• Non ci sono risultati.

Search for resonant diboson production in the WW/WZ → ℓ ν jj decay channels with the ATLAS detector at √s = 7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for resonant diboson production in the WW/WZ → ℓ ν jj decay channels with the ATLAS detector at √s = 7 TeV"

Copied!
22
0
0

Testo completo

(1)

Search for resonant diboson production in the WW=WZ ! ‘jj decay channels

with the ATLAS detector at

p

ffiffiffi

s

¼ 7 TeV

G. Aad et al.* (ATLAS Collaboration)

(Received 1 May 2013; published 17 June 2013)

A search for resonant diboson production using a data sample corresponding to4:7 fb1 of integrated luminosity collected by the ATLAS experiment at the Large Hadron Collider in pp collisions atffiffiffi

s p

¼ 7 TeV is presented. The search for a narrow resonance in the WW or WZ mass distribution is conducted in a final state with an electron or a muon, missing transverse momentum, and at least two jets. No significant excess is observed and limits are set using three benchmark models: WW resonance masses below 940 and 710 GeV are excluded at 95% confidence level for spin-2 Randall–Sundrum and bulk Randall–Sundrum gravitons, respectively; WZ resonance masses below 950 GeV are excluded at 95% confidence level for a spin-1 extended gauge model W0boson.

DOI:10.1103/PhysRevD.87.112006 PACS numbers: 12.60.Nz, 12.60.Cn

I. INTRODUCTION

Many extensions to the Standard Model (SM) predict new massive particles that can decay to WW, WZ, or ZZ final states [1–3]. In some extensions, the branching ratios of the new particles to these diboson final states greatly exceed their branching ratios to light fermions or photons [4–7]. An analysis of WW, WZ, and ZZ events is therefore a central element in the search for physics beyond the SM. This article describes a search for a narrow resonance decaying to either a WW or WZ diboson intermediate state with subsequent decays to an ‘jj final state, i.e. a charged lepton (electron or muon), large missing transverse mo-mentumðEmissT Þ, and at least two jets. Data corresponding to 4:7 fb1 collected by the ATLAS experiment at the Large Hadron Collider (LHC) in pp collisions at pffiffiffis¼ 7 TeV are used. The search is complementary to other direct searches by the ATLAS Collaboration for a WW or WZ resonance using events from the ‘‘ [8] or ‘‘‘ [9] final state and has the additional advantage of the hadroni-cally decaying W or Z boson in the final state, which leads to a higher branching ratio. Also, the ‘jj final state allows the reconstruction of the invariant mass of the system, under certain assumptions for neutrino momentum from a W boson decay. Such a reconstruction is not possible in the ‘‘ final state due to the presence of two neutrinos in each event. A separate search for a ZZ resonance has been performed using events with a ‘‘‘‘ or ‘‘jj final state atffiffiffi

s p

¼ 7 TeV [10].

Three benchmark signal models are used to interpret the ‘jj results. A spin-2 Randall-Sundrum graviton (G) is

used to model a narrow resonance decaying to WW in two distinct warped extra-dimension models: the original Randall-Sundrum (RS) model [1] (commonly called RS1) and the bulk RS model [11] which allows all SM particles to propagate into the extra dimension. The WZ resonance is modeled by a sequential standard model W0boson with the W0WZ coupling strength set by the extended gauge model (EGM) [12]. In the EGM model, the W0WZ cou-pling is equal to the SM WWZ coucou-pling strength scaled by a factor cEGM ðmW=mW0Þ2, producing a partial width proportional to mW0. In the nominal EGM, the coupling strength scaling factor cEGM is set to one. However, this analysis derives exclusion limits for a range of values of this parameter as a function of the invariant mass of the ‘jj system. This particle is referred to as the EGM W0 boson below.

The aforementioned direct WW resonance search by the ATLAS Collaboration using ‘‘ final-state events in 4:7 fb1 pp collision data at pffiffiffis¼ 7 TeV excludes an RS1 graviton with mass less than 1.23 TeV and a bulk RS graviton with mass below 840 GeV [8]. Previous searches for a WW resonance by the D0 Collaboration in Run II at the Tevatron exclude an RS1 graviton with mass less than 760 GeV [13]. Similar searches, mentioned above, for a ZZ resonance by the ATLAS Collaboration exclude an RS1 graviton with mass below 845 GeV [10]. The CMS Collaboration reports a ZZ resonance search in the ‘‘jj final state and excludes an RS1 graviton with mass below 945 TeV [14]. Previous direct searches for a WZ resonance at pffiffiffis¼ 7 TeV by the ATLAS and CMS Collaborations exclude the EGM W0 benchmark with mass below 760 GeV [9] and 1143 GeV [15], respectively.

II. THE ATLAS DETECTOR

ATLAS [16] is a general-purpose particle detector used to investigate a broad range of different physics processes. Its cylindrical construction is forward-backward

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

symmetric and provides nearly complete Hermeticity. The detector is composed of three main subsystems: the inner detector, the calorimeter system, and the muon spectrome-ter. The inner detector (ID) is used for tracking and mea-suring the momentum of charged particles within the pseudorapidity rangejj < 2:5 [17] and is composed of a silicon pixel detector, a silicon microstrip detector and, for jj < 2:0, a transition radiation tracker. A uniform 2 T magnetic field is provided by a superconducting solenoid surrounding the ID. The calorimeter system forms the next layer of the detector, spanning the region jj < 4:9 and providing three-dimensional reconstruction of particle showers. The inner calorimeter is a high-granularity lead-liquid-argon (LAr) electromagnetic (EM) sampling calorimeter coveringjj < 3:2. Surrounding the EM calo-rimeter is an iron-scintillator-tile sampling calocalo-rimeter providing hadronic coverage in the range jj < 1:7, ex-tended tojj < 3:2 with copper-LAr technology. The EM and hadronic calorimeters both have LAr-based forward detectors reaching up tojj ¼ 4:9. Outside the calorime-ters, the muon spectrometer (MS) is used to identify muons and measure their momenta. The MS is composed of three large air-core superconducting toroid systems (one barrel and two endcaps) each with eight azimuthally symmetric superconducting coils. Three layers of precision tracking chambers, consisting of drift tubes and cathode strip cham-bers, allow muon track reconstruction for jj < 2:7, and fast resistive plate and thin-gap trigger chambers provide trigger signals in the regionjj < 2:4.

The ATLAS detector uses a three-level trigger system to select events for offline analysis. For this search, events are required to have at least one lepton satisfying trigger requirements, the details of which are presented in Sec.IV.

III. MONTE CARLO SIMULATION

Monte Carlo (MC) simulations are used to model the benchmark signal samples and most SM background pro-cesses. The RS1 G and EGM W0 boson production and decay are simulated usingPYTHIA6.4 [18] with the modi-fied leading-order (LO*) parton distribution function (PDF) set MRST2007LO* [19]. RS1 G samples are gen-erated for resonance masses between 500 and 1500 GeV in 250 GeV steps. In these samples the warping parameter, ~k  k= MPl, is set to 0.1, where MPl ¼ MPl=

ffiffiffiffiffiffiffi 8 p

is the reduced Plank mass. EGM W0 samples are generated with resonance masses from 500 to 1500 GeV in 100 GeV steps, and the production cross sections are calculated at next-to-next-to-leading order (NNLO) in S using ZWPROD [20]. The EGM coupling strength scaling factor cEGMis set to 1.0 in these samples, which produces a resonance width of0:032  mW0 GeV.

The bulk RS model is implemented in CALCHEP [21], allowing simulation of the 2 ! 4 production and decay of the graviton with transfer of spin information to the final-state particles. The CTEQ6L LO PDF set [22] is used

for these events. Because the bulk RS G graviton has negligible coupling to light fermions, only gluonic initial states are considered. These events are processed with PYTHIAto simulate the parton shower, hadronization, and underlying event. Samples are generated with ~k of 1.0 and resonance masses from 500 to 1500 GeV in 100 GeV steps, with cross sections taken from the CALCHEP calculation. For three representative resonance masses, the production cross sections times branching ratios to WW=WZ for each sample are given in TableI.

Templates with 50 GeV spacing in the mass of the ‘jj system, m‘jj, are constructed to ensure a signal prediction if no signal MC sample is generated at that mass. These templates are created by first fitting the fully simulated m‘jj distribution with a crystal ball function [23]. The shape parameters from these fits are interpolated across the mass range 500–1500 GeV and used to construct crystal ball functions, the signal templates, at the intermediate mass points. The acceptances for these signal templates are also interpolated from fits to the acceptances of the fully simulated samples.

For SM background processes, the production of a W or Z boson in association with jets is simulated withALPGEN [24] using the CTEQ6L LO PDF set. These events are processed with HERWIG [25] for parton showering and hadronization, and JIMMY[26] to simulate the underlying event. The samples are initially normalized to the NNLO production cross section computed withFEWZ[27,28]. The prediction of the W boson transverse momentum, pT, by

ALPGENis reweighted to agree with the shape predicted by SHERPA[29], which is observed to agree more closely with data at high pT [30]. Single top quark (tb, tqb, tW) and top quark pairðttÞ production are simulated with the next-to-leading-order (NLO) generator MC@NLO[31–33] inter-faced toHERWIGandJIMMYand using the CT10 [34] NLO PDF set. A sample of tt events generated with POWHEG [35–37] interfaced toHERWIG andJIMMYis used to cross-check theMC@NLOtt production model, and aPOWHEGtt sample interfaced to PYTHIA is generated to study the dependence on the parton shower and hadronization model. The ACERMCevent generator [38] interfaced with PYTHIAis employed to study the effect of initial- and final-state radiation in tt events. Both tt and single top quark samples are generated assuming a top quark mass, mt, of

TABLE I. Production cross sections times branching ratios for G! WW or W0! WZ for the RS1 G, bulk RS G, and the EGM W0, for resonance masses equal to 500 GeV, 1000 GeV, and 1500 GeV. All cross sections are given in picobarns.

Bulk RS G

Mass [GeV] RS1 G   BR ½pb EGM W0

500 13.0 3.0 2.6

1000 0.23 0.023 0.10

(3)

172.5 GeV, but twoMC@NLOtt samples are generated with mt¼ 170 and 175 GeV to determine the dependence of the background prediction on the top quark mass. The tt cross section is normalized to the approximate NNLO value [39,40]. Single top quark production cross sections are taken from an NNLO calculation for the tb process [41], and approximate NNLO calculations for the tqb and tW processes [42]. SM diboson production (WW, WZ, ZZ) is modeled using HERWIG and normalized to the NLO production cross sections computed by MCFM [43,44] with the MRST2007LO* PDF set. In all samples, PHOTOS [45] is employed to simulate final-state photon radiation andTAUOLA[46] to take into account polarization in  lepton decays.

All MC samples include the effect of multiple pp inter-actions (pileup) per bunch crossing and are reweighted so as to match the distribution of the number of interactions per bunch crossing to that observed in the data. The detec-tor response is simulated using aGEANT4-based model [47] of the ATLAS detector [48]. Finally, events are recon-structed using the same software used for collision data.

IV. OBJECT RECONSTRUCTION AND EVENT SELECTION

The events recorded by the ATLAS detector for this analysis are selected by single-electron or single-muon triggers. The electron trigger requires an electronlike ob-ject [49] with transverse energy (ET) greater than 20 or 22 GeV depending on the LHC instantaneous luminosity. The muon trigger requires a muon candidate with pT> 18 GeV. The data sample used, collected in 2011, corre-sponds to an integrated luminosity of4:7 fb1[50,51] after applying data-quality requirements [52]. MC events must satisfy the same trigger selection requirements.

