• Non ci sono risultati.

A clinical evaluation comparing the efficacy of Absorb everolimus-eluting bioresorbable vascular scaffold vs. everolimus-eluting metallic stent in the management of acute coronary syndrome in young patients

N/A
N/A
Protected

Academic year: 2021

Condividi "A clinical evaluation comparing the efficacy of Absorb everolimus-eluting bioresorbable vascular scaffold vs. everolimus-eluting metallic stent in the management of acute coronary syndrome in young patients"

Copied!
74
0
0

Testo completo

(1)

CONTENTS  

1.   ABSTRACT  ...  2  

2.   CORONARY  HEART  DISEASE  IN  YOUNG  PATIENTS  ...  3  

2.1.   Epidemiology  ...  3  

2.2.   Risk  factors  and  etiologies  ...  4  

2.3.   Clinical  presentation  ...  8  

2.4.   Angiographic  findings  ...  9  

2.5.   Management  of  acute  coronary  syndromes  ...  10  

2.6.   Secondary  prevention  ...  11  

2.7.   Prognosis  after  MI  ...  12  

3.   INTERVENTIONAL  CARDIOLOGY:  FROM  THE  CORONARY  ANGIOPLASTY  TO   THE  EVEROLIMUS-­‐ELUTING  STENT  ...  13  

3.1.   Historical  background  ...  13  

3.2.   Drug-­‐Eluting  stent  design  ...  16  

3.3.   Current  generation  of  drug-­‐eluting  stents  ...  18  

4.   BIORESORBABLE  SCAFFOLDS  IN  THE  TREATMENT  OF  CORONARY  ARTERY   DISEASE  ...  21  

4.1.   Potential  benefits  of  bioresorbable  scaffolds  vs.  permanent  metallic  stents  ...  21  

4.2.   Development  of  BRS  ...  23  

4.3.   Material  composition  and  properties  ...  23  

4.4.   The  Absorb®  Bioresorbable  Vascular  Scaffold  ...  27  

4.5.   Future  perspectives  ...  34  

5.   MATERIALS  AND  METHODS  ...  35  

5.1.   Aim  of  the  study  ...  35  

5.2.   Setting  ...  35  

5.3.   Study  design  and  patient  population  ...  35  

5.4.   Study  device  ...  36  

5.5.   Procedure  and  implantation  technique  ...  37  

5.6.   Study  endpoints  ...  39  

5.7.   Statistical  analysis  ...  39  

6.   RESULTS  ...  40  

6.1.   Baseline  characteristics  ...  40  

6.2.   Clinical  and  lesion  characteristics  ...  41  

6.3.   Procedural  data  ...  43  

6.4.   Clinical  outcomes  ...  46  

6.5.   Absorb  BVS  case  reports  ...  49  

7.   DISCUSSION  ...  58   7.1.   Study  limitations  ...  60   8.   CONCLUSIONS  ...  60   9.   REFERENCES  ...  61        

(2)

1. ABSTRACT  

AIMS:   to  evaluate  the  clinical  outcomes  after  the  use  of  the  Absorb®  bioresorbable   vascular   scaffold   (BVS)   (Abbott   Vascular,   Santa   Clara,   CA,   USA)   compared   with   Xience®  and  Promus®  metal  everolimus-­‐eluting  stent  (EES)  (Abbott  Vascular,  Santa   Clara,   CA,   USA;   Boston   Scientific,   Marlborough,   MA,   USA),   in   young   patients   (≤   45   years  old)  with  acute  coronary  syndrome  (ACS).    

 

METHODS:   a   total   of   129   young   (≤   45   years   old)   patients   with   acute   coronary   syndrome,  were  collected  for  this  study.  Those  patients  were  divided  in  two  groups:  a   first  group  of  71  all  consecutive  patients  treated  with  BVS  between  September  2012   and   September   2015   (BVS   group)   was   compared   with   a   second   group   of   58   consecutive  patients  treated  with  a  Xience  or  Promus  metal  everolimus-­‐eluting  stent,   between  January  2009  and  October  2012  (EES  group),  when  the  BVS  was  not  already   available.   The   primary   end   point   was   device-­‐oriented   composite   end   point   (DOCE)   including  cardiac  death,  device  thrombosis  and  device  restenosis  at  two  years  follow-­‐ up.    

 

RESULTS:  baseline  characteristics  are  similar  between  groups.  Lesion  characteristics   were  also  similar  between  groups,  except  for  the  bifurcations  lesions  that  were  more   frequent   in   EES  group.  Procedural  success  was  obtained  in  all  but  three  patients  in   the   BVS   group.   At   two   years   follow-­‐up,   no   significant   differences   were   observed   in   terms   of   DOCE   (BVS   4.2%   vs   EES   5.2%,   p   >   0.05).   Definite   or   probable   in-­‐ stent/scaffold  thrombosis  occurred  in  one  patient  in  each  group.    

 

CONCLUSIONS:  BVS  implantation  for  young  patients  with  ACS  is  safe,  with  outcomes   comparable  with  those  of  drug-­‐eluting  metal  stents.    

(3)

2. CORONARY  HEART  DISEASE  IN  YOUNG  PATIENTS  

2.1. Epidemiology  

Coronary  heart  disease  (CHD)  represents  the  leading  cause  of  death  in  adults  in   the  western  worldcame1.  Although  CHD  primarily  occurs  in  patients  over  the  age  of  

45,  younger  men  and  women  can  be  affected.  To  define  ‘’young  patients’’  with  CHD,   the  age  cut-­‐off  varies  significantly  from  study  to  study,  ranging  from  under  35  years   of   age   to   under   55   years   of   age.   For   the   purposes   of   this   study,   we   define   “young”   patients  as  under  46  years  of  age.    

Studies  indicate  approximately  3%  of  all  coronary  artery  disease  cases  occurring   in   patients   younger   than   40   years2.   The   prevalence   of   CHD   in   younger   subjects   is  

difficult  to  establish  accurately  since  it  is  frequently  a  silent  process.  The  frequency   with  which  this  occurs  was  examined  in  an  autopsy  study  of  760  young  (age  15  to  34   years)   victims   of   accidents,   suicides,   or   homicides3.   Advanced   coronary  

atherosclerotic  lesions  were  identified  in  20%  of  men  and  8%  of  women  aged  30  to   34  years,  while  a  ≥40  %  stenosis  of  the  left  anterior  descending  artery  was  identified   in  19  and  8  %,  respectively.  In  another  study,  intravascular  ultrasound  performed  in   young  asymptomatic  heart  transplant  recipients  found  atherosclerosis  in  28%  of  the   population  under  30  years  of  age  and  17%  of  the  population  under  20  years  of  age4.  

There   are   also   limited   data   on   the   frequency   of   MI   in   younger   subjects.   In   the   Framingham   Heart   Study,   the   incidence   of   an   MI   over   a   10-­‐year   follow-­‐up   was   12.9/1000  in  men  30  to  34  years  old  and  5.2/1000  in  women  35  to  44  years  old5.  The  

incidence   of   MI   was   eight   to   nine   times   greater   in   men   and   women   aged   55   to   64   years.  In  other  studies,  4  to  10  %  of  patients  with  MI  were  ≤40  or  45  years  of  age  6-­‐8.  

