprimary hippocampalneuronalexcitabilityduringhypoxia[15].

Despite theseresults, directevidence forBKchannel activa-tionbythisadipokineduringneuroprotectionislacking.Therefore, inthepresentstudy,theneuroprotectivepotentialofBKchannel activationbyleptinandtheunderlyingmolecularmechanism(s) havebeenassessedincorticalneuronsexposedtotheionotropic glutamatereceptoragonistN-methyl-d-aspartate(NMDA),a clas-sicalexcitotoxicinsult.Theresultsobtainedindicatethat leptin is endowed withsignificantneuroprotective effects in both rat andmousecorticalneuronsexposedtoNMDA;the pharmacolog-icalblockadeofBKchannels,orthelackofone(Slo1+/−mice)or both(Slo1−/−mice)Slo1allelesfullycounteractedleptin-mediated neuroprotection. Furthermore, intracellular Ca2+ concentration ([Ca2+]

i)monitoringinsinglemousecorticalneuronsrevealedthat leptin(10–100ng/ml)applicationpromptedanoscillatory behav-iorin[Ca2+]

i.TheseresultsrevealthattheactivationofBKchannels is an obligatory step for leptin-induced neuroprotection, high-lightingleptin-basedinterventionviaBKchannelactivationasa potentialstrategytotreatneurodegenerativediseases.

Materialsandmethods

Animals

Animalswerekeptunderstandardconditionsoftemperature, humidityand light, and weresupplied withstandard foodand wateradlibitum.Animalswerehandledin accordancewiththe recommendationsof theNational Institutesof Health Guidefor

theCareandUseofLaboratoryAnimalsandinaccordancewitha protocolapprovedbytheinstitutionalanimalcarecommittees.All effortsweremadetominimizeanimalsufferingandtoreducethe numberofanimalsused.

PregnantWistarratswerepurchasedfromacommercialsource (CharlesRiver,Calco,Italy),whilewild-type,heterozygousandSlo1 knockoutFVB/NJmicewereobtainedfromProf.R.Aldrich (Univer-sityofTexas,Austin,TX,USA),andgenotypedaspreviousdescribed [30].Briefly,genomicDNAfromtailsnipswasamplifiedbyPCR usingprimersNeo5(5-ATAGCCTGAAGAACGAGATCAGC-3) andRA140253(5-CCTCAAGAAGGGGACTCTAAAC-3), amplify-ingtheSlo1−/−alleleproductof800bp,andtheexon15–3(5-TTC ATCATCTTGCTCTGGCGGACG-3)andWT3–2(5-CCATAGTCA CCAATAGCCC-3)amplifyingthewild-typeproductof332bp. Ratandmousecorticalcellcultures

Primaryculturesofratandmousecorticalneuronswere pre-paredfromembryosat15–17daysofgestation;embryonicage(E) wascalculatedbyconsideringE0.5thedaywhenavaginalplugwas detected.Briefly,pregnantanimalswereanesthetizedwithdiethyl ether(CarlRothGmbH&CoKG,Karlsruhe,Germany)and sacri-ficedbycervicaldislocation.Corticaltissuesfromembryoswere dissectedinice-coldmedium(HBSS,Hank’sBalancedSaltSolution, supplementedwith27mMglucose,20mMsucrose,4mMsodium bicarbonate),centrifuged,andtheresultingpelletwas mechani-callydissociatedwithaglasspipette.Cellswereresuspendedin platingmediumconsistingofEagle’sMEM(MEM,Earle’ssalts, sup-pliedbicarbonate-free)supplementedwith5%fetalbovineserum (FBS,BiochromAG,Berlin,Germany),5%horseserum(HS,Sigma Aldrich,Taufkirchen, Germany), 2mMl-glutamine, 20mM glu-cose,26mMbicarbonate,andplatedon24-wellplates(Thermo FisherScientific, Waltham, MA,USA) oron18mmglass cover-slips(GlaswarenfabrikKarlHechtKG,Sondheim,Germany)coated with 100␮g/ml poly(d)-lysine (Sigma–Aldrich) at a density of four embryo cerebral hemispheres/10ml; when single-embryo dissectionswerenecessary,resuspensionvolumeswerechanged accordingly. Glial replicationwasinhibitedby24hexposureto 10␮Mcytosinearabinofuranoside(Sigma–Aldrich)after4daysin vitro(DIV).Afterthistreatment,themediumwassupplemented with10%HSandpartiallysubstitutedtwiceaweek.Allthe exper-imentswere performedat 12–16 DIV.HBSS, Eagle’sMEM, and glutaminewerepurchasedfromLifeTechnologies(Oslo,Norway). AllotherreagentswerefromSigma–Aldrich.

Cellulartreatmentsandassessmentofneuronalsurvival

Prior todrug exposure, corticalneurons werewashed thor-oughly to remove serum using HEPES control salt solution (HCSS,120mMNaCl,5.4mMKCl,0.8mMMgCl2,20mMHEPES, 15mM glucose, 1.8mM CaCl2, 10mM NaOH, pH 7.4). NMDA (Sigma–Aldrich)exposurewascarriedoutinHCSSfor15minat roomtemperature,followedbyNMDAwashoutinmediastock(MS, MEM supplemented with20mM glucose and 26mM bicarbon-ate).Recombinanthumanleptin(R&DSystemsInc.,Minneapolis, MN,USA;stocksolutionwas1mg/mldissolvedin20mMTris–HCl, pH8.0)wasusedformouseandratcorticalneurons,assimilar affinitieshavebeenmeasuredforhumanleptinathuman,mouse, andratleptinreceptors[31].Leptinwasaddedsimultaneouslyto NMDAexposure,aswellas15min,2h,or6hbeforeNMDA expo-sure,accordingtotheexperimentalprotocol.Paxilline,iberiotoxin, orNS1619wereaddedatthedesiredconcentrationsfromstock solutionsinDMSO(maximalfinalDMSOconcentrationwas<1%) 15minbeforeleptinapplicationandkeptthroughoutthe experi-ment.AfterNMDAexposure,cultureswerewashedseveraltimes withHCSSbufferandmaintainedinMSfor24h.