All triggered events must have at least one reconstructed vertex formed by the intersection of at least three tracks with pT> 400 MeV [53]. From the list of all vertices satisfying this requirement, the vertex with the largest sum of squared pT of the associated tracks is assumed to be the primary hard-scatter vertex (PV).

Electrons are reconstructed from energy clusters in the calorimeter with an electromagnetic shower profile con-sistent with that expected for an electron, and must have a matching ID track. Electron candidates must have ET> 30 GeV and be found within the fiducial region defined by jj < 2:47, excluding the region 1:37 < jj < 1:52 which corresponds to the poorly instrumented transition between the barrel and endcap calorimeters. The longitudinal im-pact parameter of the electron track with respect to the PV (jz0j) must be less than 1 mm, and the significance of its transverse impact parameter with respect to the PV (jd0j=d0) must be less than 10.

Electron candidates must also be isolated from other activity in the calorimeter, such that the sum of calorimeter transverse energy in a cone of radius

R ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðÞ2þ ðÞ2¼ 0:3 around the electron, corrected for pileup contributions and the electron energy, is less than 6 GeV. The energy scale and resolution for electrons in MC events are corrected to match that in Z ! eþe events [54] measured in data.

Muons are reconstructed from the combination of tracks formed from hits in the MS and the ID [55,56]. The com-bined muon track must have pT> 30 GeV and jj < 2:4. The muon track must have jz0j < 10 mm and jd0j=d0< 10. The difference in jz0j requirements between the electron and muon tracks results from the higher fraction of mis-reconstructed electrons due to QCD multijet events.

Furthermore, muon candidates must be isolated from other tracks and calorimeter activity: the sum of track transverse momenta surrounding the muon track in a cone of radius R ¼ 0:3 must be less than 15% of the muon pT; the calorimeter transverse energy, corrected for pileup contributions, in a cone of radiusR ¼ 0:3 must be less than 14% of the muon pT. The muon pT scale and resolution in MC events are adjusted to match that in Z ! þevents measured in data [57].

Jets are reconstructed using the anti-ktsequential recom-bination clustering algorithm [58,59], with radius set to 0.4. The inputs to the reconstruction algorithm are topological energy clusters [60] calibrated at the EM energy scale, appropriate for the energy deposited by electrons or photons [60]. These jets are then calibrated to the hadronic energy scale, using pT- and -dependent correction factors ob-tained from simulation. The uncertainty on these correction factors is determined from control samples in data. Jets originating from the PV are selected by requiring that at least 75% of the pTsum of tracks matched to the jet belongs to tracks originating from the PV. If a reconstructed electron and jet candidate overlap within R ¼ 0:3, the jet is re-jected. Finally, jets must have pT> 40 GeV and jj < 2:8. Jets originating from b-quarks are identified by exploiting the long lifetimes of bottom hadrons, which lead to observ-able decay lengths in the detector. The SV0 secondary vertex b-tagger [61,62] is used at an operating point yielding an average b-jet-tagging efficiency of 50% in simulated tt events and an average light-quark jet rejection factor of 200. The missing transverse momentum ðEmissT Þ is defined as the negative vector sum of transverse energies or momenta of all objects in the event. The ATLAS EmissT algorithm [63] combines the pTof muons reconstructed in the MS with the transverse energies measured in calorimeter cells associated either to physics objects (such as jets or leptons) or to topological clusters not associated with physics objects. Calorimeter cells used in the EmissT calculation are calibrated individually according to the physics object to which they are associated. Cells in topological energy clusters that are not associated with any reconstructed high-pTobject are calibrated separately using the local hadronic calibration scheme [64].

In the initial selection, events must contain exactly one electron or muon, and must have EmissT > 40 GeV.

(4)

Events are also required to contain at least two jets, with the requirement that the highest-pTjet has pT> 100 GeV. In the following, events with an electron are labeled ejj and muon events are labeled jj. To reduce the QCD multijet background, two triangular veto regions are con-structed in the plane defined by the EmissT andð‘; EmissT Þ, the difference in azimuthal angle between the lepton and EmissT directions. The first region, defined by jj < 1:5–1:5  ðEmiss

T =75 GeVÞ, corresponds to events where the lepton and EmissT directions are aligned. Back-to-back event topologies populate the second region defined by jj > 2:0 þ ð  2Þ  ðEmiss

T =75 GeVÞ. Events falling in either of these two regions are rejected. The selection cuts described above define the preselection criteria.

V. BACKGROUND ESTIMATION

Background sources are classified into two categories based on the origin of the charged lepton in the event. The first category includes backgrounds where the charged lepton is produced in the decay of a W or Z boson. The second category corresponds to all other sources, including both events with a misidentified lepton, e.g. where a jet with a large electromagnetic energy fraction passes the electron selection requirements, and events with a true lepton produced in a hadron decay.

Backgrounds from the first category, which include W=Z þ jets, tt, single top quark, and diboson production, are modeled with MC events and are normalized to the product of the production cross section for that background and the total integrated luminosity of the data set. The normalization of the W þ jets and tt backgrounds is further tested using data as described in Sec.VI.

Backgrounds in the second category are modeled with independent samples of collision data based on the follow-ing prescriptions. In the ejj channel, the sample is se-lected by inverting the calorimeter isolation requirement for electron candidates that satisfy all other selection cri-teria. This selects events that are likely to originate from multijet production but have kinematic properties that are very similar to those multijet events that pass the isolation

requirement. In the jj channel, the primary source of these backgrounds are semileptonic decays of hadrons within a jet. Events with muons that satisfy all selection criteria except the transverse impact parameter signifi-cance cut are used to model this background. Kinematic variable templates are derived from these samples after subtracting the contributions from backgrounds in the first category.

The data-driven backgrounds in the second category, henceforth labeled ‘‘fake’’ lepton backgrounds, are then normalized together with the W þ jets background through a likelihood fit to the data in a region with negligible signal contamination. This is done separately for the ejj and jj channels using the lepton transverse mass distribu-tion, mT ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2p‘ TEmissT ð1  cos ðÞÞ q , which distinguishes events with charged leptons from a W boson decay from events with a fake lepton. The normalization of all other backgrounds, from the first category, remains fixed in the fit. The distributions of the lepton pT, EmissT and the leading jet pT in data and for the predicted backgrounds, after applying the event preselection criteria, are shown in Fig.1. In this figure, the associated errors are a combina-tion of the systematic and statistical uncertainties. TableII shows the yields for each background and for the data. The total estimated background and the data agree within the expected total uncertainty at this stage of the selection.

[GeV] T Lepton P 200 400 600 Events / 15 GeV 1 10 2 10 3 10 4 10 5 10 Data σ 1 ± SM Total W/Z+jets Top Dibosons Fake Lepton -1 Ldt = 4.7 fb

s=7TeV ATLAS [GeV] T miss E 200 400 600 Events / 20 GeV 1 10 2 10 3 10 4 10 Data σ 1 ± SM Total W/Z+jets Top Dibosons Fake Lepton -1 Ldt = 4.7 fb

s=7TeV ATLAS [GeV] T Leading Jet P 200 400 600 800 Events / 20 GeV 1 10 2 10 3 10 4 10 Data σ 1 ± SM Total W/Z+jets Top Dibosons Fake Lepton -1 Ldt = 4.7 fb

s=7TeV ATLAS

FIG. 1 (color online). Data and background predictions for (a) the lepton pT, (b) EmissT , and (c) leading jet pTfor preselected events.

Electron and muon events are combined in all plots. The rightmost bin contains overflow events.

TABLE II. The number of data and estimated background events after applying the preselection cuts. The associated errors are the quadrature sum of the systematic and statistical uncertainties.

ejj channel jj channel

Process [103events] [103events]

W þ jets 38:0  4:1 46:0  4:8 Z þ jets 1:3  0:1 1:8  0:2 Top 15:0  1:4 16:0  1:5 Diboson 0:5  0:1 0:5  0:1 Fake lepton 0:9  0:2 0:5  0:2 Total background 56:0  4:3 65:0  5:1 Data 55.2 64.2

(5)

VI. SELECTION OF SIGNAL AND CONTROL REGIONS

The WW or WZ mass, m‘jj, is calculated as the invariant mass of the ‘jj system. To reconstruct this quantity, the x and y components of the neutrino momen-tum vector, pxand py, are set equal to EmissT cos ðmissÞ and EmissT sin ðmissÞ, respectively, with miss corresponding to the direction of the EmissT vector in the tranverse plane. The neutrino pz is obtained by imposing the W boson mass constraint in the momentum conservation equation. It is defined as either the real component of the complex pz solution or the minimum of the two real solutions. In events with three or more jets, the two jets with the highest transverse momenta are considered.

In signal events, the pTof each boson peaks near half of the resonance mass, and the dijet mass distribution, mjj, is characterized by a peak close to the W or Z boson mass. Since this analysis searches for resonant masses larger than 500 GeV, the signal region is defined by requiring the reconstructed pT of the dijet system and of the lepton– EmissT system to be greater than 200 GeV and the recon-structed dijet mass to be within the window 65 < mjj< 115 GeV. Figure2compares the mjjdistribution observed in data with those predicted for the backgrounds and an enhanced EGM W0 signal after the requirements on the reconstructed dijet and lepton–EmissT pTvalues but without the dijet mass window requirement.

Two control regions are created to test the W þ jets and tt background modeling of the m‘jjdistribution. The W þ jets control region is identical to the signal region, except for the mjj requirement, which is inverted. Two indepen-dent sidebands are formed, mjj< 65 GeV and mjj> 115 GeV. A scale factor, defined as the number of data events divided by the total background prediction, is com-puted in each sideband and parametrized as a function of

m‘jj. The weighted average of the scale factors, found in the mjj< 65 GeV and mjj> 115 GeV sidebands, has a value of 1.012 and is used to normalize the W þ jets background prediction in the signal region. The difference between the individual scale factors is used as the uncer-tainty on this normalization. The two sidebands are combined in Fig. 3, which shows the m‘jj distribution for the W þ jets control region after applying the W þ jets scale factors. Good agreement between the data and MC is observed.

The tt control region is created by selecting events with at least two b-tagged jets. The reconstructed pTof the dijet system is required to be greater than 200 GeV, and events are required to have mjj< 65 GeV or mjj> 115 GeV to avoid overlap with the signal region. Figure4shows m‘jj for all events in the tt control region. In this control region, 587  87 tt events and 42  6 events from other back-grounds are expected and 602 data events are observed. Given the agreement observed in the tt control region, no normalization correction is applied to the tt background prediction in the signal region.

[GeV] jj ν l m 500 1000 1500 2000 2500 Events / 100 GeV 1 10 2 10 3 10 Data σ 1 ± SM Total W/Z+jets Top Dibosons Fake Lepton -1 Ldt = 4.7 fb

s=7TeV ATLAS

FIG. 3 (color online). The m‘jjdistribution for the data and

the background predictions for events in the W þ jets background control region. The rightmost bin contains overflow events.

[GeV] jj m 50 100 150 200 Events / 8 GeV 100 200 300 400 500 600 700 Data σ 1 ± SM Total W/Z+jets Top Dibosons Fake Lepton 5) × WZ ( → W’ = 1 TeV W’ m -1 Ldt = 4.7 fb

s=7TeV ATLAS

FIG. 2 (color online). Observed and predicted mjjdistribution

in all events satisfying the pT selection requirements of the

reconstructed W=Z bosons. Predictions for an EGM W0boson, with the signal cross section enhanced by a factor of 5, are shown for a resonance mass of 1 TeV.

