• Non ci sono risultati.

Asymptotic safety in O(N) scalar models coupled to gravity

N/A
N/A
Protected

Academic year: 2021

Condividi "Asymptotic safety in O(N) scalar models coupled to gravity"

Copied!
8
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Asymptotic

safety

in

O

(

N

)

scalar

models

coupled

to

gravity

Peter Labus

a

,

b

,

Roberto Percacci

a

,

b

,

,

Gian

Paolo Vacca

c

aSISSA,viaBonomea265,I-34136Trieste,Italy bINFN,SezionediTrieste,Italy

cINFN,SezionediBologna,viaIrnerio46,I-40126Bologna,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received28May2015 Accepted8December2015 Availableonline14December2015 Editor:G.F.Giudice

We extend recent resultson scalar–tensortheories to the caseof an O(N)-invariantmultiplet.Some exact fixedpointsolutionsoftheRGflowequationsarediscussed. Wefindthatalsointhefunctional context,onemployingastandard“type-I”cutoff,toomanyscalarsdestroythegravitationalfixedpoint. Ford=3 weshowtheexistenceofthegravitationallydressedWilson–FisherfixedpointalsoforN>1. Wediscussalsotheresultsoftheanalysisforadifferent,scalar-free,coarse-grainingscheme.

©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

InthelastyearsmanyeffortshavebeendevotedtostudyingthepossibilityofdefiningUVcompleteQFTswhichmaydescribe gravita-tionalinteractions,possiblyinthepresenceofothermatterfields.SuchaprogramisdefinedwithintheparadigmofAsymptoticSafety[1]

andcanbe seenasa bottom-upapproach whichseeksa consistentextension to UV ofresultsoflow energyeffectivefieldtheories.It isrelatedtotheconstructionofthenon-perturbative RGflowoftheeffectiveaction,whichshouldshowaUVinteractingfixedpoint(in theoryspace)withafinitenumberofrelevantdirections.

Inarecentpaper

[2]

twoofusdiscussedfixed-functionalsolutions inascalar–tensortheorywithactioncontaining apotential V

(φ)

andagenericnon-minimalinteraction

F

(φ)

R.Thesefunctionsweresubjectedtoarenormalizationgroupflowdependingonacutoff k. It was foundthat in genericdimension d theflow equationsforthe dimensionlessfunctions v

(

ϕ

)

=

kdV

(φ)

and f

(

ϕ

)

=

k2−dF

(φ)

of thedimensionlessfield

ϕ

=

k1−d/2

φ

admitsomesimpleexactsolutionswherev

=

v0isconstantand f

=

f0

+

f2

ϕ

2.Thesesolutionscan haveinterestingapplicationstocosmologyind

=

4[3]. Unfortunatelyitseemsthatoneofthesesolutions,with f0 and f2 bothnonzero, doesnotsurvive,atleastinthesameform,when oneapplies the“renormalizationgroupimprovement”,whileanother,whichremains unchangedbythe“renormalizationgroupimprovement”,has f0

=

0 but f2

<

0,makingitsphysicalrelevancequestionable.

Inthispaperweconsiderthecasewhenthereare N scalarfields,withan O

(

N

)

-invariantactionofthegeneralform



ddx

g



V

(φ)

+

1 2



a

(

∇φ

a

)

2

F

(φ)

R



.

(1.1)

Here V and F arefunctionsoftheradialdegreeoffreedom andweusethenotation

φ

=



a

φ

a

φ

a andforthedimensionlessrescaled field

ϕ

=



a

ϕ

a

ϕ

a. (Insection 4 itwill be proved moreconvenient tothink of v and f as functionsof thevariable

ρ

=

ϕ

2

/

2.) The remaining N

1 angulardegreesoffreedomwillbereferredtoastheGoldstonebosons.Oneofthemainresultsofthisnoteshows that inthecasewhenN

>

1 thereexistsalsoanothersolutionwith f0

=

0 and f2

>

0.

Theother mainresultis theconfirmation,on employingastandard cutoffof“type-I”(in theterminologyof[4]), ofthe existenceof anupperboundonthenumberofscalarsinordertoobtainan FPwithpositive f .Suchboundshavebeendiscussedearlierbutonlyfor minimallycoupledfields.Wewillseethattheexistenceofthepotentialandofthenonminimalinteractionsdoesnotsubstantiallychange thepicture.

*

Correspondingauthor.

E-mailaddresses:plabus@sissa.it(P. Labus),percacci@sissa.it(R. Percacci),vacca@bo.infn.it(G.P. Vacca).

http://dx.doi.org/10.1016/j.physletb.2015.12.022

0370-2693/©2015TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

In the same scheme ford

=

3 wealso discuss the existence of a nontrivial gravitationally dressed fixed point andgive a specific solutionforN

=

2.Finallywewillemployanalternativecoarse-grainingschemeinordertotestthescheme-dependenceoftheanalytical scalingsolutions.