In  two  series  of  patients  with  CHD  at  ≤40  years  of  age,  women  comprised  5.6  and  11.4   %  of  patients6,9.    

Although   CHD   is   an   uncommon   entity   in   young   patients,   it   constitutes   an   important   problem   for   the   patient   and   the   treating   physician   because   of   the   devastating  consequences  on  the  more  active  lifestyle  of  young  patients.  In  addition,   these  patients  have  different  risk  factor  profiles,  clinical  presentations,  and  prognoses   than   older   patients.   All   of   these   factors   should   be   taken   into   consideration   when   treating  young  patients  with  CHD.  

   

(4)

2.2. Risk  factors  and  etiologies  

The  relative  importance  of  risk  factors  for  the  development  of  CHD  according  to   age  was  evaluated  in  a  report  in  which  11,016  men  aged  18  to  39  years  were  followed   for  20  years10.  The  relative  risks  associated  with  the  traditional  risk  factors  were  of  

similar  magnitude  as  in  a  group  of  8955  men  aged  40  to  59  years.  These  included:   -­‐ Age  —  relative  risk  1.63  per  six  year  increase  

-­‐ Serum  cholesterol  —  relative  risk  1.92  per  40  mg/dL  [1.04  mmol/L]  increase   -­‐ Systolic  blood  pressure  —  relative  risk  1.32  per  20  mmHg  increase  

-­‐ Cigarette  smoking  —  relative  risk  1.36  per  10  cigarette/day  increase  

Young   patients   with   MI   usually   have   multiple   risk   factors   for   CHD.   In   some   studies,  for  example,  as  many  as  90%  to  97%  had  one  or  more  traditional  risk  factors   for  atherosclerosis11-­‐13.  In  a  prospective  study  of  over  7000  women  of  mean  age  27  

years   at   baseline   followed   for   an   average   of   31   years,   there   were   47   CHD   deaths14.  

The  CHD  mortality  rates  for  those  with  no  risk  factors,  only  one  risk  factor,  or  two  or   more   risk   factors   were   0.7,   2.4,   and   5.4   per   1000   person-­‐years,   respectively.   A   comparable   relationship   was   seen   for   cardiovascular   disease   mortality   and   for   all-­‐ cause  mortality  

 

2.2.1. Atherosclerotic  coronary  artery  disease  

Early  atherosclerosis  is  a  known  risk  factor  for  CHD  in  young  adults,  and  coronary   atherosclerosis  is  associated  with  80%  of  AMIs  in  young  people15.    

As  seen  in  the  previous  paragraph,  the  risk  factors  associated  with  atherosclerosis   in  the  population  of  young  adults  are  similar  to  risk  factors  in  older  populations,  and   nearly  all  young  patients  with  CHD  have  at  least  one  conventional  cardiovascular  risk   factor  (table  1)  11-­‐13.  

The   most   strongly   associated   risk   factor   for   CHD   in   young   adults   is   current   tobacco  use.  It  has  been  noted  in  76%  to  92%  of  young  patients  with  MI,  compared  to   24   to   56   %   of   patients   older   than   45   years   of   age9,12,16-­‐19.   This   risk   factor   is  

particularly  strong  in  women:  in  one  study  of  women  admitted  to  the  hospital  with   acute  MI,  95%  of  women  under  45  years  of  age  were  current  smokers,  compared  with   45%  of  women  of  all  ages20.  In  a  registry  study  that  enrolled  6892  patients  with  acute  

ST-­‐elevation  MI  treated  by  primary  percutaneous  coronary  intervention  from  1998  to   2010,   smoking   rates   were   highest   for   those   aged   18   to   34   years,   at   78.02   %,  

(5)

compared   with   a   smoking   rate   of   23.72   %   in   that   age   stratum   of   the   general   population,  with  smoking  rates  notably  decreasing  with  increasing  age  in  the  STEMI   population21.    

The  association  between  CHD  in  young  adults  and  a  family  history  for  coronary   disease  is  reported  in  several  studies:  41  compared  to  28  and  12  %  in  middle  aged  or   elderly   patients,   respectively12;   and   57   versus   43   %   in   two   series17.   A   higher  

incidence   of   a   positive   family   history   in   young   patients   (64   %)   was   noted   in   the   largest   report   of   823   patients9.   The   association   between   family   history   and  

premature   CHD   can   be   due   to   both   genetic   and   environmental   factors.   This   was   addressed   in   a   study   of   398   families   in   which   62   vascular   biology   genes   were   evaluated22.   Missense   variants   of   several   thrombospondin   genes   were   significantly  

associated  with  MI  and  CHD.  

Being   male   is   also   a   particularly   strong   risk   factor   for   heart   disease   in   younger   populations.  In  a  recent  study,  92.5%  of  young  patients  (≤45  years  of  age)  admitted   for   AMI   were   male,   compared   with   76.0%   of   older   patients23.   Overall,   research   has  

suggested   that   only   5%   to   15%   of   young   CHD   patients   are   women,   compared   with   40%  to  50%  in  older  populations,  although  some  have  suggested  that  this  proportion   among  the  young  may  be  growing7.  

Primary   or   secondary   dyslipidaemia   is   another   common   risk   factor   for   heart   disease   in   young   populations,   with   studies   reporting   a   prevalence   that   varies   from   12%  to  89%20,24.  When  compared  to  older  patients  young  patients  have  lower  mean  

serum   high   density   lipoprotein   (HDL)   concentrations   (35   versus   43  mg/dL)   and   higher   serum   triglycerides   (239   versus   186  mg/dL)19.   Hypertriglyceridemia   was,   in  

one  series,  the  most  common  lipid  abnormality  in  young  patients  with  MI25.  It  may  be  

associated   with   glucose   intolerance   and   a   predominance   of   small   atherogenic   LDL   particles,  both  of  which  predispose  to  atherosclerosis.  

Diabetes   appears   to   be   less   common   in   young   patients   with   CHD   than   in   older   patients,   present   in   only   3%   to   5%   of   patients   under   45   years   of   age   with   acute   MI17,20.  Diabetes  is,  however,  a  strong  predictor  of  mortality  in  this  population,  with  

diabetes   patients   diagnosed   with   heart   disease   having   a   15-­‐year   mortality   rate   of   65%,  regardless  of  treatment  type9.  

Being   overweight   and   obese   are   significantly   more   common   in   younger   CHD   patients  than  in  older  patients.  Obesity  is  thought  to  increase  the  risk  of  acute  MI  in  

(6)

individuals   under   45   years   by   two-­‐   to   threefold9.   This   statistic   is   of   particular  

concerning,  as  the  prevalence  of  obesity  is  increasing  rapidly  in  the  young  population.   A   report   from   the   Framingham   Heart   Study   suggested   that   obesity   in   middle-­‐aged   subjects   could   account   for   as   much   as   23   %   of   cases   of   CHD   in   men   and   15   %   in   women  26.    