(3)

Neuronalmitochondrialfunctionwasassessedbythe 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay [32], a colorimetric assay which evaluates the ability of metabolicallyactivecellstocleaveatetrazoliumsaltsuchasMTT intoacoloredformazanproduct;tothisaim,neuronswere incu-batedinthedarkat37◦Cin a5%CO2 atmospherefor 1hwith 0.5mg/mlMTT (Sigma–Aldrich)and solubilizedwithacidic iso-propanol.Theabsorbancewasmeasuredat570nm(background subtractionat650nm).Datawereexpressedaspercentageofthe absorbancemeasuredinuntreatedcells.Neuronalcellviabilitywas evaluatedbypropidiumiodide(PI)fluorescence[33].PIisavery stableandhighlypolarcompoundthatonlyenterscellswith dam-agedorleakyplasmamembranes,bindstoDNA,andemitsabright redfluorescencewhenexposedtoblue-greenlight.Attheendofthe experiment,cellswereincubatedwith5␮g/mlPIfor1h.PIuptake wasrecordedbyadigitalcamera(MediaCybernetics,SilverSprings, MD,USA) mountedonaNikon Eclipse400fluorescence micro-scope(NikonInstruments,Florence,Italy;excitation510–560nm, emission590nm).Threephasecontrastdigitalimagesofrandomly selectedmicroscopicfieldswereusedfordataanalysisusingImageJ software(NIH,Bethesda,MD,USA).

Ca2+imaging

For Ca2+-imaging experiments, the cells grown on glass coverslips were loaded for 20–30min with 5␮M 1-[2-(5- carboxyoxazol-2-yl)-6-aminobenzofuran-5-oxy]-2-(21-amino-51-methylphenoxy)-ethane-N,N,N1,N1-tetraacetic acid penta-acetoxymethyl ester (Fura-2 AM; Life Technologies) in control buffermedium containing(inmM):140NaCl,3 KCl,1CaCl2,1 MgCl2,10 HEPES,10 glucose,pH7.4withNaOH.Attheend of theFura-2AM-loadingperiod,thecoverslipwasintroducedinto a microscope chamber onthe stageof an inverted microscope (Axiovert 200, CarlZeiss, Jena, Germany) equippedwitha 20× or 40× objectives. Cells were washed twice with the control buffermedium,andmaintainedinthesamesolutionthroughout the experiment. Fluorescence measurements were performed at room temperature by means of a digital imaging system composedof MicroMax 512BFT cooled CCD camera (Princeton Instruments,Trenton,NJ,USA),LAMBDA10-2filterwheel(Sutter Instruments,Novato,CA,USA)connected toaxenonlamp, and Meta-Morph/MetaFluor Imaging System software (Universal Imaging,WestChester,PA,USA).Pairsofimages(excitationat340 and380nm)ofFura-2fluorescenceintensityweremeasuredevery 1s;backgroundfluorescencewassubtractedineachexperiment. Fluorescencevalueswereconvertedto[Ca2+]

iusingacalibration curve,asdescribed[34].

Statisticalanalysis

Alldataareshownasmean±S.E.M.Unlessstatedotherwise, comparisonbetweengroupswasmadeusingtheStudent’spaired orunpairedt-test,asnecessary.Theanalysisofone-wayvariance (ANOVA)followedbytheNewman–Keulstestwasperformedto assesssignificanceamongmultipleexperimentalgroups.APvalue <0.05wasconsideredasstatisticallysignificant.

Results

LeptinprotectsratcorticalneuronsagainstNMDA-induced neurotoxicity

Ratprimarycorticalneuronsexposedfor15mintoincreasing concentrationsofNMDA(30–300␮M;plus10␮Mglycine)showed, overthenext24h,aconcentration-dependentreductionin mito-chondrialfunction,asmeasuredbytheMTTassay(Fig.1A).This

Fig.1.LeptinreducesNMDA-inducedneuronaldeathinratcorticalneuronsin

vitro.(A)Mitochondrialfunction,measuredasMTTabsorbance,wasassessed24h

aftera15-minexposuretotheindicatedconcentrationsofNMDAintheabsenceor

presenceoftheNMDA-antagonistMK801.(B)Timecourse(15–360min)and

con-centrationdependence(10,30,100ng/ml)ofleptineffectonneurotoxicity,induced

by100␮MNMDA.Dataareexpressedaspercentageofleptin-induced

neuroprotec-tionrelativetocontrols(100␮MNMDA,noleptintreatment).(C)Neuronaldeath

wasquantifiedbymeasuringtheuptakeofpropidiumiodide(PI)in12DIVneuronal

culturesafter24hexposuretothefollowingexperimentalconditions:control,

lep-tin(2hpreincubationat30ng/ml),NMDA(15minat100␮M),leptin(30ng/ml,

2hpreincubation)followedbyNMDA(15minat100␮M).PIfluorescencedataare

expressedaspercentofPI-positivecellsofthetotalcellpopulation(countedinthe

correspondingbrightfieldimages)ineachmicroscopicfield.Eachdatapointisthe

mean±S.E.M.ofatleastthreeseparateexperiments.Theasteriskdenotes

statisti-caldifferencewithP<0.05.(Forinterpretationofthereferencestocolorintext,the

readerisreferredtothewebversionofthearticle.)

effect wasentirely prevented upon co-exposure withthe non-competitiveNMDAreceptorantagonistMK-801(10␮M)(P=0.78 versuscontrol).Exposureto100␮MNMDAresultedin approxi-mately40%reductionin mitochondrialMTT-reducingpotential; thisconcentrationwasusedinallsubsequentexperiments.