2. Flowequations

Fortheconstruction of theflow equations we followthesame steps asin [2], whichwe briefly recall. The calculationis based on thebackgroundfieldmethod,butinsteadoftheusuallinearclassical-background-plus-quantum-fluctuation splitweusean exponential parametrizationforthemetricoftheformgμν

= ¯

gμρ

(

eh

)

ρ

ν .Thishassomeconcretepracticaladvantagesthatwillbementionedlater,but theoriginaltheoreticalmotivationisthatitrespectsthenon-linearnatureofthemetric.Thefluctuationfieldisfurtherdecomposedinto itsirreduciblespin-two,spin-oneandspin-zerocomponentshT Tμν ,

ξ

μ,

σ

andh.Thenonecalculatesthesecondvariationoftheactionwith respecttothefields,whichappearsasacentralingredientintheflowequation.InordertohaveadiagonalHessianwedefinenewscalar fieldsthatinvolveamixtureof

σ

and

φ

.Wethenchooseaverysimple“unimodularphysicalgauge”whichamountssimplytosuppressing thefields

ξ

andh.WedescribebrieflythesestepsintheAppendix.Finallyweintroducea“typeI”cutoff,whichamountstoreplacingall occurrencesof

− ¯∇

2by

− ¯∇

2

+

R

k

(

− ¯∇

2

)

[4].Inparticularwewillusethecutoffprofilefunction Rk

(

z

)

=



k2

z

θ



k2

z

[5].Notethat thiscutoffis“spectrallyadjusted”,inthesensethatitdependsonsomerunningcouplings,andalsodependsexplicitlyonthebackground scalarfield,inadditiontothebackgroundmetric.Laterweshallconsideralsoothertypesofcutoff.

Ingeneraldimensiond andforanynumberofscalars,denotingbyadotthederivativewithrespecttoRGtimet

=

log k,thefullflow equationsare

˙

v

= −dv

+

1 2

(

d

2

)

ϕ

v 

+

c d

(

d

1

)



d2

d

3

d

+

2

+

cd

(

d

2

)(

d

+

1

)

2

˙

f

− (d

2

)

ϕ

f

4

(

d

+

2

)

f

+

cd 2



d2

4

f

+ (

d

2

)



1

+

v

2

˙

f

6 f

− (

d

2

)

ϕ

f

+

4

(

d

1

)

f

2

˙

f

+ (

d

1

)

f

− (

d

2

)

ϕ

f

2

(

d

+

2

)

2

(

d

1

) (

f

)

2

+ (

d

2

)

f

(

1

+

v

)

+

cd

(

N

1

)

ϕ

ϕ

+

v

(

ϕ

)

(2.1)

˙

f

= (

2

d

)

f

+

1 2

(

d

2

f 

c d d6

2d5

15d4

46d3

+

38d2

+

96d

24 12

(

d

+

2

) (

d

1

)

d (2.2)

cd



d5

17d3

60d2

+

4d

+

48

2

˙

f

− (d

2

)

ϕ

f

48

(

d

1

)

d

(

d

+

2

)

f

cd

(

d

2

)

f f

+

2 f2

×

×

(

d

2

)(

d

+

2

)

f 2

+ (

d

1

)

f2

(

d

2

f

2

˙

f

+

2

(

d

1

)

f f

(

2

d

)

ϕ

f

+ (

d

+

2

)

f

+

2

˙

f

(

d

+

2

)

f

2

(

d

1

) (

f

)

2

+ (

d

2

)

f

(

v

+

1

)

2

+

cd f

(

d

2

)

ϕ



4

(

d

1

)

f

+ (

d

2

)



v

+

1

8

(

d

1

) ˙

f

+

2

(

d

2

)

d f v

− ˙

f



v

+

1

24

2

(

d

1

) (

f

)

2

+ (d

2

)

f

(

v

+

1

)

cd d

(

N

1

)

ϕ

12

(

ϕ

+

v

(

ϕ

))

cd

(

N

1

)

ϕ

f

(

ϕ

)

(

ϕ

+

v

(

ϕ

))

2 (2.3)

wherecd−1

= (

4

π

)

d/2

(

d

/

2

+

1

)

.Theonlydifference betweenthecase N

=

1 discussedin

[2]

andthecaseofgeneral N isthe addition tothebetafunctionals ofv and f of thecontributionoftheGoldstonemodes, whichcanbe easily identifiedby thefactorN

1.The “RG-unimproved”or“one-loop”flowequationscanbeobtainedbyreplacinginther.h.s.

˙

f

→ −(

d

2

)

f

+

d

2 2

ϕ

f 

;

˙

f

→ −

d

2 2 f 

+

d

2 2

ϕ

f 

,

(2.4)

whichisequivalenttosettingF and

˙

F

˙

tozerointheequationforthedimensionfulfunctionsV andF .

3. Scalingsolutions

Welistheresomesimpleanalyticsolutionsthatexistinanydimension.Makingtheansatzthat v and f arebothconstantleads toa fixedpoint FP1.Usingthesimple,unimprovedequations,ithasthefollowingcoordinates:

v

=

cd

(

d

1

)(

d

2

)

2d

+

N

1 d

,

(3.1) f

= −

cd d5

4d4

7d3

50d2

+

60d

+

24 24d

(

d

1

)(

d

2

)

cd

(

N

1

)

d 12

(

d

2

)

.

(3.2)

(3)

Wenotethatthefirstfractionin fispositiveford

<

6

.

17.ThusforN

=

1 thisisanupperboundonthedimensiondictatedbypositivity ofNewton’sconstant.Havingadditionalscalarslowersthisbound.TheboundbecomeslowerthanfourbetweenN

=

11 andN

=

12.Thus, thefixedpoint hasnegative Newton’sconstantwhentherearemorethan 11 scalars,aresultthatisinrough agreementwithprevious calculations

[6]

thatalsousedasimilarcutoff.