 

2.2.2. Non-­‐atherosclerotic  coronary  artery  disease  

Approximately  the  20%  of  CHD  in  young  adults  is  not  associated  with  coronary   artery  atherosclerosis9,15,20.  The  primary  causes  other  than  coronary  artery  stenosis  

are   coronary   artery   embolism,   thrombosis,   anomaly,   and   vessel   inflammation   or   spasm,  caused  by  a  variety  of  mechanisms  (table  1).  

Congenital   coronary   artery   disease   has   been   estimated   to   cause   5%   to   35%   of   cases   of   sudden   cardiac   death   in   young   people.   Abnormal   origin   of   the   coronary   arteries,   present   in   a   small   number   of   patients,   is   one   example   of   a   congenital   abnormality   that   can   cause   CHD27.   Patent   foramen   ovale   has   also   been   associated  

with   rare   cases   of   systemic   paradoxical   embolic   events,   including   acute   MI.   It   is   believed   that   emboli   that   form   in   the   veins   of   the   legs   or   pelvis   and   reach   the   coronary   arteries   from   right-­‐to-­‐left   shunting   through   the   patent   foramen   ovale.   A   recent  study  found  that  half  of  patients  with  acute  MI  due  to  paradoxical  embolism   had  no  cardiac  risk  factors28.  Myocardial  bridging  is  a  condition  in  which  the  coronary  

artery,   usually   the   left   anterior   descending   (LAD),   is   anatomically   covered   by   the   myocardium   and   compressed   during   systole,   which   can   occasionally   lead   to   CHD   through  two  distinct  mechanisms.  Compression  of  the  coronary  artery  during  systole   can   result   in   delayed   opening   during   diastole,   reducing   perfusion   and   causing   ischemia.   In   addition,   endothelial   injury   caused   by   abnormal   hemodynamic   during   systolic  compression  may  enhance  coronary  atherosclerosis29.    

Illicit   drug   use,   cocaine   abuse   in   particular,   has   been   reported   to   be   associated   with   acute   MI   for   nearly   30   years30.   In   the   Third   National   Health   and   Nutrition  

Examination   Survey,   10085   adults   between   the   ages   of   18   and   45   were   enrolled;   approximately   the   25%   of   non-­‐fatal   MI   was   attributable   to   frequent   cocaine   use31.  

Cocaine  use  results  in  acute  MI  by  various  mechanisms  including  coronary  vasospasm   and  hypercoagulability  in  the  background  of  increased  sympathetic  activity32.  Long-­‐

(7)

barrier   and   increasing   permeability   to   LDL33.   Serious   arrhythmias   including  

ventricular   tachycardia   can   occur   in   cocaine   users   in   the   absence   of   MI34,35.  

Amphetamines   can   result   in   acute   MI   through   mechanisms   similar   than   cocaine,   including   coronary   vasospasm   and   hypercoagulability   coupled   with   increased   sympathetic  activity36.  Smoking  marijuana  may  be  a  rare  trigger  of  MI37.    

Coagulation   disorders   are   estimated   to   account   for   5%   of   all   AMIs   in   young   patients20,   and   several   genetic   polymorphisms   that   disrupt   the   balance   between  

coagulation  and  fibrinolysis  have  been  associated  with  CHD  in  young  adults.  Factor  V   Leiden   mutations,   associated   with   a   procoagulant   state,   have   been   shown   to   cause   CHD   in   young   people38.   In   a   report   of   107   patients   with   premature   MI   but   no  

significant   coronary   artery   stenosis   (average   age   44),   the   prevalence   of   carriers   for   factor  V  Leiden  was  significantly  higher  in  these  patients  compared  to  244  with  an  MI   and   significant   stenosis   and   400   healthy   controls   (12   versus   4.5   and   5   percent)39.  

Likewise,   oral   contraceptives,   which   can   be   pro-­‐thrombotic,   have   been   associated   with  increased  incidence  of  acute  MI,  primarily  when  combined  with  heavy  smoking,   although  the  risks  appear  to  be  lower  with  newer  agents40-­‐42.    

Connective   tissue   disorders   can   be   a   cause   of   non-­‐   atherosclerotic   coronary   artery  disease.  Takayasu’s  disease  and  giant  cell  arteritis  are  types  of  granulomatous   vasculitis  that  can  affect  the  coronary  arteries  and  result  in  myocardial  infarction43.  In  

addition,  Kawasaki  disease,  which  typically  affects  children  under  5  years  of  age,  can   cause   coronary   arteritis   leading   to   coronary   aneurysm   and   stenosis   in   children44.  

Kawasaki   disease   is   relevant   for   young   adults   because   post-­‐   Kawasaki   disease   patients  have  an  higher  risk  to  develop  early  atherosclerosis45-­‐47.  

Spontaneous   coronary   artery   dissection   (SCAD)   is   another   rare   cause   of   acute   coronary   syndromes   in   young   adults.   This   condition   is   most   common   in   women   under  40  years  of  age  and  one  third  of  all  cases  are  associated  with  pregnancy48.  In  

this  disease,  a  hematoma  forms  in  the  outer  wall  of  the  coronary  artery  (typically  the   LAD),   creating   a   false   lumen,   which   expands   and   ultimately   compresses   the   real   lumen,  causing  ischemia.  It  is  thought  that  mild  atherosclerosis  may  be  an  underlying   cause,   but   SCAD   can   also   be   associated   with   connective   tissue   disorders   such   as   Ehlers-­‐Danlos  syndrome  and  Marfan  syndrome48.  

Autoimmune   disorders   are   also   associated   with   CHD.   In   particular,   antiphospholipid   syndrome   (APLS),   characterized   by   hypercoagulability   due   to   the  

(8)

presence  of  antiphospholipid  antibodies,  can  cause  a  variety  of  cardiac  symptoms49.  

The  frequency  of  AMI  was  found  to  be  2.8%  in  a  large  study  of  APLS  patients50.  This  

disorder   can   occur   alone   or   in   conjunction   with   other   immune   disorders,   such   as   systemic  lupus  erythematosus  (SLE)51.  SLE  patients  are  at  a  fivefold  increased  risk  for  

developing   CHD,   even   without   APLS,   and   their   rates   of   acute   MI   are   significantly   higher  than  the  general  population.  Patients  with  SLE  often  have  early  atherosclerosis   due   to   increased   inflammation   and   endothelial   dysfunction52.   Even   in   patients  

without  atherosclerotic  disease,  SLE  can  cause  other  coronary  abnormalities  that  can   lead  to  acute  MI.  