Leptin(10–100ng/ml),whenappliedonlyduringthe15minof NMDAexposure,didnotsignificantlyenhancecellsurvival(Fig.1B, whitebars).Bycontrast,whenleptinexposurewasstartedbefore theNMDAinsultandkeptthroughout,significantneuroprotective effectsoccurred;inparticular,leptinpre-treatmentfor2hbefore NMDAapplicationelicitedrobust(about60%)anddose-dependent neuroprotection(Fig.1B,redbars).Shorter(15min,bluebars)or longer(6h,greenbars)pretreatmentdurationscausedmuchless intenseneuroprotectiveeffects(Fig.1B).Inneuronsnotexposedto

(4)

NMDA,leptinhadnosignificanteffectonMTTreduction(datanot shown).

Since 30ng/ml was the lowest leptin concetration exerting maximalcytoprotectiveeffects whenpre-incubated for2h, this adipokineconcentrationandthispreincubationtimewerechosen toassessleptin-inducedneuronalprotectionbyanindependent method,namelyPIincorporation.AsshowninFig.1C,the expo-sure of cortical neurons for 15minto 100␮M NMDA resulted inabout40%ofPI-positiveneuronsafter24h;2hofleptin pre-treatmentsignificantly reduced NMDA-induced neuronal death (P<0.05versusNMDAalone).AspreviouslydescribedfortheMTT assay,leptinfailedtomodifyPIincorporationintheabsenceofthe neurotoxicstimulus(Fig.1C).

ThepharmacologicalmodulationofBKchannelsinterfereswith leptin-inducedneuroprotection

ToinvestigatetheroleofBKchannelsinleptin-induced neu-roprotection during NMDA exposure, the effect of BK channel modulatorsinthisinvitromodelweretested.BothnaturalBK chan-nelblockerspaxilline(Pax; 0.01–1␮M;Fig.2A)and iberiotoxin (Ibtx;1–100nM;Fig.2B)reversedleptin-inducedneuroprotection inadose-dependentmanner;theEC50valueswere38±10nMand 5±2nM,respectively,forPaxandIbtx.Thesevaluesarecloseto thereportedEC50 valuesfor Pax- and Ibtx-inducedBKchannel blockade(about10nMforboth;[35]).Aconcentrationof100nM ofeitherdrugcompletelypreventedleptin-induced neuroprotec-tiveeffectsincorticalneuronsexposedto100␮MNMDA(P=0.25 for Pax; P=0.06 for Ibtx). These results strongly indicated that theactivationofBKchannelsmediatesleptin-induced neuropro-tectiveeffects againstNMDA-induced deathofcorticalneurons invitro.Consistentwiththis,pre-treatmentofthecells(2h)with theBKchannelopenerNS1619(1–30␮M)induceda concentration-dependentprotectionagainstNMDA-inducedexcitotoxicity,with 30␮Mbeingtheconcentrationassociatedwiththehighestlevelof neuroprotection(Fig.2C);higherNS1619concentrationscouldnot beused,astheyprovedtobeneurotoxic(datanotshown). LeptinfailstoexertneuroprotectiveeffectsagainstNMDA-induced excitotoxicityinSlo1+/−andSlo1−/−mouseneuronalcultures

To provide furtherevidence for the role of BK channels in leptin-mediatedneuroprotection,theeffectsofthisadipokinewere studiedinprimarycorticalneuronsderivedfromBL6wild-type mice (Slo1+/+) and mice heterozygous (Slo1+/−) or homozygous (Slo1−/−)foradeletionoftheSlo1gene,encodingthepore-forming ␣subunitofBKchannels[30].Single-brainculturesfrommouse embryoswereexposedtoNMDAin thepresence orabsenceof leptin.NMDA(100␮M)exposuresimilarlyimpairedmitochondrial functionincorticalneuronsfromSlo1+/+,Slo1+/−,andSlo1−/−mice (P=0.12;Fig.3).InNMDA-exposedcorticalculturesfromwild-type mice,leptin(30ng/ml;2hpreincubation)elicitedneuroprotective effectswhoseextent(about60%)wasidenticaltothatpreviously describedinratcorticalneurons(seeFig.1).Inaddition,as pre-viouslyshownforratneurons,leptin-inducedneuroprotectionin wild-typemousecorticalneuronswasfullyantagonized byPax (1␮M)orIbtx(100nM).Bycontrast,leptin(30ng/ml;2h preincu-bation)failedtodisplayanysignificantneuroprotectiveeffectsin corticalneuronsfromSlo1+/−(P=0.19versuscontrol,NMDA-only exposedneurons)orSlo1−/−mice(P=0.70versuscontrol, NMDA-onlyexposedneurons).