IfweincludetheRGimprovementthecoordinatesofFP1changeto:

v

=

cd

(

d2

1

)(

d

2

)

d

(

d

+

2

)

+

N

1 d

,

(3.3) f

= −c

d d6

2d5

15d4

46d3

+

38d2

+

96d

24 12d

(

d

1

)(

d2

4

)

cd

(

N

1

)

d 12

(

d

2

)

.

(3.4)

Now,for N

=

1 positivityofNewton’sconstantrequiresd

<

5

.

73,andtheboundbecomeslower thanfourbetweenN

=

14 and N

=

15. Thus,thefixedpointhasnegativeNewton’sconstantwhentherearemorethan14 scalars.

Ifwe make theansatz that v is constant and f is ofthe form f0

+

f2

ϕ

2, there isa solutionFP2 forthe unimproved fixed point equations v

=

cd

(

d

1

)(

d

2

)

2d

+

N

1 d

,

(3.5) f

(

ϕ

)

=

cd

d5

4d4

7d3

50d2

+

84d

+

24 24d

(

d

1

)(

d

2

)

(

N

1

)(

d2

d

+

12

)

12

(

d

1

)(

d

2

)

+

ϕ

2 2

(

d

1

)

.

(3.6)

Weobservethatwhile f2 isalwayspositive, f0becomesnegativewheneitherd orN becometoolarge.ForexampleforfixedN

=

2 this happensatd

5

.

8 andforfixedd

=

4 thishappensforN

5

.

6.Thesolutionisprobablyunphysicalinthesecases.

The sameansatz doesnot yield a solution forthe improvedequations. Wesuspect that theremay be asolution withvery similar propertiesbutdifferentfunctionalform.Thesearchofsuchgeneralizationisbeyondthescopeofthispaper.

Ifwemaketheansatzthatv isconstantand f isproportionalto

ϕ

2 (i.e.that f0

=

0),thefixedpointequationisquadraticandadmits tworealsolutionsFP3andFP4.Theyarethesamefortheimprovedandunimprovedflowequations.Theexpressionsforarbitraryd are quitelong,soweonlygiveheretheformulaeford

=

3

v

=

N 18

π

2

,

f

= −

9N

80

±

9N2

264N

+

5296 96

(

N

1

)

ϕ

2 (3.7) andford

=

4 v

=

2

+

N 128

π

2

,

f

= −

6N

41

±

4N2

100N

+

1321 48

(

N

1

)

ϕ

2

,

(3.8)

wheretheuppersigncorrespondstoFP3andthelowersigncorresponds toFP4.WenotethatFP3hasafiniteN

1 limit,whileinthe caseofFP4thereisadivergence.InfactforN

=

1 thefixedpointFP3hadalreadybeenseenin

[2]

,butFP4doesnotexistinthat case. Imposingthat f

>

0 wefindthatFP3isalwaysunphysicalwhileFP4isacceptablefor0

<

N

<

15

.

33 ind

=

3 and1

<

N

<

11

.

25 ind

=

4.

4. Large-N limit

All the solutions described in the previous section have the property that the function f is not positive ifthe number of scalars exceedsacertainlimit.Inordertoconfirmthatthisbehaviorpersistsweconsiderherethelarge-N limitoftheflow.Itisveryconvenient to change variable anduse

ρ

=

ϕ

2

/

2 as the argument ofthe functions v and f . It is easy to see that in the large-N limit both the potentialsv and f aswellas

ρ

scalelinearlyin N.Inparticularinsuchalimittheflowequations,intermsofallthequantitiesalready rescaledbyN,readsimply

˙

v

= −dv

+ (d

2

)

ρ

v

+

cd 1

+

v

˙

f

= −(

d

2

)

f

+



(

d

2

)

ρ

cd

(

1

+

v

)

2



f

d 12 cd 1

+

v (4.1)

Thefixed pointequation forthescalarpotential v isthesameasinflatspace. Thereisasolution witha constantpotential v and one withanontrivialonewhichisknownanalytically

[7]

.InthefirstcasethesolutiontoEqs.(4.1)isgivenby

v

=

cd d

,

f

= −



d 12

(

d

2

)

cd

+

2a



+

2ad

2 cd

ρ

,

(4.2)

wherea isa constant ofintegration.Forsuch aline offixedpoints it isclearthat, ford

>

2 and foranyvalue ofa, thefunction f is unphysicalsinceeithertheconstantpartorthecoefficientof

ρ

arenegative.

Inordertodealwiththesecondcasewiththenontrivial solutionforv,itsequationisbestwritten,ford notaneveninteger,interms ofw

(

ρ

)

=

v

(

ρ

)

intheimplicitform

ρ

=

cd d 42F1



2

,

1

d 2

;

2

d 2

; −

w



(4.3)

(4)

ThereforethescalarsectorpresentstheWilson–Fisher typeglobalscalingsolutionfor2

<

d

<

4.Alsothefixedpointequationfor f can befurthersimplifiedintermsofw anddefininganewfunction g

(

w

)

=

f

(

ρ

)

onehas

0

= −(

d

2

)

g

+

2w g

d 12

cd

1

+

w (4.4)

whichcanbesolvedanalyticallyandgivestheimplicitsolution:

f

(

ρ

)

=

g

(

w

)

= −

d cd 12

(

d

2

)

2F1



1

,

1

d 2

;

2

d 2

; −

w



(4.5) which is always negative for d

>

2 and therefore such a fixed point for 2

<

d

<

4 appears in the large N limit to lead to negative gravitationalinteractionsinthecurrentformulation.Wealsonotethatintheasymptoticregion

ρ

→ ∞

onehas f

(

ρ

)

= −

3d(d22)

ρ

.

