arXiv:0904.2667v2 [math.CV] 5 Nov 2009
o tonioni variable: a division lemma and the
amshaft ee t R. Ghiloni,A. Perotti
∗
Department of Mathemati s University of Trento ViaSommarive,14 I38123 PovoTrento ITALYperottis ien e.unitn.it November5, 2009
Abstra t
Westudyindetailthezerosetofasli eregularfun tionofa quater-nioni oro tonioni variable. Bymeansofadivisionlemmafor onvergent powerseries,wendtheexa trelationexisting betweenthezerosoftwo o tonioni regular fun tions and those of their produ t. In the ase of o tonioni polynomials,wegetastrongformofthefundamentaltheorem ofalgebra. Weprovethatthesumofthemultipli itiesofzerosequalsthe degreeofthepolynomialandobtainafa torizationinlinearpolynomials. Keywords: Quaternions, O tonions, Fun tions of ahyper omplex variable, Fundamentaltheoremofalgebra
Math.Subj.Class: 30C15,30G35,32A30
1 Introdu tion
Let
H
denotetheskeweldofquaternionsoverR
. Re ently,GentiliandStruppa [13,15℄introdu edthenotionofsli eregularity (orCullen regularity)for fun -tionsofaquaternioni variable. Thisnotiondonot oin idewith the lassi al oneof Fueter regularity(we referthereader to [30℄ and[19℄for thetheory of Fueter regular fun tions). In fa t, the set of sli e regular fun tions on a ballB
R
enteredin the originofH
oin ides withthat of allpowerseriesP
i
w
i
a
i
that onverges in
B
R
. In parti ular, all the standardpolynomialsP
n
i=0
w
i
a
i
withrightquaternioni oe ients,whi h failtobeFueter regular,dene sli e
∗
WorkpartiallysupportedbyMIUR(PRINProje tProprietàgeometri hedellevarietà realie omplesse")andGNSAGAofINdAM
regular fun tions on the whole spa e
H
. The lass of sli e regular fun tions ontainsalsothe radiallyholomorphi fun tions introdu ed byFueter ( f. [19, 11℄). Su h fun tions x every omplex plane generated by the reals and by aunit imaginaryquaternion, while the sli e regular fun tions do not need to fullthis property. A tually,radiallyholomorphi fun tions orrespondto the veryspe ial lassof those sli eregularfun tions, whi h anbeexpanded into powerserieswith real oe ients. Thenotionofsli eregularitywasextended tofun tionsofano tonioni variablein[14,12℄andtofun tionswithvaluesin aCliordalgebrain[17, 4℄.Inthispaper,westudyin detailthezerosetofasli eregularfun tion. For simpli ity, in thesequel,weuse theterminologyregular fun tion in pla e of sli eregularfun tion. Weobtainby dierent te hniques some properties al-readyknown( f.[24,14,15,11,16,18℄)andweextendotherstotheo tonioni ase. We nd the exa trelation existing between the zerosof twoo tonioni regular fun tions and those of their produ t. In the ase of o tonioni poly-nomials,weobtainastrongformof thefundamental theoremof algebra. The main tool we use is a division lemma, whi h generalizes to o tonioni power seriesaresultprovedbyBe k[1℄ forquaternioni polynomialsand by Serdio [27℄foro tonioni polynomials. Inthesimpler aseofregularpolynomialsand onvergentpowerserieswithreal(i.e. entral) oe ients,thepropertiesofthe zeroset havebeenstudied alsobyotherauthors( f. [5℄).
We des ribe in more details the stru ture of the paper. In Se tion 2, we re allsomebasi denitions and provethedivision lemma (Lemma 1). Given a regular fun tion
f
and an o tonionα
, we an asso iate tof
a remainder, whi h is a linear or onstant regular polynomial. This remainder des ribes ompletelythe interse tion ofthe zerosetV (f )
off
withthe onjuga y lass ofα
. We an then obtaineasily a stru ture theorem forV (f )
(Theorem 6). This result was proved for quaternioni polynomials by Pogorui and Shapiro [24℄, for quaternioni regular fun tions byGentili and Stoppato in [11℄ and it wasextendedto o tonioni regularfun tions in [18℄. Thedivision lemma and the on eptofnormal series asso iatedtoaregularfun tion (seeSe tion2for pre isedenitions)suggestthedenitionofthemultipli ityofazeroofaregular fun tion. Ourdenitionisequivalentonquaternioni polynomialswiththeone givenin[2℄andin[16℄.InSe tion3,wedes ribethezerosoftheprodu t
f ∗g
oftworegularfun tions intermsofthezerosoff
andg
. Weprove(Lemma7)thatthenormalseriesof aregularfun tionismultipli ative,aresultthatisnontrivialintheo tonioni ase. An immediate onsequen eis that the onjuga y lassesof the zerosoff ∗ g
areexa tlythose ontainingzerosoff
org
. Thepre iserelationbetweensu hzerosisstatedinTheorem9. We allthisrelationthe amshaftee t. In theasso iative ase,itredu estoknownresults( f.[11℄forquaternioni regular fun tionsand[22,29℄forpolynomials).
Se tion4 ontainssomeappli ationsofthepre edingresultstoregular poly-nomials. The fundamental theorem of algebra was proved by Niven [23℄ for standardquaternioni polynomials. Itwasextended to otherpolynomialsover
theorem valid for a lass of real algebras in ludingthe omplex numbers, the quaternionsandtheo tonions. Seealso[31℄,[25℄and[18℄ forotherproofs.