 

Table  1.  Risk  factors  and  etiologies  of  coronary  heart  disease  in  young  patients  

Atherosclerotic  risk  factors   Non-­‐Atherosclerotic  risk  factors  

Smoking   Congenital  coronary  artery  disease   Male  gender   Cocaine  and  other  illicit  drug  use    

Family  history  of  CHD   Coagulations  disorders  (eg,  Factor  V  Leiden  mutations)     Lipid  abnormalities     Oral  contraceptive  use  

Diabetes   Connective  tissue  disorders  (eg,  Takayasu’s  disease,  giant   cell  arteritis,  post-­‐Kawasaki  disease  patients)  

Overweight  and  obesity   Spontaneous  coronary  artery  dissection  

  Autoimmune   disorders   (eg,   Antiphospholipid   syndrome,   Systemic  lupus  erythematosus)  

 

2.3. Clinical  presentation    

The   clinical   presentation   of   CHD   in   younger   patients   differs   from   their   older   counterparts.  A  higher  proportion  of  young  patients  do  not  experience  angina  and,  in   the   majority   of   cases,   an   acute   coronary   syndrome   that   progresses   rapidly   to   MI   (most   often   an   ST   elevation   MI)   is   the   first   manifestation   of   CHD6,19,53.   These  

relationships  were  illustrated  in  a  series  of  200  patients  with  CHD:  Patients  ≤45  years   of   age   had   a   lower   incidence   of   stable   angina   than   patients   ≥60   years   of   age   (24%   versus   51%)   and   a   higher   incidence   of   acute   coronary   syndromes   (76%   versus   49%)19.   Similar   findings   were   noted   in   another   report   of   85   patients   less   than   40  

years   of   age   who   were   referred   for   cardiac   catheterization   and   angiography53.   The  

first  manifestation  of  CHD  was  angina  in  14%  and  acute  coronary  syndrome  in  69%,   two-­‐thirds  of  whom  denied  any  chest  pain  before  the  infarct.  Among  those  who  have   preceding   chest   pain,   the   first   episodes   often   occur   only   in   the   week   prior   to   MI6.  

(9)

These  findings  support  the  suggestion  that  the  pathophysiology  behind  these  clinical   syndromes   may   differ;   perhaps   this   may   be   related   to   a   lower   degree   of   collateral   circulation  development54.    

In   every   young   patient   presenting   with   ACS,   use   of   recreational   drugs   in   the   recent  times  should  be  recorded.  Family  history  of  premature  CHD,  risk  factor  profile   such   as   smoking,   obesity,   diabetes,   and   dyslipidaemia   would   give   better   clues   as   to   the   likelihood   of   athermanous   coronary   artery   disease.   History   of   recurrent   venous   and   arterial   thrombosis   should   also   be   reported.   Initial   clinical   examination   should   concentrate  on  hemodynamic  stability,  evidence  of  sympathetic  hyperactivity  such  as   tachycardia  and  sweating,  and  evidence  of  previous  injected  drug  misuse.    

Establishing   the   diagnosis   of   an   acute   MI   is   based   upon   the   typical   rise   and   gradual  fall  (troponin)  or  more  rapid  rise  and  fall  (CK-­‐MB)  in  biochemical  markers  of   myocardial   necrosis   with   at   least   one   of   the   following:   ischemic   symptoms;   development  of  pathologic  Q  waves  on  the  electrocardiogram  (ECG);  or  ECG  changes   indicative  of  ischemia  (ST  segment  elevation  or  depression)55.  

A  potential  diagnostic  problem  that  is  most  common  in  younger  subjects  is  that   myocarditis  can  mimic  an  acute  MI.  This  disorder  should  be  particularly  considered  in   young  patients  with  a  clinical  presentation  of  an  acute  coronary  syndrome  who  have   a  normal  coronary  angiogram56,57.  In  one  study  of  45  such  patients,  35  (78%)  had  a  

diffuse   or   focal   myocarditis   on   myocardial   imaging.   Complete   recovery   of   left   ventricular  function  occurred  at  six  months  in  81%.    

 

2.4. Angiographic  findings  

In   the   majority   of   patients   younger   than   45   years   of   age,   angiographic   studies   were   performed   because   of   a   history   of   MI.   As   expected,   major   differences   were   found  when  compared  to  older  patients.  

Younger   patients   have   a   higher   incidence   of   normal   coronary   arteries,   mild   luminal   irregularities,   and   single   vessel   coronary   artery   disease   than   do   older   patients17,19,58-­‐60.    

One   of   the   largest   reports   of   angiographic   findings   in   young   patients   with   CHD   comes   from   a   sub-­‐study   of   the   Coronary   artery   surgery   study   (CASS),   which   compared  the  results  of  coronary  angiography  in  504  young  men  (≤35  years  of  age)  

(10)

and   women   (≤45   years   of   age)   with   a   history   of   an   MI   to   those   in   over   8300   older   patients17.  The  following  significant  differences  were  noted:    

-­‐ Normal  coronary  arteries  were  more  common  in  the  young  patients  (18%  versus   3%).  Young  women  had  a  higher  frequency  of  angiographically  normal  coronary   arteries   than   young   men,   despite   a   10-­‐year   age   difference   in   the   definition   of   "young."  

-­‐ Single   vessel   coronary   disease   was   more   common   (38%   versus   24%)   and   three   vessel  disease  was  less  common  (14%  versus  39%)  in  the  younger  patients.  

-­‐ Although   some   series   have   shown   a   predilection   for   involvement   of   the   left   anterior  descending  artery  in  young  patients59,60,  this  was  not  found  in  the  CASS  

sub-­‐study.  

In  another  large  series  of  823  young  patients  with  CHD,  single  vessel  disease  was   present  in  55  to  60  percent9.    

 

2.5. Management  of  acute  coronary  syndromes  

Most   studies   have   suggested   that   treatment   of   acute   coronary   syndromes   in   young  patients  should  be  similar  to  treatment  for  older  adults.  Differences  in  etiology   and  prognosis  for  young  individuals,  however,  elicit  concerns  that  are  unique  to  this   population.  

 

2.5.1. ST  elevation  MI  

Young   patients   with   an   acute   ST   elevation   MI   should   be   treated   with   primary   percutaneous  coronary  intervention  (PCI)   or,   if   not   available,   thrombolytic   therapy.   Prospective  randomized  trials  assessing  primary  PCI  and  thrombolytic  therapy  for  an   acute  ST  elevation  MI  have  observed  that  both  young  and  old  patients  have  a  better   outcome  with  PCI  than  thrombolysis.  However,  young  patients  do  better  than  older   patients  regardless  of  the  therapy  received.  In  the  GUSTO-­‐IIb  trial,  for  example,  the   outcome   was   improved   with   PCI   compared   with   thrombolytic   therapy   for   each   10-­‐ year  patient  group.  Irrespective  of  treatment,  the  risk  increased  with  age;  outcomes   in  young  patients  seem  to  be  better  than  those  in  older  patients  regardless  of  whether   PCI  or  thrombolytic  therapy  is  used61-­‐63.    

Although   data   are   limited,   young   patients   also   appear   to   respond   well   to   thrombolytic   therapy11,64.   In   one   study,   for   example,   the   clinical   response   to  

(11)

streptokinase,   as   measured   by   TIMI   II   or   III   flow   in   the   infarct-­‐related   artery,   was   similar  in  patients  ≤35  and  ≥55  years  of  age  (74%  versus  73%)11.    