[GeV] jj ν l m 500 1000 1500 2000 Events / 100 GeV 1 10 2 10 Data σ 1 ± SM Total W/Z+jets Top Dibosons Fake Lepton -1 Ldt = 4.7 fb

s=7TeV ATLAS

FIG. 4 (color online). The m‘jjdistribution in data events and

the estimated backgrounds for the tt background control region. The rightmost bin contains overflow events.

(6)

VII. SYSTEMATIC UNCERTAINTIES

Systematic uncertainties that affect the predicted signal acceptance and background rate are grouped into three independent categories: uncertainties due to the limited precision of theoretical calculations, experimental uncer-tainties on the event reconstruction efficiencies and reso-lutions, and the determination of the integrated luminosity. Uncertainties from the first and third categories impact the signal and all of the backgrounds except W þ jets and fake lepton backgrounds which are estimated from data. The integrated luminosity uncertainty is 3.9% [50,51].

Several sources of theoretical uncertainty on the tt background rate are considered. The largest of these is the10þ7% [39,40] uncertainty on the production cross section. Additionally, the magnitudes of the following systematic uncertainties affecting the tt background distribution vary with m‘jj. The largest deviation from the tt prediction for all m‘jj values is presented below. The nominal MC@NLO model for tt production differs from thePOWHEGmodel by at most 3%. A 1%–2% variation is measured when the top quark mass is varied by2:5 GeV usingMC@NLOMC samples. The difference between the nominalHERWIGparton shower model and thePYTHIAmodel inPOWHEGgenerated events is at most 2%. Finally, the uncertainty due to the initial-state radiation (ISR) and final-state radiation (FSR) model in PYTHIAis estimated to be at most 3% for all m‘jjvalues.

For the remaining, smaller backgrounds modeled with MC simulation, only theoretical uncertainties due to lim-ited knowledge of their production cross sections are con-sidered. The production rate of WW and ZZ dibosons is known to 5% accuracy, while that for WZ production is known to within 7% [44]. The uncertainty on the Z þ jets production rate is estimated to be 5%, primarily due to limited knowledge of the u- and d-quark PDFs [20]. The production of s-channel single top quarks (tb) is known to 6% [41] while t-channel (tqb) and tW production are known toþ54% and 9% [42], respectively.

For the signals, the PDF uncertainty is estimated by comparing signal events generated with MRST2007LO* and CTEQ6L PDFs and a maximum difference of 5% is measured in the acceptance. The ISR and FSR uncertainty is determined to be 5% using the same procedure as that for tt events.

The largest experimental uncertainties come from the determination of the jet energy scale (JES) [60] and reso-lution (JER) [65]. The JES uncertainty includes effects due to uncertainties in jet flavor composition, overlapping jets, and pileup effects. The overall JES uncertainty on each background process as well as the signal is determined by varying all jet energies within their uncertainties. The impact of this uncertainty varies with m‘jj, and the largest deviation from the nominal prediction is presented. For the background samples, this ranges from 8% for single top quark events to 13% for diboson events. For the signal

events samples, the largest deviation from the nominal prediction for all m‘jjvalues is 4%. An equivalent proce-dure is applied to evaluate the JER uncertainty, and the largest deviation from the nominal prediction is found to be between 1% and 3% for all signal and background samples. Additional uncertainties arise from the differences between data and MC simulation in the reconstruction efficiencies and energy or momentum resolution for electrons, muons, and EmissT . The electron energy scale and resolution uncertainties are derived by comparing Z ! eþeevents in data and MC samples. The combined uncertainty is 2%–3% depending on m‘jj. The corre-sponding uncertainty for muons is at most 2% for any m‘jj value. The primary contribution to the EmissT scale uncertainty is pileup, but the impact on the m‘jj distribu-tion above 500 GeV is less than 1% for all backgrounds. The combined uncertainty on the signal acceptance ranges from 7% at low m‘jjto 20% at high m‘jj.

The distributions from the fake lepton and W þ jets backgrounds are normalized to the number of events in data control regions, and are therefore not affected by systematic uncertainties in the relative reconstruction efficiency in data and MC events, nor uncertainties in their respective production cross sections. The fake lepton back-ground normalization uncertainty is estimated by using the distributions of EmissT and the scalar sum of the lepton pTand EmissT to determine the fake lepton normalization, and quot-ing the maximum deviation from the mT-fitted value. This results in an 80 (100)% uncertainty on events with electrons (muons). The W þ jets normalization uncertainty is defined as the difference between the low-mjjand high-mjjcontrol region scale factors, resulting in an uncertainty of 9%.

VIII. RESULTS AND INTERPRETATION The numbers of expected and observed events after the final signal selection are reported in Table III. A total of 1453 ejj and 1328 jj events are observed with

TABLE III. Estimated background yields, number of data events, and predicted signal yield after applying the signal selection criteria. Quoted uncertainties are statistical plus sys-tematic as described in text.

Process ejj jj W þ jets 700  65 590  60 Z þ jets 15  2 15  2 Top 615  70 515  65 Diboson 75  9 60  8 Fake lepton 20  16 15  15 Total backgrounds 1425  100 1195  85 Data 1453 1328 RS1 GðmG¼ 1 TeVÞ 22  2 18  2 Bulk GðmG¼ 1 TeVÞ 4  0:4 3:5  0:3 EGM W0ðmW0¼ 1 TeVÞ 29  2 24  2

(7)

background predictions of 1425  100 and 1195  85 events, respectively. The m‘jjdistributions for data, pre-dicted background samples, and an EGM W0boson signal with mass mW0 ¼ 1 TeV are shown in Fig.5.

These distributions are used to construct a log-likelihood ratio (LLR) test statistic to compute the statistical signifi-cance of any excess over expectation using a modified frequentist approach. Pseudoexperiments that treat all [GeV] jj ν e m 500 1000 1500 Events / 80 GeV 1 10 2 10 3 10 Data σ 1 ± SM Total W/Z+jets Top Dibosons Fake Lepton WZ → W’ = 1 TeV W’ m -1 Ldt = 4.7 fb

= 7 TeV s ATLAS [GeV] jj µν m 500 1000 1500 Events / 80 GeV 1 10 2 10 3 10 Data σ 1 ± SM Total W/Z+jets Top Dibosons Fake Lepton WZ → W’ = 1 TeV W’ m -1 Ldt = 4.7 fb

= 7 TeV s ATLAS

FIG. 5 (color online). Observed and predicted m‘jjdistributions shown for all (a) ejj and (b) jj events satisfying the signal

selection requirements. Predictions for an EGM W0 boson are shown for a resonance mass of 1 TeV. The rightmost bin contains overflow events. [GeV] G* m 600 800 1000 1200 1400 BR [pb]× σ -1 10 1 10 σ(pp→ G*RS1→ WW) Expected Limit σ 1 ± Expected σ 2 ± Expected Observed limit -1 Ldt = 4.7 fb

ATLAS [GeV] G* m 500 600 700 800 900 1000 1100 1200 BR [pb]× σ -2 10 -1 10 1 10 WW) → Bulk G* → (pp σ Expected Limit σ 1 ± Expected σ 2 ± Expected Observed limit -1 Ldt = 4.7 fb

ATLAS [GeV] W’ m 600 800 1000 1200 1400 BR [pb]× σ -2 10 -1 10 1 10 σ(pp→ W’EGM→ WZ) Expected Limit σ 1 ± Expected σ 2 ± Expected Observed limit -1 Ldt = 4.7 fb

ATLAS

FIG. 6 (color online). Observed and expected 95% C.L. upper limits on ðpp ! GÞ  BRðG! WWÞ for (a) an RS1 Gand (b) a bulk RS G, and on ðpp ! W0Þ  BRðW0! WZÞ for (c) an EGM W0 boson.

(8)

systematic uncertainties as Gaussian-sampled nuisance pa-rameters are used to generate the distribution of possible LLR values for the background-only (b) and signal-plus-background (s þ b) hypotheses. Confidence levels (C.L.) for each hypothesis are defined as the fraction of experiments with LLR greater than or equal to the LLR evaluated on the data.

The statistical significance of an observed signal is quantified by giving, for each mass point, the p value (p  1  CLb) of the background-only hypothesis. The greatest deviations from the background prediction occur at m‘jj¼ 1300 and 1500 GeV with p ¼ 0:12 and 0.11, respectively.

Lacking evidence for new phenomena, limits on the signal rate are determined using theCLs method [66,67]. This method uses a ratio of the p values of the signal-plus-background and background-only hypotheses called CLs. For a 95% C.L. exclusion, the signal production cross section (95%) is adjusted untilCLs¼ 0:05, and the reso-nance mass limit (m95%) is defined by the mass for which

ðm95%Þ ¼ 95%. The excluded production cross sections times the branching ratios to the WW or WZ final state are shown in Fig. 6, with the ejj and jj channels com-bined, for the three signal hypotheses. The expected and observed limits on the resonances are shown in Table IV for the ejj and jj channels separately, as well as their combination.

Limits are also set on the EGM W0 boson coupling strength scaling factor cEGM within the EGM framework. The EGM W0 boson limits shown in Fig.6correspond to cEGM ¼ 1. For cEGM> 10, the resonance width exceeds the experimental resolution, thus only values less than 10 are considered. Limits on cEGMare derived as a function of mW0 as shown in Fig.7.

IX. CONCLUSION

We report the results of a search for resonant WW and WZ production in the ‘jj decay channels using an inte-grated luminosity of4:7 fb1of pp-collision data atpffiffiffis¼ 7 TeV collected in 2011 by the ATLAS detector at the Large Hadron Collider. A set of event selections for the RS1 G, the bulk RS G, and the EGM W0 boson signals are derived using simulated events. No evidence for reso-nant diboson production is observed and 95% C.L. upper bounds on the two graviton and EGM W0boson production cross sections are determined. Resonance masses below 940, 710, and 950 GeV are excluded at 95% C.L. for the spin-2 RS1 graviton, the spin-2 bulk RS graviton and the spin-1 EGM W0boson, respectively.

ACKNOWLEDGMENTS

We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWF and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF, DNSRC and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/ IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; ISF, MINERVA, GIF, DIP and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW, Poland; GRICES and FCT, Portugal; MERYS (MECTS), Romania; MES of Russia and ROSATOM, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZSˇ, Slovenia; DST/NRF, South Africa; MICINN, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and Geneva,

TABLE IV. Expected and observed 95% C.L. lower mass limits (GeV) for the RS1 G, bulk RS G, and the EGM W0 boson using ejj events, jj events and the combined channels.

Process ejj jj ‘jj

Expected Limits [GeV]

RS1 G 930 900 950

Bulk RS G 740 710 750

EGM W0 950 930 970

Observed limits [GeV]

RSI G 910 920 940

Bulk RS G 760 650 710

EGM W0 930 930 950

FIG. 7 (color online). The 95% C.L. observed and expected excluded regions of the EGM coupling strength scaling factor cEGM as a function of mW0. The green and yellow band

(9)

Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowl-edged gratefully, in particular, from CERN and the ATLAS

Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

[1] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

[2] E. Eichten and K. Lane,Phys. Lett. B 669, 235 (2008). [3] F. Bach and T. Ohl,Phys. Rev. D 85, 015002 (2012). [4] K. Agashe, H. Davoudiasl, G. Perez, and A. Soni,Phys.

Rev. D 76, 036006 (2007).

[5] K. Agashe, S. Gopalakrishna, T. Han, G.-Y. Huang, and A. Soni,Phys. Rev. D 80, 075007 (2009).