5. Stabilityanalysis

Wediscussherethelinearizationoftheflowind

=

4 aroundthefixed pointFP1.Webeginwiththesimpler“RG-unimproved”case, whichyieldsthefollowinglinearizedequations:

0

= −(λ +

4

v

+



ϕ

N

1 32

π

2

ϕ



δ

v

1 32

π

2

δ

v (5.1) 0

= −(λ +

2

f

+



ϕ

N

1 32

π

2

ϕ



δ

f

+

N

1 96

π

2

ϕ

δ

v

+

1 96

π

2

δ

v

1 32

π

2

δ

f (5.2)

Inthiscasethecriticalexponentsareequaltotheirclassicalvalues:

θ

1

=

4

,

wt1

= (δ

u

, δ

f

)

1

= (

1

,

0

)

θ

3

=

2

,

wt3

= (δ

u

, δ

f

)

3

= (

0

,

1

)

θ

5

=

0

,

wt5

= (δ

u

, δ

f

)

5

=



0

,

N 32

π

2

+

ϕ

2



(5.3)

The solution FP1 for the full fixed point equations in d

=

4 has coordinates

v

=

N+4 128π2

,

f

=

169−12N 2304π2

. Linearizing the full flow equationsaroundthissolutionwegettheeigenvalueequationsfortheeigenperturbations:

0

= −(λ +

4

v

+

72

λ

169

12N

δ

f

+



ϕ

N

1 32

π

2

ϕ



δ

v

+

72

ϕ

12N

169

δ

f 

1 32

π

2

δ

v 0

=



3

λ(

45

4N

)

12N

169

2



δ

f

+



3

(

4N

45

)

ϕ

12N

169

N

1 32

π

2

ϕ



δ

f

+

N

1 96

π

2

ϕ

δ

v

+

1 96

π

2

δ

v

1 32

π

2

δ

f (5.4)

Wecanstudythespectrumoftheleadingeigenvaluesanalytically.WefindfourrelevantandonemarginaldirectionforN

<

454,while for 454

<

N

<

16912 thereareonlytworelevantandonemarginaldirections,since

θ

2and

θ

4 becomenegative.Inparticular

θ

1

=

4

,

v

, δ

f

)

1

= (

1

,

0

)

θ

2

=

2

+

68 3

(

45

4N

)

,

v

, δ

f

)

2

=



72 12N

101

,

1



θ

3

=

2

,

v

, δ

f

)

3

=



29N 544

π

2

+

ϕ

2

,

N

(

169

12N

)

3264

π

2



θ

4

=

68 3

(

45

4N

)

,

v

, δ

f

)

4

=



3N

(

48N

(

3N

76

)

+

22475

)

16

π

2

(

4N

45

)(

6N

59

)(

12N

101

)

+

72 12N

101

ϕ

2

,

N

(

12N

169

)(

12N

125

)

96

π

2

(

4N

45

)(

12N

101

)

+

ϕ

2



θ

5

=

0

,

v

, δ

f

)

5

=



29N

(

N

+

2

)

17408

π

4

29

(

N

+

2

)

272

π

2

ϕ

2

+

ϕ

4

,

N

(

N

+

2

)(

12N

227

)

52224

π

4

(

N

+

2

)(

12N

169

)

1632

π

2

ϕ

2



(5.5) Wenotethattheeigenvaluescomeingroupswithinwhichtheyareshiftedbytwo.Thisbehaviorhadalreadybeenobservedandexplained in

[8]

.

(5)

Fig. 1. Themaximalvalueofthefieldreachedinthenumericalevolutionbeforeencounteringasingularity,asafunctionoftheinitialconditionsv=0)and f=0), forthecased=3 andN=1 (leftpanel)andN=2 (rightpanel).Aclearspikecanbeseeninthecenterofeachfigure.

6. ThegravitationallydressedWilson–Fisherfixedpoint

In

[2]

welookedforscalingsolutionsind

=

3 withapotentialresemblingthat oftheWilson–Fisherfixedpoint.Weconcentratedon theunimproved equations, andfound a solutionforsufficiently small

ϕ

whose potential is almost indistinguishablefromthe Wilson– Fisher potential, and witha function f that starts out positive at

φ

=

0 buthas negative second derivative, such that it crosseszero atsomecriticalvalue

ϕ

0

.

92.The analysisofthesolutionbeyondthiscriticalvalueproved hardandwe wereunable toestablishits globalexistence.Perhapsmoreimportant,theHessianbecomesill-definedatthecriticalpoint,sothattheequationsthemselvesbecome unreliable. Alittlelater, usingmorepowerfulnumericaltechniques,a globalsolution wasfound fortheimprovedRGequation

[9]

. The fixed pointpotential forthissolution isagainvery similar tothe Wilson–Fisher potential,butthe function f nowhas positivesecond derivativeandispositiveeverywhere,avoidingtheissuesmentionedabove.Withhindsightthissolutioncanbeseenalsowiththesimpler techniquesusedin

[2]

,suchasTaylorexpansionandtheshootingmethod.Neartheoriginithastheexpansion

v

=

0

.

