• Non ci sono risultati.

Search for narrow resonances using the dijet mass spectrum in pp collisions at √s=8 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Search for narrow resonances using the dijet mass spectrum in pp collisions at √s=8 TeV"

Copied!
16
0
0

Testo completo

(1)

Search for narrow resonances using the dijet mass spectrum in

pp collisions at

p

ffiffiffi

s

¼ 8 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 19 February 2013; published 17 June 2013)

Results are presented of a search for the production of new particles decaying to pairs of partons (quarks, antiquarks, or gluons), in the dijet mass spectrum in proton-proton collisions atpffiffiffis¼ 8 TeV. The data sample corresponds to an integrated luminosity of4:0 fb1, collected with the CMS detector at the LHC in 2012. No significant evidence for narrow resonance production is observed. Upper limits are set at the 95% confidence level on the production cross section of hypothetical new particles decaying to quark-quark, quark-gluon, or gluon-gluon final states. These limits are then translated into lower limits on the masses of new resonances in specific scenarios of physics beyond the standard model. The limits reach up to 4.8 TeV, depending on the model, and extend previous exclusions from similar searches performed at lower collision energies. For the first time mass limits are set for the Randall–Sundrum graviton model in the dijet channel.

DOI:10.1103/PhysRevD.87.114015 PACS numbers: 13.85.Rm, 12.60.Cn, 13.87.Ce, 14.80.j

We report on a search for narrow dijet resonances in pp collisions atpffiffiffis¼ 8 TeV. This search is applicable to all new particles for which the natural resonance width is small compared to the CMS dijet mass resolution [1]. The data sample corresponds to an integrated luminosity of 4:0 fb1 collected with the Compact Muon Solenoid (CMS) [2] at the CERN Large Hadron Collider (LHC) in the spring of 2012.

Many extensions of the standard model (SM) predict the existence of new massive objects that couple to quarks or antiquarks (q or q) and gluons ðgÞ, resulting in resonances in the dijet mass spectrum. The most stringent bounds on these resonances come from previous CMS [3–5] and ATLAS [6–9] searches. The results presented in this Letter extend the search sensitivity to higher values of the resonance masses.

We consider the following specific models of narrow dijet resonances produced via the s channel: string resonances [10,11]; E6 diquarks [12]; excited quarks assuming the dimensionless constants accounting for possible deviations from the standard model couplings to be f¼ f0¼ fs ¼ 1 [13,14]; axigluons [15,16]; color-octet colorons [17]; the S8 resonance predicted in techni-color models [18]; new gauge bosons (W0 and Z0) [19]; Randall–Sundrum (RS) gravitons assuming k= MPl ¼ 0:1, where k is related to the curvature of the fifth dimension and MPlis the effective 4D Planck scale [20]. More details on these models and the parameters we assume can be found in Refs. [1,4].

A detailed description of the CMS experiment can be found elsewhere [2]. The CMS coordinate system has the origin at the center of the detector. The z axis points along the direction of the counterclockwise beam; y is the verti-cal direction and x is chosen to make a right-handed coordinate system;  is the azimuthal angle,  is the polar angle, and the pseudorapidity is defined as   ln ½tan ð=2Þ. The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diameter providing an axial field of 3.8 T. Within the field volume are located the silicon pixel and strip tracker (jj < 2:5), as well as the barrel and endcap calorimeters (jj < 3): a lead tungstate crystal electromagnetic calorimeter and a brass/ scintillator hadronic calorimeter. An iron/quartz fiber calo-rimeter is located in the forward region (3 < jj < 5), outside the field volume. For triggering purposes and to facilitate the reconstruction of hadronizing particles as jets, the calorimeter cells are grouped into towers projecting radially outward from the center of the detector.

Offline particle candidates are reconstructed by using the particle flow (PF) algorithm [21], which categorizes the candidates as muons, electrons (with associated brems-strahlung photons), photons (unconverted and converted), and charged/neutral hadrons. These PF candidates are then clustered into jets using the anti-kT algorithm [22] with a distance parameter R¼ 0:5, implemented in theFASTJET package [23]. The jet four-momentum, computed as the vectorial sum of the four-momenta of the constituent PF candidates, is adjusted with corrections derived from Monte Carlo (MC) simulations, test beam results, and pp collision data [24]. The corrections also account for the presence of multiple pp collisions in the same or adjacent bunch crossings (pileup interactions) [25].

Events are selected by requiring at least one recon-structed primary vertex in each event within the range jzj < 24 cm. We select jets with pT>30 GeV and jj <

2:5 that meet identification criteria based on the number of

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

constituent particles and their energy fractions [26]. The other jets in the event are ignored. Events with fewer than two selected jets are discarded.

To improve the dijet invariant mass resolution, we ac-count for final state radiation (FSR) by forming a wide jet [4,27] around each leading jet. The wide jets are formed by clustering additional jets to the closest leading jet within a distanceR ¼pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi2þ 2<1:1. The four-momentum of each wide jet is computed as the sum of the four-momenta of the constituent jets. To suppress background events coming from quantum chromodynamics (QCD) processes, we require that the pseudorapidity separation of the two wide jets satisfiesjjjj < 1:3, and that both wide jets are reconstructed in the regionjj < 2:5. These angular requirements maximize the search sensitivity for isotropic decays of dijet resonances in the presence of QCD background. The dijet mass is given by mjj¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi ðEj1þEj2Þ2j ~pj1þ ~pj2j2

q

, where Eji and ~pji (i¼ 1, 2)

are the energy and the momentum of a wide jet. We select events with mjj>890 GeV to maintain a fully efficient trigger as discussed below.

Events are filtered using a two-tier trigger system. Events satisfying loose jet requirements at the first level (L1) are passed to the high level trigger (HLT), where jets are clustered from PF candidates built online. Online jets with transverse momenta pT>40 GeV and jj < 3:0 are used to compute HT, the scalar sum of the jet pT, and mjj,

the invariant mass of the two wide jets. Events with HT> 650 GeV or mjj>750 GeV are accepted. For the offline

analysis selection presented above, the combined L1 and HLT triggers are found to be more than 99.9% efficient.

We show in Fig. 1 the dijet mass distribution in bins approximately equal in width to the dijet mass resolution [3]. The data are compared with the expected leading-order (LO) QCD background generated by usingPYTHIAv6.424 [28], including a GEANT4-based [29] simulation of the CMS detector. This approach follows closely that de-scribed in [30], but uses the CTEQ6L PDF (Z2 tune) instead of the CTEQ5L PDF (Z1 tune). The QCD predic-tion uses a renormalizapredic-tion and factorizapredic-tion scale ¼ pT of the hard-scattered partons and CTEQ6L1 parton distri-bution functions [31], and has been normalized to the data. The normalization factor of 1.34 was found to be consis-tent with the next-to-leading-order K factor [32,33]. The shape of thePYTHIAprediction agrees with the data within the statistical precision.

For comparison we also display in Fig. 1 the shape expected for a W0 boson with a mass of 1.5 TeV and an E6diquark with a mass of 3.5 TeV. The signal samples are generated by using PYTHIAwith the D6T tuning [28] and the sameGEANT4-based CMS simulation used for the QCD background sample. The predicted mass distributions have a Gaussian core from the jet energy resolution and a tail towards lower mass values, primarily due to FSR. The

contribution of this low-mass tail to the line shape depends on the parton content of the resonance (qq, qq, qg, and gg). Resonances decaying to gluons, which are more susceptible than quarks to the FSR, have a larger tail. For high-mass resonances, there is also another significant contribution depending on both parton distributions and the natural width of the Breit-Wigner resonance shape: when the resonance is produced by interaction of non-valence partons in the proton, the low-mass component of the Breit-Wigner resonance shape is amplified by a larger parton probability at low fractional momentum, producing a large tail at low-mass values. The shapes shown for a hypothetical W0 boson and an E6 diquark in Fig. 1 result from Crystal Ball [34] fits to the generated event distributions.

The background from QCD multijet production is described by the analytical function

d dx ¼ P0ð1  xÞP1 xP2þP3ln ðxÞ ; /dm (pb/GeV)σ d -6 10 -5 10 -4 10 -3 10 -2 10 -1 10 1 10CMS -1 L = 4 fb s = 8 TeV Data Fit QCD Pythia

Jet Energy Scale Uncertainty

< 1.3 12 η ∆ < 2.5, 1,2 η diquark (3.5 TeV) 6 E W’ (1.5 TeV) 1000 1500 2000 2500 3000 3500 4000 4500 Dijet Mass (GeV)

-3 -2 -10 1 2 3 σ (Data-Fit)/ Data

FIG. 1 (color online). The dijet mass spectrum from wide jets (points) compared with a smooth fitted curve (solid line) and with the predicted QCD background [28] (dashed line). The QCD background curve has been normalized to the data (see text) and a linear smoothing between the bins has been applied. The vertical bars on the data points represent the statistical uncertainty, the horizontal bars indicate the bin widths. The shaded band shows the contribution from the systematic uncer-tainty in the jet energy scale. Also shown are the predictions for a W0boson with a mass of 1.5 TeV, and an E6diquark with a mass of 3.5 TeV, obtained fitting the expected distribution to a Crystal Ball [34] function and normalizing the area to the predicted cross section. The bottom part of the plot displays the bin-by-bin residuals (data minus the integral over a bin of the smooth function fitted to the data) divided by the statistical uncertainty in the data.