[6] K. Agashe, H. Davoudiasl, S. Gopalakrishna, T. Han, G.-Y. Huang, G. Perez, Z.-G. Si, and A. Soni, Phys. Rev. D 76, 115015 (2007).

[7] O. Antipin, D. Atwood, and A. Soni, Phys. Lett. B 666, 155 (2008).

[8] ATLAS Collaboration,Phys. Lett. B 718, 860 (2013). [9] ATLAS Collaboration, Phys. Rev. D 85, 112012

(2012).

[10] ATLAS Collaboration,Phys. Lett. B 712, 331 (2012). [11] S. Chang, J. Hisano, H. Nakano, N. Okada, and M.

Yamaguchi,Phys. Rev. D 62, 084025 (2000).

[12] G. Altarelli, B. Mele, and M. Ruiz-Altaba,Z. Phys. C 45, 109 (1989).

[13] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 107, 011801 (2011).

[14] CMS Collaboration,Phys. Lett. B 718, 1208 (2013). [15] CMS Collaboration,Phys. Rev. Lett. 109, 141801 (2012). [16] ATLAS Collaboration,JINST 3, S08003 (2008).

[17] ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector and the z axis along the beam pipe. The x axis points from the IP to the center of the LHC ring, and the y -axis points upward. Cylindrical coordinates ðr; Þ are used in the transverse plane,  being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle as  ¼  ln tan ð =2Þ. The transverse energy ET is defined as E sin , where E is

the energy associated with the calorimeter cell or energy cluster. Similarly, pT is the momentum component

trans-verse to the beam line.

[18] T. Sjo¨strand, S. Mrenna, and P. Skands, J. High Energy Phys. 05 (2006) 026.

[19] A. Sherstnev and R. Thorne,arXiv:0807.2132.

[20] R. Hamberg, W. van Neerven, and T. Matsuura, Nucl. Phys. B359, 343 (1991).

[21] A. Pukhov,arXiv:hep-ph/0412191.

[22] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.

[23] T. Skwarnicki, Ph.D. thesis, Cracow Institute of Nuclear Physics, 1986DESY Report No. F31-86-02.

[24] M. L. Mangano, F. Piccinini, A. D. Polosa, M. Moretti, and R. Pittau,J. High Energy Phys. 07 (2003) 001.

[25] G. Corcella, I. G. Knowles, G. Marchesini, S. Moretti, K. Odagiri, P. Richardson, M. H. Seymour, and B. R. Webber, J. High Energy Phys. 01 (2001) 010.

[26] J. Butterworth, J. Forshaw, and M. Seymour,Z. Phys. C 72, 637 (1996).

[27] K. Melnikov and F. Petriello,Phys. Rev. D 74, 114017 (2006).

[28] R. Gavin, Y. Li, F. Petriello, and S. Quackenbush,Comput. Phys. Commun. 182, 2388 (2011).

[29] T. Gleisberg, S. Ho¨che, F. Krauss, M. Scho¨nherr, S. Schumann, F. Siegert, and J. Winter, J. High Energy Phys. 02 (2009) 007.

[30] ATLAS Collaboration,Phys. Rev. D 85, 012005 (2012). [31] S. Frixione and B. R. Webber,J. High Energy Phys. 06

(2002) 029.

[32] S. Frixione, E. Laenen, P. Motylinski, and B. R. Webber, J. High Energy Phys. 03 (2006) 092.

[33] S. Frixione, E. Laenen, P. Motylinski, C. White, and B. R. Webber,J. High Energy Phys. 07 (2008) 029.

[34] H.-L. Lai, M. Guzzi, J. Huston, Z. Li, P. M. Nadolsky, J. Pumplin, and C.-P. Yuan,Phys. Rev. D 82, 074024 (2010). [35] P. Nason,J. High Energy Phys. 11 (2004) 040.

[36] S. Frixione, P. Nason, and C. Oleari,J. High Energy Phys. 11 (2007) 070.

[37] S. Alioli, P. Nason, C. Oleari, and E. Re,J. High Energy Phys. 06 (2010) 043.

[38] B. P. Kersevan and E. Richter-Was, arXiv:hep-ph/ 0405247.

[39] S. Moch and P. Uwer,Phys. Rev. D 78, 034003 (2008). [40] U. Langenfeld, S. Moch, and P. Uwer,arXiv:0907.2527. [41] N. Kidonakis,Phys. Rev. D 81, 054028 (2010). [42] N. Kidonakis,Phys. Rev. D 83, 091503 (2011).

[43] J. M. Campbell and R. K. Ellis,Phys. Rev. D 60, 113006 (1999). [44] J. Campbell, R. Ellis, and C. Williams, J. High Energy

Phys. 07 (2011) 018.

[45] P. Golonka and Z. Was,Eur. Phys. J. C 45, 97 (2006). [46] Z. Was,Nucl. Phys. B, Proc. Suppl. 98, 96 (2001). [47] S. Agostinelli et al.,Nucl. Instrum. Methods Phys. Res.,

Sect. A 506, 250 (2003).

[48] ATLAS Collaboration,Eur. Phys. J. C 70, 823 (2010). [49] ATLAS Collaboration,Eur. Phys. J. C 72, 1849 (2012). [50] ATLAS Collaboration,Eur. Phys. J. C 71, 1630 (2011). [51] ATLAS Collaboration,arXiv:1302.4393.

[52] ATLAS Collaboration,Eur. Phys. J. C 72, 1960 (2012). [53] ATLAS Collaboration, Report No.

ATLAS-CONF-2012-042,http://cdsweb.cern.ch/record/1435196.

[54] ATLAS Collaboration,Eur. Phys. J. C 72, 1909 (2012). PHYSICAL REVIEW D 87, 112006 (2013)

(10)

[55] ATLAS Collaboration, Report No. ATLAS-CONF-2011-063,http://cdsweb.cern.ch/record/1345743.

[56] ATLAS Collaboration, Report No. ATLAS-CONF-2011-021,http://cdsweb.cern.ch/record/1336750.

[57] ATLAS Collaboration, Report No. ATLAS-CONF-2011-046,http://cdsweb.cern.ch/record/1338575.

[58] M. Cacciari and G. P. Salam, Phys. Lett. B 641, 57 (2006).

[59] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[60] ATLAS Collaboration,Eur. Phys. J. C 73, 2304 (2013).

[61] ATLAS Collaboration, Report No. ATLAS-CONF-2011-102,http://cdsweb.cern.ch/record/1369219.

[62] ATLAS Collaboration, Report No. ATLAS-CONF-2010-091,http://cdsweb.cern.ch/record/1299106.

[63] ATLAS Collaboration,Eur. Phys. J. C 72, 1844 (2012). [64] ATLAS Collaboration, http://cdsweb.cern.ch/record/

1112035.

[65] ATLAS Collaboration,Eur. Phys. J. C 73, 2306 (2013). [66] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434,

435 (1999).

[67] A. L. Read,J. Phys. G 28, 2693 (2002).

G. Aad,48T. Abajyan,21B. Abbott,111J. Abdallah,12S. Abdel Khalek,115A. A. Abdelalim,49O. Abdinov,11 R. Aben,105B. Abi,112M. Abolins,88O. S. AbouZeid,158H. Abramowicz,153H. Abreu,136B. S. Acharya,164a,164b,b L. Adamczyk,38D. L. Adams,25T. N. Addy,56J. Adelman,176S. Adomeit,98P. Adragna,75T. Adye,129S. Aefsky,23 J. A. Aguilar-Saavedra,124b,cM. Agustoni,17M. Aharrouche,81S. P. Ahlen,22F. Ahles,48A. Ahmad,148M. Ahsan,41 G. Aielli,133a,133bT. Akdogan,19aT. P. A. A˚ kesson,79G. Akimoto,155A. V. Akimov,94M. S. Alam,2M. A. Alam,76

J. Albert,169S. Albrand,55M. Aleksa,30I. N. Aleksandrov,64F. Alessandria,89aC. Alexa,26aG. Alexander,153 G. Alexandre,49T. Alexopoulos,10M. Alhroob,164a,164cM. Aliev,16G. Alimonti,89aJ. Alison,120 B. M. M. Allbrooke,18P. P. Allport,73S. E. Allwood-Spiers,53J. Almond,82A. Aloisio,102a,102bR. Alon,172

A. Alonso,36F. Alonso,70A. Altheimer,35B. Alvarez Gonzalez,88M. G. Alviggi,102a,102bK. Amako,65 C. Amelung,23V. V. Ammosov,128,aS. P. Amor Dos Santos,124aA. Amorim,124a,dN. Amram,153C. Anastopoulos,30

L. S. Ancu,17N. Andari,115T. Andeen,35C. F. Anders,58bG. Anders,58aK. J. Anderson,31A. Andreazza,89a,89b V. Andrei,58aM-L. Andrieux,55X. S. Anduaga,70S. Angelidakis,9P. Anger,44A. Angerami,35F. Anghinolfi,30 A. Anisenkov,107N. Anjos,124aA. Annovi,47A. Antonaki,9M. Antonelli,47A. Antonov,96J. Antos,144bF. Anulli,132a

M. Aoki,101S. Aoun,83L. Aperio Bella,5R. Apolle,118,eG. Arabidze,88I. Aracena,143Y. Arai,65A. T. H. Arce,45 S. Arfaoui,148J-F. Arguin,93E. Arik,19a,aM. Arik,19aA. J. Armbruster,87O. Arnaez,81V. Arnal,80C. Arnault,115

A. Artamonov,95G. Artoni,132a,132bD. Arutinov,21S. Asai,155S. Ask,28B. A˚ sman,146a,146bL. Asquith,6 K. Assamagan,25A. Astbury,169M. Atkinson,165B. Aubert,5E. Auge,115K. Augsten,126M. Aurousseau,145a

G. Avolio,30R. Avramidou,10D. Axen,168G. Azuelos,93,fY. Azuma,155M. A. Baak,30G. Baccaglioni,89a C. Bacci,134a,134bA. M. Bach,15H. Bachacou,136K. Bachas,30M. Backes,49M. Backhaus,21J. Backus Mayes,143

E. Badescu,26aP. Bagnaia,132a,132bS. Bahinipati,3Y. Bai,33aD. C. Bailey,158T. Bain,158J. T. Baines,129 O. K. Baker,176M. D. Baker,25S. Baker,77P. Balek,127E. Banas,39P. Banerjee,93Sw. Banerjee,173D. Banfi,30

A. Bangert,150V. Bansal,169H. S. Bansil,18L. Barak,172S. P. Baranov,94A. Barbaro Galtieri,15T. Barber,48 E. L. Barberio,86D. Barberis,50a,50bM. Barbero,21D. Y. Bardin,64T. Barillari,99M. Barisonzi,175T. Barklow,143

N. Barlow,28B. M. Barnett,129R. M. Barnett,15A. Baroncelli,134aG. Barone,49A. J. Barr,118F. Barreiro,80 J. Barreiro Guimara˜es da Costa,57P. Barrillon,115R. Bartoldus,143A. E. Barton,71V. Bartsch,149A. Basye,165 R. L. Bates,53L. Batkova,144aJ. R. Batley,28A. Battaglia,17M. Battistin,30F. Bauer,136H. S. Bawa,143,gS. Beale,98

T. Beau,78P. H. Beauchemin,161R. Beccherle,50aP. Bechtle,21H. P. Beck,17K. Becker,175S. Becker,98 M. Beckingham,138K. H. Becks,175A. J. Beddall,19cA. Beddall,19cS. Bedikian,176V. A. Bednyakov,64C. P. Bee,83