In this ontext, our aim is a strong form of the fundamental theorem, in whi h aformulafor thesumof themultipli ities of zerosisa hieved. Gordon andMotzkin[20℄ proved,forpolynomialsona(asso iative)division ring,that thenumberof onjuga y lasses ontainingzerosof
f
annot be greaterthan thedegreen
off
. This estimatewasimprovedonthequaternions by Pogorui and Shapiro [24℄: iff
hasm
spheri al zeros andl
nonspheri al zeros, then2m + l ≤ n
. Gentili and Struppa [16℄ showed that, using the right denitionof multipli ity, the number of zeros of
f
equals the degreeof the polynomial. Wegeneralize this strong form to theo tonions (Theorem 11), givingaproof inspiredbythesimpleargumentusedin[24℄. Fromthisresultandthedivision lemma,wegetafa torizationlemmaforregularpolynomials(Lemma12)and somesu ient onditionsforthenitenessofV (f )
.Thedenitions andresultsarestatedovero tonions only, buttheyremain validoverquaternionsaswell. Sin e
H
anbeidentiedwitharealsubalgebra oftheo tonions,the orrespondingstatementsforquaternions anbeobtained dire tlyfromtheiro tonioni versionbyspe ializing oe ientsandvariables.2 Division of regular series and multipli ity of
zeros
Let
O
bethenonasso iativedivision algebraofo tonions (also alled Cayley numbers). Wereferto[26,22,6℄forthemainpropertiesofthealgebrasH
andO
. Were allthatO
anbeobtainedfromH
bytheCayleyDi ksonpro ess. Anyx ∈ O
an be written asx = x
1
+ x
2
k
, wherex
1
, x
2
∈ H
andk
is a xedimaginary unit of
O
. The addition onO
is dened omponentwise and the produ tisdenedbyxy = (x
1
+ x
2
k)(y
1
+ y
2
k) = x
1
y
1
− ¯
y
2
x
2
+ (x
2
y
¯
1
+ y
2
x
1
)k.
Let
{1, i, j, ij}
denote arealbasis ofH
. Then abasis ofthe real algebraO
isformedby
{1, i, j, ij, k, ik, jk, (ij)k}
.Let
B
R
betheopenballofO
enteredin theoriginwith(possiblyinnite) radiusR
. Letf : B
R
−→ O
andg : B
R
−→ O
be regular fun tions with seriesexpansionsf (w) =
P
i
w
i
a
i
andg(w) =
P
j
w
j
b
j
. Theusual produ tof polynomials,wherew
is onsideredtobea ommutingvariable( f.forexample [22℄ and [9, 10℄), an be extended to power series, and hen e to sli e regular fun tions( f. [11,16℄). Re allthatf ∗ g
is theregular fun tiondened onB
R
bysetting(f ∗ g)(w) :=
P
k
w
k
P
i+j=k
a
i
b
j
.
We denote by
f
the regular fun tion dened onB
R
byf (w) :=
P
i
w
i
a
i
. If(f ∗ g)(α) = f (α)g(α)
foreveryg
andeveryα ∈ O
andwewillwritef g
inpla eof
f ∗ g
. Moreover,iff
isreal then(f ∗ g) ∗ h = (f g) ∗ h = f (g ∗ h)
for everyg, h
,andf ∗ g
isequaltof g
.Wedenoteby
N (f )
thenormalseries (or symmetrizedseries)off
dened byN (f ) := f ∗ f = f ∗ f.
Weremark that
N (f )
isregularandrealonB
R
.Let
α ∈ O
. Wedenotethetra etr(α) = α + α
ofα
alsobyt
α
,thesquarednormof
α
byn
α
anddenetherealpolynomial∆
α
, alled hara teristi poly-nomialofα
, by∆
α
(w) := N (w − α) = (w − α) ∗ (w − α) = w
2
− w · t
α
+ n
α
.
It is wellknown ( f. [27℄) that
α
is onjugate to an o tonionβ
if and only if∆
α
= ∆
β
. Indi ate byS
α
the onjuga y lass ofα
:S
α
:= {β ∈ O | β =
Re(α) + |Im(α)| I, I ∈ S}
, whereS = {I ∈ O | I
2
= −1}
is the sphere of imaginaryunits. Notethat
S
α
redu estothepoint{α}
whenα
isrealanditis asixdimensionalspherewhenα
isnonreal.Wedenote by
V (f )
thezero set off
. Ifα ∈ V (f )
is real, we allα
areal zero off
. Ifα
is nonreal andS
α
⊂ V (f )
, we allα
a spheri al zero off
. Otherwise,we allα ∈ V (f )
anisolatedzerooff
. Thisterminologyisjustied byTheorem 6below.Letuspresentourdivisionlemma.
Lemma1. Let
f : B
R
−→ O
regularandletα ∈ B
R
. Thefollowingstatements hold.(1)
There exist, and are unique, a regular fun tiong : B
R
−→ O
and an o tonionr ∈ O
su hthatf (w) = (w − α) ∗ g(w) + r
.(2)
Letα ∈ O
be nonreal. There exist, and are unique, a regular fun tionh : B
R
−→ O
ando tonionsa, b ∈ O
su hthatf (w) = (∆
α
h)(w)+w a+b
.Proof. (1)Letusprovetheexisten eof
g
andofr
. First,observethat,ifsu hg
andr
exist,thenr
mustbeequaltof (α)
. Infa t,it iseasyto see that the valueofthefun tion(w − α) ∗ g(w)
inα
iszero. Assume thatf =
P
i
w
i
a
i
has positive onvergen eradiusR
. Re allthatR =
lim sup
n→+∞
n
p|a
n
|
−1
.