(3)

with the variable x¼ mjj=pffiffiffisand four free parameters P0, P1, P2, and P3. This functional form has been used in previous searches [3,6,7,35] to describe both data and QCD predictions. The fit is performed maximizing a binned likelihood, the bins being defined as in Fig. 1. The fit result, also shown in Fig. 1, has a chi-squared (2) of 25.7 for 32 degrees of freedom. The bottom part of the figure shows the difference between the data and the fit value, normalized to the statistical uncertainty in the data. Assuming a pure qq final state, the largest upward deviation of the data corresponds to a local significance of 2:3 and a global significance of 0:6 once including the look elsewhere effect. Different assumptions on the final state composition gives smaller values.

A data-driven determination of the background is ob-tained through a smooth fit to the data. We use the dijet mass spectrum from wide jets, the background parametri-zation, and the dijet resonance shapes to set specific limits on new particles produced from and decaying to the same parton pair qq (or qq), qg, and gg. A separate limit is determined for each process (denoted simply qq, qg, gg) because of the dependence of the signal line shape on the final state, induced by the different amount of FSR for gluons and quarks.

The systematic uncertainty in the determination of the dijet mass is dominated by the uncertainty in the jet energy scale [24] and the uncertainty in the jet energy resolution. The jet energy scale uncertainty translates into a 1.3%

qq Resonance Mass (GeV) 1000 1500 2000 2500 3000 3500 4000 4500 (pb) A × B × Cross Section -5 10 -4 10 -3 10 -2 10 -1 10 1 10 2 10

Observed 95% CL Upper Limit Expected 95% CL Upper Limit

1 ± Expected Limit 2 ± Expected Limit Axigluon/Coloron Diquark 6 E CMS -1 L = 4 fb s = 8 TeV

qg Resonance Mass (GeV) 1000 1500 2000 2500 3000 3500 4000 4500 (pb) A × B × Cross Section -5 10 -4 10 -3 10 -2 10 -1 10 1 10 2 10

Observed 95% CL Upper Limit Expected 95% CL Upper Limit

1 ± Expected Limit 2 ± Expected Limit String Excited Quark CMS -1 L = 4 fb s = 8 TeV

gg Resonance Mass (GeV) 1000 1500 2000 2500 3000 3500 4000 4500 (pb) A × B × Cross Section -5 10 -4 10 -3 10 -2 10 -1 10 1 10 2 10

Observed 95% CL Upper Limit Expected 95% CL Upper Limit

1 ± Expected Limit 2 ± Expected Limit S8 Resonance CMS L = 4 fb-1 s = 8 TeV

RS Graviton Mass (GeV)

1000 1100 1200 1300 1400 1500 1600 (pb) A × B × Cross Section -1 10 1 10 CMS L = 4 fb-1 s = 8 TeV

RS Graviton Observed 95% CL Upper Limit

Expected 95% CL Upper Limit 1 ± Expected Limit 2 ± Expected Limit

FIG. 2 (color online). Observed upper limits at 95% C.L. on  B  A for resonances decaying to qq, qg, and gg final state (points and solid lines) compared with the expected limits (dot-dashed dark lines) and their variation at the1 and 2 levels (shaded bands). Predicted cross sections for various resonance assumptions are shown. The signal shape for the RS model is obtained by weighting the shapes for qq and gg final states according to LO calculations of the relative branching fractions.

(4)

relative uncertainty in the dijet mass, roughly independent from the mass value; it is propagated to the search by shifting the reconstructed dijet mass of the signal by 1.3% compared to the nominal resolution value. The jet energy resolution uncertainty translates into an uncertainty of 10% in the resolution of the dijet mass [24]; this uncer-tainty is propagated to the search by smearing and un-smearing the reconstructed dijet mass of the signal according to a Gaussian distribution with  fixed at 10% of the mass value.

The precision of the overall signal normalization is limited by the knowledge of the integrated luminosity (4.4%) [36]. The statistical uncertainty in the background parametrization introduces a systematic uncertainty in the signal strength. We verified that the use of different pa-rametrizations for the description of the background has a negligible effect compared to the statistical uncertainty in the data, over the whole dijet spectrum. Similarly, MC studies show that the dependence of the signal mass shapes on the number of pileup interactions is negligible. The systematic uncertainties included in this analysis reduce the lower limit on resonance masses by less than 15 GeV, depending on the model.

To set upper limits on the signal cross section we use a Bayesian formalism [37] with a uniform prior for the positive signal cross section; a null probability is assigned to negative values of the cross section; log-normal priors are used to model systematic uncertainties, which are treated as nuisance parameters. We calculate the posterior probability density as a function of resonance cross section independently at each value of the resonance mass. The data are fitted to the background function plus a signal line shape, the signal cross section being a free parameter. The resulting fit function with the signal cross section set to zero is used as the background hypothesis. The uncertainty in the background shape is incorporated by marginalizing over the background fit parameters (not including the signal cross section) after diagonalizing the covariance matrix to account for the correlations in the parameters. This method of using the data first to constrain the back-ground fit and second to extract the limit induces a bias in the coverage of the limits. The actual coverage was esti-mated for the qq resonances to be 92:1  0:4%, 95:2  0:4%, and 95:8  0:3% at respective signal masses of 1500, 2500, and 3000 GeV.

We show in Fig.2the observed upper limits at the 95% confidence level (C.L.) on  B  A, i.e. the product of the cross section (), the branching fraction (B) of the resonance into the relevant final state, and the acceptance (A) for reconstructing two jets withjjjj < 1:3 and jj <

2:5, for narrow resonances which decay into qq, qg, and gg final states. For example the acceptance for an isotropic decays is A 0:6, roughly independent of resonance mass. For the RS graviton, which couples either to a pair of gluons or to a quark-antiquark pair, the model-dependent

limits on cross section are derived using a weighted aver-age of the qq and gg dijet mass shapes, where the weights correspond to the relative branching fractions for these two final states, calculated at LO [20]. The expected limits on cross sections shown in Fig. 2 are estimated with pseu-doexperiments generated using background shapes which are determined by signal-plus-background fits to the data. The observed and expected upper limits can be com-pared to the predictions for  B  A before including any detector simulation, in order to determine mass limits on new particles. The calculations shown are obtained in the narrow-width approximation using CTEQ6L1 parton distributions [31]. New particles are excluded at the 95% C.L. in mass regions for which the theoretical curve lies above our upper limit for the appropriate final state.

We list in TableI the observed cross section limits for qq, qg, and gg resonances, as a function of the resonance mass. We determine the expected lower limit on the mass of new resonances by comparing the expected cross section limits to the model predictions. The observed and expected mass exclusions are reported in Table II for various models.

In summary, a search for narrow resonances decaying into a pair of jets has been performed using a data sample corresponding to an integrated luminosity of4:0 fb1 col-lected in pp collisions at pffiffiffis¼ 8 TeV. In the analyzed data sample there is no significant evidence for new

TABLE I. Observed upper limits at the 95% C.L. on  B  A for resonances decaying to qq, qg, and gg final states as a function of the resonance mass. Experimental systematic uncer-tainties are taken into account in the limit calculation.

Upper limit on  B  A (pb) Mass [GeV] qq qg gg 1000 0.62 0.75 1.6 1200 0.37 0.40 0.69 1400 0.18 0.19 0.27 1600 0.12 0.15 0.21 1800 0.16 0.18 0.23 2000 0.050 0.058 0.089 2200 0.036 0.041 0.055 2400 0.031 0.034 0.043 2600 0.019 0.021 0.029 2800 0.010 0.012 0.016 3000 0.012 0.015 0.020 3200 0.017 0.020 0.026 3400 0.016 0.018 0.024 3600 0.0090 0.011 0.015 3800 0.0039 0.0047 0.0063 4000 0.0026 0.0034 0.0045 4200 0.0021 0.0026 0.0036 4400 0.0020 0.0026 0.0036 4600 0.0017 0.0023 0.0035 4800 0.0016 0.0021 0.0031

(5)

particle production. Upper limits are set on the product  B  A that can be applied to any model of narrow dijet resonance production. Specific lower limits are pre-sented on the mass of string resonances, excited quarks, axigluons, colorons, S8 resonances, E6diquarks, W0and Z0 bosons starting at 1.0 TeV and extending up to 4.8 TeV for some models. In most cases, these limits extend the pre-vious exclusions obtained using the dijet mass spectrum. The first mass limit on Randall–Sundrum gravitons decay-ing to dijets is shown.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and

thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effec-tively the computing infrastructure essential to our analy-ses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and

CNRS/IN2P3 (France); BMBF, DFG, and HGF

(Germany); GSRT (Greece); OTKA and NKTH

(Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] R. M. Harris and K. Kousouris,Int. J. Mod. Phys. A 26, 5005 (2011).

[2] CMS Collaboration,JINST 3, S08004 (2008).