L. J. Beemster,105M. Begel,25S. Behar Harpaz,152P. K. Behera,62M. Beimforde,99C. Belanger-Champagne,85 P. J. Bell,49W. H. Bell,49G. Bella,153L. Bellagamba,20aM. Bellomo,30A. Belloni,57O. Beloborodova,107,h

K. Belotskiy,96O. Beltramello,30O. Benary,153D. Benchekroun,135aK. Bendtz,146a,146bN. Benekos,165 Y. Benhammou,153E. Benhar Noccioli,49J. A. Benitez Garcia,159bD. P. Benjamin,45M. Benoit,115J. R. Bensinger,23 K. Benslama,130S. Bentvelsen,105D. Berge,30E. Bergeaas Kuutmann,42N. Berger,5F. Berghaus,169E. Berglund,105

J. Beringer,15P. Bernat,77R. Bernhard,48C. Bernius,25T. Berry,76C. Bertella,83A. Bertin,20a,20b

F. Bertolucci,122a,122bM. I. Besana,89a,89bG. J. Besjes,104N. Besson,136S. Bethke,99W. Bhimji,46R. M. Bianchi,30 L. Bianchini,23M. Bianco,72a,72bO. Biebel,98S. P. Bieniek,77K. Bierwagen,54J. Biesiada,15M. Biglietti,134a H. Bilokon,47M. Bindi,20a,20bS. Binet,115A. Bingul,19cC. Bini,132a,132bC. Biscarat,178B. Bittner,99K. M. Black,22

R. E. Blair,6J.-B. Blanchard,136G. Blanchot,30T. Blazek,144aI. Bloch,42C. Blocker,23J. Blocki,39A. Blondel,49 W. Blum,81U. Blumenschein,54G. J. Bobbink,105V. S. Bobrovnikov,107S. S. Bocchetta,79A. Bocci,45 C. R. Boddy,118M. Boehler,48J. Boek,175T. T. Boek,175N. Boelaert,36J. A. Bogaerts,30A. Bogdanchikov,107

(11)

A. Bogouch,90,aC. Bohm,146aJ. Bohm,125V. Boisvert,76T. Bold,38V. Boldea,26aN. M. Bolnet,136M. Bomben,78 M. Bona,75M. Boonekamp,136S. Bordoni,78C. Borer,17A. Borisov,128G. Borissov,71I. Borjanovic,13aM. Borri,82 S. Borroni,87J. Bortfeldt,98V. Bortolotto,134a,134bK. Bos,105D. Boscherini,20aM. Bosman,12H. Boterenbrood,105

J. Bouchami,93J. Boudreau,123E. V. Bouhova-Thacker,71D. Boumediene,34C. Bourdarios,115N. Bousson,83 A. Boveia,31J. Boyd,30I. R. Boyko,64I. Bozovic-Jelisavcic,13bJ. Bracinik,18P. Branchini,134aA. Brandt,8 G. Brandt,118O. Brandt,54U. Bratzler,156B. Brau,84J. E. Brau,114H. M. Braun,175,aS. F. Brazzale,164a,164c B. Brelier,158J. Bremer,30K. Brendlinger,120R. Brenner,166S. Bressler,172D. Britton,53F. M. Brochu,28I. Brock,21 R. Brock,88F. Broggi,89aC. Bromberg,88J. Bronner,99G. Brooijmans,35T. Brooks,76W. K. Brooks,32bG. Brown,82 H. Brown,8P. A. Bruckman de Renstrom,39D. Bruncko,144bR. Bruneliere,48S. Brunet,60A. Bruni,20aG. Bruni,20a

M. Bruschi,20aT. Buanes,14Q. Buat,55F. Bucci,49J. Buchanan,118P. Buchholz,141R. M. Buckingham,118 A. G. Buckley,46S. I. Buda,26aI. A. Budagov,64B. Budick,108L. Bugge,117O. Bulekov,96A. C. Bundock,73 M. Bunse,43T. Buran,117,aH. Burckhart,30S. Burdin,73T. Burgess,14S. Burke,129E. Busato,34V. Bu¨scher,81 P. Bussey,53C. P. Buszello,166B. Butler,143J. M. Butler,22C. M. Buttar,53J. M. Butterworth,77W. Buttinger,28 M. Byszewski,30S. Cabrera Urba´n,167D. Caforio,20a,20bO. Cakir,4aP. Calafiura,15G. Calderini,78P. Calfayan,98 R. Calkins,106L. P. Caloba,24aR. Caloi,132a,132bD. Calvet,34S. Calvet,34R. Camacho Toro,34P. Camarri,133a,133b D. Cameron,117L. M. Caminada,15R. Caminal Armadans,12S. Campana,30M. Campanelli,77V. Canale,102a,102b

F. Canelli,31A. Canepa,159aJ. Cantero,80R. Cantrill,76L. Capasso,102a,102bM. D. M. Capeans Garrido,30 I. Caprini,26aM. Caprini,26aD. Capriotti,99M. Capua,37a,37bR. Caputo,81R. Cardarelli,133aT. Carli,30G. Carlino,102a L. Carminati,89a,89bB. Caron,85S. Caron,104E. Carquin,32bG. D. Carrillo-Montoya,173A. A. Carter,75J. R. Carter,28

J. Carvalho,124a,iD. Casadei,108M. P. Casado,12M. Cascella,122a,122bC. Caso,50a,50b,a

A. M. Castaneda Hernandez,173,jE. Castaneda-Miranda,173V. Castillo Gimenez,167N. F. Castro,124aG. Cataldi,72a P. Catastini,57A. Catinaccio,30J. R. Catmore,30A. Cattai,30G. Cattani,133a,133bS. Caughron,88V. Cavaliere,165 P. Cavalleri,78D. Cavalli,89aM. Cavalli-Sforza,12V. Cavasinni,122a,122bF. Ceradini,134a,134bA. S. Cerqueira,24b A. Cerri,30L. Cerrito,75F. Cerutti,47S. A. Cetin,19bA. Chafaq,135aD. Chakraborty,106I. Chalupkova,127K. Chan,3

P. Chang,165B. Chapleau,85J. D. Chapman,28J. W. Chapman,87E. Chareyre,78D. G. Charlton,18V. Chavda,82 C. A. Chavez Barajas,30S. Cheatham,85S. Chekanov,6S. V. Chekulaev,159aG. A. Chelkov,64M. A. Chelstowska,104 C. Chen,63H. Chen,25S. Chen,33cX. Chen,173Y. Chen,35Y. Cheng,31A. Cheplakov,64R. Cherkaoui El Moursli,135e V. Chernyatin,25E. Cheu,7S. L. Cheung,158L. Chevalier,136G. Chiefari,102a,102bL. Chikovani,51a,aJ. T. Childers,30 A. Chilingarov,71G. Chiodini,72aA. S. Chisholm,18R. T. Chislett,77A. Chitan,26aM. V. Chizhov,64G. Choudalakis,31

S. Chouridou,137I. A. Christidi,77A. Christov,48D. Chromek-Burckhart,30M. L. Chu,151J. Chudoba,125 G. Ciapetti,132a,132bA. K. Ciftci,4aR. Ciftci,4aD. Cinca,34V. Cindro,74A. Ciocio,15M. Cirilli,87P. Cirkovic,13b

Z. H. Citron,172M. Citterio,89aM. Ciubancan,26aA. Clark,49P. J. Clark,46R. N. Clarke,15W. Cleland,123 J. C. Clemens,83B. Clement,55C. Clement,146a,146bY. Coadou,83M. Cobal,164a,164cA. Coccaro,138J. Cochran,63 L. Coffey,23J. G. Cogan,143J. Coggeshall,165E. Cogneras,178J. Colas,5S. Cole,106A. P. Colijn,105N. J. Collins,18

C. Collins-Tooth,53J. Collot,55T. Colombo,119a,119bG. Colon,84G. Compostella,99P. Conde Muin˜o,124a E. Coniavitis,166M. C. Conidi,12S. M. Consonni,89a,89bV. Consorti,48S. Constantinescu,26aC. Conta,119a,119b G. Conti,57F. Conventi,102a,kM. Cooke,15B. D. Cooper,77A. M. Cooper-Sarkar,118K. Copic,15T. Cornelissen,175 M. Corradi,20aF. Corriveau,85,lA. Corso-Radu,163A. Cortes-Gonzalez,165G. Cortiana,99G. Costa,89aM. J. Costa,167

D. Costanzo,139D. Coˆte´,30L. Courneyea,169G. Cowan,76C. Cowden,28B. E. Cox,82K. Cranmer,108 S. Cre´pe´-Renaudin,55F. Crescioli,78M. Cristinziani,21G. Crosetti,37a,37bC.-M. Cuciuc,26aC. Cuenca Almenar,176

T. Cuhadar Donszelmann,139J. Cummings,176M. Curatolo,47C. J. Curtis,18C. Cuthbert,150P. Cwetanski,60 H. Czirr,141P. Czodrowski,44Z. Czyczula,176S. D’Auria,53M. D’Onofrio,73A. D’Orazio,132a,132b M. J. Da Cunha Sargedas De Sousa,124aC. Da Via,82W. Dabrowski,38A. Dafinca,118T. Dai,87C. Dallapiccola,84

M. Dam,36M. Dameri,50a,50bD. S. Damiani,137H. O. Danielsson,30V. Dao,49G. Darbo,50aG. L. Darlea,26b J. A. Dassoulas,42W. Davey,21T. Davidek,127N. Davidson,86R. Davidson,71E. Davies,118,eM. Davies,93 O. Davignon,78A. R. Davison,77Y. Davygora,58aE. Dawe,142I. Dawson,139R. K. Daya-Ishmukhametova,23K. De,8

R. de Asmundis,102aS. De Castro,20a,20bS. De Cecco,78J. de Graat,98N. De Groot,104P. de Jong,105 C. De La Taille,115H. De la Torre,80F. De Lorenzi,63L. de Mora,71L. De Nooij,105D. De Pedis,132aA. De Salvo,132a

U. De Sanctis,164a,164cA. De Santo,149J. B. De Vivie De Regie,115G. De Zorzi,132a,132bW. J. Dearnaley,71 R. Debbe,25C. Debenedetti,46B. Dechenaux,55D. V. Dedovich,64J. Degenhardt,120C. Del Papa,164a,164c J. Del Peso,80T. Del Prete,122a,122bT. Delemontex,55M. Deliyergiyev,74A. Dell’Acqua,30L. Dell’Asta,22

(12)

M. Della Pietra,102a,kD. della Volpe,102a,102bM. Delmastro,5P. A. Delsart,55C. Deluca,105S. Demers,176 M. Demichev,64B. Demirkoz,12,mJ. Deng,163S. P. Denisov,128D. Derendarz,39J. E. Derkaoui,135dF. Derue,78

P. Dervan,73K. Desch,21E. Devetak,148P. O. Deviveiros,105A. Dewhurst,129B. DeWilde,148S. Dhaliwal,158 R. Dhullipudi,25,nA. Di Ciaccio,133a,133bL. Di Ciaccio,5C. Di Donato,102a,102bA. Di Girolamo,30B. Di Girolamo,30

S. Di Luise,134a,134bA. Di Mattia,173B. Di Micco,30R. Di Nardo,47A. Di Simone,133a,133bR. Di Sipio,20a,20b M. A. Diaz,32aE. B. Diehl,87J. Dietrich,42T. A. Dietzsch,58aS. Diglio,86K. Dindar Yagci,40J. Dingfelder,21 F. Dinut,26aC. Dionisi,132a,132bP. Dita,26aS. Dita,26aF. Dittus,30F. Djama,83T. Djobava,51bM. A. B. do Vale,24c