 

2.5.2. Non-­‐ST  elevation  ACS  

For  management  of  non-­‐ST  elevation  MI  or  unstable  angina,  patients  should  first   be   stabilized   using   medical   therapy,   followed   by   revascularization   if   necessary.   The   efficacy  of  this  early  invasive  strategy  in  patients  under  age  40  is  uncertain  since  few   patients   were   included   in   the   large   clinical   trials.   Multiple   randomized   trials   have   shown  that  coronary  angiography  produces  better  outcomes  only  in  young  patients   with   high-­‐risk   features   such   as   recurrent   ischemia   or   multiple   risk   factors.   Many   other  lower-­‐risk  patients  with  an  uncomplicated  course  can  undergo  exercise  stress   testing   for   risk   stratification.   An   exercise   stress   test   is   a   simpler   and   more   cost-­‐ effective  modality  to  risk  stratifies  young  patients  with  CHD  and  an  MI59,65.  Most  of   the   younger   patients   who   managed   stage   3   of   the   Bruce   protocol   (nine   minutes   or   more)  were  found  to  have  normal  coronary  arteries9.  

 

2.6. Secondary  prevention  

In  young  patients,  the  natural  progression  of  atherosclerosis  is  often  accelerated   due   to   the   high   prevalence   of   risk   factors.   Therefore,   risk   factor   reduction   is   extremely  important,  and  efforts  should  include  diet,  exercise  and  smoking  cessation   counselling,   lipid-­‐lowering   therapy,   and,   if   necessary,   treatment   of   diabetes   and   hypertension.  

Antiplatelet   agents   like   aspirin,   clopidogrel,   ticagrelor   and   prasugrel   should   be   used   as   per   the   guidelines   for   adults.   Warfarin   is   necessary   in   patients   in   a   hypercoagulable   state   and   continued   lifelong   in   patients   with   recurrent   ischemic   events66.    

Start   of   beta-­‐blockers   can   be   delayed   for   a   few   days   as   they   might   exacerbate   coronary  artery  vasoconstriction67,  especially  in  cocaine-­‐associated  acute  MIs.  

Statins  are  invariably  prescribed  in  all  patients  with  MI  and  their  clinical  effects   extend   beyond   lipid   lowering.   Statins   are   said   to   stabilize   plaques   in   patients   with   atheromatous   CHD,   thereby   improving   their   outcome,   and   reducing   recurrent   events68.  In  young  patients,  this  lipid-­‐lowering  therapy  may  be  initiated  early  in  life  

(12)

in   children   and   adolescents   with   familial   hypercholesterolemia   for   up   to   2   years   of   follow-­‐up69,70,  robust,  long-­‐term  studies  on  the  safety  of  statins  do  not  exist.  

Other  agents  like  niacin  and  omega  3  fatty  acids  should  be  considered  in  special   situations   like   hypertriglyceridemia   and   low   HDL   concentrations71,72.   B-­‐complex  

vitamins  are  useful  in  patients  with  hyperhomocysteinaemia73.  

Angiotensin   converting   enzyme   inhibitors   (ACE-­‐I)   should   be   offered   to   all   patients  with  left  ventricular  dysfunction  as  substantial  benefits  were  shown  in  using   ACE-­‐I  in  this  group  of  patients74,75.  

Lifestyle   changes   play   an   important   part   in   the   management   of   these   patients.   Stopping   smoking   should   be   strongly   advised.   Extensive   progression   of   CHD   was   noted   in   younger   patients   who   continue   to   smoke   after   their   bypass   surgery.   Good   control   of   diabetes   and   correction   of   lipid   abnormalities   were   shown   to   improve   prognosis  in  patients  less  than  45  years64.  Risk  factors  modification  could  prove  to  be  

a  challenging  task  in  these  people.    

2.7. Prognosis  after  MI  

Initial   studies   in   the   1980s   and   1990s   suggested   that   outcomes   are   more   favorable  in  young  CHD  patients  (most  studies  of  patients  <45  years)  than  any  group   of   older   patients   for   up   to   7   years   following   hospitalization17,19,53,64,76.   This   is  

consistent   with   other   studies   that   have   found   younger   age   to   be   an   independent   prognostic   factor   of   favorable   clinical   course   following   AMI   in   all   age   ranges,   with   younger   patients   having   decreased   recurrence   of   coronary   events77.   Cole   et  al  have  

found   that   the   mortality   in   young   patients   with   MI   was   as   high   as   30%   at   15   year   follow  up9.  Part  of  this  high  mortality  may  be  attributable  to  inclusion  of  a  significant  

number   of   patients   with   diabetes   mellitus   and   ejection   fraction   less   than   30%.   Additional   studies   have   also   indicated   that   sudden   death   may   be   higher   in   the   younger  population61,77.  Future  studies  should  seek  to  determine  more  accurate  long-­‐

(13)

3. INTERVENTIONAL   CARDIOLOGY:   FROM   THE   CORONARY  

ANGIOPLASTY  TO  THE  EVEROLIMUS-­‐ELUTING  STENT  

3.1. Historical  background    

Coronary  angioplasty,  conceptually  described  by  Dotter  and  Judkins  in  1964,  was   first   performed   by   Andreas   Gruntzig   in   197778.   Coronary   stents   were   developed   in  

the   mid-­‐1980s   and   since   then   have   seen   major   refinements   in   design   and   composition79.    

 

3.1.1. Plain  old  balloon  angioplasty    

The  angioplasty  procedures  performed  initially  were  without  stent  deployment,  a   technique   that   is   now   referred   as   plain   old   balloon   angioplasty   (POBA).   POBA   undoubtedly   revolutionized   the   treatment   of   coronary   artery   disease.   However,   the   outcomes   were   compromised   by   re-­‐narrowing   of   coronary   arteries   due   to   acute   vessel  closure  for  dissection  or  elastic  recoil,  late  vascular  negative  remodeling  and   neointimal   hyperplasia80.   Elastic   recoil   usually   occurred   in   5–10%   patients  

immediately  (minutes-­‐hours)  after  the  procedure  leading  to  a  rebound  occlusion  of   the   artery,   which   often   led   to   severe   complications,   including   acute   myocardial   infarction   and   the   need   for   emergency   coronary   artery   bypass   grafting   (CABG).   Angioplasty-­‐induced   endothelial   cells   denudation   and   medial   tearing   also   exposed   circulating   blood   cells   to   the   sub-­‐endothelial   matrix   leading   to   platelet   aggregation   and   thrombosis,   and   hence   contributing   to   acute   closure   of   the   artery81.   Balloon  

injury  also  initially  induced  medial  smooth  muscle  cell  necrosis,  followed  by  a  phase   of  coordinated  proliferation  of  medial  smooth  muscle  cells  and  subsequent  migration   of  these  cells  into  the  intima  in  response  to  the  release  of  chemo-­‐attractants  such  as   the  platelet-­‐derived  growth  factor81,82  About  80%  of  the  migrating  cells  are  reported  

to  be  in  the  G1  and  S  phases  of  the  cell  cycle  resulting  in  further  proliferation  of  these   intimal  smooth  muscle  cells83.  This  neointimal  proliferation  leads  to  post-­‐angioplasty  

restenosis84.  