00935540

0

.

0292660

ϕ

2

+

0

.

00359119

ϕ

4

+

1

.

14530

ϕ

6

+ · · ·

f

=

0

.

0686040

+

0

.

172245

ϕ

2

0

.

132631

ϕ

4

+

0

.

390317

ϕ

6

+ · · ·

We havelooked forgeneralizations ofthis solutionfor N

>

1. Treating N as a continuous variable,candidate scaling solutions canbe foundwiththeshootingmethod.In

Fig. 1

weshow,asanexample, thecasesN

=

1 andN

=

2.Aspiralingstructureappearsclosetothe fixedpointwhichischaracterizedbyaverysharprelativepeak.

ForN

=

2 thesolutioncanbeapproximatedneartheoriginby

v

=

0

.

0146691

0

.

00148208

ϕ

2

0

.

438516

ϕ

4

+

4

.

35302

ϕ

6

+ · · ·

f

=

0

.

053294

+

0

.

26337

ϕ

2

0

.

570919

ϕ

4

+

1

.

43572

ϕ

6

+ · · ·

Theshapeofthepotential v showsthatthescalingsolutionischaracterized byabrokenphase. Theasymptoticbehaviorofthesolutionforlarge

ϕ

is

uas

(

ϕ

)

=

A

ϕ

6

+

23 1440

π

4B

ϕ

2

+

240

π

4B2

(

16B

+

5N

4

)

1357 A 216000

π

6A B2

ϕ

4

+ · · ·

fas

(

ϕ

)

=

B

ϕ

2

+

23 36

π

2

+

1219 25920

π

4B

ϕ

2

71921 A

+

2160

π

4B2

(

16B

+

5N

4

)

4665600

π

6A B2

ϕ

4

+ · · ·

(6.1)

ForthecaseN

=

2 there isavery goodmatchbetweenthe numericalsolutionfoundwiththeshootingmethodaroundthe originand theasymptoticbehaviorgivenabovefor A

5

.

149 and B

0

.

273 around

ϕ

0

.

65.Thereforeweconsiderthisasagoodcandidatefora globalscalingsolutionforthegravitationallydressedO

(

2

)

scalarmodel.

The critical exponents associated to this fixed point (N

=

2) have not been determined with sufficient precision using polynomial methods.WecanonlyreportthattheyarenottoofarfromthevaluesobtainedfortheN

=

1 case.Moresophisticatednumericalmethods mustbeused.

7. Scalar-freecutoff

Sofar wehaveconsidered atype-I cutoffwhich inthegravitationalsector hasthegeneralform F

( ¯

φ)

Rk

(

− ¯∇

2

)

.Thepresence ofthe prefactorF isusefulbecausetheeffectofaddingthecutoffresultssimplyinthereplacementof

− ¯∇

2by P

(6)

Hessians.However,thisadvantagecomesataprice:thecutoffdependsonrunningcouplingsandthereisanexplicitbreakingofthescalar splitsymmetry

¯φ

a

→ ¯φ

a

+

a,

δφ

a

→ δφ

a

a.Asdiscussedin

[10]

,alreadyinpurescalartheory thepresenceofthescalarbackground field inthecutoff actioncan lead tounphysical results.Thisargumentcasts doubtsonthe useofthesecutoffs, andit isimportantto explore alsocutoffs that do not have a prefactor F . Inthe Einstein–Hilbert truncation,where F

=

1

/(

16

π

G

)

, such cutoffs were called “pure”

[11]

.Hereweshallcallthem“scalar-free”.Itisimportanttokeepinmindthatanycutoffstilldependsonthebackgroundmetric, andthatthisdependencewillhavetobedealtwithbyothermeans,seee.g.

[12,13]

.Hereweonlygetridofthe

¯φ

-dependenceandhave thescalar splitWard identity automaticallyfulfilled. Inparticular we shalladd in thediagonal entriesfor hT T

μν and

σ

 ofthe Hessian giveninEq.(A.8)acutoff

γ

kd−2

(

k2

z

)θ (

k2

z

)

,withthesamesignoftheLaplacianterm,toimplementthecoarse-grainingprocedure. Foralltheothertermsweshallusethemorecommon

(

k2

z

)θ (

k2

z

)

.

We do not report herethe form of the flow equations in any dimension, which contains hypergeometric functions. Ford

=

4 the equationsread:

˙

v

= −

4v

+

ϕ

v

1 8

π

2

f

f

(

v

+

1

)

log

f(3 fv+21)

+

1

3 f2

144

π

2f4

+

3

γ

γ

2

+

4

γ

f

2

γ

(

γ

2 f

)

log

f γ

3 f2

16

π

2

(

γ

f

)

3

+

(

N

1

)

ϕ

32

π

2

(

v

+

ϕ

)

(7.1)

˙

f

= −

2 f

+

ϕ

f

+

19 384

π

2

+

f



6 f2f f+f2 3 f2+f(v+1)



2 f f

+

3 f2

log

3 f2 f(v+1)

+

1



288

π

2f4

+

10

γ

(

γ

2 f

)(

γ

f

)

5

γ



γ

2

3

γ

f

+

4 f2

log

f γ

96

π

2

(

γ

f

)

3

+

γ

γ

+ (

γ

2 f

)

log

f γ

+

f

96

π

2

(

γ

f

)