[3] CMS Collaboration, Phys. Rev. Lett. 105, 211801 (2010).

[4] CMS Collaboration,J. High Energy Phys. 01 (2013) 013. [5] CMS Collaboration,arXiv:1212.1910.

[6] ATLAS Collaboration, Phys. Rev. Lett. 105, 161801 (2010).

[7] ATLAS Collaboration,New J. Phys. 13, 053044 (2011). [8] ATLAS Collaboration,Phys. Lett. B 708, 37 (2012). [9] ATLAS Collaboration, J. High Energy Phys. 01 (2013)

029.

[10] L. A. Anchordoqui, H. Goldberg, D. Lu¨st, S. Nawata, S. Stieberger, and T. R. Taylor,Phys. Rev. Lett. 101, 241803 (2008).

[11] S. Cullen, M. Perelstein, and M. E. Peskin,Phys. Rev. D 62, 055012 (2000).

[12] J. L. Hewett and T. G. Rizzo,Phys. Rep. 183, 193 (1989). [13] U. Baur, I. Hinchliffe, and D. Zeppenfeld, Int. J. Mod.

Phys. A 02, 1285 (1987).

[14] U. Baur, M. Spira, and P. M. Zerwas,Phys. Rev. D 42, 815 (1990).

[15] P. H. Frampton and S. L. Glashow,Phys. Lett. B 190, 157 (1987).

[16] R. S. Chivukula, A. Farzinnia, E. H. Simmons, and R. Foadi,Phys. Rev. D 85, 054005 (2012).

[17] E. H. Simmons,Phys. Rev. D 55, 1678 (1997).

[18] T. Han, I. Lewis, and Z. Liu, J. High Energy Phys. 12 (2010) 085.

[19] E. Eichten, I. Hinchliffe, K. D. Lane, and C. Quigg,Rev. Mod. Phys. 56, 579 (1984).

[20] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999).

[21] CMS Collaboration, CMS Physics Analysis Summary, CMS-PAS-PFT-09-001, 2009, http://cds.cern.ch/record/ 1194487.

[22] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[23] M. Cacciari and G. P. Salam,Phys. Lett. B 641, 57 (2006). [24] CMS Collaboration,JINST 6, P11002 (2011).

[25] M. Cacciari and G. P. Salam, Phys. Lett. B 659, 119 (2008).

[26] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-JME-10-003, 2010, http://cds.cern.ch/record/ 1279362.

TABLE II. Observed and expected exclusions at the 95% C.L. on the mass of various resonances. Experimental systematic uncertainties are included.

Model Final state

Observed excluded mass range [TeV] Expected excluded mass range [TeV] String resonance qg [1.0, 4.78] [1.0, 4.75] Excited quark qg [1.0, 3.19] [1.0, 3.47] E6 diquark qq [1.0, 4.28] [1.0, 4.16] Axigluon/coloron qq [1.0, 3.27] [1.0, 3.60] S8 resonance gg [1.0, 2.79] [1.0, 2.54] W0boson qq [1.0, 1.73] [1.0, 1.97] Z0boson qq [1.0, 1.62] [1.0, 1.58] RS graviton qq þ gg [1.0, 1.45] [1.0, 1.29]

(6)

[27] CMS Collaboration,Phys. Lett. B 704, 123 (2011). [28] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy

Phys. 05 (2006) 026.

[29] S. Agostinelli et al. (GEANT4),Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003).

[30] R. Field,arXiv:1010.3558.

[31] J. Pumplin, D. R. Stump, J. Huston, H.-L. Lai, P. Nadolsky, and W.-K. Tung, J. High Energy Phys. 07 (2002) 012.

[32] S. D. Ellis, Z. Kunszt, and D. E. Soper,Phys. Rev. Lett. 69, 1496 (1992).

[33] W. T. Giele, E. W. N. Glover, and D. A. Kosower, Nucl. Phys. B403, 633 (1993).

[34] T. Skwarnicki, Ph.D. thesis, Crackow Institute of Nuclear Physics (1986), DESY Report No. DESY-F31-86-02. [35] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. D 79,

112002 (2009).

[36] CMS Collaboration, CMS Physics Analysis Summary CMS-PAS-LUM-12-001, 2012, http://cds.cern.ch/record/ 1482193.

[37] J. Beringer et al. (Particle Data Group),Phys. Rev. D 86, 010001 (2012), see Section 36: Statistics.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2N. Ho¨rmann,2J. Hrubec,2 M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2M. Pernicka,2,a D. Rabady,2,cB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2W. Waltenberger,2

C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3S. Alderweireldt,4M. Bansal,4S. Bansal,4 T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4

H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5 J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5S. Tavernier,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6T. Hreus,6

A. Le´onard,6P. E. Marage,6A. Mohammadi,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6 V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7 A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7M. Sigamani,7N. Strobbe,7F. Thyssen,7M. Tytgat,7 S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8

D. Favart,8L. Forthomme,8A. Giammanco,8,dJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8 D. Pagano,8A. Pin,8K. Piotrzkowski,8M. Selvaggi,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9

G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10 W. L. Alda´ Ju´nior,11W. Carvalho,11J. Chinellato,11,eA. Custo´dio,11E. M. Da Costa,11D. De Jesus Damiao,11

C. De Oliveira Martins,11S. Fonseca De Souza,11H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11 L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11

E. J. Tonelli Manganote,11,eA. Vilela Pereira,11T. S. Anjos,12bC. A. Bernardes,12bF. A. Dias,12a,f T. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12aF. Marinho,12aP. G. Mercadante,12b S. F. Novaes,12aSandra S. Padula,12aV. Genchev,13,cP. Iaydjiev,13,cS. Piperov,13M. Rodozov,13S. Stoykova,13

G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14 L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15

X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15 C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16D. Wang,16

L. Zhang,16W. Zou,16C. Avila,17C. A. Carrillo Montoya,17J. P. Gomez,17B. Gomez Moreno,17 A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,gD. Polic,18I. Puljak,18 Z. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20D. Mekterovic,20S. Morovic,20 L. Tikvica,20A. Attikis,21G. Mavromanolakis,21J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22

M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,iA. Ellithi Kamel,23,jA. M. Kuotb Awad,23,kM. A. Mahmoud,23,k A. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Murumaa,24M. Raidal,24L. Rebane,24A. Tiko,24P. Eerola,25 G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26M. J. Kortelainen,26 T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26

J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26A. Korpela,27T. Tuuva,27M. Besancon,28 S. Choudhury,28F. Couderc,28M. Dejardin,28D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28

A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28 A. Nayak,28J. Rander,28A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29

M. Bluj,29,nP. Busson,29C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29 R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29

(7)

P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30 D. Bodin,30J.-M. Brom,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,oJ.-C. Fontaine,30,oD. Gele´,30

U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30S. Beauceron,31N. Beaupere,31O. Bondu,31 G. Boudoul,31S. Brochet,31J. Chasserat,31R. Chierici,31,cD. Contardo,31P. Depasse,31H. El Mamouni,31J. Fay,31

S. Gascon,31M. Gouzevitch,31B. Ille,31T. Kurca,31M. Lethuillier,31L. Mirabito,31S. Perries,31L. Sgandurra,31 V. Sordini,31Y. Tschudi,31P. Verdier,31S. Viret,31Z. Tsamalaidze,32,pC. Autermann,33S. Beranek,33B. Calpas,33

M. Edelhoff,33L. Feld,33N. Heracleous,33O. Hindrichs,33R. Jussen,33K. Klein,33J. Merz,33A. Ostapchuk,33 A. Perieanu,33F. Raupach,33J. Sammet,33S. Schael,33D. Sprenger,33H. Weber,33B. Wittmer,33V. Zhukov,33,q M. Ata,34J. Caudron,34E. Dietz-Laursonn,34D. Duchardt,34M. Erdmann,34R. Fischer,34A. Gu¨th,34T. Hebbeker,34

C. Heidemann,34K. Hoepfner,34D. Klingebiel,34P. Kreuzer,34M. Merschmeyer,34A. Meyer,34M. Olschewski,34 K. Padeken,34P. Papacz,34H. Pieta,34H. Reithler,34S. A. Schmitz,34L. Sonnenschein,34J. Steggemann,34 D. Teyssier,34S. Thu¨er,34M. Weber,34M. Bontenackels,35V. Cherepanov,35Y. Erdogan,35G. Flu¨gge,35H. Geenen,35 M. Geisler,35W. Haj Ahmad,35F. Hoehle,35B. Kargoll,35T. Kress,35Y. Kuessel,35J. Lingemann,35,cA. Nowack,35 I. M. Nugent,35L. Perchalla,35O. Pooth,35P. Sauerland,35A. Stahl,35M. Aldaya Martin,36I. Asin,36N. Bartosik,36 J. Behr,36W. Behrenhoff,36U. Behrens,36M. Bergholz,36,rA. Bethani,36K. Borras,36A. Burgmeier,36A. Cakir,36