A. Do Valle Wemans,124a,oT. K. O. Doan,5M. Dobbs,85D. Dobos,30E. Dobson,30,pJ. Dodd,35C. Doglioni,49 T. Doherty,53T. Dohmae,155Y. Doi,65,aJ. Dolejsi,127I. Dolenc,74Z. Dolezal,127B. A. Dolgoshein,96,a M. Donadelli,24dJ. Donini,34J. Dopke,30A. Doria,102aA. Dos Anjos,173A. Dotti,122a,122bM. T. Dova,70

A. D. Doxiadis,105A. T. Doyle,53N. Dressnandt,120M. Dris,10J. Dubbert,99S. Dube,15E. Duchovni,172 G. Duckeck,98D. Duda,175A. Dudarev,30F. Dudziak,63I. P. Duerdoth,82L. Duflot,115M-A. Dufour,85L. Duguid,76

M. Du¨hrssen,30M. Dunford,58aH. Duran Yildiz,4aM. Du¨ren,52R. Duxfield,139M. Dwuznik,38F. Dydak,30 W. L. Ebenstein,45J. Ebke,98S. Eckweiler,81K. Edmonds,81W. Edson,2C. A. Edwards,76N. C. Edwards,53 W. Ehrenfeld,42T. Eifert,143G. Eigen,14K. Einsweiler,15E. Eisenhandler,75T. Ekelof,166M. El Kacimi,135c M. Ellert,166S. Elles,5F. Ellinghaus,81K. Ellis,75N. Ellis,30J. Elmsheuser,98M. Elsing,30D. Emeliyanov,129

R. Engelmann,148A. Engl,98B. Epp,61J. Erdmann,54A. Ereditato,17D. Eriksson,146aJ. Ernst,2M. Ernst,25 J. Ernwein,136D. Errede,165S. Errede,165E. Ertel,81M. Escalier,115H. Esch,43C. Escobar,123X. Espinal Curull,12 B. Esposito,47F. Etienne,83A. I. Etienvre,136E. Etzion,153D. Evangelakou,54H. Evans,60L. Fabbri,20a,20bC. Fabre,30

R. M. Fakhrutdinov,128S. Falciano,132aY. Fang,173M. Fanti,89a,89bA. Farbin,8A. Farilla,134aJ. Farley,148 T. Farooque,158S. Farrell,163S. M. Farrington,170P. Farthouat,30F. Fassi,167P. Fassnacht,30D. Fassouliotis,9 B. Fatholahzadeh,158A. Favareto,89a,89bL. Fayard,115S. Fazio,37a,37bR. Febbraro,34P. Federic,144aO. L. Fedin,121

W. Fedorko,88M. Fehling-Kaschek,48L. Feligioni,83D. Fellmann,6C. Feng,33dE. J. Feng,6A. B. Fenyuk,128 J. Ferencei,144bW. Fernando,6S. Ferrag,53J. Ferrando,53V. Ferrara,42A. Ferrari,166P. Ferrari,105R. Ferrari,119a

D. E. Ferreira de Lima,53A. Ferrer,167D. Ferrere,49C. Ferretti,87A. Ferretto Parodi,50a,50bM. Fiascaris,31 F. Fiedler,81A. Filipcˇicˇ,74F. Filthaut,104M. Fincke-Keeler,169M. C. N. Fiolhais,124a,iL. Fiorini,167A. Firan,40 G. Fischer,42M. J. Fisher,109M. Flechl,48I. Fleck,141J. Fleckner,81P. Fleischmann,174S. Fleischmann,175T. Flick,175

A. Floderus,79L. R. Flores Castillo,173M. J. Flowerdew,99T. Fonseca Martin,17A. Formica,136A. Forti,82 D. Fortin,159aD. Fournier,115A. J. Fowler,45H. Fox,71P. Francavilla,12M. Franchini,20a,20bS. Franchino,119a,119b

D. Francis,30T. Frank,172M. Franklin,57S. Franz,30M. Fraternali,119a,119bS. Fratina,120S. T. French,28 C. Friedrich,42F. Friedrich,44R. Froeschl,30D. Froidevaux,30J. A. Frost,28C. Fukunaga,156E. Fullana Torregrosa,30

B. G. Fulsom,143J. Fuster,167C. Gabaldon,30O. Gabizon,172T. Gadfort,25S. Gadomski,49G. Gagliardi,50a,50b P. Gagnon,60C. Galea,98B. Galhardo,124aE. J. Gallas,118V. Gallo,17B. J. Gallop,129P. Gallus,125K. K. Gan,109

Y. S. Gao,143,gA. Gaponenko,15F. Garberson,176C. Garcı´a,167J. E. Garcı´a Navarro,167M. Garcia-Sciveres,15 R. W. Gardner,31N. Garelli,30H. Garitaonandia,105V. Garonne,30C. Gatti,47G. Gaudio,119aB. Gaur,141 L. Gauthier,136P. Gauzzi,132a,132bI. L. Gavrilenko,94C. Gay,168G. Gaycken,21E. N. Gazis,10P. Ge,33d,qZ. Gecse,168

C. N. P. Gee,129D. A. A. Geerts,105Ch. Geich-Gimbel,21K. Gellerstedt,146a,146bC. Gemme,50aA. Gemmell,53 M. H. Genest,55S. Gentile,132a,132bM. George,54S. George,76A. Gershon,153C. Geweniger,58aH. Ghazlane,135b

N. Ghodbane,34B. Giacobbe,20aS. Giagu,132a,132bV. Giakoumopoulou,9V. Giangiobbe,12F. Gianotti,30 B. Gibbard,25A. Gibson,158S. M. Gibson,30M. Gilchriese,15D. Gillberg,29A. R. Gillman,129D. M. Gingrich,3,f N. Giokaris,9M. P. Giordani,164cR. Giordano,102a,102bF. M. Giorgi,16P. Giovannini,99P. F. Giraud,136D. Giugni,89a M. Giunta,93P. Giusti,20aB. K. Gjelsten,117L. K. Gladilin,97C. Glasman,80J. Glatzer,21A. Glazov,42K. W. Glitza,175

G. L. Glonti,64J. R. Goddard,75J. Godfrey,142J. Godlewski,30M. Goebel,42C. Goeringer,81S. Goldfarb,87 T. Golling,176A. Gomes,124a,dL. S. Gomez Fajardo,42R. Gonc¸alo,76J. Goncalves Pinto Firmino Da Costa,42 L. Gonella,21S. Gonza´lez de la Hoz,167G. Gonzalez Parra,12M. L. Gonzalez Silva,27S. Gonzalez-Sevilla,49 J. J. Goodson,148L. Goossens,30T. Go¨pfert,44P. A. Gorbounov,95H. A. Gordon,25I. Gorelov,103G. Gorfine,175

B. Gorini,30E. Gorini,72a,72bA. Gorisˇek,74E. Gornicki,39B. Gosdzik,42A. T. Goshaw,6M. Gosselink,105 C. Go¨ssling,43M. I. Gostkin,64I. Gough Eschrich,163M. Gouighri,135aD. Goujdami,135cM. P. Goulette,49 A. G. Goussiou,138C. Goy,5S. Gozpinar,23I. Grabowska-Bold,38P. Grafstro¨m,20a,20bK-J. Grahn,42E. Gramstad,117

F. Grancagnolo,72aS. Grancagnolo,16V. Grassi,148V. Gratchev,121N. Grau,35H. M. Gray,30J. A. Gray,148 E. Graziani,134aO. G. Grebenyuk,121T. Greenshaw,73Z. D. Greenwood,25,nK. Gregersen,36I. M. Gregor,42

(13)

P. Grenier,143J. Griffiths,8N. Grigalashvili,64A. A. Grillo,137S. Grinstein,12Ph. Gris,34Y. V. Grishkevich,97 J.-F. Grivaz,115E. Gross,172J. Grosse-Knetter,54J. Groth-Jensen,172K. Grybel,141D. Guest,176C. Guicheney,34

S. Guindon,54U. Gul,53J. Gunther,125B. Guo,158J. Guo,35P. Gutierrez,111N. Guttman,153O. Gutzwiller,173 C. Guyot,136C. Gwenlan,118C. B. Gwilliam,73A. Haas,108S. Haas,30C. Haber,15H. K. Hadavand,8D. R. Hadley,18

P. Haefner,21F. Hahn,30S. Haider,30Z. Hajduk,39H. Hakobyan,177D. Hall,118K. Hamacher,175P. Hamal,113 K. Hamano,86M. Hamer,54A. Hamilton,145b,rS. Hamilton,161L. Han,33bK. Hanagaki,116K. Hanawa,160 M. Hance,15C. Handel,81P. Hanke,58aJ. R. Hansen,36J. B. Hansen,36J. D. Hansen,36P. H. Hansen,36P. Hansson,143

K. Hara,160G. A. Hare,137T. Harenberg,175S. Harkusha,90D. Harper,87R. D. Harrington,46O. M. Harris,138 J. Hartert,48F. Hartjes,105T. Haruyama,65A. Harvey,56S. Hasegawa,101Y. Hasegawa,140S. Hassani,136S. Haug,17 M. Hauschild,30R. Hauser,88M. Havranek,21C. M. Hawkes,18R. J. Hawkings,30A. D. Hawkins,79T. Hayakawa,66

T. Hayashi,160D. Hayden,76C. P. Hays,118H. S. Hayward,73S. J. Haywood,129S. J. Head,18V. Hedberg,79 L. Heelan,8S. Heim,120B. Heinemann,15S. Heisterkamp,36L. Helary,22C. Heller,98M. Heller,30 S. Hellman,146a,146bD. Hellmich,21C. Helsens,12R. C. W. Henderson,71M. Henke,58aA. Henrichs,176

A. M. Henriques Correia,30S. Henrot-Versille,115C. Hensel,54T. Henß,175C. M. Hernandez,8 Y. Herna´ndez Jime´nez,167R. Herrberg,16G. Herten,48R. Hertenberger,98L. Hervas,30G. G. Hesketh,77 N. P. Hessey,105E. Higo´n-Rodriguez,167J. C. Hill,28K. H. Hiller,42S. Hillert,21S. J. Hillier,18I. Hinchliffe,15

E. Hines,120M. Hirose,116F. Hirsch,43D. Hirschbuehl,175J. Hobbs,148N. Hod,153M. C. Hodgkinson,139 P. Hodgson,139A. Hoecker,30M. R. Hoeferkamp,103J. Hoffman,40D. Hoffmann,83M. Hohlfeld,81M. Holder,141

S. O. Holmgren,146aT. Holy,126J. L. Holzbauer,88T. M. Hong,120L. Hooft van Huysduynen,108S. Horner,48 J-Y. Hostachy,55S. Hou,151A. Hoummada,135aJ. Howard,118J. Howarth,82I. Hristova,16J. Hrivnac,115T. Hryn’ova,5

P. J. Hsu,81S.-C. Hsu,15D. Hu,35Z. Hubacek,126F. Hubaut,83F. Huegging,21A. Huettmann,42T. B. Huffman,118 E. W. Hughes,35G. Hughes,71M. Huhtinen,30M. Hurwitz,15N. Huseynov,64,sJ. Huston,88J. Huth,57G. Iacobucci,49 G. Iakovidis,10M. Ibbotson,82I. Ibragimov,141L. Iconomidou-Fayard,115J. Idarraga,115P. Iengo,102aO. Igonkina,105