Coronary   stents   were,   therefore,   developed   to   overcome   these   issues,   by   scaffolding  the  balloon-­‐dilated  artery,  sealing  the  dissection  flaps  and  preventing  late   recoil.   The   vast   majority   of   PCI   procedures   performed   currently   involve   balloon   angioplasty  and  stent  deployment.  

(14)

3.1.2. Development  of  coronary  stents  

WALLSTENT®   (Schneider   AG),   a   self-­‐expanding,   stainless   steel   wire-­‐mesh   structure,   was   the   first   coronary   stent   implanted   in   a   human   coronary   artery   by   Sigwart  et  al.  in  198685  The  technical  challenges  in  using  the  stent  delivery  system  (an  

inner   shaft   and   outer   constraining   sheath)   limited   its   clinical   utility   and   it   was   withdrawn   from   market   in   1991.   Schatz   and   co-­‐workers   developed   the   Palmaz-­‐ Schatz®  (Johnson  &  Johnson)  stent  in  1987,  the  first  Food  and  Drug  Administration-­‐ approved   stent   in   the   USA79.   It   was   the   first   balloon-­‐expandable,   stainless   steel,  

slotted  tube  device  and  remained  one  of  the  most  studied  and  widely  used  stent  in   1990s.  Many  other  stents  were  subsequently  developed  in  early  1990s  and  included:   Flexstent®   (Cook),   Wiktor®   (Medtronic),   Micro®   (Applied   Vascular   Engineering),   Cordis®   (Cordis)   and   Multi-­‐link®   (Advanced   Cardiovascular   Systems).   The   use   of   these   stents,   indeed,   reduced   early   elastic   recoil   and   restenosis   seen   with   POBA86.  

However,  this  new  technology  was  not  without  its  drawbacks.  These  initial  stents  had   high  metallic  density,  resulting  in  a  high  incidence  of  sub-­‐acute  stent  thrombosis  (ST),   and   were   bulky   and   technically   challenging   to   use,   resulting   in   frequent   failure   in   deployment  and  embolization87.  Furthermore,  these  initial  coronary  stents,  although  

reduced  the  incidence  of  restenosis  compared  with  POBA,  were  still  at  a  significant   risk   of   in-­‐stent   restenosis   (ISR)87.   These   technical   challenges   and   potential  

complications   kept   the   use   of   stents   limited   to   the   cases   of   acute   or   threatened   closure   or   restenosis   after   POBA.   In   1993,   two   landmark   trials,   the   Belgium   Netherlands  Stent  Arterial  Revascularization  Therapies  Study  (BENESTENT)  and  the   North   American   Stent   Restenosis   Study   (STRESS),   demonstrated   superiority   of   the   bare  metal  stents  (BMS)  over  POBA,  thus  establishing  coronary  stent  implantation  as   an   accepted   standard   of   care   for   PCI88,89.   The   use   of   coronary   stents   increased  

exponentially  over  the  next  few  years  and  by  1999,  stents  were  used  in  nearly  85%  of   PCI  procedures.  

However,  the  medium  and  longer  term  follow-­‐up  of  BMS  revealed  as  high  as  20– 30%  incidence  of  ISR,  due  to  in-­‐stent  neointimal  hyperplasia90.  ISR  may  be  associated  

with   significant   morbidity   and   mortality   and   the   drug-­‐eluting   stents   (DES)   were   developed  to  specifically  address  the  problems  of  ISR  encountered  with  BMS91.  

   

(15)

3.1.3. Development  of  DES  

Development  of  DES  was  another  revolution  in  interventional  cardiology.  Various   compounds   targeting   inflammation,   platelet   activation,   thrombosis   and   vascular   smooth  muscle  cells  proliferation  were  tried.  Coating  BMS  with  gold  (thought  to  be   inert),   carbon   (like   diamond),   phosphorylcholine   (PC)   (mimicking   the   cell   membrane)   and   heparin   (to   prevent   thrombosis),   amongst   many   others,   did   not   confer  any  benefit.  Activation  or  antagonism  of  various  hormonal  receptors,  including   estrogen,  glucocorticoids  and  mineralocorticoids,  had  modest  effects92-­‐94.    

However,   coating   BMS   with   anti-­‐proliferative   drugs   sirolimus   or   paclitaxel   substantially   reduced   ISR   compared   with   BMS95-­‐97.   Sirolimus   (rapamycin;   an  

immunosuppressive  compound  derived  from  a  fungus  found  on  Easter  Island,  known   as   Rapa   Nui)   acts   by   receptor   inhibition   of   the   mammalian   target   of   rapamycin   (mTOR),  resulting  in  the  cessation  of  cell-­‐cycle  progression  in  the  late  G1  to  S  phases   and,  consequently,  inhibits  vascular  smooth  muscle  cells  proliferation98.  Paclitaxel  (a  

well-­‐known   anti-­‐cancer   drug   derived   from   Taxus   brevifolia,   the   Pacific   Yew   tree)   inhibits   cell   proliferation   and   migration   by   disturbing   cellular   microtubule   organization99.   These   drugs   were   incorporated   within   a   polymer   and   coated   on   the  

surface  of  BMS,  and  were  released  slowly  over  a  few  weeks  after  stent  deployment.   Eduardo   Sousa   implanted   the   first   sirolimus-­‐eluting   stent   in   1999   and   it   became   available   for   clinical   use   as   CYPHER®   (Cordis)   stent   in   2002.   CYPHER®   has   been   tested   in   numerous   randomized   controlled   trials   (RCTs),   showing   a   significant   reduction   in   ISR   and   target   vessel   revascularization   compared   with   BMS95,96,100.  

TAXUS®   (Boston   Scientific),   a   paclitaxel-­‐eluting   stent   (PES),   closely   followed   CYPHER®  and  again  many  randomized  controlled  trials  (TAXUS  1-­‐IV)  confirmed  its   efficacy  against  BMS97,101.  

In   2006,   a   potential   safety   issue   emerged   with   reports   linking   DES   with   the   increased  risk  of  ST.  This  issue  might  be  due  to  delayed  endothelialization  by  the  anti-­‐ restenotic   drugs   or   delayed   hypersensitivity   reaction   to   the   polymer   in   DES102-­‐104.  

The  concern  of  ST  with  the  first  generation  of  DES  transiently  reduced  the  use  of  DES   and   stimulated   many   studies   furthering   research   into   the   mechanism   of   ST   and   development  of  novel  anti-­‐  platelet  agents,  better    polymers   and   newer   generation   DES105-­‐108.    

(16)

3.1.4. Development  of  adjunctive  anti-­‐platelet  therapy  

The  presence  of  exposed  metal  struts  in  the  coronary  arteries  acts  as  a  nidus  for   platelet  aggregation  and  thrombosis,  and  the  early  use  of  stents  was  associated  with  a   high   risk   of   ST.   This   potentially   devastating   complication   is   associated   with   a   50%   incidence  of  acute  MI  and  a  20%  mortality  rate109  Initially,  it  was  tackled  by  the  use  of  

complex   anticoagulation   regimens   using   aspirin,   heparin   and   warfarin,   but   this   combination   led   to   high   rates   of   major   bleeding,   vascular   complications   and   prolonged  hospital  stays.    