L. Calligaris,36A. Campbell,36E. Castro,36F. Costanza,36D. Dammann,36C. Diez Pardos,36T. Dorland,36 G. Eckerlin,36D. Eckstein,36G. Flucke,36A. Geiser,36I. Glushkov,36P. Gunnellini,36S. Habib,36J. Hauk,36 G. Hellwig,36H. Jung,36M. Kasemann,36P. Katsas,36C. Kleinwort,36H. Kluge,36A. Knutsson,36M. Kra¨mer,36

D. Kru¨cker,36E. Kuznetsova,36W. Lange,36J. Leonard,36W. Lohmann,36,rB. Lutz,36R. Mankel,36I. Marfin,36 M. Marienfeld,36I.-A. Melzer-Pellmann,36A. B. Meyer,36J. Mnich,36A. Mussgiller,36S. Naumann-Emme,36

O. Novgorodova,36F. Nowak,36J. Olzem,36H. Perrey,36A. Petrukhin,36D. Pitzl,36A. Raspereza,36 P. M. Ribeiro Cipriano,36C. Riedl,36E. Ron,36M. Rosin,36J. Salfeld-Nebgen,36R. Schmidt,36,r

T. Schoerner-Sadenius,36N. Sen,36A. Spiridonov,36M. Stein,36R. Walsh,36C. Wissing,36V. Blobel,37H. Enderle,37 J. Erfle,37U. Gebbert,37M. Go¨rner,37M. Gosselink,37J. Haller,37T. Hermanns,37R. S. Ho¨ing,37K. Kaschube,37 G. Kaussen,37H. Kirschenmann,37R. Klanner,37J. Lange,37T. Peiffer,37N. Pietsch,37D. Rathjens,37C. Sander,37 H. Schettler,37P. Schleper,37E. Schlieckau,37A. Schmidt,37M. Schro¨der,37T. Schum,37M. Seidel,37J. Sibille,37,s V. Sola,37H. Stadie,37G. Steinbru¨ck,37J. Thomsen,37L. Vanelderen,37C. Barth,38C. Baus,38J. Berger,38C. Bo¨ser,38

T. Chwalek,38W. De Boer,38A. Descroix,38A. Dierlamm,38M. Feindt,38M. Guthoff,38,cC. Hackstein,38 F. Hartmann,38,cT. Hauth,38,cM. Heinrich,38H. Held,38K. H. Hoffmann,38U. Husemann,38I. Katkov,38,q J. R. Komaragiri,38P. Lobelle Pardo,38D. Martschei,38S. Mueller,38Th. Mu¨ller,38M. Niegel,38A. Nu¨rnberg,38

O. Oberst,38A. Oehler,38J. Ott,38G. Quast,38K. Rabbertz,38F. Ratnikov,38N. Ratnikova,38S. Ro¨cker,38 F.-P. Schilling,38G. Schott,38H. J. Simonis,38F. M. Stober,38D. Troendle,38R. Ulrich,38J. Wagner-Kuhr,38 S. Wayand,38T. Weiler,38M. Zeise,38G. Anagnostou,39G. Daskalakis,39T. Geralis,39S. Kesisoglou,39A. Kyriakis,39

D. Loukas,39A. Markou,39C. Markou,39E. Ntomari,39L. Gouskos,40T. J. Mertzimekis,40A. Panagiotou,40 N. Saoulidou,40I. Evangelou,41C. Foudas,41P. Kokkas,41N. Manthos,41I. Papadopoulos,41G. Bencze,42C. Hajdu,42 P. Hidas,42D. Horvath,42,tF. Sikler,42V. Veszpremi,42G. Vesztergombi,42,uA. J. Zsigmond,42N. Beni,43S. Czellar,43

J. Molnar,43J. Palinkas,43Z. Szillasi,43J. Karancsi,44P. Raics,44Z. L. Trocsanyi,44B. Ujvari,44S. B. Beri,45 V. Bhatnagar,45N. Dhingra,45R. Gupta,45M. Kaur,45M. Z. Mehta,45M. Mittal,45N. Nishu,45L. K. Saini,45 A. Sharma,45J. B. Singh,45Ashok Kumar,46Arun Kumar,46S. Ahuja,46A. Bhardwaj,46B. C. Choudhary,46

S. Malhotra,46M. Naimuddin,46K. Ranjan,46P. Saxena,46V. Sharma,46R. K. Shivpuri,46S. Banerjee,47 S. Bhattacharya,47K. Chatterjee,47S. Dutta,47B. Gomber,47Sa. Jain,47Sh. Jain,47R. Khurana,47A. Modak,47

S. Mukherjee,47D. Roy,47S. Sarkar,47M. Sharan,47A. Abdulsalam,48D. Dutta,48S. Kailas,48V. Kumar,48 A. K. Mohanty,48,cL. M. Pant,48P. Shukla,48T. Aziz,49R. M. Chatterjee,49S. Ganguly,49M. Guchait,49,v A. Gurtu,49,wM. Maity,49,xG. Majumder,49K. Mazumdar,49G. B. Mohanty,49B. Parida,49K. Sudhakar,49 N. Wickramage,49S. Banerjee,50S. Dugad,50H. Arfaei,51,yH. Bakhshiansohi,51S. M. Etesami,51,zA. Fahim,51,y M. Hashemi,51,aaH. Hesari,51A. Jafari,51M. Khakzad,51M. Mohammadi Najafabadi,51S. Paktinat Mehdiabadi,51

B. Safarzadeh,51,bbM. Zeinali,51M. Abbrescia,52a,52bL. Barbone,52a,52bC. Calabria,52a,52b,cS. S. Chhibra,52a,52b A. Colaleo,52aD. Creanza,52a,52cN. De Filippis,52a,52c,cM. De Palma,52a,52bL. Fiore,52aG. Iaselli,52a,52c G. Maggi,52a,52cM. Maggi,52aB. Marangelli,52a,52bS. My,52a,52cS. Nuzzo,52a,52bN. Pacifico,52aA. Pompili,52a,52b G. Pugliese,52a,52cG. Selvaggi,52a,52bL. Silvestris,52aG. Singh,52a,52bR. Venditti,52a,52bP. Verwilligen,52aG. Zito,52a

(8)

P. Capiluppi,53a,53bA. Castro,53a,53bF. R. Cavallo,53aM. Cuffiani,53a,53bG. M. Dallavalle,53aF. Fabbri,53a A. Fanfani,53a,53bD. Fasanella,53a,53bP. Giacomelli,53aC. Grandi,53aL. Guiducci,53a,53bS. Marcellini,53a G. Masetti,53aM. Meneghelli,53a,53b,cA. Montanari,53aF. L. Navarria,53a,53bF. Odorici,53aA. Perrotta,53a F. Primavera,53a,53bA. M. Rossi,53a,53bT. Rovelli,53a,53bG. P. Siroli,53a,53bN. Tosi,53a,53bR. Travaglini,53a,53b S. Albergo,54a,54bG. Cappello,54a,54bM. Chiorboli,54a,54bS. Costa,54a,54bR. Potenza,54a,54bA. Tricomi,54a,54b

C. Tuve,54a,54bG. Barbagli,55aV. Ciulli,55a,55bC. Civinini,55aR. D’Alessandro,55a,55bE. Focardi,55a,55b S. Frosali,55a,55bE. Gallo,55aS. Gonzi,55a,55bM. Meschini,55aS. Paoletti,55aG. Sguazzoni,55aA. Tropiano,55a,55b

L. Benussi,56S. Bianco,56S. Colafranceschi,56,ccF. Fabbri,56D. Piccolo,56P. Fabbricatore,57aR. Musenich,57a S. Tosi,57a,57bA. Benaglia,58aF. De Guio,58a,58bL. Di Matteo,58a,58b,cS. Fiorendi,58a,58bS. Gennai,58a,c A. Ghezzi,58a,58bM. T. Lucchini,58a,cS. Malvezzi,58aR. A. Manzoni,58a,58bA. Martelli,58a,58bA. Massironi,58a,58b

D. Menasce,58aL. Moroni,58aM. Paganoni,58a,58bD. Pedrini,58aS. Ragazzi,58a,58bN. Redaelli,58a T. Tabarelli de Fatis,58a,58bS. Buontempo,59aN. Cavallo,59a,59cA. De Cosa,59a,59b,cO. Dogangun,59a,59b F. Fabozzi,59a,59cA. O. M. Iorio,59a,59bL. Lista,59aS. Meola,59a,59d,cM. Merola,59aP. Paolucci,59a,cP. Azzi,60a

N. Bacchetta,60a,cD. Bisello,60a,60bA. Branca,60a,60b,cR. Carlin,60a,60bP. Checchia,60aT. Dorigo,60a M. Galanti,60a,60bF. Gasparini,60a,60bU. Gasparini,60a,60bA. Gozzelino,60aK. Kanishchev,60a,60cS. Lacaprara,60a

I. Lazzizzera,60a,60cM. Margoni,60a,60bA. T. Meneguzzo,60a,60bJ. Pazzini,60a,60bN. Pozzobon,60a,60b P. Ronchese,60a,60bF. Simonetto,60a,60bE. Torassa,60aM. Tosi,60a,60bS. Vanini,60a,60bS. Ventura,60aP. Zotto,60a,60b