2

(

N

1

)

ϕ



3 f

+

v

(

ϕ

)

+

ϕ

96

π

2

(

v

+

ϕ

)

2 (7.2)

Unlike(2.1), (2.2), theseare transcendental equations andcannot be solved analytically. For a comparisonwe discuss onlythe scaling solutionFP1whichisdefinedby v

(

ϕ

)

=

v0 and f

(

ϕ

)

=

f0.Withthisansatz thefixed pointconditionsreducetothefollowingalgebraic equations v0

=

1 128

π

2

(

γ

f 0

)

2

(

N

10

)

γ

2

2

(

N

13

)

γ

f0

+ (

N

4

)

f02

12

γ

2

γ

2 f0

γ

f0 log



f0

γ



0

= −

2 f0

4N

55 384

π

2

f0

(

γ

+

9 f0

)

96

π

2

(

γ

f 0

)

2

γ



2

γ

2

6

γ

f 0

+

9 f02

log

f0 γ

48

π

2

(

γ

f 0

)

3 (7.3) Thesecanbesolvednumerically.ThelinearizationoftheflowequationaroundFP1yieldsthefollowingequations:

0

= −(λ +

4

v

+



ϕ

N

1 32

π

2

ϕ



δ

v



3

γ



3 f02

+

5

γ

f0

2

γ

2

16

π

2f 0

(

f0

γ

)

3

+

3

γ

2

(

γ

4 f 0

)

8

π

2

(

f 0

γ

)

4 log



f0

γ



δ

f

1 32

π

2

δ

v (7.4) 0

= −(λ +

2

f

+



γ



37 f02

11

γ

f0

+

4

γ

2

96

π

2f 0

(

f0

γ

)

3

γ

f0

(

2

γ

+

3 f0

)

16

π

2

(

f 0

γ

)

4 log



f0

γ



δ

f

+



ϕ

N

1 32

π

2

ϕ



δ

f

+

N

1 96

π

2

ϕ

δ

v

+

1 96

π

2

δ

v

1 32

π

2

δ

f (7.5)

For N

=

1 and

γ

=

1 we have v0

=

0

.

03314, f0

=

0

.

01552. The relevant eigenperturbations around this solution can be found numerically and the corresponding eigenvalues are

4,

2

.

272,

2,

0

.

272, 0. There are therefore four relevant and one marginal couplings.For

γ

=

0

.

006 wehavev0∗

=

0

.

00353, f0∗

=

0

.

00670,whichareveryclosetothevaluesfoundwiththeothercutoffin

[2]

.The relevanteigenperturbationsaroundthissolutionhaveeigenvalues

4,

2

.

542,

2,

0

.

542,0,whicharealsocloserto theothercutoff.

ForN

=

4 and

γ

=

1 thefixedpointisat v0

=

0

.

03635, f0

=

0

.

01413.Thelinearperturbationanalysisaroundthefixedpointgives thefollowingeigenvalues:

4,

2

.

299,

2,

0

.

299,0.Ifinsteadwechoose

γ

=

0

.

006,wehave v0∗

=

0

.

00669, f0∗

=

0

.

00549, andthe eigenvaluesare

4,

2

.

682,

2,

0

.

682, 0.

Inthisscalar-freecutoffschemeitisinterestingtoinvestigatethesolutionsofEqs.(7.3)forFP1inthelarge N limit.Itiseasytosee thatinthislimittheybecome

v0

16N

205

512

π

2

,

f0

γ

exp

55

4N

16

.

(7.6)

We seethat this behavior is very differentfromthe one obtained previously: in particular f0 becomes exponentially smallbut never changessign. Thusthereis apparentlynoupperbound inN from therequirementofhavingapositive f0.Thisbehavior isinducedby

(7)

theinterplaybetweenthe log singularityin f0 andthelinear dependencein N intheequations.Thisresultisprobablynot physically correctforthefollowingreason:intheERGEoneshouldusetheHessiandefinedasthesecondderivativeoftheEffectiveAverageAction (EAA)withrespecttothequantumfield.Insteadinordertoclosetheflowequation,weareusingthesecondderivativeoftheEAAwith respecttothebackgroundfield.Eventhoughthefunction F doesnotappearinthecutoff,itdoesappearinthedenominator,wherethe coefficientof

−∇

2is F

γ

kd−2.Thistermisabsentwiththetype-Icutoffanditisitspresencewiththescalar-freecutoffthatgivesrise tothelogarithmic termsintheflow equation.Ina properbi-metric calculationthecoefficient of

−∇

2 inthedenominator oftheERGE wouldbe Zh

γ

kd−2,where Zh is thegraviton wave function renormalizationconstant. The argumentofthe logarithmic termwould thenbe Zh

/

γ

andthebetafunctionof f wouldprobablyberegularfor f

=

0.

8. Discussion

Thispaperextendsearlierinvestigations ofscalar–tensorgravity, wherewe usedtheexponential parametrizationofthemetric.The apriori motivation of thisparametrization is that it respects thenonlinear structure of the spaceof Riemannian metrics. It appears a posteriorithatitleadstobetterbehavedflows:therearenoinfraredsingularities

[2,14]

andtheequationscanbemadegauge-independent evenoff-shell

[14]

.Quitegenerally,theuseoftheexponentialparametrizationinconjunctionwiththephysicalgauge

ξ

μ

= ∇

μh

=

0 leads to simplerequations.In thetheory considered here, they are sufficiently simplethat analytic scaling solutions canbe found. We have givenheretheformofsuchsolutionsinanydimension andforanynumberofscalarfields.Relativetoourearlierwork,theadvantageof havingmorethanonescalarfieldisthatthereexistsaglobalsolution(FP4)with f

0 everywhere.