Leptin-inducedincreasein[Ca2+]

iinmousecorticalneurons

Toinvestigatethemechanism(s)bywhichleptinactivatedBK currents,[Ca2+]

iweremonitoredinleptin-exposedmousecortical

Fig.2. EffectofBKchannelmodulatorsonleptin-inducedneuroprotectioninrat

corticalneurons.(AandB)Concentration-dependenteffectoftheBKblockers

pax-illine(A,Pax)andiberiotoxin(B,Ibtx)onleptin-inducedneuroprotectionof100␮М

NMDA-inducedneuronaldeath.(C)Concentration-dependenteffectoftheBK

chan-nelactivatorNS1619onNMDA-inducedneuronaldeath.Ineachpanel,thebarson

theleftindicatethedrugexposureprotocol.Neuronalviabilitywasmeasured24h

aftertheinsultwiththeMTTassay.Dataareexpressedaspercentageofneuronal

viabilityinuntreated,controlneurons.Eachdatapointisthemean±S.E.M.offive

separateexperiments,eachperformedintriplicate.Asterisksdenotevalues

statisti-callydifferentfromrespectivecontrols(NMDAalone;P<0.05).(Forinterpretation

ofthereferencestocolorintext,thereaderisreferredtothewebversionofthe

article.)

neurons.AsshowninFig.4A,leptin(30ng/ml)inducedtransient increasesin[Ca2+]

iinabout70%ofcells,triggeringanoscillatory pattern.Noeffecton[Ca2+]

iwasobserveduponvehicleperfusion. In most cells, [Ca2+]

i oscillations appeared soon after leptin application,althoughinafewcellstransientincreasesin[Ca2+]

i werespreadovertheentiredurationofleptinexposure(8min). Fig.4Bshowsasummaryofthedose-dependenteffectsofleptin (10–100ng/mL)on[Ca2+]

i.

Discussion

Theadipokineleptinhasafirmlyestablishedroleinpromoting appetitesuppressionandenergyexpenditure.Inadditionto appeti-tivebehaviors,leptinisalsoknowntoexertneuroprotectiveeffects

(5)

Fig.3.Leptin-mediatedneuroprotectionfromNMDA-inducedinjuryisdependentonSlo1geneexpression.Viabilityofcorticalneuronsisolatedfromwild-type(Slo1+/+;

red),heterozygous(Slo1+/−;blue)orhomozygous(Slo1−/−;lightblue)Slo1knockoutmouseembryos;neuronswerepre-incubatedwith30ng/mlleptinfor2hbefore

15-mintreatmentwith100␮MNMDA.NeuronalviabilitywasmeasuredwiththeMTTassay24haftertheinsult;neuronalviabilityisexpressedaspercentofthecontrols

(correspondingtountreatedneuronsfromeachexperimentalgroup).TheBKchannelblockerspaxilline(Pax,1␮M)andiberiotoxin(Ibtx,100nM)wereappliedtowild-type

neuronsasdescribedinFig.2.Dataaremean±S.E.M.ofthreeindependentexperiments,eachperformedintriplicate.Theasteriskdenotesavaluestatisticallydifferentfrom

therespectivecontrol(NMDAalone;P<0.05).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

inseveralinvitroandinvivomodelsofneurotoxicity[13].Inthe presentstudywedemonstratedthatleptinexertssignificant neu-roprotectioninaninvitromodelofratandmousecorticalneurons excitotoxicitytriggeredbyexposuretoNMDA.Leptin-induced neu-roprotectionappearedtobestronglydependentonthe concentra-tionandthetimingofexposure:significantneuroprotectiveactions wereonly observedwhentheadipokinewasapplied2hbefore

Fig.4.Effectofleptinon[Ca2+]

iincorticalneurons.(A)Vehicle-(blacktrace)or

leptin(30ng/ml;bluetrace)-inducedchangesinFura-2measured[Ca2+]

iin12

DIVmousecorticalneurons.Thebarontopofthegraphcorrespondstothe

dura-tionofvehicleorleptinexposure.(B)Concentrationdependenceofleptin-induced

enhancementofpeak[Ca2+]

i.Eachbaristhemean±S.E.M.ofthedatafrom65cells

recordedinthreedifferentexperimentalsessions.Theincreaseof[Ca2+]

iwas

cal-culatedas%ofincreaseofmeanpeakamplitudeoverbasallevel.*P<0.05versus

vehicle-exposedneurons;**P<0.05versusvehicle-exposedneuronsandversus

10ng/mlleptin-exposedneurons.(Forinterpretationofthereferencestocolorin

thisfigurelegend,thereaderisreferredtothewebversionofthearticle.)

thetoxicinsult,whileleptinwaslargelyineffectiveaftershorteror longerincubationtimes.Bycontrast,leptinachievedsimilar neuro-protectiveeffectsincorticalneuronsexposedinvitrotooxygenand glucosedeprivation(OGD)whenapplied15minbeforeor180min aftertheneurotoxicstimulus[14],suggestingthatthe neuropro-tectivemechanismstriggeredbyleptinduring OGDandNMDA displayeda differentialtime dependence.Interestingly,Pax and Ibtx,twowell-knownBKchannelinhibitors,completely counter-actedleptin-inducedneuroprotection;bothdrugsdisplayedEC50s inthelownanomolarconcentrationrange,consistentwiththeir BKchannelblockingactions[35],andsuggestingthatBKchannel openingisacrucialmechanismforleptin-inducedneuroprotection duringNMDAexposure.Consistentwiththis,theprototypicalBK channelopenerNS1619,similarlytoleptin,alsopromoted neuro-protectiveeffects;however,theselectivityofthiscompoundforBK channelshasbeenquestioned[36],andadditionalmolecular mech-anismssuchastheinhibitionofvoltage-dependentCa2+channels

[37],voltage-dependentK+channels,andK

ATPchannels[38]have beencalledintoplaytoexplainNS1619-inducedneuroprotection. BMS-204352,anopenerofBKandKv7potassiumchannels[39–41], alsoshowedstrongneuroprotectiveeffects inanimalmodelsof cerebralischemia[28],andattenuatedcerebraledemaand neuro-logicmotorimpairmentaftertraumaticbraininjury[29],although itfailedtoshowsuperiorefficacycomparedtoplaceboinacute strokepatients[42].Inkeepingwiththeneuroprotectiveroleof BKchannels,BKchannelblockersaggravatedneuronaldamagein ischemichippocampalorganotypiccultures[43].