G. Zumerle,60a,60bM. Gabusi,61a,61bS. P. Ratti,61a,61bC. Riccardi,61a,61bP. Torre,61a,61bP. Vitulo,61a,61b M. Biasini,62a,62bG. M. Bilei,62aL. Fano`,62a,62bP. Lariccia,62a,62bG. Mantovani,62a,62bM. Menichelli,62a

A. Nappi,62a,62b,aF. Romeo,62a,62bA. Saha,62aA. Santocchia,62a,62bA. Spiezia,62a,62bS. Taroni,62a,62b P. Azzurri,63a,63cG. Bagliesi,63aJ. Bernardini,63aT. Boccali,63aG. Broccolo,63a,63cR. Castaldi,63a

R. T. D’Agnolo,63a,63c,cR. Dell’Orso,63aF. Fiori,63a,63b,cL. Foa`,63a,63cA. Giassi,63aA. Kraan,63aF. Ligabue,63a,63c T. Lomtadze,63aL. Martini,63a,ddA. Messineo,63a,63bF. Palla,63aA. Rizzi,63a,63bA. T. Serban,63a,eeP. Spagnolo,63a P. Squillacioti,63a,cR. Tenchini,63aG. Tonelli,63a,63bA. Venturi,63aP. G. Verdini,63aL. Barone,64a,64bF. Cavallari,64a

D. Del Re,64a,64bM. Diemoz,64aC. Fanelli,64a,64bM. Grassi,64a,64b,cE. Longo,64a,64bP. Meridiani,64a,c F. Micheli,64a,64bS. Nourbakhsh,64a,64bG. Organtini,64a,64bR. Paramatti,64aS. Rahatlou,64a,64bL. Soffi,64a,64b

N. Amapane,65a,65bR. Arcidiacono,65a,65cS. Argiro,65a,65bM. Arneodo,65a,65cC. Biino,65aN. Cartiglia,65a S. Casasso,65a,65bM. Costa,65a,65bN. Demaria,65aC. Mariotti,65a,cS. Maselli,65aE. Migliore,65a,65bV. Monaco,65a,65b

M. Musich,65a,cM. M. Obertino,65a,65cN. Pastrone,65aM. Pelliccioni,65aA. Potenza,65a,65bA. Romero,65a,65b M. Ruspa,65a,65cR. Sacchi,65a,65bA. Solano,65a,65bA. Staiano,65aS. Belforte,66aV. Candelise,66a,66bM. Casarsa,66a

F. Cossutti,66a,cG. Della Ricca,66a,66bB. Gobbo,66aM. Marone,66a,66b,cD. Montanino,66a,66bA. Penzo,66a A. Schizzi,66a,66bT. Y. Kim,67S. K. Nam,67S. Chang,68D. H. Kim,68G. N. Kim,68D. J. Kong,68H. Park,68 D. C. Son,68J. Y. Kim,69Zero J. Kim,69S. Song,69S. Choi,70D. Gyun,70B. Hong,70M. Jo,70H. Kim,70T. J. Kim,70 K. S. Lee,70D. H. Moon,70S. K. Park,70Y. Roh,70M. Choi,71J. H. Kim,71C. Park,71I. C. Park,71S. Park,71G. Ryu,71

Y. Choi,72Y. K. Choi,72J. Goh,72M. S. Kim,72E. Kwon,72B. Lee,72J. Lee,72S. Lee,72H. Seo,72I. Yu,72 M. J. Bilinskas,73I. Grigelionis,73M. Janulis,73A. Juodagalvis,73H. Castilla-Valdez,74E. De La Cruz-Burelo,74

I. Heredia-de La Cruz,74R. Lopez-Fernandez,74J. Martı´nez-Ortega,74A. Sanchez-Hernandez,74 L. M. Villasenor-Cendejas,74S. Carrillo Moreno,75F. Vazquez Valencia,75H. A. Salazar Ibarguen,76 E. Casimiro Linares,77A. Morelos Pineda,77M. A. Reyes-Santos,77D. Krofcheck,78A. J. Bell,79P. H. Butler,79 R. Doesburg,79S. Reucroft,79H. Silverwood,79M. Ahmad,80M. I. Asghar,80J. Butt,80H. R. Hoorani,80S. Khalid,80 W. A. Khan,80T. Khurshid,80S. Qazi,80M. A. Shah,80M. Shoaib,80H. Bialkowska,81B. Boimska,81T. Frueboes,81 M. Go´rski,81M. Kazana,81K. Nawrocki,81K. Romanowska-Rybinska,81M. Szleper,81G. Wrochna,81P. Zalewski,81

G. Brona,82K. Bunkowski,82M. Cwiok,82W. Dominik,82K. Doroba,82A. Kalinowski,82M. Konecki,82 J. Krolikowski,82M. Misiura,82W. Wolszczak,82N. Almeida,83P. Bargassa,83A. David,83P. Faccioli,83 P. G. Ferreira Parracho,83M. Gallinaro,83J. Seixas,83,cJ. Varela,83P. Vischia,83P. Bunin,84M. Gavrilenko,84

I. Golutvin,84V. Karjavin,84V. Konoplyanikov,84G. Kozlov,84A. Lanev,84A. Malakhov,84P. Moisenz,84 V. Palichik,84V. Perelygin,84M. Savina,84S. Shmatov,84S. Shulha,84V. Smirnov,84A. Volodko,84A. Zarubin,84 S. Evstyukhin,85V. Golovtsov,85Y. Ivanov,85V. Kim,85P. Levchenko,85V. Murzin,85V. Oreshkin,85I. Smirnov,85

V. Sulimov,85L. Uvarov,85S. Vavilov,85A. Vorobyev,85An. Vorobyev,85Yu. Andreev,86A. Dermenev,86 S. Gninenko,86N. Golubev,86M. Kirsanov,86N. Krasnikov,86V. Matveev,86A. Pashenkov,86D. Tlisov,86 A. Toropin,86V. Epshteyn,87M. Erofeeva,87V. Gavrilov,87M. Kossov,87N. Lychkovskaya,87V. Popov,87

(9)

G. Safronov,87S. Semenov,87I. Shreyber,87V. Stolin,87E. Vlasov,87A. Zhokin,87V. Andreev,88M. Azarkin,88 I. Dremin,88M. Kirakosyan,88A. Leonidov,88G. Mesyats,88S. V. Rusakov,88A. Vinogradov,88A. Belyaev,89 E. Boos,89M. Dubinin,89,fL. Dudko,89A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89

A. Markina,89S. Obraztsov,89M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89 A. Snigirev,89I. Azhgirey,90I. Bayshev,90S. Bitioukov,90V. Grishin,90,cV. Kachanov,90D. Konstantinov,90 V. Krychkine,90V. Petrov,90R. Ryutin,90A. Sobol,90L. Tourtchanovitch,90S. Troshin,90N. Tyurin,90A. Uzunian,90

A. Volkov,90P. Adzic,91,ffM. Djordjevic,91M. Ekmedzic,91D. Krpic,91,ffJ. Milosevic,91M. Aguilar-Benitez,92 J. Alcaraz Maestre,92P. Arce,92C. Battilana,92E. Calvo,92M. Cerrada,92M. Chamizo Llatas,92N. Colino,92 B. De La Cruz,92A. Delgado Peris,92D. Domı´nguez Va´zquez,92C. Fernandez Bedoya,92J. P. Ferna´ndez Ramos,92 A. Ferrando,92J. Flix,92M. C. Fouz,92P. Garcia-Abia,92O. Gonzalez Lopez,92S. Goy Lopez,92J. M. Hernandez,92 M. I. Josa,92G. Merino,92J. Puerta Pelayo,92A. Quintario Olmeda,92I. Redondo,92L. Romero,92J. Santaolalla,92

M. S. Soares,92C. Willmott,92C. Albajar,93G. Codispoti,93J. F. de Troco´niz,93H. Brun,94J. Cuevas,94 J. Fernandez Menendez,94S. Folgueras,94I. Gonzalez Caballero,94L. Lloret Iglesias,94J. Piedra Gomez,94 J. A. Brochero Cifuentes,95I. J. Cabrillo,95A. Calderon,95S. H. Chuang,95J. Duarte Campderros,95M. Felcini,95,gg

M. Fernandez,95G. Gomez,95J. Gonzalez Sanchez,95A. Graziano,95C. Jorda,95A. Lopez Virto,95J. Marco,95 R. Marco,95C. Martinez Rivero,95F. Matorras,95F. J. Munoz Sanchez,95T. Rodrigo,95A. Y. Rodrı´guez-Marrero,95

A. Ruiz-Jimeno,95L. Scodellaro,95I. Vila,95R. Vilar Cortabitarte,95D. Abbaneo,96E. Auffray,96G. Auzinger,96 M. Bachtis,96P. Baillon,96A. H. Ball,96D. Barney,96J. Bendavid,96J. F. Benitez,96C. Bernet,96,gG. Bianchi,96 P. Bloch,96A. Bocci,96A. Bonato,96C. Botta,96H. Breuker,96T. Camporesi,96G. Cerminara,96T. Christiansen,96