Let
α ∈ B
R
. Ifα = 0
,thenwe anwritef = w
P
+∞
i=0
w
i
a
i+1
+ a
0
.
Supposeα 6= 0
. A formal series omputation imposes to dene the oe ients of thepowerseries
g =
P
n
w
n
b
n
asfollows:b
n
:= α
−1−n
f (α) −
n
X
j=0
α
j
a
j
= α
−1−n
+∞
X
j=n+1
α
j
a
j
forea h
n ∈ N
. Letusshowthattheseriesg
hasradiusof onvergen eatleastR
. Sin e|α| < R
,lim sup
n→+∞
p|a
n
n
| < |α|
−1
. Thisimpliesthat,foreveryxedρ
with
|α| < ρ < R
,there existsanintegern
ρ
su hthattheinequality|a
j
| ≤ ρ
−j
issatisedforevery
j > n
ρ
. Letx ∈ B
R
andletρ
be hoseninsu hawaythatmax{|α|, |x|} < ρ < R
. Then,foreveryn ≥ n
ρ
,itholds:|x
n
b
n
| ≤ |x|
n
|b
n
| ≤ |x|
n
|α|
−1−n
+∞
X
j=n+1
|α|
j
|a
j
| ≤ |x|
n
|α|
−1−n
+∞
X
j=n+1
|α|
j
ρ
−j
= |x|
n
|α|
−1−n
|α|
ρ
n+1
1
1 − |α|/ρ
=
|x|
ρ
n
1
ρ − |α|
.
Therefore, the power series
P
n
w
n
b
n
onverges at everyx ∈ B
R
. It remains to prove the uniqueness ofg
and ofr
. We have just seen thatr
must be equal tof (α)
so the o tonionr
is uniquely dened byf
andα
. Iff (w) =
(w − α) ∗ g(w) + r = (w − α) ∗ g
′
(w) + r
,then
(w − α) ∗ (g(w) − g
′
(w)) = 0
and thiseasilyimpliesthat
g = g
′
.
(2)Let
α
benonreal. Usingtherstparttwi e,wegets ∈ O
andaregular fun tionh
onB
R
su hthatf (w) = (w − α) ∗ g(w) + r = (w − α) ∗ ((w − ¯
α) ∗ h(w) + s) + r
= (∆
α
h)(w) + ws − αs + r.
To proveuniqueness, assume that
f (w) = ∆
α
h + wa + b = ∆
α
h
′
+ wa
′
+ b
′
.
Then
f (α) = αa + b = αa
′
+ b
′
,
f (¯
α) = ¯
αa + b = ¯
αa
′
+ b
′
, from whi h weget
(α − ¯
α)(a − a
′
) = 0
andthena = a
′
,b = b
′
. Finally,∆
α
h = ∆
α
h
′
givesh = h
′
on
B
R
\ S
α
. Byadensityargument,h
andh
′
must oin ideeverywhere. Remark 1. As abyprodu t ofthe proofof thepre eding theorem, weobtain that,if
f
isaregularo tonioni polynomialofdegreen > 0
,theng
isaregular o tonioni polynomialofdegreen − 1
.Denition1. Lettheregularfun tions
g, h
andtheo tonionsr, a, b
beasabove. Ifα
is real, we allr
the remainderoff
withrespe t toα
andthe fun tiong
the quotientoff
w.r.t.α
. Ifα
isnonreal,we all remainderoff
withrespe t toα
theo tonioni polynomialdenedbyw a + b
and quotientoff
w.r.t.α
the fun tionh
. Notethat theydependonly onthe onjuga y lassS
α
ofα
. In any ase,wewill denote theremainder byr
α
(f )
.If
f
isreal,thenthe oe ientsofthequotientfun tionandoftheremainder arereal. Thisfa tisa onsequen eoftheuniquenessofquotientandremainder:(w − α) g + r = f = ¯
f = (w − α) ¯
g + ¯
r
(α
real)or
∆
α
h + w a + b = f = ¯
f = ∆
α
h + w ¯
¯
a + ¯b
(α
nonreal)imply
g = ¯
g
,r = ¯
r
,h = ¯
h
,a = ¯
a
andb = ¯b
. Asarstappli ation ofLemma1,weobtain:Corollary2. Let
r
α
(f )
betheremainder off
withrespe ttoα
. Thefollowing statementshold.(1)
Letα
be real. Thenα
is a zero off
if and only ifr
α
(f ) = 0
; that is,w − α | f
.(2)
Letα
benonreal andletr
α
(f )(w) = w a + b
. Then wehave:(i) α
isaspheri al zerooff
if andonlyifa = 0 = b
;thatis,∆
α
| f
.(ii) α
isanisolatedzerooff
if andonlyifa 6= 0
andα = −ba
−1
. In parti ular, either
S
α
⊂ V (f )
orS
α
∩ V (f )
is empty orS
α
∩ V (f )
onsists ofasinglepoint. Thelattersituation o urs ifandonly ifa 6= 0
and−ba
−1
∈ S
α
.Proof. By using Lemma 1, we an follow the same lines of proof as in the polynomial ase( f. [27,3℄).