Y. Ikegami,65M. Ikeno,65D. Iliadis,154N. Ilic,158T. Ince,99J. Inigo-Golfin,30P. Ioannou,9M. Iodice,134a K. Iordanidou,9V. Ippolito,132a,132bA. Irles Quiles,167C. Isaksson,166M. Ishino,67M. Ishitsuka,157 R. Ishmukhametov,109C. Issever,118S. Istin,19aA. V. Ivashin,128W. Iwanski,39H. Iwasaki,65J. M. Izen,41V. Izzo,102a

B. Jackson,120J. N. Jackson,73P. Jackson,1M. R. Jaekel,30V. Jain,60K. Jakobs,48S. Jakobsen,36T. Jakoubek,125 J. Jakubek,126D. O. Jamin,151D. K. Jana,111E. Jansen,77H. Jansen,30A. Jantsch,99M. Janus,48R. C. Jared,173 G. Jarlskog,79L. Jeanty,57I. Jen-La Plante,31D. Jennens,86P. Jenni,30P. Jezˇ,36S. Je´ze´quel,5M. K. Jha,20aH. Ji,173

W. Ji,81J. Jia,148Y. Jiang,33bM. Jimenez Belenguer,42S. Jin,33aO. Jinnouchi,157M. D. Joergensen,36D. Joffe,40 M. Johansen,146a,146bK. E. Johansson,146aP. Johansson,139S. Johnert,42K. A. Johns,7K. Jon-And,146a,146b G. Jones,170R. W. L. Jones,71T. J. Jones,73C. Joram,30P. M. Jorge,124aK. D. Joshi,82J. Jovicevic,147T. Jovin,13b

X. Ju,173C. A. Jung,43R. M. Jungst,30V. Juranek,125P. Jussel,61A. Juste Rozas,12S. Kabana,17M. Kaci,167 A. Kaczmarska,39P. Kadlecik,36M. Kado,115H. Kagan,109M. Kagan,57E. Kajomovitz,152S. Kalinin,175 L. V. Kalinovskaya,64S. Kama,40N. Kanaya,155M. Kaneda,30S. Kaneti,28T. Kanno,157V. A. Kantserov,96 J. Kanzaki,65B. Kaplan,108A. Kapliy,31J. Kaplon,30D. Kar,53M. Karagounis,21K. Karakostas,10M. Karnevskiy,42 V. Kartvelishvili,71A. N. Karyukhin,128L. Kashif,173G. Kasieczka,58bR. D. Kass,109A. Kastanas,14Y. Kataoka,155

E. Katsoufis,10J. Katzy,42V. Kaushik,7K. Kawagoe,69T. Kawamoto,155G. Kawamura,81M. S. Kayl,105 S. Kazama,155V. F. Kazanin,107M. Y. Kazarinov,64R. Keeler,169P. T. Keener,120R. Kehoe,40M. Keil,54 G. D. Kekelidze,64J. S. Keller,138M. Kenyon,53O. Kepka,125N. Kerschen,30B. P. Kersˇevan,74S. Kersten,175

K. Kessoku,155J. Keung,158F. Khalil-zada,11H. Khandanyan,146a,146bA. Khanov,112D. Kharchenko,64 A. Khodinov,96A. Khomich,58aT. J. Khoo,28G. Khoriauli,21A. Khoroshilov,175V. Khovanskiy,95E. Khramov,64

J. Khubua,51bH. Kim,146a,146bS. H. Kim,160N. Kimura,171O. Kind,16B. T. King,73M. King,66R. S. B. King,118 J. Kirk,129A. E. Kiryunin,99T. Kishimoto,66D. Kisielewska,38T. Kitamura,66T. Kittelmann,123K. Kiuchi,160

E. Kladiva,144bM. Klein,73U. Klein,73K. Kleinknecht,81M. Klemetti,85A. Klier,172P. Klimek,146a,146b A. Klimentov,25R. Klingenberg,43J. A. Klinger,82E. B. Klinkby,36T. Klioutchnikova,30P. F. Klok,104S. Klous,105

E.-E. Kluge,58aT. Kluge,73P. Kluit,105S. Kluth,99E. Kneringer,61E. B. F. G. Knoops,83A. Knue,54B. R. Ko,45 T. Kobayashi,155M. Kobel,44M. Kocian,143P. Kodys,127S. Koenig,81F. Koetsveld,104P. Koevesarki,21T. Koffas,29

E. Koffeman,105L. A. Kogan,118S. Kohlmann,175F. Kohn,54Z. Kohout,126T. Kohriki,65T. Koi,143 G. M. Kolachev,107,aH. Kolanoski,16V. Kolesnikov,64I. Koletsou,89aJ. Koll,88A. A. Komar,94Y. Komori,155 T. Kondo,65K. Ko¨neke,30A. C. Ko¨nig,104T. Kono,42,tA. I. Kononov,48R. Konoplich,108,uN. Konstantinidis,77

(14)

R. Kopeliansky,152S. Koperny,38L. Ko¨pke,81K. Korcyl,39K. Kordas,154A. Korn,118A. Korol,107I. Korolkov,12 E. V. Korolkova,139V. A. Korotkov,128O. Kortner,99S. Kortner,99V. V. Kostyukhin,21S. Kotov,99V. M. Kotov,64

A. Kotwal,45C. Kourkoumelis,9V. Kouskoura,154A. Koutsman,159aR. Kowalewski,169T. Z. Kowalski,38 W. Kozanecki,136A. S. Kozhin,128V. Kral,126V. A. Kramarenko,97G. Kramberger,74M. W. Krasny,78 A. Krasznahorkay,108J. K. Kraus,21S. Kreiss,108F. Krejci,126J. Kretzschmar,73N. Krieger,54P. Krieger,158 K. Kroeninger,54H. Kroha,99J. Kroll,120J. Kroseberg,21J. Krstic,13aU. Kruchonak,64H. Kru¨ger,21T. Kruker,17

N. Krumnack,63Z. V. Krumshteyn,64T. Kubota,86S. Kuday,4aS. Kuehn,48A. Kugel,58cT. Kuhl,42D. Kuhn,61 V. Kukhtin,64Y. Kulchitsky,90S. Kuleshov,32bC. Kummer,98M. Kuna,78J. Kunkle,120A. Kupco,125H. Kurashige,66

M. Kurata,160Y. A. Kurochkin,90V. Kus,125E. S. Kuwertz,147M. Kuze,157J. Kvita,142R. Kwee,16A. La Rosa,49 L. La Rotonda,37a,37bL. Labarga,80J. Labbe,5S. Lablak,135aC. Lacasta,167F. Lacava,132a,132bJ. Lacey,29 H. Lacker,16D. Lacour,78V. R. Lacuesta,167E. Ladygin,64R. Lafaye,5B. Laforge,78T. Lagouri,176S. Lai,48

E. Laisne,55M. Lamanna,30L. Lambourne,77C. L. Lampen,7W. Lampl,7E. Lanc¸on,136U. Landgraf,48 M. P. J. Landon,75V. S. Lang,58aC. Lange,42A. J. Lankford,163F. Lanni,25K. Lantzsch,30A. Lanza,119aS. Laplace,78 C. Lapoire,21J. F. Laporte,136T. Lari,89aA. Larner,118M. Lassnig,30P. Laurelli,47V. Lavorini,37a,37bW. Lavrijsen,15 P. Laycock,73O. Le Dortz,78E. Le Guirriec,83E. Le Menedeu,12T. LeCompte,6F. Ledroit-Guillon,55H. Lee,105 J. S. H. Lee,116S. C. Lee,151L. Lee,176M. Lefebvre,169M. Legendre,136F. Legger,98C. Leggett,15M. Lehmacher,21

G. Lehmann Miotto,30M. A. L. Leite,24dR. Leitner,127D. Lellouch,172B. Lemmer,54V. Lendermann,58a K. J. C. Leney,145bT. Lenz,105G. Lenzen,175B. Lenzi,30K. Leonhardt,44S. Leontsinis,10F. Lepold,58aC. Leroy,93

J-R. Lessard,169C. G. Lester,28C. M. Lester,120J. Leveˆque,5D. Levin,87L. J. Levinson,172A. Lewis,118 G. H. Lewis,108A. M. Leyko,21M. Leyton,16B. Li,83H. Li,148H. L. Li,31S. Li,33b,vX. Li,87Z. Liang,118,wH. Liao,34 B. Liberti,133aP. Lichard,30M. Lichtnecker,98K. Lie,165W. Liebig,14C. Limbach,21A. Limosani,86M. Limper,62 S. C. Lin,151,xF. Linde,105J. T. Linnemann,88E. Lipeles,120A. Lipniacka,14T. M. Liss,165D. Lissauer,25A. Lister,49

A. M. Litke,137C. Liu,29D. Liu,151H. Liu,87J. B. Liu,87L. Liu,87M. Liu,33bY. Liu,33bM. Livan,119a,119b S. S. A. Livermore,118A. Lleres,55J. Llorente Merino,80S. L. Lloyd,75F. Lo Sterzo,132a,132bE. Lobodzinska,42

P. Loch,7W. S. Lockman,137T. Loddenkoetter,21F. K. Loebinger,82A. E. Loevschall-Jensen,36A. Loginov,176 C. W. Loh,168T. Lohse,16K. Lohwasser,48M. Lokajicek,125V. P. Lombardo,5R. E. Long,71L. Lopes,124a D. Lopez Mateos,57J. Lorenz,98N. Lorenzo Martinez,115M. Losada,162P. Loscutoff,15M. J. Losty,159a,aX. Lou,41

A. Lounis,115K. F. Loureiro,162J. Love,6P. A. Love,71A. J. Lowe,143,gF. Lu,33aH. J. Lubatti,138C. Luci,132a,132b A. Lucotte,55A. Ludwig,44D. Ludwig,42I. Ludwig,48J. Ludwig,48F. Luehring,60G. Luijckx,105W. Lukas,61

L. Luminari,132aE. Lund,117B. Lundberg,79J. Lundberg,146a,146bO. Lundberg,146a,146bB. Lund-Jensen,147 J. Lundquist,36M. Lungwitz,81D. Lynn,25E. Lytken,79H. Ma,25L. L. Ma,173G. Maccarrone,47A. Macchiolo,99

B. Macˇek,74J. Machado Miguens,124aR. Mackeprang,36R. J. Madaras,15H. J. Maddocks,71W. F. Mader,44 R. Maenner,58cM. Maeno,5T. Maeno,25L. Magnoni,163E. Magradze,54K. Mahboubi,48J. Mahlstedt,105 S. Mahmoud,73G. Mahout,18C. Maiani,136C. Maidantchik,24aA. Maio,124a,dS. Majewski,25Y. Makida,65 N. Makovec,115P. Mal,136,yB. Malaescu,30Pa. Malecki,39P. Malecki,39V. P. Maleev,121F. Malek,55U. Mallik,62

D. Malon,6C. Malone,143S. Maltezos,10V. Malyshev,107S. Malyukov,30R. Mameghani,98J. Mamuzic,13b L. Mandelli,89aI. Mandic´,74R. Mandrysch,16J. Maneira,124aA. Manfredini,99P. S. Mangeard,88

L. Manhaes de Andrade Filho,24bJ. A. Manjarres Ramos,136A. Mann,54P. M. Manning,137 A. Manousakis-Katsikakis,9B. Mansoulie,136A. Mapelli,30L. Mapelli,30L. March,167J. F. Marchand,29 F. Marchese,133a,133bG. Marchiori,78M. Marcisovsky,125C. P. Marino,169F. Marroquim,24aZ. Marshall,30 F. K. Martens,158L. F. Marti,17S. Marti-Garcia,167B. Martin,30B. Martin,88J. P. Martin,93T. A. Martin,18