The  development  of  new  antiplatelet  agents  led  to  a  breakthrough  in  the  use  of   coronary   stents   with   the   adoption   of   a   dual   anti-­‐platelet   treatment   (DAPT),   combining   aspirin   with   a   thienopyridine110.   Aspirin   and   ticlopidine   were   used  

initially;   however,   ticlopidine   was   soon   replaced   with   clopidogrel,   which   is   more   effective   and   better   tolerated.   Clopidogrel   is   a   pro-­‐drug   that   after   hepatic   P450   metabolism   to   an   active   compound,   irreversible   inhibits   the   P2Y12   receptors   on  

platelets.  PCI-­‐CURE  trial  showed  that  in  patients  with  acute  coronary  syndrome  (ACS)   receiving   aspirin,   a   strategy   of   clopidogrel   pre-­‐treatment   followed   by   long-­‐term   therapy   is   beneficial   in   reducing   major   adverse   cardiac   events   (MACE),   compared   with  placebo111.  Clopidogrel  is  a  pro-­‐drug,  which  requires  hepatic  activation  by  P450  

system,   and   consequently   numbers   of   patients   are   clopidogrel   resistant   or   poor   responders.   Therefore,   newer   P2Y12   inhibitors,   prasugrel   and   ticagrelor   have   been   developed  in  recent  years112.  Prasugrel  therapy  in  ACS  patients  undergoing  PCI  has  

significantly  reduced  rates  of  ischemic  events,  including  ST,  but  with  an  increased  risk   of  bleeding  and  no  effect  on  mortality113.  Ticagrelor,  a  non-­‐thienopyridine  derivative  

P2Y12  inhibitor,  is  an  active  drug,  which  following  intestinal  absorption  can  rapidly   achieve   adequate   levels   of   platelet   inhibition   and   has   shown   mortality   benefit   in   patients  with  ACS,  in  comparison  with  clopidogrel.  

 

3.2. Drug-­‐Eluting  stent  design  

Each   DES   has   three   components:   platform,   polymer   and   drug.   Over   the   past   decade,   biomedical   engineers   periodically   re-­‐examined   each   component   to   improve   on  overall  stent  design  and  achieve  the  ideal  characteristics  of  flexibility,  trackability,   radial  strength,  and  biocompatibility.    

(17)

3.2.1. Stent  platform  

Traditionally,   relatively   thicker   stainless   steel   struts   were   the   material   used   for   most  BMS  and  first  generation  DES  scaffolds.  Stents  with  thinner  struts  were  found  to   be  more  deliverable  and  to  have  reduced  arterial  damage  when  deployed114,115.    

Moreover,  they  elicit  less  inflammation  than  a  thick  strut  stent,  further  reducing   the   propensity   for   restenosis   and   ST114.   In   addition,   thinner   struts   create   fewer  

disturbances  of  blood  flow  patterns  around  a  strut  leading  to  less  recirculation  and   stagnation   of   blood   pool   and   have   been   shown   to   be   less   thrombogenic,   thereby,   reducing  the  risk  of  ST116.  Cobalt  chromium  and  platinum  chromium  alloy  scaffolds  

have   been   introduced   into   the   design   of   most   second   generation   DES   providing   thinner   struts   with   better   radial   strength   and   deliverability   with   less   inflammation   and   thrombogenecity,   all   of   which   have   resulted   in   better   safety   and   efficacy   outcomes116.  

 

3.2.2. Polymer  coating  

The   metallic   strut   of   a   stent   is   coated   with   polymer   that   serves   to   deposit   and   steadily  release  the  antiproliferative  drug.  

To  be  successful,  polymers  required  two  characteristics:  predictable  drug  release   over  a  targeted  period  of  time  and  minimization  of  local  inflammation117,118.  

 

3.2.3. Antiproliferative  drug  

In   search   of   the   ideal   antiproliferative   drug,   three   characteristics   needed   to   be   met:   (1)   wide   therapeutic   window,   (2)   lipophilic   properties,   and   (3)   long   enough   tissue   retention   time   such   that   the   endothelium   could   regrow   after   PCI-­‐induced   injury  without  a  neointimal  hyperplasia  pattern.    

Over   time,   the   dosage   of   the   antiproliferative   drug   was   reduced   and   more   biocompatible   agents   were   used   in   newer   stent   designs.   First   generation   DES   contained   paclitaxel   and   sirolimus,   whereas   second   generation   DES   contained   everolimus   and   zotarolimus   as   the   antiproliferative   agent119,120.   Drugs   such   as  

everolimus  have  been  shown  to  have  antiplatelet  properties,  potentially  contributing   to  cobalt  chromium  EES  superb  clinical  performance.  

   

(18)

3.3. Current  generation  of  drug-­‐eluting  stents  

As  we  exposed  in  the  previous  paragraph,  the  first  two  DES  to  be  approved  in  the   United   States   were   the  sirolimus-­‐eluting   stent   (SES)   in   2003   and  paclitaxel-­‐eluting   stent  (PES)  in  2004.  They  are  now  often  referred  to  as  "first  generation"  DES.  SES  are   no   longer   available   in   the   United   States   and   Europe   and   PES   are   infrequently   used   due  to  superiority  of  second  generation  stents.  

In   2008,   the   zotarolimus-­‐eluting   stent   (ZES)   and   the   everolimus-­‐eluting   stent   (EES)   were   approved   for   use   and   they   are   referred   to   as   "second   generation"   DES.   The   newer   DES   have   a   stent   platform   of   a   cobalt-­‐cromium   or   platinum-­‐chromium   alloy  and  are  thinner  and  more  deliverable  than  the  first  generation  DES.  In  addition,   second  generation  DES  are  more  biocompatible  than  first  generation  DES:  they  may   generate  less  inflammatory  response  and  have  more  rapid  vessel  endothelialization   or   healing.   This   biocompatibility   and   associated   reduced   inflammatory   response   is   likely  due  to  improvements  in  polymer  technology  and  may  translate  into  lower  rates   of  myocardial  infarction  and  stent  thrombosis121,122.  However,  despite  this  potential  

improvement   in   biocompatibility,   the   recommended   duration   of   dual   antiplatelet   therapy   with  aspirin  and   a   P2Y12  receptor   blocker   is   12   months,   similar   to   the   first  

generation  DES107.    

 

3.3.1. Everolimus-­‐eluting  stents  

Two   versions   of   the   everolimus-­‐eluting   stents   are   available:   one   with   cobalt-­‐ chromium   alloy,   the   Xience-­‐V®   (Abbott   Vascular)   and   another   with   platinum-­‐ chromium   alloy,   the   Promus   Element®   (Boston   Scientific).   Relating   the   design   and   the  pharmacology,  the  two  stents  only  differs  for  the  material  composition.  The  main   characteristics  of  those  EES  are  summarized  in  table  2.    