J. A. Coarasa Perez,96D. d’Enterria,96A. Dabrowski,96A. De Roeck,96S. De Visscher,96S. Di Guida,96 M. Dobson,96N. Dupont-Sagorin,96A. Elliott-Peisert,96J. Eugster,96B. Frisch,96W. Funk,96G. Georgiou,96 M. Giffels,96D. Gigi,96K. Gill,96D. Giordano,96M. Girone,96M. Giunta,96F. Glege,96R. Gomez-Reino Garrido,96 P. Govoni,96S. Gowdy,96R. Guida,96J. Hammer,96M. Hansen,96P. Harris,96C. Hartl,96J. Harvey,96B. Hegner,96 A. Hinzmann,96V. Innocente,96P. Janot,96K. Kaadze,96E. Karavakis,96K. Kousouris,96K. Krajczar,96P. Lecoq,96

Y.-J. Lee,96P. Lenzi,96C. Lourenc¸o,96N. Magini,96T. Ma¨ki,96M. Malberti,96L. Malgeri,96M. Mannelli,96 L. Masetti,96F. Meijers,96S. Mersi,96E. Meschi,96R. Moser,96M. Mulders,96P. Musella,96E. Nesvold,96L. Orsini,96 E. Palencia Cortezon,96E. Perez,96L. Perrozzi,96A. Petrilli,96A. Pfeiffer,96M. Pierini,96M. Pimia¨,96D. Piparo,96 G. Polese,96L. Quertenmont,96A. Racz,96W. Reece,96J. Rodrigues Antunes,96G. Rolandi,96,hhC. Rovelli,96,ii M. Rovere,96H. Sakulin,96F. Santanastasio,96C. Scha¨fer,96C. Schwick,96I. Segoni,96S. Sekmen,96A. Sharma,96

P. Siegrist,96P. Silva,96M. Simon,96P. Sphicas,96,jjD. Spiga,96A. Tsirou,96G. I. Veres,96,uJ. R. Vlimant,96 H. K. Wo¨hri,96S. D. Worm,96,kkW. D. Zeuner,96W. Bertl,97K. Deiters,97W. Erdmann,97K. Gabathuler,97

R. Horisberger,97Q. Ingram,97H. C. Kaestli,97S. Ko¨nig,97D. Kotlinski,97U. Langenegger,97F. Meier,97 D. Renker,97T. Rohe,97F. Bachmair,98L. Ba¨ni,98P. Bortignon,98M. A. Buchmann,98B. Casal,98N. Chanon,98 A. Deisher,98G. Dissertori,98M. Dittmar,98M. Donega`,98M. Du¨nser,98P. Eller,98K. Freudenreich,98C. Grab,98 D. Hits,98P. Lecomte,98W. Lustermann,98A. C. Marini,98P. Martinez Ruiz del Arbol,98N. Mohr,98F. Moortgat,98

C. Na¨geli,98,llP. Nef,98F. Nessi-Tedaldi,98F. Pandolfi,98L. Pape,98F. Pauss,98M. Peruzzi,98F. J. Ronga,98 M. Rossini,98L. Sala,98A. K. Sanchez,98A. Starodumov,98,mmB. Stieger,98M. Takahashi,98L. Tauscher,98,a A. Thea,98K. Theofilatos,98D. Treille,98C. Urscheler,98R. Wallny,98H. A. Weber,98L. Wehrli,98C. Amsler,99,nn V. Chiochia,99C. Favaro,99M. Ivova Rikova,99B. Kilminster,99B. Millan Mejias,99P. Otiougova,99P. Robmann,99 H. Snoek,99S. Tupputi,99M. Verzetti,99M. Cardaci,100Y. H. Chang,100K. H. Chen,100C. Ferro,100C. M. Kuo,100

S. W. Li,100W. Lin,100Y. J. Lu,100A. P. Singh,100R. Volpe,100S. S. Yu,100P. Bartalini,101P. Chang,101 Y. H. Chang,101Y. W. Chang,101Y. Chao,101K. F. Chen,101C. Dietz,101U. Grundler,101W.-S. Hou,101Y. Hsiung,101

K. Y. Kao,101Y. J. Lei,101R.-S. Lu,101D. Majumder,101E. Petrakou,101X. Shi,101J. G. Shiu,101Y. M. Tzeng,101 X. Wan,101M. Wang,101B. Asavapibhop,102E. Simili,102N. Srimanobhas,102N. Suwonjandee,102A. Adiguzel,103

M. N. Bakirci,103,ooS. Cerci,103,ppC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103 E. Gurpinar,103I. Hos,103E. E. Kangal,103T. Karaman,103G. Karapinar,103,qqA. Kayis Topaksu,103G. Onengut,103

K. Ozdemir,103S. Ozturk,103,rrA. Polatoz,103K. Sogut,103,ssD. Sunar Cerci,103,ppB. Tali,103,ppH. Topakli,103,oo M. Vergili,103I. V. Akin,104T. Aliev,104B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104 K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104M. Yalvac,104M. Zeyrek,104E. Gu¨lmez,105 B. Isildak,105,ttM. Kaya,105,uuO. Kaya,105,uuS. Ozkorucuklu,105,vvN. Sonmez,105,wwH. Bahtiyar,106,xxE. Barlas,106 K. Cankocak,106Y. O. Gu¨naydin,106,yyF. I. Vardarl,106M. Yu¨cel,106L. Levchuk,107J. J. Brooke,108E. Clement,108

(10)

D. Cussans,108H. Flacher,108R. Frazier,108J. Goldstein,108M. Grimes,108G. P. Heath,108H. F. Heath,108 L. Kreczko,108S. Metson,108D. M. Newbold,108,kkK. Nirunpong,108A. Poll,108S. Senkin,108V. J. Smith,108 T. Williams,108L. Basso,109,zzK. W. Bell,109A. Belyaev,109,zzC. Brew,109R. M. Brown,109D. J. A. Cockerill,109

J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109E. Olaiya,109D. Petyt,109 B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109W. J. Womersley,109R. Bainbridge,110

G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110M. Cutajar,110P. Dauncey,110 G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110A. Gilbert,110A. Guneratne Bryer,110

G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110G. Karapostoli,110M. Kenzie,110L. Lyons,110 A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110A. Nikitenko,110,mmJ. Pela,110 M. Pesaresi,110K. Petridis,110M. Pioppi,110,aaaD. M. Raymond,110S. Rogerson,110A. Rose,110C. Seez,110 P. Sharp,110,aA. Sparrow,110M. Stoye,110A. Tapper,110M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110 N. Wardle,110T. Whyntie,110M. Chadwick,111J. E. Cole,111P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leggat,111

D. Leslie,111W. Martin,111I. D. Reid,111P. Symonds,111L. Teodorescu,111M. Turner,111K. Hatakeyama,112 H. Liu,112T. Scarborough,112O. Charaf,113S. I. Cooper,113C. Henderson,113P. Rumerio,113A. Avetisyan,114 T. Bose,114C. Fantasia,114A. Heister,114P. Lawson,114D. Lazic,114J. Rohlf,114D. Sperka,114J. St. John,114 L. Sulak,114J. Alimena,115S. Bhattacharya,115G. Christopher,115D. Cutts,115Z. Demiragli,115A. Ferapontov,115

A. Garabedian,115U. Heintz,115S. Jabeen,115G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115 M. Narain,115M. Segala,115T. Sinthuprasith,115T. Speer,115R. Breedon,116G. Breto,116

M. Calderon De La Barca Sanchez,116M. Caulfield,116S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116 P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116 O. Mall,116T. Miceli,116R. Nelson,116D. Pellett,116F. Ricci-Tam,116B. Rutherford,116M. Searle,116J. Smith,116

M. Squires,116M. Tripathi,116R. Vasquez Sierra,116R. Yohay,116V. Andreev,117D. Cline,117R. Cousins,117 J. Duris,117S. Erhan,117P. Everaerts,117C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117G. Rakness,117 P. Schlein,117,aP. Traczyk,117V. Valuev,117M. Weber,117J. Babb,118R. Clare,118M. E. Dinardo,118J. Ellison,118

J. W. Gary,118F. Giordano,118G. Hanson,118H. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118 S. Paramesvaran,118J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119 J. G. Branson,119G. B. Cerati,119S. Cittolin,119D. Evans,119A. Holzner,119R. Kelley,119M. Lebourgeois,119 J. Letts,119I. Macneill,119B. Mangano,119S. Padhi,119C. Palmer,119G. Petrucciani,119M. Pieri,119M. Sani,119

V. Sharma,119S. Simon,119E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119S. Wasserbaech,119,bbb F. Wu¨rthwein,119A. Yagil,119J. Yoo,119D. Barge,120R. Bellan,120C. Campagnari,120M. D’Alfonso,120 T. Danielson,120K. Flowers,120P. Geffert,120C. George,120F. Golf,120J. Incandela,120C. Justus,120P. Kalavase,120 D. Kovalskyi,120V. Krutelyov,120S. Lowette,120R. Magan˜a Villalba,120N. Mccoll,120V. Pavlunin,120J. Ribnik,120