V. J. Martin,46B. Martin dit Latour,49M. Martinez,12V. Martinez Outschoorn,57S. Martin-Haugh,149 A. C. Martyniuk,169M. Marx,82F. Marzano,132aA. Marzin,111L. Masetti,81T. Mashimo,155R. Mashinistov,94

J. Masik,82A. L. Maslennikov,107I. Massa,20a,20bG. Massaro,105N. Massol,5P. Mastrandrea,148 A. Mastroberardino,37a,37bT. Masubuchi,155P. Matricon,115H. Matsunaga,155T. Matsushita,66P. Ma¨ttig,175 S. Ma¨ttig,81C. Mattravers,118,eJ. Maurer,83S. J. Maxfield,73D. A. Maximov,107,hA. Mayne,139R. Mazini,151

M. Mazur,21L. Mazzaferro,133a,133bM. Mazzanti,89aJ. Mc Donald,85S. P. Mc Kee,87A. McCarn,165 R. L. McCarthy,148T. G. McCarthy,29N. A. McCubbin,129K. W. McFarlane,56,aJ. A. Mcfayden,139 G. Mchedlidze,51bT. Mclaughlan,18S. J. McMahon,129R. A. McPherson,169,lA. Meade,84J. Mechnich,105 M. Mechtel,175M. Medinnis,42R. Meera-Lebbai,111T. Meguro,116S. Mehlhase,36A. Mehta,73K. Meier,58a B. Meirose,79C. Melachrinos,31B. R. Mellado Garcia,173F. Meloni,89a,89bL. Mendoza Navas,162Z. Meng,151,z

(15)

A. Mengarelli,20a,20bS. Menke,99E. Meoni,161K. M. Mercurio,57P. Mermod,49L. Merola,102a,102bC. Meroni,89a F. S. Merritt,31H. Merritt,109A. Messina,30,aaJ. Metcalfe,25A. S. Mete,163C. Meyer,81C. Meyer,31J-P. Meyer,136 J. Meyer,174J. Meyer,54T. C. Meyer,30S. Michal,30R. P. Middleton,129S. Migas,73L. Mijovic´,136G. Mikenberg,172

M. Mikestikova,125M. Mikuzˇ,74D. W. Miller,31R. J. Miller,88W. J. Mills,168C. Mills,57A. Milov,172 D. A. Milstead,146a,146bD. Milstein,172A. A. Minaenko,128M. Min˜ano Moya,167I. A. Minashvili,64A. I. Mincer,108 B. Mindur,38M. Mineev,64Y. Ming,173L. M. Mir,12G. Mirabelli,132aJ. Mitrevski,137V. A. Mitsou,167S. Mitsui,65 P. S. Miyagawa,139J. U. Mjo¨rnmark,79T. Moa,146a,146bV. Moeller,28S. Mohapatra,148W. Mohr,48R. Moles-Valls,167 A. Molfetas,30K. Mo¨nig,42J. Monk,77E. Monnier,83J. Montejo Berlingen,12F. Monticelli,70S. Monzani,20a,20b R. W. Moore,3G. F. Moorhead,86C. Mora Herrera,49A. Moraes,53N. Morange,136J. Morel,54G. Morello,37a,37b D. Moreno,81M. Moreno Lla´cer,167P. Morettini,50aM. Morgenstern,44M. Morii,57A. K. Morley,30G. Mornacchi,30 J. D. Morris,75L. Morvaj,101N. Mo¨ser,21H. G. Moser,99M. Mosidze,51bJ. Moss,109R. Mount,143E. Mountricha,10,bb S. V. Mouraviev,94,aE. J. W. Moyse,84F. Mueller,58aJ. Mueller,123K. Mueller,21T. Mueller,81D. Muenstermann,30 T. A. Mu¨ller,98Y. Munwes,153W. J. Murray,129I. Mussche,105E. Musto,102a,102bA. G. Myagkov,128M. Myska,125 O. Nackenhorst,54J. Nadal,12K. Nagai,160R. Nagai,157K. Nagano,65A. Nagarkar,109Y. Nagasaka,59M. Nagel,99

A. M. Nairz,30Y. Nakahama,30K. Nakamura,155T. Nakamura,155I. Nakano,110G. Nanava,21A. Napier,161 R. Narayan,58bM. Nash,77,eT. Nattermann,21T. Naumann,42G. Navarro,162H. A. Neal,87P. Yu. Nechaeva,94

T. J. Neep,82A. Negri,119a,119bG. Negri,30M. Negrini,20aS. Nektarijevic,49A. Nelson,163T. K. Nelson,143 S. Nemecek,125P. Nemethy,108A. A. Nepomuceno,24aM. Nessi,30,ccM. S. Neubauer,165M. Neumann,175 A. Neusiedl,81R. M. Neves,108P. Nevski,25F. M. Newcomer,120P. R. Newman,18V. Nguyen Thi Hong,136

R. B. Nickerson,118R. Nicolaidou,136B. Nicquevert,30F. Niedercorn,115J. Nielsen,137N. Nikiforou,35 A. Nikiforov,16V. Nikolaenko,128I. Nikolic-Audit,78K. Nikolics,49K. Nikolopoulos,18H. Nilsen,48P. Nilsson,8 Y. Ninomiya,155A. Nisati,132aR. Nisius,99T. Nobe,157L. Nodulman,6M. Nomachi,116I. Nomidis,154S. Norberg,111 M. Nordberg,30P. R. Norton,129J. Novakova,127M. Nozaki,65L. Nozka,113I. M. Nugent,159aA.-E. Nuncio-Quiroz,21 G. Nunes Hanninger,86T. Nunnemann,98E. Nurse,77B. J. O’Brien,46D. C. O’Neil,142V. O’Shea,53L. B. Oakes,98 F. G. Oakham,29,fH. Oberlack,99J. Ocariz,78A. Ochi,66S. Oda,69S. Odaka,65J. Odier,83H. Ogren,60A. Oh,82 S. H. Oh,45C. C. Ohm,30T. Ohshima,101W. Okamura,116H. Okawa,25Y. Okumura,31T. Okuyama,155A. Olariu,26a A. G. Olchevski,64S. A. Olivares Pino,32aM. Oliveira,124a,iD. Oliveira Damazio,25E. Oliver Garcia,167D. Olivito,120 A. Olszewski,39J. Olszowska,39A. Onofre,124a,ddP. U. E. Onyisi,31C. J. Oram,159aM. J. Oreglia,31Y. Oren,153

D. Orestano,134a,134bN. Orlando,72a,72bI. Orlov,107C. Oropeza Barrera,53R. S. Orr,158B. Osculati,50a,50b R. Ospanov,120C. Osuna,12G. Otero y Garzon,27J. P. Ottersbach,105M. Ouchrif,135dE. A. Ouellette,169 F. Ould-Saada,117A. Ouraou,136Q. Ouyang,33aA. Ovcharova,15M. Owen,82S. Owen,139V. E. Ozcan,19aN. Ozturk,8

A. Pacheco Pages,12C. Padilla Aranda,12S. Pagan Griso,15E. Paganis,139C. Pahl,99F. Paige,25P. Pais,84 K. Pajchel,117G. Palacino,159bC. P. Paleari,7S. Palestini,30D. Pallin,34A. Palma,124aJ. D. Palmer,18Y. B. Pan,173

E. Panagiotopoulou,10J. G. Panduro Vazquez,76P. Pani,105N. Panikashvili,87S. Panitkin,25D. Pantea,26a A. Papadelis,146aTh. D. Papadopoulou,10A. Paramonov,6D. Paredes Hernandez,34W. Park,25,eeM. A. Parker,28 F. Parodi,50a,50bJ. A. Parsons,35U. Parzefall,48S. Pashapour,54E. Pasqualucci,132aS. Passaggio,50aA. Passeri,134a

F. Pastore,134a,134b,aFr. Pastore,76G. Pa´sztor,49,ffS. Pataraia,175N. D. Patel,150J. R. Pater,82S. Patricelli,102a,102b T. Pauly,30M. Pecsy,144aS. Pedraza Lopez,167M. I. Pedraza Morales,173S. V. Peleganchuk,107D. Pelikan,166

H. Peng,33bB. Penning,31A. Penson,35J. Penwell,60M. Perantoni,24aK. Perez,35,ggT. Perez Cavalcanti,42 E. Perez Codina,159aM. T. Pe´rez Garcı´a-Estan˜,167V. Perez Reale,35L. Perini,89a,89bH. Pernegger,30R. Perrino,72a

P. Perrodo,5V. D. Peshekhonov,64K. Peters,30B. A. Petersen,30J. Petersen,30T. C. Petersen,36E. Petit,5 A. Petridis,154C. Petridou,154E. Petrolo,132aF. Petrucci,134a,134bD. Petschull,42M. Petteni,142R. Pezoa,32b

A. Phan,86P. W. Phillips,129G. Piacquadio,30A. Picazio,49E. Piccaro,75M. Piccinini,20a,20bS. M. Piec,42 R. Piegaia,27D. T. Pignotti,109J. E. Pilcher,31A. D. Pilkington,82J. Pina,124a,dM. Pinamonti,164a,164c,hhA. Pinder,118

J. L. Pinfold,3B. Pinto,124aC. Pizio,89a,89bM. Plamondon,169M.-A. Pleier,25E. Plotnikova,64A. Poblaguev,25 S. Poddar,58aF. Podlyski,34L. Poggioli,115D. Pohl,21M. Pohl,49G. Polesello,119aA. Policicchio,37a,37bA. Polini,20a

J. Poll,75V. Polychronakos,25D. Pomeroy,23K. Pomme`s,30L. Pontecorvo,132aB. G. Pope,88G. A. Popeneciu,26a D. S. Popovic,13aA. Poppleton,30X. Portell Bueso,30G. E. Pospelov,99S. Pospisil,126I. N. Potrap,99C. J. Potter,149 C. T. Potter,114G. Poulard,30J. Poveda,60V. Pozdnyakov,64R. Prabhu,77P. Pralavorio,83A. Pranko,15S. Prasad,30

R. Pravahan,25S. Prell,63K. Pretzl,17D. Price,60J. Price,73L. E. Price,6D. Prieur,123M. Primavera,72a K. Prokofiev,108F. Prokoshin,32bS. Protopopescu,25J. Proudfoot,6X. Prudent,44M. Przybycien,38H. Przysiezniak,5

Riferimenti

Documenti correlati

Nella separazione e nel divorzio, gli aspetti economici costituiscono uno dei terreni di scontro più controversi e problematici della coppia e in particolare, per il Professionista

C'era una volta un pianeta che rischiava di essere distrutto dall'asteroide Siffreo… Soltanto l'Okriono, il re degli Okridiani, ha il potere di respingere nello spazio il

As well as books Download BIC Lazio, 20 anni di creazione d'impresa: Un motore per lo sviluppo PDF we can read through ebook. We can also read the book BIC Lazio, 20 anni di

Conflitto. L'indignazione può davvero cambiare il mondo? è un libro di Pierfranco Pellizzetti pubblicato da Codice nella collana Tempi moderni: acquista su IBS a 8.42€!. 8 ago 2015.

Alù analyses how the female characters in Mazzucco’s novels move within and outside the narrated photographs: both overlooked and hyper-present, the women resist fixity

We show that because the Fourier amplitudes being multiplied to derive the cospectrum are now no longer identical (as is the case in the periodogram ), the statistical distributions

Seventeen Asino Amiatina donkeys semi-extensively farmed in paddocks showed alopecic nummular, scaling areas mainly on head and neck.. Microsporum racemosum cultivated from the

Il problema comune tra design, architettura e filosofia è come il pensare e il fare si relazionano l’un l’altro, e come queste due attività principali dell’uomo siano