Everolimus  is  a  semi-­‐synthetic  sirolimus  derivative  in  which  the  hydroxyl  group   at  position  C40  of  sirolimus  has  been  alkylated  with  a  2-­‐hydroxyethyl  group  and  that   was   shown   in   early   small   studies   to   be   effective   at   preventing   restenosis123.   It   is  

slightly  more  lipophilic  than  sirolimus,  and  therefore  it  is  more  rapidly  absorbed  into   the  arterial  wall.  Everolimus  is  in  use  in  durable  polymer  and  bioabsorbable  polymer   devices.  

Xience-­‐V  and  Promus  Element  were  found  to  have  similar  efficacy  and  safety  in   the  PLATINUM  trial,  which  randomly  assigned  1530  patients  with  one  or  two  de  novo  

(19)

native  lesions  to  one  stent  design  or  the  other124.  The  12-­‐month  rates  of  target  lesion  

failure   (a   composite   of   target   vessel-­‐related   cardiac   death,   target   vessel-­‐related   myocardial  infarction,  or  ischemia-­‐driven  target  lesion  revascularization)  were  2.9%   and  3.4%,  respectively.  

 

Table  2.  Main  characteristics  of  EES  

  Xience-­‐V   Promus  Element  

Manufacturer   Abbott  Vascular   Boston  scientific  

Platform   Vision   Omega  

Design  

   

Material   Cobalt-­‐chromium   Platinum-­‐chromium  

Thickness  of  struts  (μm)   81   81  

Polymer   PBMA,  PVDF-­‐HFP   PBMA,  PVDF-­‐HFP  

Polymer  thickness  (μm)   7.6   6  

Drug  conc.  (μg/cm2)   100   100  

Drug  release  in  4  weeks   80%   80%  

 

The  Clinical  Evaluation  of  XIENCE  V  Everolimus  Eluting  Coronary  Stent  System  in   the  Treatment  of  Patients  with  De  Novo  Coronary  Artery  Lesions  III  (SPIRIT  III)  trial   randomized  1002  patients  to  EES-­‐CoCr  versus  PES  and  demonstrated  a  significant  43   %  relative  reduction  in  composite  MACE  at  9  months  with  EES-­‐CoCr,  primarily  due  to   fewer   MIs   and   TLR   procedures121.   These   outcomes   persisted   to   3   years,   suggesting  

improved  long-­‐term  safety  and  efficacy125.  The  SPIRIT  IV  trial  demonstrated  similar  

results  in  more  complex  coronary  lesions  at  9-­‐month  and  2-­‐year  follow-­‐up124,126  

However,  it  remained  unclear  whether  it  was  the  rapamycin  derivative,  the  CoCr   platform   with   thinner   struts,   or   some   combination   of   both   which   had   a   beneficial   effect  on  out-­‐  comes.  To  further  delineate  the  underlying  mechanism  of  benefit  with   EES-­‐CoCr,   the   Comparison   of   Everolimus   Eluting   XIENCE   V   Stent   with   Paclitaxel   Eluting   TAXUS   LIBERTE   Stent   in   All   Comers   (COMPARE)   trial   compared   EES-­‐CoCr   with   the   newer   Taxus   Liberte   PES,   which   remained   on   the   original   stainless   steel   platform  but  had  strut  thickness  com-­‐  parable  to  second-­‐generation  DES.  This  study   demonstrated  a  reduced  rate  of  the  composite  outcome  of  death,  MI,  and  TVR  with  

(20)

EES-­‐CoCr  compared  to  Taxus  Liberte  PES  (6  vs.  9  %,  p=0.02)  at  1-­‐year  follow-­‐up127.  

The  benefit  with  EES-­‐CoCr  was  maintained  at  2-­‐year  follow-­‐up  despite  a  significantly   lower   percentage   of   dual   antiplatelet   therapy   use   in   the   EES-­‐   CoCr   group   and   suggested,  again,  the  superiority  of  rapamycin  derivatives  over  paclitaxel128.  

The  SORT  OUT  IV  trial  compared  rapamycin  derivatives  on  the  second-­‐generation   CoCr   versus   first-­‐generation   stain-­‐   less   steel   platforms,   EES-­‐CoCr   versus   SES.   Although  EES-­‐  CoCr  was  non-­‐inferior  to  SES  on  the  primary  composite  end-­‐  point  of   cardiac  death,  MI,  definite  ST,  and  TVR  at  both  9  months  and  2  years,  EES-­‐CoCr  was   associated  with  a  lower  rate  of  definite  ST  at  2  years129.  

The  Randomized  evaluation  of  Sirolimus  Eluting  Versus  Everolimus  Eluting  Stent   (RESET)  trial  demonstrated  similar  non-­‐inferiority  of  EES-­‐  CoCr  to  SES  on  TLR  at  1   year,  while  a  propensity  score-­‐  matched  analysis  demonstrated  significant  reductions   in  MI,  TVR,  and  definite  ST  with  EES-­‐CoCr  compared  to  SES  on  median  follow-­‐up  of   1.5   years130.   A   meta-­‐analysis   of   trials   comparing   EES-­‐CoCr   versus   SES,   however,  

showed  no  significant  difference  in  MACE  or  composite  of  definite  and  probable  ST  on   median  follow-­‐up  of  13  months131.  Al-­‐  though,  the  difference  between  EES-­‐CoCr  and  

SES  was  not  apparent  on  short-­‐term  follow-­‐up,  3-­‐year  follow-­‐up  in  the  SORT  OUT  IV   and  the  recently  published  Randomized  Comparison  of  Everolimus  Eluting  Stents  and   Sirolimus   Eluting   Stent   in   Patients   with   ST   Elevation   MI   (RACES-­‐MI)   trials   demonstrated  no  significant  difference  in  MACE  but  significant  reductions  in  overall   and  very  late  definite  ST132.  

Riferimenti

Documenti correlati

Dipartimento di Chimica e Farmacia Università di Sassari Istituto di Chimica Biomolecolare del CNR di Sassari Comitato Scientifico: Prof.. Paolo Scrimin

We analysed a representative plot irrigated through a shallow well drilled in the sand dam aquifer, in terms of yield, Crop Water Productivity (CWP), Crop Water Productivity based

) della quale, almeno per questo largo e innaturale eclettismo di consensi, può ragionevolmente sospettarsi. Conservatori rigidi e rivoluzionari accesi convengono

Based on the principle that education, research, and third mission are inherently connected, Unimore since 2017 has conceived two new programs, namely AAP and

Symposium : Symposium: Biological Control of the Invasive Brown Marmorated Stink Bug, Halyomorpha halys, by Exotic and Native Parasitoids and Predators: A Global Perspective. Program

clinical history of ischemic heart disease (prior angina pectoris, prior myocardial infarction, prior PCI, and prior coronary artery bypass graft surgery); clinical history

Therefore, in light of these emerging negative data and directly after the ABSORB III results, the FDA issued a safety alert, informing healthcare providers treating pa- tients

CABG: Coronary artery bypass grafting; CAD: Coronary artery disease; CI: Con- fidence interval; DAPT: Dual antiplatelet therapy; EE-BRS: Everolimus-eluting bioresorbable