J. Richman,120R. Rossin,120D. Stuart,120W. To,120C. West,120A. Apresyan,121A. Bornheim,121J. Bunn,121 Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121D. Kcira,121Y. Ma,121A. Mott,121H. B. Newman,121 C. Rogan,121M. Spiropulu,121V. Timciuc,121J. Veverka,121R. Wilkinson,121S. Xie,121Y. Yang,121R. Y. Zhu,121 V. Azzolini,122A. Calamba,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122Y. F. Liu,122M. Paulini,122

H. Vogel,122I. Vorobiev,122J. P. Cumalat,123B. R. Drell,123W. T. Ford,123A. Gaz,123E. Luiggi Lopez,123 J. G. Smith,123K. Stenson,123K. A. Ulmer,123S. R. Wagner,123J. Alexander,124A. Chatterjee,124N. Eggert,124

L. K. Gibbons,124B. Heltsley,124W. Hopkins,124A. Khukhunaishvili,124B. Kreis,124N. Mirman,124 G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124 J. Thompson,124J. Tucker,124Y. Weng,124L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126M. Albrow,126

J. Anderson,126L. A. T. Bauerdick,126A. Beretvas,126J. Berryhill,126P. C. Bhat,126K. Burkett,126J. N. Butler,126 V. Chetluru,126H. W. K. Cheung,126F. Chlebana,126S. Cihangir,126V. D. Elvira,126I. Fisk,126J. Freeman,126

Y. Gao,126D. Green,126O. Gutsche,126J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126 S. Jindariani,126M. Johnson,126U. Joshi,126B. Klima,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126,ccc

J. Linacre,126D. Lincoln,126R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126 V. I. Martinez Outschoorn,126S. Maruyama,126D. Mason,126P. McBride,126K. Mishra,126S. Mrenna,126 Y. Musienko,126,dddC. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126E. Sexton-Kennedy,126S. Sharma,126 W. J. Spalding,126L. Spiegel,126L. Taylor,126S. Tkaczyk,126N. V. Tran,126L. Uplegger,126E. W. Vaandering,126

R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127 M. Chen,127T. Cheng,127S. Das,127M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127

(11)

R. D. Field,127M. Fisher,127Y. Fu,127I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127 A. Korytov,127A. Kropivnitskaya,127T. Kypreos,127J. F. Low,127K. Matchev,127P. Milenovic,127,eee G. Mitselmakher,127L. Muniz,127R. Remington,127A. Rinkevicius,127N. Skhirtladze,127M. Snowball,127 J. Yelton,127M. Zakaria,127V. Gaultney,128S. Hewamanage,128L. M. Lebolo,128S. Linn,128P. Markowitz,128

G. Martinez,128J. L. Rodriguez,128T. Adams,129A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129 S. V. Gleyzer,129J. Haas,129S. Hagopian,129V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129 V. Veeraraghavan,129M. Weinberg,129M. M. Baarmand,130B. Dorney,130M. Hohlmann,130H. Kalakhety,130 I. Vodopiyanov,130F. Yumiceva,130M. R. Adams,131L. Apanasevich,131Y. Bai,131V. E. Bazterra,131R. R. Betts,131 I. Bucinskaite,131J. Callner,131R. Cavanaugh,131O. Evdokimov,131L. Gauthier,131C. E. Gerber,131D. J. Hofman,131 S. Khalatyan,131F. Lacroix,131C. O’Brien,131C. Silkworth,131D. Strom,131P. Turner,131N. Varelas,131U. Akgun,132

E. A. Albayrak,132B. Bilki,132,fffW. Clarida,132K. Dilsiz,132F. Duru,132S. Griffiths,132J.-P. Merlo,132 H. Mermerkaya,132,gggA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132

H. Ogul,132Y. Onel,132F. Ozok,132,xxS. Sen,132P. Tan,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132 B. A. Barnett,133B. Blumenfeld,133S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133

G. Hu,133P. Maksimovic,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134 R. P. Kenny III,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134J. S. Wood,134 A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135Y. Maravin,135

S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136F. Rebassoo,136D. Wright,136A. Baden,137 B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137M. Kirn,137T. Kolberg,137Y. Lu,137

M. Marionneau,137A. C. Mignerey,137K. Pedro,137A. Peterman,137A. Skuja,137J. Temple,137M. B. Tonjes,137 S. C. Tonwar,137A. Apyan,138G. Bauer,138W. Busza,138E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138 G. Gomez Ceballos,138M. Goncharov,138Y. Kim,138M. Klute,138A. Levin,138P. D. Luckey,138T. Ma,138S. Nahn,138 C. Paus,138D. Ralph,138C. Roland,138G. Roland,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138 D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138M. Zanetti,138

V. Zhukova,138B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139K. Klapoetke,139 Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139N. Tambe,139 J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140E. Avdeeva,141

K. Bloom,141S. Bose,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141I. Kravchenko,141 J. Lazo-Flores,141S. Malik,141G. R. Snow,141A. Godshalk,142I. Iashvili,142S. Jain,142A. Kharchilava,142 A. Kumar,142S. Rappoccio,142Z. Wan,142G. Alverson,143E. Barberis,143D. Baumgartel,143M. Chasco,143 J. Haley,143D. Nash,143T. Orimoto,143D. Trocino,143D. Wood,143J. Zhang,143A. Anastassov,144K. A. Hahn,144

A. Kubik,144L. Lusito,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144 M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144D. Berry,145A. Brinkerhoff,145K. M. Chan,145 M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145 D. M. Morse,145T. Pearson,145M. Planer,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145 L. Antonelli,146B. Bylsma,146L. S. Durkin,146C. Hill,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146 M. Rodenburg,146G. Smith,146C. Vuosalo,146G. Williams,146B. L. Winer,146E. Berry,147P. Elmer,147V. Halyo,147 P. Hebda,147J. Hegeman,147A. Hunt,147P. Jindal,147S. A. Koay,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147 T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147H. Saka,147D. Stickland,147

C. Tully,147J. S. Werner,147S. C. Zenz,147A. Zuranski,147E. Brownson,148A. Lopez,148H. Mendez,148 J. E. Ramirez Vargas,148E. Alagoz,149V. E. Barnes,149D. Benedetti,149G. Bolla,149D. Bortoletto,149 M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149O. Koybasi,149M. Kress,149A. T. Laasanen,149 N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149N. Neumeister,149I. Shipsey,149D. Silvers,149 A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149Y. Zheng,149S. Guragain,150N. Parashar,150

A. Adair,151B. Akgun,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151W. Li,151B. P. Padley,151 R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152 P. de Barbaro,152R. Demina,152Y. Eshaq,152T. Ferbel,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152 A. Harel,152D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153

K. Goulianos,153G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154 C. Contreras-Campana,154E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154 E. Halkiadakis,154D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154

(12)

K. Rose,154S. Salur,154S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154M. Walker,154 G. Cerizza,155M. Hollingsworth,155S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156 J. Gilmore,156T. Kamon,156,hhhV. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156 J. Roe,156A. Safonov,156T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157

J. Damgov,157C. Dragoiu,157P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157 I. Volobouev,157E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158P. Kurt,158 C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159

M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159 C. Neu,159J. Wood,159S. Gollapinni,160R. Harr,160P. E. Karchin,160C. Kottachchi Kankanamge Don,160 P. Lamichhane,160A. Sakharov,160M. Anderson,161D. A. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161

S. Dasu,161E. Friis,161L. Gray,161K. S. Grogg,161M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161 P. Klabbers,161J. Klukas,161A. Lanaro,161C. Lazaridis,161R. Loveless,161A. Mohapatra,161M. U. Mozer,161

I. Ojalvo,161F. Palmonari,161G. A. Pierro,161I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12a

Universidade Estadual Paulista, Sa˜o Paulo, Brazil

12bUniversidade Federal do ABC, Sa˜o Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20

Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France 32Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

33RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 34

RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany 36Deutsches Elektronen-Synchrotron, Hamburg, Germany

37University of Hamburg, Hamburg, Germany 38Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 39Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

(13)

40University of Athens, Athens, Greece 41University of Ioa´nnina, Ioa´nnina, Greece

42KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 43Institute of Nuclear Research ATOMKI, Debrecen, Hungary

44University of Debrecen, Debrecen, Hungary 45Panjab University, Chandigarh, India

46University of Delhi, Delhi, India 47Saha Institute of Nuclear Physics, Kolkata, India

48

Bhabha Atomic Research Centre, Mumbai, India

49Tata Institute of Fundamental Research-EHEP, Mumbai, India 50Tata Institute of Fundamental Research-HECR, Mumbai, India 51Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

52aINFN Sezione di Bari, Bari, Italy 52bUniversita` di Bari, Bari, Italy 52cPolitecnico di Bari, Bari, Italy 53aINFN Sezione di Bologna, Bologna, Italy

53bUniversita` di Bologna, Bologna, Italy 54aINFN Sezione di Catania, Catania, Italy

54bUniversita` di Catania, Catania, Italy 55aINFN Sezione di Firenze, Firenze, Italy

55bUniversita` di Firenze, Firenze, Italy

56INFN Laboratori Nazionali di Frascati, Frascati, Italy 57aINFN Sezione di Genova, Genova, Italy