If
α ∈ R
,thestatementistrivial,sin ef (α) = r
α
(f )
.Now assumethat
α
is nonreal. Ifr
α
(f ) = 0
,i.e.a = b = 0
, thenf (β) =
∆
α
(β) · h(β) = 0
for everyβ ∈ S
α
. Ifa 6= 0
andα = −ba
−1
, then
f (α) =
∆
α
(α) · h(α) = 0
. IfS
α
ontainstwozerosβ
andγ
off
,thentheequality∆
α
(β) · h(β) + β a + b = f (β) = 0 = f (γ) = ∆
α
(γ) · h(γ) + γ a + b
gives
β a = γ a
, sin e∆
α
vanishes onβ, γ ∈ S
α
. Ifβ 6= γ
, then it must bea = b = 0
.If
f
isreal,thenr
α
(f ) = w a + b
witha, b
real. Therefore−ba
−1
∈ R
and
f
hasnoisolated(nonreal)zeros. Thismeansthat thezerosoff
are allrealor spheri alandV (f )
istheunionofthespheresS
α
withα ∈ V (f )
( f.[5℄).If
f
diersfrom arealg
bya onstantnonrealo tonion,thenwehavethe opposite situation:f
an have only isolatedzeros. This property was proved forregularpolynomialsoverH
in[22, 16.19℄.Proposition 3. Let
f (w) = g(w) + a
0
be aregular fun tion onB
R
. Assume thatg
isreal anda
0
∈ O
isnonreal. Then, ifV (f )
isnotempty, itselements areisolatedzeros off
ontainedin the omplex planegeneratedby1
anda
0
. Proof. Letα ∈ V (f )
. Sin ea
0
= −g(α)
is nonreal,alsoα
must benonreal. From thedivision lemma (Lemma 1) applied tog
, weget:g(w) = ∆
α
h(w) +
wa + b
, with reala, b
. Thenr
α
(f ) = wa + b + a
0
andα
annotbe spheri al.Otherwise, it would be
a
0
= −b
. Therefore,α = −(b + a
0
)a
−1
is anisolated zeroof
f
belongingtothe omplexplanegeneratedby1
anda
0
.We still get the nonexisten e of spheri al zeros under a weaker ondition on
f
.Proposition 4. Let
f (w) = g(w) + wa
1
+ a
0
be a regular fun tion onB
R
. Assumethatg
isreal andeithera
0
ora
1
isnonreal. Thenf
has no spheri al zeros.Proof. We pro eed as before. Assume that
V (f ) 6= ∅
. Letα ∈ V (f )
. Thenr
α
(f ) = w(a+a
1
)+b+a
0
,witha, b
real. Thenα
annotbespheri al.Otherwise,itwouldbe
a
0
= −b
anda
1
= −a
.If
α
is real andf (w) = (w − α) g(w) + r
forsome regular fun tiong
andr ∈ O
,thenr
α
(f ) = r
,r
α
( ¯
f ) = ¯
r
andN (f ) = (w − α)
2
N (g) + (w − α)(g ∗ ¯
r + r ∗ ¯
g) + n
r
.
(1)Itfollowsthat
r
α
(N (f )) = n
r
. Ifα
isnonrealandf
hasremainderr
α
(f )(w) =
w a + b
,thenwehavethatr
α
( ¯
f )(w) = w ¯
a + ¯b
andhen er
α
(N (f )) = r
α
(f ∗ ¯
f )(w) = w(a¯b + b¯
a + t
α
n
a
) + n
b
− n
α
n
a
.
Thelatterequalityfollowsimmediatelyfromthefollowingfa t
(wa + b) ∗ (w¯
a + ¯b) =
w
2
n
a
+ w(a¯b + b¯
a) + n
b
=
=
(∆
α
+ wt
α
− n
α
)n
a
+ w(a¯b + b¯
a) + n
b
.
Corollary5. Given
α ∈ O
,the followingstatements areequivalent:(1) S
α
∩ V (f )
isnonempty.(2) S
α
∩ V (N (f ))
isnonempty.(3) ∆
α
| N (f )
.Inparti ular, wehave that
V (N (f )) =
[
α∈V (f )
S
α
.
Proof. If
α
isreal andr
α
(f ) = r
,thenr
α
(N (f )) = n
r
= 0
ifandonlyifr = 0
. If this is the ase, Eq. (1) implies that∆
α
= (w − α)
2
divides
N (f )
. Ifα
is nonreal,then∆
α
| N (f )
ifandonlyifr
α
(N (f )) = 0
;thatis,a¯b + b¯
a + t
α
n
a
= 0,
n
b
− n
α
n
a
= 0.
(2)If
a = b = 0
, thenS
α
⊆ V (f )
and equations (2) are trivial. Ifa 6= 0
andβ = −ba
−1
∈ S
α
∩ V (f )
,thent
α
n
a
= t
β
n
a
= βa¯
a + a¯
a ¯
β = −b¯
a − a¯b
. Moreover,n
α
n
a
= n
β
n
a
= n
b
andequations(2)aresatised.Conversely,supposethatequations(2)aresatised. If
a = 0
,thenb = 0
and hen eS
α
⊂ V (f )
. Leta 6= 0
. Dene theo tonionβ := −ba
−1
. Pro eeding as above,weobtainthat
t
α
n
a
= t
β
n
a
andn
α
n
a
= n
β
n
a
or,equivalently,t
α
= t
β
andn
α
= n
β
. Itfollowsthatβ ∈ S
α
∩ V (f )
. Sin eN (f )
isreal,itszerosareall realorspheri al,soV (N (f ))
isequaltoS
α∈V (f )
S
α
.Fromthepre eding orollaries,weimmediatelygetanewproofofthe follow-ingresult. Itwasprovedforquaternioni polynomialsbyPogoruiandShapiro [24℄, for quaternioni regular fun tions byGentili and Stoppato in [11℄ and it wasextendedtoo tonioni regularfun tionsin [18℄.