BKchannels are tetramers of pore-forming Slo1␣ subunits encodedbytheKcnma1gene.Slo1subunitscanassemblewith dis-tinctauxiliary␤subunits(␤1–␤4),inatissue-specificmanner;such anassociationsignificantlymodifiesthebiophysicaland pharma-cologicalpropertiesofBKchannels[44–46].Tofurthersubstantiate theinvolvement of BKchannels in leptin-mediated effects, we investigatedtheneuroprotectiveactionsofthisadipokinein neu-rons from mice carrying a deletion of exon 1 of the Kcnma1 locus[30].Theresultsobtainedshowedthatleptinaffordedstrong neuroprotectiononlyincorticalneuronsfromwild-typeanimals, whereashomozygousknockoutmicefortheSlo1genewerefully resistanttoleptineffects;corticalneuronsfromheterozygousSlo1 knockoutmicewerealsoinsensitivetoleptin.Thesedataconfirm thatBKchannelsarecrucialmediatorsofleptin-induced neuro-protection; moreover,the fact that even a partial reduction in functionalBKchannels(suchasthatpredictedtooccurinSlo1+/− heterozygousanimals)ablatesleptineffects,suggeststhatatight

(6)

controlofBKchanneldensityisrequiredforneuronalprotection bythisadipokine.Noteworthy,intheseexperiments,despitethe dramaticdifferenceinleptinsensitivity,NMDAtreatmentfailedto inducegreatertoxicityincorticalneuronsfromSlo1−/−orSlo1+/− animalswhencomparedtoSlo1+/+neurons,aresultconsistentwith thelackofpotentiationofNMDA-inducedtoxicityinSlo1+/+ neu-ronsbyBKblockersfoundinthepresentexperiments.Theseresults suggestthatBKchannels,thoughinvolvedinleptin-induced pro-tection,donotmediateNMDA-induceddamage.Bycontrast,Liao etal.[47]showedgreaterneurotoxicitybyintra-cerebralinjection ofNMDAinSlo1–/–micewhencomparedtoSlo1+/+mice;however, itshouldbeemphasizedthat,inourinvitromodel,theextracellular concentrationsofendogenousglutamateareunlikelytoachievethe highneurotoxiclevelsobservedintheintacttissueinvivoduring NMDA-inducedneurodegeneration.

Inattempttoinvestigatethemechanism bywhichBK chan-nels participatedin leptin-inducedneuroprotection, westudied bysingle-cell[Ca2+]

iimagingwhetherleptininducedchangesin [Ca2+]

i. When used at concentrations similar to those trigger-ingneuroprotection(30–100ng/ml),leptinwasfoundtoinduce transient increases in [Ca2+]

i in cortical neurons, in most cells appearingshortlyafterleptinexposure.Althoughthisresultclearly suggeststhatacuteleptinapplicationenhances[Ca2+]

i,the molec-ular mechanism by which leptin-mediated increase in [Ca2+]i affects BKchannelproperties is yetunknown.Directactivation seemsunlikely,giventhat[Ca2+]

ichangeslargerthanthoseherein observed are required to directlyenhance BK currents [48]. In support of this view, patch-clamp experiments performed in bothmousecorticalneuronsandinHEK293-Tcellsconstitutively expressingleptinreceptors[49]andtransfectedwithSlo1 chan-nels failed to demonstrate a direct current enhancement after few(10–15)minofleptin(30ng/ml)application(datanotshown). Thus,alsoconsideringthe2htimelagbetweenleptinexposureand neuroprotection,itseemslikelythatleptin-inducedsub-threshold [Ca2+]

ichallengemayupregulateBKcurrentactivityviaanindirect mechanism.

Leptin-inducedBKchannelactivationinneuronshasbeenfirst proposedbyShanleyetal.[5,6]toexplaintheabilityofthis hor-monetoinhibithippocampalneuronexcitability.However,inthese studies, despite similar slow kineticsand apparentincrease in [Ca2+]

isensitivityofBKchannels,leptinfailedtoincrease[Ca2+]i; rather, it wassubsequently proposed that phosphatidylinositol 3-kinase(PI3K)wasinvolvedinBKcurrentactivationbyleptin, aneffectconsequenttotheabilityofthis enzymetoalter actin dynamics,andtoclusterandactivateBKchannelsintheneuronal membrane[7].However,leptin-inducedchangesin[Ca2+]

ihave beendescribedinporcinesomatotropes[50]andinmouse hypo-thalamicastrocytes[51].Moreover,bothstimulatoryandinhibitory effects of leptinon [Ca2+]

i have been reportedin hippocampal neurons [3] and in cerebellar granular cells;while stimulatory effectshavebeenrelatedtotheabilityofleptintofacilitateNMDA receptor-mediatedCa2+influx[52],inhibitoryactionshavebeen largelyascribedtotheinhibitionofvoltage-gatedCa2+channels

[53].Leptin-inducedPI3Kactivationand [Ca2+]

ichanges donot appearasmutually-exclusivephenomena;inmousemacrophages, leptintriggersmigrationbypromoting[Ca2+]

imobilizationandby activatingjanuskinase/signaltransducersandactivatorsof trans-duction(JAK/STAT),mitogen-activatedproteinkinase(MAPK),and PI3Kpathways[54];bycontrast,inHEK293cellsstablyexpressing full-lengthleptinreceptor(OB-Rb),leptininhibitslysophosphatidic acid-inducedintracellularCa2+mobilization,aneffectabrogatedby PI3Kinhibitors[55].