One interesting by-product ofthis analysisisthe confirmation of upperboundson the numberof scalars, forcompatibilitywitha fixedpointwithpositive f .Thisresultisnotconfirmedwhenoneusesascalar-free cutoffbutwehavearguedthatthisisprobablynot physicallycorrect.

Asisoftenthecasewhentakingthelarge N limitwehavebeenabletoconstructtheexactanalytical solutionsandshow thatthey areunphysicalinthetype-Icutoffscheme.

Wehavealsoinvestigatedind

=

3 the existenceofthegravitationallydressedWilson–Fisherscaling solutionforvarious finiteN. In particularwehaveshownthatphysicallyacceptablesolutiondoexistforsmallN andgivendetailsforthecaseN

=

2.

We hope that thesetools will prove useful also in the search of globalsolutions for f

(

R

)

truncations, where severalresults have been obtainedrecently [15], but a clear picture is still missing. Another important directionof investigation is the inclusion of other matter fields, in particular fermions [16–18]. If the picture we have found up to now will be confirmed also in more sophisticated truncations,the possibilitytodefine a consistentQFT ofmatter–gravity interactions willbe aguidancein theunderstanding ofseveral aspectsoffundamental/effectivephysics.Wefindalreadyinterestingtostarttoinvestigatepossibleimplicationsatphenomenologicallevel forexampleincosmology.

Acknowledgements

WewouldliketothankAstridEichhornandJanPawlowskifordiscussions.

Appendix A. Hessian

TheHessianforgravity coupledto asingle scalarhasbeengivenin[2].Here wediscussthechanges introduced byhaving ascalar multiplet forthemodel ofEq.(1.1).The scalarfield is decomposedintoa backgroundand fluctuationpart

φ

a

= ¯φ

a

+ δφ

a.The partof theHessianwhichcontains adependenceonthe scalarfluctuation

δφ

a isasumoftwo pieces.The firstisquadraticinthescalarfield fluctuationsandreads:



ddx



g

¯

1 2

δφ

a

− ¯∇

2

+ ¯

V

− ¯

FR

¯

PR ab

+



− ¯∇

2

+

1

¯φ

( ¯

V

− ¯

FR

¯

)



Pab

δφ

b (A.1)

wherewehaveintroducedtheprojectorsPabR

= ¯φ

a

¯φ

b

/ ¯

φ

2andPab

= δ

ab

PabR.Thesecondmixesscalarfieldfluctuationswithmetricscalar fluctuations:



ddx



g

¯

δφ

aPabR

¯φ

b1

¯φ

1 2h

( ¯

V 

− ¯

FR

¯

)

− ¯

F

( ¯

μ

¯∇

μhμν

− ¯∇

2h

− ¯

Rμνhμν

)

(A.2) Withoutlossofgeneralitywecanseparate theradialfieldcomponentfromtheGoldstonebosonsbyfixingthebackgroundtobe

¯φ

a

=

0, a

=

1

,

. . . ,

N

1,

¯φ

N

= ¯

ϕ

anddefine

δφ

N

= δ

ϕ

.AftertheYorkdecomposition

hμν

=

hT Tμν

+ ¯∇

μ

ξ

ν

+ ¯∇

ν

ξ

μ

+ ¯∇

μ

¯∇

ν

σ

1

d

¯

gμν

¯∇

2

σ

+

1

dg

¯

μνh (A.3)

andtheredefinition

ξ

μ

=



− ¯∇

2

R

¯

d

ξ

μ

;

σ



=



− ¯∇

2



− ¯∇

2

R

¯

d

1

σ

,

(A.4)

thesecondpiececanberewritten



ddx



g

¯

(

d

1

)

d F

¯



δ

ϕ



− ¯∇

2



− ¯∇

2

R

¯

d

1



σ



+



− ¯∇

2

(

d

2

) ¯

R 2

(

d

1

)

+

dV

¯

 2

(

d

1

) ¯

F



h

(A.5)

(8)

Fixingthegaugeh

=

const,

ξ

=

0 andalsoneglectingtheresidualconstantmodeofh,thefullHessianbecomes

k(2)

=



ddx



¯

g



1 4F h

¯

T T μν



− ¯∇

2

+

2R

¯

d

(

d

1

)



hT Tμν

(

d

2

)(

d

1

)

4 d2 F

¯

σ



(

−∇

2

)

σ



+

1 2

δ

ϕ

(

− ¯∇

2

+ ¯

V

− ¯

FR

¯

ϕ

+

1 2 N



−1 a=1

δφ

a



− ¯∇

2

+

1

¯φ

( ¯

V

− ¯

FR

¯

)



δφ

a

(

d

1

)

d F

¯



δ

ϕ



− ¯∇

2



− ¯∇

2

R

¯

d

1



σ





.