Theorem6. Let
f : B
R
−→ O
bearegularfun tion,whi hdoesnotvanishon the wholeB
R
. For ea hI ∈ S
, denote byC
I
the omplexplane ofO
generatedby
1
andI
; that is,C
I
:= {x + yI ∈ O | x, y ∈ R}
. The following statementshold.
(1)
ForallI ∈ S
,C
I
∩
S
α∈V (f )
S
α
is losedanddis reteinC
I
∩ B
R
.(2)
For ea hβ ∈
S
α∈V (f )
S
α
, eitherS
β
⊂ V (f )
orS
β
∩ V (f )
onsists of a singlepoint.Proof. Sin e
N (f )
is regular onB
R
, and then holomorphi onC
I
∩ B
R
, its zerosetC
I
∩
S
α∈V (f )
S
α
= C
I
∩ V (N (f ))
is losed anddis rete inC
I
∩ B
R
. These ond statementfollowsfromCorollary2.Denition2. Given anonnegativeinteger
s
and ano tonionα
inV (f )
,we say thatα
is a zerooff
of multipli itys
if∆
s
α
| N (f )
and∆
s+1
α
∤ N (f )
. Wewilldenote theinteger
s
, alled multipli ityofα
,bym
f
(α)
.Inthe aseof
α
arealelement,this onditionis equivalentto(w − α)
s
| f
and
(w − α)
s+1
∤ f
. If
α
isaspheri alzero,then∆
α
dividesf
andf
¯
. Thereforem
f
(α)
is at least 2. Ifm
f
(α) = 1
,α
is alled asimple zero off
. The reader observesthatthemultipli ityofα
dependsonlyonthe onjuga y lassS
α
ofα
. Remark 2. Thepre eding denition isequivalenton quaternioni polynomials withtheonegivenin[2℄andin[16℄.3 Zeros of produ ts: the amshaft ee t
Let
f, g : B
R
−→ O
beregularfun tions. Theaimofthisse tionistodes ribethe zeros of
f ∗ g
in terms of the zeros off
and ofg
. The following result is nontrivial andveryimportant in the o tonioni setting. It wasprovedby Serdio([28,Theorem10℄)in theparti ular asein whi hg
isa onstant. Lemma7. Itholds:N (f ∗ g) = N (f ) N (g).
Proof. Let
g
bexed. Wemustprovethat thetworealquadrati formsQ
1
(f ) := (f ∗ g) ∗ (¯
g ∗ ¯
f )
andQ
2
(f ) := (f ∗ ¯
f )(g ∗ ¯
g)
oin ide.Bypolarization,theequalityof
Q
1
andQ
2
isequivalenttotheequality oftheR
bilinearsymmetri formsB
1
(f
1
, f
2
) := (f
1
∗ g) ∗ (¯
g ∗ ¯
f
2
) + (f
2
∗ g) ∗ (¯
g ∗ ¯
f
1
),
B
2
(f
1
, f
2
) := (f
1
∗ ¯
f
2
)N (g) + (f
2
∗ ¯
f
1
)N (g).
By linearity, it is su ient to prove that
B
1
andB
2
oin ide forf
1
= w
i
a
,
f
2
= w
j
b
, witha, b ∈ O
. Sin eB
α
(w
i
a, w
j
b) = w
i+j
∗ B
α
(a, b)
(α = 1, 2
), ittotheequality
Q
1
(a) = Q
2
(a)
foreverya ∈ O
. Nowwe anxa ∈ O
andapply thesameargumenttothequadrati formsQ
′
1
(g) := (a ∗ g) ∗ (¯
g ∗ ¯
a)
andQ
′
2
(g) := |a|
2
(g ∗ ¯
g).
We get that these two forms oin ide if and only if
Q
′
1
(b) = Q
′
2
(b)
for everyb ∈ O
. Thereforeitsu estoprovetheequality(a b)(¯b ¯
a) = |a|
2
|b|
2
forevery onstant
a, b ∈ O
.Ineveryalternativealgebrathesubalgebragenerated bytwoelementsis asso- iative. Therefore
(a b)(¯b ¯
a) = a(b¯b)¯
a = |a|
2
|b|
2
. This ompletestheproof. Corollary8. Itholds:
[
α∈V (f ∗g)
S
α
=
[
α∈V (f )∪V (g)
S
α
or, equivalently, given any
α ∈ O
,V (f ∗ g) ∩ S
α
is nonempty if and only if(V (f ) ∪ V (g))∩S
α
isnonempty. Inparti ular, thezerosetoff ∗ g
is ontainedinthe unionof spheres
S
α∈V (f )∪V (g)
S
α
.Proof. By ombiningCorollary5andLemma 7,weget:
S
α∈V (f ∗g)
S
α
= V (N (f ∗ g)) = V (N (f )) ∪ V (N (g)) =
=
S
α∈V (f )
S
α
∪
S
α∈V (g)
S
α
=
S
α∈V (f )∪V (g)
S
α
.
Sin e
V (f ∗ g) ⊂ V (N (f ∗ g))
, theproofis omplete.Nowwegiveapre isedes riptionof thezerosoftheprodu t
f ∗ g
. Thanks to Corollary8, itis su ient to analyze separately thespheresS
α
ontaining zerosoff
orofg
.Firstly,we onsider thesigni ant ase: thenonrealzeros.