In conclusion, our resultssuggest that leptin-dependent BK channelactivationisa fundamentalstepintheneuroprotective effects triggered by this adipokine against NMDA-induced cor-tical neuronal degeneration. This cellularmechanism seemsto

render cortical neuronsmore “tolerant” to a neurotoxic insult. Thus,despiteafairlyrigidtimeframeforleptin-induced neuro-protection,onecanspeculatethatleptin-inducedcellulareffects, suchasanenhanced[Ca2+]

iavailability,couldactasalong-lasting preconditioningevent.Furtherworkwillbeneededtodecipher themolecularpathwaysbywhichtheobservedoscillatory[Ca2+]

i behaviortriggeredbyleptinrendersneuronsresistanttothe sub-sequentneurotoxic stimulus,and to setonfirmer grounds the potentialutilityofleptininthepreventionand/ortreatmentof neurodegenerativedisorders.

Conflictofinterest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Acknowledgements

The present study was supported by grants from Telethon (GGP07125),theFondazioneSanPaolo–IMI(ProjectNeuroscience 2008.1155),RegioneMolise(ConvenzioneAIFA/RegioneMolise), andPRIN2009(MT),andbytheGermanResearchFoundation,DFG FOR1738(toSHH,TH,MB).

References

[1]HalaasJL,GajiwalaKS,MaffeiM,CohenSL,ChaitBT,RabinowitzD,etal. Weight-reducingeffectsoftheplasmaproteinencodedbytheobesegene.Science 1995;269:543–6.

[2]HarveyJ.Leptinregulationofneuronalexcitabilityandcognitivefunction.Curr OpinPharmacol2007;7:643–7.

[3]ShanleyLJ,IrvingAJ,HarveyJ.LeptinenhancesNMDAreceptorfunctionand modulateshippocampalsynapticplasticity.JNeurosci2001;21:RC186.

[4]OomuraY,HoriN,ShiraishiT,FukunagaK,TakedaH,TsujiM,etal. Lep-tinfacilitateslearningandmemoryperformanceandenhanceshippocampal CA1long-termpotentiationandCaMKIIphosphorylationinrats.Peptides 2006;27:2738–49.

[5]ShanleyLJ,IrvingAJ,RaeMG,AshfordML,HarveyJ.Leptininhibitsrat hip-pocampalneuronsviaactivationoflargeconductancecalcium-activatedK+

channels.NatNeurosci2002;5:299–300.

[6]Shanley LJ, O’MalleyD, Irving AJ,Ashford ML, HarveyJ. Leptininhibits epileptiform-likeactivityinrathippocampalneuronsviaPI3-kinase-driven activationofBKchannels.JPhysiol2002;545:933–44.

[7]O’MalleyD,IrvingAJ,HarveyJ.Leptin-induceddynamicalterationsintheactin cytoskeletonmediatetheactivationandsynapticclusteringofBKchannels. FASEBJ2005;19:1917–9.

[8]XuL,RensingN,YangXF,ZhangHX,ThioLL,RothmanSM,etal.Leptininhibits 4-aminopyridine- and pentylenetetrazole-induced seizures and AMPAR-mediatedsynaptictransmissioninrodents.JClinInvest2008;118:272–80.

[9]DicouE,AttoubS,GressensP.Neuroprotectiveeffectsofleptininvivoandin vitro.Neuroreport2001;12:3947–51.

[10]ZhangF,WangS,SignoreAP,ChenJ.Neuroprotectiveeffectsofleptinagainst ischemicinjuryinducedbyoxygen–glucosedeprivationandtransientcerebral ischemia.Stroke2007;38:2329–36.

[11]WengZ,SignoreAP,GaoY,WangS,ZhangF,HastingsT,etal.Leptinprotects against6-hydroxydopamine-induceddopaminergiccelldeathvia mitogen-activatedproteinkinasesignaling.JBiolChem2007;282:34479–91.

[12]GuoZ,JiangH,XuX,DuanM,MattsonMP.Leptin-mediatedcellsurvival signalinginhippocampalneuronsmediatedbyJAKSTAT3andmitochondrial stabilization.JBiolChem2008;283:1754–63.

[13]SignoreAP,ZhangF,WengZ,GaoY,ChenJ.LeptinneuroprotectionintheCNS: mechanismsandtherapeuticpotentials.JNeurochem2008;106:1977–90.

[14]ValerioA,DossenaM,BertolottiP,BoroniF,SarnicoI,FaracoG,etal.Leptinis inducedintheischemiccerebralcortexandexertsneuroprotectionthrough NF-kappaB/c-Rel-dependenttranscription.Stroke2009;40:610–7.