(A.6)

TheHessiancanthenbediagonalized bythetransformation

σ



=

σ



2d d

2

¯

F

¯

F



− ¯∇

2

R¯ d−1

− ¯∇

2

δ

ϕ

,

(A.7)

andthediagonalHessianreads

k(2)

=



ddx



¯

g



1 4F h

¯

T T μν



− ¯∇

2

+

2R

¯

d

(

d

1

)



hT Tμν

(

d

2

)(

d

1

)

4 d2 F

¯

σ



(

−∇

2

)

σ



+

1 2

δ

ϕ

− ¯∇

2

+ ¯

V

− ¯

FR

¯

+

2d

1 d

2

¯

F2

¯

F



− ¯∇

2

R

¯

d

1



δ

ϕ

+

1 2 N



−1 a=1

δφ

a



− ¯∇

2

+

1

¯φ

( ¯

V

− ¯

FR

¯

)



δφ

a



.

(A.8)

Theghosttermsinducedbythegaugefixingaregivenby:

Sgh:h

=



ddx



g c

¯

(

− ¯∇

2

)

c

,

Sgh:ξ

=



ddx



¯

g cμ

¯

gμν



− ¯∇

2

R

¯

d



.

(A.9) References

[1]S. Weinberg, in: S.W. Hawking, W. Israel (Eds.), General Relativity, Cambridge University Press, 1979, pp. 790–831. [2]R. Percacci, G.P. Vacca, Eur. Phys. J. C 75 (2015) 188, arXiv:1501.00888 [hep-th].

[3]T. Henz, J. Pawlowski, A. Rodigast, C. Wetterich, Phys. Lett. B 727 (2013) 298–302, arXiv:1304.7743 [hep-th]. [4]A. Codello, R. Percacci, C. Rahmede, Ann. Phys. 324 (2009) 414, arXiv:0805.2909 [hep-th].

[5]D.F. Litim, Phys. Rev. D 64 (2001) 105007, arXiv:hep-th/0103195.

[6]P. Donà, A. Eichhorn, R. Percacci, Phys. Rev. D 89 (2014) 084035, arXiv:1311.2898 [hep-th]. [7]E. Marchais, Ph.D. thesis, University of Sussex, 2012.

[8]G. Narain, R. Percacci, Class. Quantum Gravity 27 (2010) 075001, arXiv:0911.0386 [hep-th]. [9]J. Borchardt, B. Knorr, arXiv:1502.07511 [hep-th].

[10]I. Hamzaan Bridle, J.A. Dietz, Tim R. Morris, J. High Energy Phys. 1403 (2014) 093, arXiv:1312.2846 [hep-th]. [11]G. Narain, R. Percacci, Acta Phys. Pol. B 40 (2009) 3439–3457, arXiv:0910.5390 [hep-th].

[12]J.A. Dietz, T.R. Morris, arXiv:1502.07396 [hep-th].

[13]D. Becker, M. Reuter, Ann. Phys. 350 (2014) 225–301, arXiv:1404.4537 [hep-th]. [14]K. Falls, arXiv:1501.05331 [hep-th].

[15]D. Benedetti, F. Caravelli, J. High Energy Phys. 1206 (2012) 017, arXiv:1204.3541 [hep-th];

D. Benedetti, F. Caravelli, J. High Energy Phys. 1210 (2012) 157 (Erratum); D. Benedetti, Europhys. Lett. 102 (2013) 20007, arXiv:1301.4422 [hep-th];

M. Demmel, F. Saueressig, O. Zanusso, J. High Energy Phys. 1211 (2012) 131, arXiv:1208.2038 [hep-th]; J.A. Dietz, T.R. Morris, J. High Energy Phys. 1301 (2013) 108, arXiv:1211.0955 [hep-th];

J.A. Dietz, T.R. Morris, J. High Energy Phys. 1307 (2013) 064, arXiv:1306.1223 [hep-th];

M. Demmel, F. Saueressig, O. Zanusso, J. High Energy Phys. 1211 (2012) 131, arXiv:1504.07656 [hep-th].

[16]O. Zanusso, L. Zambelli, G.P. Vacca, R. Percacci, Phys. Lett. B 689 (2010) 90, arXiv:0904.0938 [hep-th];

G.P. Vacca, O. Zanusso, Phys. Rev. Lett. 105 (2010) 231601, arXiv:1009.1735 [hep-th].

[17]A. Eichhorn, H. Gies, New J. Phys. 13 (2011) 125012, arXiv:1104.5366 [hep-th].

Riferimenti

Documenti correlati

(American Mathematical Monthly, Vol.119, November 2012) Proposed by Mircea Merca (Romania). Let p be the Euler partition function, i.e., p(n) is the number of nondecreasing lists

The relative importance of global and localized shape changes was determined by comparing the results of the regression of the partial warps only (localized changes

space a trasformation is conservative iff for every set A of positive charge and for every n, a1most every point of A is n-times ricurrent.. The other aspects of Ergodic Theory

The resulting binary images are input into the spline-based algorithm for diameter estimates and the measurements performance against REVIEW is reported in Table 8.. The removal

The prototype park is divided into different thematic areas which allow the users to experiment inusual kinds of landscape, from “ruins” of old cistern (pre-existing in the area, to

It would be true if we could enumerate the computable sequences by finite means, but the problem of enumerating computable sequences is equivalent to the problem of finding out

Let us remark that the prototype potential defined in (1.3), as well as all the introduced generalizations, is not always positive, while for physical reasons a potential suitable

Description: the space including the object is partitioned in cubic cells; each cell contains references to “primitives” (i.e.. Primitives are