Let
α ∈ O
be nonreal. Supposethatr
α
(f )(w) = wa + b
andr
α
(g)(w) =
wc + d
forsomea, b, c, d ∈ O
. Thenwehavethatr
α
(f ∗ g)(w) = w(ad + bc + t
α
ac) + bd − n
α
ac = (r
α
(f ) ∗ r
α
(g))(w) − ∆
α
ac.
(3)Thelatterassertionisanimmediate onsequen eofthefollowingfa t
(wa + b) ∗ (wc + d) =
w
2
(ac) + w(ad + bc) + bd =
=
(∆
α
+ wt
α
− n
α
)(ac) + w(ad + bc) + bd
ThankstoEq.(3),weobtain:
(1)
Supposef
has anisolatedzeroα
inS
α
of multipli itys
andg
isnowherezero on
S
α
. Thenf ∗ g
has an isolated zeroα
′
in
S
α
of multipli itys
,ad + (¯
αa)c 6= 0
anditholds:α
′
= ((αa)d + n
α
ac) (ad + (¯
αa)c)
−1
.
Inparti ular, if
(αa)d = α(ad)
andn
α
ac = α ((¯
αa)c) (
for example,ifa
isrealor if
a, b, c, d
belong toanasso iative subalgebraofO )
,thenα
′
= α
.
(2)
Supposef
is nowhere zero onS
α
andg
has an isolated zeroβ
inS
α
of multipli ityt
. Thenf ∗ g
has an isolated zeroβ
′
in
S
α
of multipli ityt
,bc + a( ¯
βc) 6= 0
anditholds:β
′
= (b(βc) + n
α
ac) bc + a( ¯
βc)
−1
.
Inparti ular, if
b(βc) = (bβ)c
anda( ¯
βc) = (a ¯
β)c (
for example, ifc
isrealorif
a, b, c, d
belongstoanasso iativesubalgebraofO )
,thenwehavethatβ
′
= (b + a ¯
β )β(b + a ¯
β )
−1
.
(3)
Supposef
has an isolated zeroα
inS
α
of multipli itys
andg
has an isolatedzeroβ
inS
α
ofmultipli ityt
. Then,ifa(βc) = (¯
αa)c
,thenα
isa spheri alzerooff ∗ g
ofmultipli itys + t
. Otherwise,f ∗ g
hasanisolated zeroγ
inS
α
ofmultipli itys + t
su hthatγ = (−(αa)(βc) + n
α
ac) (−a(βc) + (¯
αa)c)
−1
.
(4)
Letα
beaspheri alzerooff
orofg
,andlets, t
betherespe tive multipli -itiesofα (
possiblyzero)
. Thenα
isaspheri al zerooff ∗ g
ofmultipli itys + t
.Proof. In thefollowing,we willuse thefa t that, in anyalternativequadrati algebra,thetra eisasso iativeand ommutative( f.e.g.[6,9.1.2℄).
First,weprovethetheoremwithoutthepart on erningmultipli ities.
(1)Inthis ase
a 6= 0
andαa + b = 0
( f.Corollary2(2)(ii)). Ifc = 0
,thend 6= 0
(otherwiseg
wouldvanish onthewhole sphereS
α
). Thenad + (¯
αa)c =
ad 6= 0
andEq.(3)givestheisolatedzeroα
′
= −(bd)(ad)
−1
= ((αa)d)(ad)
−1
of
f ∗ g
. Ifc 6= 0
,thenad + (¯
αa)c
annotvanish. Infa t,ifitweread + (¯
αa)c = 0
,then we would have that
α = −((ad)c
¯
−1
)a
−1
. But then
tr(α) = tr(−dc
−1
)
and
|α| = | − dc
−1
|
. This would mean that
β = −dc
−1
belongsto
S
α
∩ V (g)
, ontradi tingourassumptions.Corollary8tellsthat
S
α
must ontainazerooff ∗ g
. FromCorollary2(2)(ii) andEq.(3),thiszeromustbeα
′
= (−bd + n
α
ac)(ad + bc + t
α
ac)
−1
.
Note that the o tonion
ad + bc + t
α
ac
does not vanish, sin e it is equal toad − (αa)c + (t
α
a)c = ad − (αa)c + (αa)c + (¯
αa)c = ad + (¯
αa)c
. We on ludethat
α
′
= ((αa)d + n
(2)This se ond ase issimilarto therstone. Now
c 6= 0
andβc + d = 0
.If
a = 0
,thenb 6= 0
andbc + a( ¯
βc) = bc 6= 0
. FromEq.(3)wegettheisolatedzero
β
′
= (b(βc))(bc)
−1
.
If
a
doesnotvanish,thenitstill holdsbc + a( ¯
βc) 6= 0
. Infa t,ifthiswere nottrue,wewouldhavethatβ
is onjugateto−ba
−1
and therefore
−ba
−1
∈ S
α
∩ V (f )
. ByusingCorollary8,Corollary2(2)(ii),βc = −d
and
t
α
= t
β
,weobtaintheuniquezeroβ
′
= (−bd + n
α
ac)(ad + bc + t
α
ac)
−1
= (b(βc) + n
α
ac)(bc + a( ¯
βc))
−1
of
f ∗ g
inS
α
.(3) In this ase,
a, c 6= 0
,b = −αa
,d = −βc
. From Eq. (3), we get the remainder:r
α
(f ∗ g)(w) = w(−a(βc) − (αa)c + t
α
ac) + (αa)(βc) − n
α
ac
= w(−a(βc) + (¯
αa)c) + (αa)(βc) − n
α
ac.