[15]GavelloD,Rojo-RuizJ,MarcantoniA,FranchinoC,CarboneE,CarabelliV.Leptin counteractsthehypoxia-inducedinhibitionofspontaneouslyfiring hippocam-palneurons:amicroelectrodearraystudy.PLoSONE2012;7:e41530.

[16]SpanswickD,SmithMA,GroppiVE,LoganSD,AshfordML.Leptininhibits hypo-thalamicneuronsbyactivationofATP-sensitivepotassiumchannels.Nature 1997;390:521–5.

[17]IraniBG,LeFollC,Dunn-MeynellA,LevinBE.Effectsofleptinonrat ventrome-dialhypothalamicneurons.Endocrinology2008;149:5146–54.

[18]KiefferTJ,HellerRS,LeechCA,HolzGG,HabenerJF.Leptinsuppressionofinsulin secretionbytheactivationofATP-sensitiveK+channelsinpancreaticbeta-cells.

Diabetes1997;46:1087–93.

[19]KnausHG,SchwarzerC,KochRO,EderhartA,KaczorowskiGJ,GlossmannH, etal.Distributionofhigh-conductanceCa2+-activatedK+channelsinratbrain:

(7)

[20]MisonouH,MenegolaM,BuchwalderL,ParkEW,MeredithA,RhodesKJ, etal.ImmunolocalizationoftheCa2+-activatedK+channelSlo1inaxonsand

nerveterminalsofmammalianbrainandculturedneurons.JCompNeurol 2006;496:289–302.

[21]BrennerR,ChenQH,VilaythongA,ToneyGM,NoebelsJL,AldrichRW.BK channelbeta4subunitreducesdentategyrusexcitabilityandprotectsagainst temporallobeseizures.NatNeurosci2005;8:1752–9.

[22]GuN,VervaekeK,StormJF.BKpotassiumchannelsfacilitatehigh-frequency firingandcauseearlyspikefrequencyadaptationinratCA1hippocampal pyra-midalcells.JPhysiol2007;580:859–82.

[23]JinW,SugayaA,TsudaT,OhguchiH,SugayaE.Relationshipbetweenlarge conductancecalcium-activatedpotassiumchannelandburstingactivity.Brain Res2000;860:21–8.

[24]RaffaelliG,SavianeC,MohajeraniMH,PedarzaniP,CherubiniE.BKpotassium channelscontroltransmitterreleaseatCA3–CA3synapsesintherat hippocam-pus.JPhysiol2004;557:147–57.

[25]DirnaglU,SimonRP,HallenbeckJM.Ischemictoleranceandendogenous neu-roprotection.TrendsNeurosci2003;26:248–54.

[26]MartireM,BarreseV,D’AmicoM,IannottiFA,PizzarelliR,SamengoI,etal. Pre-synapticBKchannelsselectivelycontrolglutamateversusGABAreleasefrom corticalandhippocampalnerveterminals.JNeurochem2010;115:411–22.

[27]KentishSJ,O’DonnellTA,IsaacsNJ,YoungRL,LiH,HarringtonAM,etal.Gastric vagalafferentmodulationbyleptinisinfluencedbyfoodintakestatus.JPhysiol 2013;591:1921–34.

[28]GribkoffVK,StarrettJrJE,DworetzkySI,HewawasamP,BoissardCG,CookDA, etal.Targetingacuteischemiastrokewithcalcium-sensitiveopenerofmaxi-K potassiumchannels.NatMed2001;7:471–7.

[29]CheneyJA,WeisserJD,BareyreFM,LaurerHL,SaatmanKE,RaghupathiR, etal.Themaxi-KchannelopenerBMS-204352attenuatesregionalcerebral edemaandneurologicmotorimpairmentafterexperimentalbraininjury.J CerebBloodFlowMetab2001;21:396–403.

[30]MeredithAL,ThorneloeKS,WernerME,NelsonMT,AldrichRW.Overactive bladderandincontinenceintheabsenceoftheBKlargeconductanceCa2+

-activatedK+channel.JBiolChem2004;279:36746–52.

[31]MistríkP,MoreauF,AllenJM.BiaCoreanalysisofleptin-leptinreceptor inter-action:evidencefor1:1stoichiometry.AnalBiochem2004;327:271–7.

[32]ArasMA,HarnettKA,AizenmanE.Assessmentofcellviabilityinprimary neu-ronalcultures.CurrProtocNeurosci2008:18[Chapter7,Unit7].

[33]BosciaF,AnnunziatoL,TaglialatelaM.Retigabineandflupirtineexert neuro-protectiveactionsinorganotypichippocampalcultures.Neuropharmacology 2006;51:283–94.

[34]GrynkiewiczG,PoenieM,TsienRY.AnewgenerationofCa2+indicatorswith

greatlyimprovedfluorescenceproperties.JBiolChem1985;260:3440–50.

[35]Nardi A, Calderone V, Chericoni S, Morelli I. Natural modulators of large-conductance calcium-activated potassium channels. Planta Med 2003;69:885–92.

[36]GáspárT,KatakamP,SnipesJA,KisB,DomokiF,BariF,etal.Delayedneuronal preconditioningbyNS1619isindependentofcalciumactivatedpotassium channels.JNeurochem2008;105:1115–28.

[37]SheldonJH,NortonNW,ArgentieriTM.Inhibitionofguineapigdetrusor con-tractionbyNS-1619isassociatedwithactivationofBKCaandinhibitionof calciumcurrents.JPharmacolExpTher1997;283:1193–200.