57bUniversita` di Genova, Genova, Italy 58a

INFN Sezione di Milano-Bicocca, Milano, Italy

58bUniversita` di Milano-Bicocca, Milano, Italy 59aINFN Sezione di Napoli, Napoli, Italy 59bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy 59cUniversita` della Basilicata (Potenza), Napoli, Italy

59dUniversita` G. Marconi (Roma), Napoli, Italy 60aINFN Sezione di Padova, Padova, Italy

60bUniversita` di Padova, Padova, Italy 60cUniversita` di Trento (Trento), Padova, Italy

61aINFN Sezione di Pavia, Pavia, Italy 61bUniversita` di Pavia, Pavia, Italy 62aINFN Sezione di Perugia, Perugia, Italy

62bUniversita` di Perugia, Perugia, Italy 63aINFN Sezione di Pisa, Pisa, Italy

63bUniversita` di Pisa, Pisa, Italy 63cScuola Normale Superiore di Pisa, Pisa, Italy

64aINFN Sezione di Roma, Roma, Italy 64bUniversita` di Roma, Roma, Italy 65aINFN Sezione di Torino, Torino, Italy

65bUniversita` di Torino, Torino, Italy

65cUniversita` del Piemonte Orientale (Novara), Torino, Italy 66aINFN Sezione di Trieste, Trieste, Italy

66bUniversita` di Trieste, Trieste, Italy 67

Kangwon National University, Chunchon, Korea

68Kyungpook National University, Daegu, Korea

69Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 70Korea University, Seoul, Korea

71University of Seoul, Seoul, Korea 72Sungkyunkwan University, Suwon, Korea

73Vilnius University, Vilnius, Lithuania

74Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 75Universidad Iberoamericana, Mexico City, Mexico

76

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

77Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico 78University of Auckland, Auckland, New Zealand

79University of Canterbury, Christchurch, New Zealand

(14)

81National Centre for Nuclear Research, Swierk, Poland

82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 83Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

84Joint Institute for Nuclear Research, Dubna, Russia

85Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 86Institute for Nuclear Research, Moscow, Russia

87Institute for Theoretical and Experimental Physics, Moscow, Russia 88P.N. Lebedev Physical Institute, Moscow, Russia

89

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia

90State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 91University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

92Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 93Universidad Auto´noma de Madrid, Madrid, Spain

94Universidad de Oviedo, Oviedo, Spain

95Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 96CERN, European Organization for Nuclear Research, Geneva, Switzerland

97Paul Scherrer Institut, Villigen, Switzerland

98Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 99Universita¨t Zu¨rich, Zurich, Switzerland

100National Central University, Chung-Li, Taiwan 101National Taiwan University (NTU), Taipei, Taiwan

102Chulalongkorn University, Bangkok, Thailand 103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105

Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

107National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 108University of Bristol, Bristol, United Kingdom

109Rutherford Appleton Laboratory, Didcot, United Kingdom 110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas, USA

113The University of Alabama, Tuscaloosa, Alabama, USA 114Boston University, Boston, Massachusetts, USA 115Brown University, Providence, Rhode Island, USA 116University of California, Davis, Davis, California, USA 117University of California, Los Angeles, Los Angeles, California, USA

118University of California, Riverside, Riverside, California, USA 119University of California, San Diego, La Jolla, California, USA 120University of California, Santa Barbara, Santa Barbara, California, USA

121California Institute of Technology, Pasadena, California, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 123University of Colorado at Boulder, Boulder, Colorado, USA

124Cornell University, Ithaca, New York, USA 125Fairfield University, Fairfield, Connecticut, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois, USA

127University of Florida, Gainesville, Florida, USA 128

Florida International University, Miami, Florida, USA

129Florida State University, Tallahassee, Florida, USA 130Florida Institute of Technology, Melbourne, Florida, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois, USA

132The University of Iowa, Iowa City, Iowa, USA 133Johns Hopkins University, Baltimore, Maryland, USA

134The University of Kansas, Lawrence, Kansas, USA 135Kansas State University, Manhattan, Kansas, USA

136Lawrence Livermore National Laboratory, Livermore, California, USA 137

University of Maryland, College Park, Maryland, USA

138Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 139University of Minnesota, Minneapolis, Minnesota, USA

140University of Mississippi, Oxford, Mississippi, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska, USA

(15)

142State University of New York at Buffalo, Buffalo, New York, USA 143Northeastern University, Boston, Massachusetts, USA

144Northwestern University, Evanston, Illinois, USA 145University of Notre Dame, Notre Dame, Indiana, USA

146The Ohio State University, Columbus, Ohio, USA 147Princeton University, Princeton, New Jersey, USA 148University of Puerto Rico, Mayaguez, Puerto Rico 149Purdue University, West Lafayette, Indiana, USA 150

Purdue University Calumet, Hammond, Indiana, USA

151Rice University, Houston, Texas, USA 152University of Rochester, Rochester, New York, USA 153The Rockefeller University, New York, New York, USA

154Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA 155University of Tennessee, Knoxville, Tennessee, USA

156Texas A&M University, College Station, Texas, USA 157Texas Tech University, Lubbock, Texas, USA 158Vanderbilt University, Nashville, Tennessee, USA 159University of Virginia, Charlottesville, Virginia, USA

160Wayne State University, Detroit, Michigan, USA 161University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland. dAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. eAlso at Universidade Estadual de Campinas, Campinas, Brazil.

fAlso at California Institute of Technology, Pasadena, CA, USA.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. j

Also at Cairo University, Cairo, Egypt.

k

Also at Fayoum University, El-Fayoum, Egypt.

lAlso at British University in Egypt, Cairo, Egypt. mNow at Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. oAlso at Universite´ de Haute Alsace, Mulhouse, France. pAlso at Joint Institute for Nuclear Research, Dubna, Russia.

qAlso at Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia. rAlso at Brandenburg University of Technology, Cottbus, Germany.

sAlso at The University of Kansas, Lawrence, KS, USA.

tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. uAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

vAlso at Tata Institute of Fundamental Research-HECR, Mumbai, India. wNow at King Abdulaziz University, Jeddah, Saudi Arabia.

xAlso at University of Visva-Bharati, Santiniketan, India. yAlso at Sharif University of Technology, Tehran, Iran. z

Also at Isfahan University of Technology, Isfahan, Iran.

aaAlso at Shiraz University, Shiraz, Iran.

bbAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ccAlso at Facolta` Ingegneria, Universita` di Roma, Roma, Italy.

ddAlso at Universita` degli Studi di Siena, Siena, Italy.

eeAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ffAlso at Faculty of Physics, University of Belgrade, Belgrade, Serbia.

ggAlso at University of California, Los Angeles, CA, USA. hhAlso at Scuola Normale e Sezione dell’INFN, Pisa, Italy.

iiAlso at INFN Sezione di Roma, Roma, Italy. jjAlso at University of Athens, Athens, Greece.

(16)

kkAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. llAlso at Paul Scherrer Institut, Villigen, Switzerland.

mmAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. nnAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. ooAlso at Gaziosmanpasa University, Tokat, Turkey.

ppAlso at Adiyaman University, Adiyaman, Turkey qqAlso at Izmir Institute of Technology, Izmir, Turkey

rrAlso at The University of Iowa, Iowa City, IA, USA. ssAlso at Mersin University, Mersin, Turkey.

ttAlso at Ozyegin University, Istanbul, Turkey. uuAlso at Kafkas University, Kars, Turkey.

vvAlso at Suleyman Demirel University, Isparta, Turkey. wwAlso at Ege University, Izmir, Turkey.

xxAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey. yy

Also at Kahramanmaras Su¨tcu¨ Imam University, Kahramanmaras, Turkey.

zzAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. aaaAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

bbbAlso at Utah Valley University, Orem, UT, USA.

cccNow at University of Edinburgh, Scotland, Edinburgh, United Kingdom. dddAlso at Institute for Nuclear Research, Moscow, Russia.

eeeAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. fffAlso at Argonne National Laboratory, Argonne, IL, USA.

gggAlso at Erzincan University, Erzincan, Turkey.

Figura

FIG. 1 (color online). The dijet mass spectrum from wide jets (points) compared with a smooth fitted curve (solid line) and with the predicted QCD background [ 28 ] (dashed line)
FIG. 2 (color online). Observed upper limits at 95% C.L. on   B  A for resonances decaying to qq, qg, and gg final state (points and solid lines) compared with the expected limits (dot-dashed dark lines) and their variation at the 1 and 2 levels (shad
TABLE I. Observed upper limits at the 95% C.L. on   B  A for resonances decaying to qq, qg, and gg final states as a function of the resonance mass
TABLE II. Observed and expected exclusions at the 95% C.L. on the mass of various resonances

Riferimenti

Documenti correlati

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture

The purpose of this study is to assess the growth rate of CA in the presence of different concen- trations of glucose and fructose, two of the main phys- iopathologically

Abbate (professor of Aesthetics at the University of Roma3 and author of numerous works on Ricoeurian Aesthetics), Dalle ideologie alla lotta per il riconoscimento: Paul

In addition, due to the amphoteric properties of ZnO, the catalyst can simultaneously promote transesterification and esterification processes, thus becoming applicable to