If
a(βc) = (¯
αa)c
,thenr
α
(f ∗ g)
is onstant. Ontheotherhand,byCorollary8,r
α
(f ∗ g)
vanishesonsomepointofS
α
andhen eitisnull. Itfollowsthatf ∗ g
has
α
asaspheri alzero. Instead,ifa(βc) 6= (¯
αa)c
,thenf ∗ g
hastheisolated zeroγ = (−(αa)(βc) + n
α
ac) (−a(βc) + (¯
αa)c)
−1
.
(4) If the real polynomial
∆
α
dividesf
org
, then it dividesf ∗ g
. The on lusionfollowsfromCorollary2(2)(i).Now we onsider multipli ities. If
α
is a zero off
of multipli itys
andβ ∈ S
α
isa zeroofg
ofmultipli ityt
, thenN (f ) = ∆
s
α
h
1
andN (g) = ∆
t
α
h
2
, whereh
1
andh
2
real regular fun tions su h thatr
α
(h
1
) = wa + b 6= 0
andr
α
(h
2
) = wc + d 6= 0
. FromLemma 7, itfollowsthatN (f ∗ g) = ∆
s+t
α
(h
1
h
2
)
. Wehaveto provethat∆
s+t+1
α
∤ N (f ∗ g)
. Byadensityargument,wesee thatthis is equivalent to show that
∆
α
∤ h
1
h
2
, i.e. that theremainderr
α
(h
1
h
2
)
is notzero. FromEq.(3),r
α
(h
1
h
2
)
iszeroifandonlyifad + bc + t
α
ac = bd − n
α
ac = 0.
(4)Sin e
a, b, c, d
are real, Eq. (4) impliesthata(d + αc)(d + ¯
αc) = 0
. But this annothappensin eα
isnonrealanda 6= 0
.Example 1. Foreverynonreal
α ∈ O
,α
¯
is onjugatedtoα
. Leta
besu hthat¯
α = aαa
−1
. If
f (w) = wa−αa
,g(w) = w−α
,thenf ∗g = w
2
a−w(aα+αa)+αaα
and
V (f ) = V (g) = {α}
whileV (f ∗ g) = S
α
(seeTheorem9(3)).Remark 3. In the o tonioni ase, the amshaft ee t appears even if oneof the fun tions is onstant: the zeros of
f
and off ∗ c
(c ∈ O
a onstant) an bedierent( f.Serdio[27℄whenf
isapolynomial). Forexample,letf (w) =
wi − j
,g(w) = k
. Thenf ∗ g = w(ik) − jk
has−ij
as unique zero, whileV (f ) = {ij}
.Proposition 10. Let
α
be a real o tonion. Suppose thatα
is a zero off
of multipli itys
and azeroofg
of multipli ityt ( s
andt
possibly zero)
. Thenα
isazeroof
f ∗ g
ofmultipli itys + t
.Proof. If the real polynomial
w − α
dividesf
org
, then it dividesf ∗ g
. In parti ular,r
α
(f ∗ g) = 0
. Moreover, iff = (w − α)
s
h
1
andg = (w − α)
t
h
2
with
h
1
(α) 6= 0
andh
2
(α) 6= 0
, thenf ∗ g = (w − α)
s+t
(h
1
∗ h
2
)
. It remains toprovethat(w − α)
s+t+1
∤ f ∗ g
. Bydensity, this isequivalenttoshowthat
w − α ∤ h
1
∗ h
2
, i.e.(h
1
∗ h
2
)(α) 6= 0
. But(h
1
∗ h
2
)(α) = 0
would implythat
N (h
1
∗ h
2
)(α) = N (h
1
)(α) · N (h
2
)(α) = 0
. On the other hand, sin eα
is real,
N (h
1
)(α) = |h
1
(α)|
2
6= 0
andN (h
2
)(α) = |h
2
(α)|
2
6= 0
, whi h is a ontradi tion. 4 Appli ationsWebeginwithano tonioni versionofthefundamentaltheoremofalgebra. Theorem11 (Fundamental theorem of algebra). If
f
isa regularo tonioni polynomial of degreen > 0
,then its zero setV (f )
is nonempty and the ar-dinalityk
of the distin t onjuga y lasses of elements ofV (f )
is less than or equal ton
. More pre isely, ifα
1
, . . . , α
r
are the distin t real zeros off
,α
r+1
, . . . , α
r+i
are the distin t isolated zeros off
andα
r+i+1
, . . . , α
r+i+s
arepairwisenon onjugatespheri al zerosof
f
su hthatS
s
j=1
S
α
r+i+j
isthe setof allspheri al zerosoff
,thenk = r + i + s
andthe following equality holds:k
X
j=1
m
f
(α
j
) = n.