[38]EdwardsG,Niederste-HollenbergA,SchneiderJ,NoackT,WestonAH.Ion chan-nelmodulationbyNS1619,theputativeBKCachannelopener,invascular smoothmuscle.BrJPharmacol1994;113:1538–47.

[39]SchrøderRL,JespersenT,ChristophersenP,StrøbaekD,JensenBS,OlesenSP. KCNQ4channelactivationbyBMS-204352andretigabine.Neuropharmacology 2001;44:553.

[40]Schrøder RL, Strøbaek D, Olesen SP, Christophersen P. Voltage-independent KCNQ4 currents induced by (+/−)BMS-204352. Pflügers Arch2003;446:607–16.

[41]DupuisDS,SchrøderRL,JespersenT,ChristensenJK,ChristophersenP,Jensen BS,etal.ActivationofKCNQ5channelsstablyexpressedinHEK293cellsby BMS-204352.EurJPharmacol2002;437:129–37.

[42]JensenBS.BMS-204352:apotassiumchannelopenerdevelopedforthe treat-mentofstroke.CNSDrugRev2002;8:353–60.

[43]Rundén-PranE,HaugFM,StormJF,OttersenOP.BKchannelactivitydetermines theextentofcelldegenerationafteroxygenandglucosedeprivation:astudy inorganotypicalhippocampalslicecultures.Neuroscience2002;112:277–88.

[44]LuR,AliouaA,KumarY,EghbaliM,StefaniE,ToroL.MaxiKchannelpartners: physiologicalimpact.JPhysiol2006;570:65–72.

[45]KingJT,LovellPV,RishniwM,KotlikoffMI,ZeemanML,McCobbDP.Beta2and beta4subunitsofBKchannelsconferdifferentialsensitivitytoacute modula-tionbysteroidhormones.JNeurophysiol2006;95:2878–88.

[46]GhattaS,NimmagaddaD,XuX,O’RourkeST.Large-conductance, calcium-activatedpotassiumchannels:structuralandfunctionalimplications. Pharma-colTher2006;110:103–16.

[47]LiaoY,KristiansenAM,OksvoldCP,TuvnesFA,GuN,Rundén-PranE,etal. Neu-ronalCa2+-activatedK+channelslimitbraininfarctionandpromotesurvival.

PLoSONE2010;5:e15601.

[48]SweetDB,CoxDH.MeasurementsoftheBKCachannel’shigh-affinityCa2+

bind-ingconstants:effectsofmembranevoltage.JGenPhysiol2008;132:491–505.

[49]KellererM,KochM,MetzingerE,MushackJ,CappE,HäringHU.Leptinactivates PI-3kinaseinC2C12myotubesviajanuskinase-2(JAK-2)andinsulinreceptor substrate-2(IRS-2)dependentpathways.Diabetologia1997;40:1358–62.

[50]Glavaski-JoksimovicA,RoweEW,JeftinijaK,ScanesCG,AndersonLL,Jeftinija S.Effectsofleptinonintracellularcalciumconcentrationsinisolatedporcine somatotropes.Neuroendocrinology2004;80:73–82.

[51]HsuchouH,HeY,KastinAJ,TuH,MarkadakisEN,RogersRC,etal. Obe-sityinducesfunctionalastrocyticleptinreceptorsinhypothalamus.Brain 2009;132:889–902.

[52]Irving AJ, Wallace L, Durakoglugil D, Harvey J. Leptin enhances NR2B-mediated N-methyl-d-aspartate responses via a mitogen-activated pro-tein kinase-dependent process in cerebellar granule cells. Neuroscience 2006;138:1137–48.

[53]Jo YH,Chen YJ,Chua Jr SC,TalmageDA,Role LW.Integration of endo-cannabinoidandleptinsignalinginanappetite-relatedneuralcircuit.Neuron 2005;48:1055–66.

[54]GruenML,HaoM,PistonDW,HastyAH.Leptinrequirescanonicalmigratory signalingpathwaysforinductionofmonocyteandmacrophagechemotaxis. AmJPhysiolCellPhysiol2007;293:C1481–8.

[55]EirasS,Cami ˜naJP,Diaz-RodriguezE,GualilloO,CasanuevaFF.Leptininhibits lysophosphatidicacid-inducedintracellularcalciumrisebyaproteinkinase C-dependentmechanism.JCellPhysiol2004;201:214–26.

Riferimenti

Documenti correlati

In conclusion, with her book on lesbian women in Russia, Stella has not only written an interesting research for the scho- lars of Soviet and post-Soviet societies, but

Tuttavia, lo stesso Priore, nello stesso “Libro di Ricordanze”, quando arriva a parlare della traslazione in San Pier Maggiore della sacra immagine della Madonna dei

Here, by combining functional calcium imaging with time-frequency analysis, we have been able to monitor the oscillatory components of neural activity upon olfactory stimulation..

Allo stesso tempo vediamo riflessa nei loro progetti la lettura della città come luogo dell’integrazione sociale, dell’inclusione, della condivisione di spazi,

The proposed solution is currently based on the integration, within a cloud, of different technologies such as AR, VR, Markers, RFIDs, Trackers, Webcams, Cloud

Nell’ambito dell'International Open data day Italia 2014 il DIST ha organizza- to un hackathon dedicato alle tematiche di ricerca, esplorazione e utilizzazio- ne di dati

Data l’importanza e l’impatto delle frodi per sostituzione relative ai prodotti della pesca sull’economia, sull’ambiente e sul diritto e la sicurezza del

The apps monitor is a dynamic component of the proposed framework whose task is to analyze the runtime behavior of a subset of applications deemed as suspicious by the Static