Inparti ular, wehave that
r + i + 2s ≤ n
.Proof. Thenormalpolynomial
N (f )
isarealpolynomialofdegree2n
. LetI ∈ S
.Thentheset
V
I
(N (f )) := {z ∈ C
I
| N (f )(z) = 0} = C
I
∩
S
α∈V (f )
S
α
is non emptyand ontainsat most2n
elements. Corollary5tellsthatV (f ) ∩ S
α
6= ∅
foreveryα
su hthatV
I
(N (f )) ∩ S
α
6= ∅
. Therefore,V (f )
isnonempty.If
f = ∆
α
h + wa + b
forsome regular fun tionh
anda, b ∈ O
, thenf =
¯
∆
α
¯
h+w¯
a+¯b
. Thisimpliesthatanisolatedzeroα = −ba
−1
of
f
,withm
f
(α) = s
,orrespondstoanisolatedzero
α = −¯b¯
ˆ
a
−1
∈ S
α
off
¯
withthesamemultipli ity. From Theorem 9(3), we get thatα
is a spheri al zero ofN (f ) = f ∗ ¯
f
of multipli ity2s
. The same property holds for spheri al and real zeros off
. Then,givenα
1
, . . . , α
k
as inthestatementofthetheorem,itfollowsthat2
k
X
j=1
m
f
(α
j
) =
k
X
j=1
m
N
(f )
(α
j
) = 2n.
Sin e the multipli ity of a spheri al zero is at least
2
, it follows immediatelyandofTheorem11gives:
Corollary12(Fa torizationlemma). Let
f
bearegularo tonioni polynomial of degreen > 0
. Letα
1
∈ V (f )
. Then thereexistα
2
, . . . , α
n
, c ∈ O
withc 6= 0
su hthatf
fa tors asfollows:f (w) = (w − α
1
) ∗ f
1
(w),
wheref
k
(w) : = (w − α
k+1
) ∗ f
k+1
(w)
fork = 1, 2, . . . , n − 2
andf
n−1
(w) : = (w − α
n
) ∗ c.
Moreover, forevery
k = 1, . . . , n − 1
,α
k+1
isazerooff
k
anditis onjugateto azeroα
′
k+1
off
.Remark 4. Theorem9tellshowto obtainthezeros
α
′
k+1
∈ V (f )
from theset{α
i
}
i=2,...,n
.A standardappli ation ofthefundamental theorem of algebrain the om-plexeldistheuniquenessofmoni polynomialswithpres ribedzeros. Onthe quaternionsandontheo tonions,anewphenomenonappears. The multipli i-ty of an isolated zero of the sumof two regular fun tions an bestri tly less thanthoseofthefun tions. This fa timpliesthat twodierentmoni polyno-mials an havethesame zeroswith thesame multipli ities. Forexample, the polynomials
f (w) = (w − i) ∗ (w − i)
andg(w) = (w − i) ∗ (w − j)
have the uniqueisolatedzerow = i
withmultipli ity2,whilethedieren ef − g
hasa simplezeroi
. Thisfa t annothappenwhenallthezerosarerealorspheri al orsimple,sin ein this asem
f+g
(α) ≥ min{m
f
(α), m
g
(α)}.
On the quaternions, the existen e of a unique moni regular polynomial withassignedpairwisenon onjugatezeroswasprovedbyBe k[1℄(seealso[3℄, [2℄ and [16℄). On the o tonions, it wasre ently proved by Serdio [28℄. The existen eofaninnitenumbersofmoni regularquaternioni polynomialswith pres ribedmultipleisolatedzeroswasprovedbyBe k[1℄.
An immediate onsequen e of the fundamental theorem and Propositions 3, 4 is the following result, whi h generalizes the one proved by Lam in the quaternioni ase( f.[22, 16.19℄):
Corollary 13. Let
f (w) =
P
n
i=0
w
i
a
i
be a regular o tonioni polynomial of degreen > 0
. Thefollowing statementshold.(1)
If the oe ientsa
1
, . . . , a
n
are real anda
0
is nonreal, thenf
has only isolatedzeros.(2)
Ifa
2
, . . . , a
n
arereal andeithera
0
ora
1
isnonreal,thenf
has nospher-i al zeros.
Inparti ular, theset
V (f )
ontainsexa tlyn
elements, ountedwiththeir mul-tipli ities.onsider the polynomial
f (w) = w
2
+ wi + j
. Sin eN (f ) = w
4
+ w
2
+ 1
,S
α∈V (f )
S
α
is equaltoS
β
∪ S
γ
, whereβ :=
1
2
+ i
√
3
2
andγ := −
1
2
+ i
√
3
2
. The orrespondingremaindersarer
β
(f ) = w(1 + i) − (1 − j)
andr
γ
(f ) = w(−1 + i) − (1 − j),
whi hgivethefollowingtwosimpleisolatedzerosof
f
:α
1
=
1
2
(1−i−j−ij) ∈ S
β
andα
2
=
1
2
(−1 − i + j − ij) ∈ S
γ
. Referen es[1℄ B. Be k, Sur les équations polynomiales dans les quaternions. Enseign. Math. (2)25(1979),no.3-4,193201.
[2℄ U. Bray, G. Whaples, Polynomials with oe ients from a division ring. Canad.J.Math.35(1983),no.3,509515.
[3℄ L.Cerlien o,M.Mureddu,Anoteonpolynomialequationsinquaternions. Rend. Sem.Fa .S i.Univ.Cagliari51(1981),no.1,9599.
[4℄ F. Colombo,I. Sabadini,D.C. Struppa,Sli e monogeni fun tions. Israel J.Math.,171(2009),385403.
[5℄ B. Datta, S. Nag, Zero-sets of quaternioni ando tonioni analyti fun -tions with entral oe ients. Bull. London Math. So . 19 (1987), no. 4, 329336.
[6℄ H.-D.Ebbinghaus,H. Hermes,F.Hirzebru h, M.Koe her,K.Mainzer,J. Neukir h, A. Prestel, R.Remmert, Numbers. Springer-Verlag,NewYork, 1991.
[7℄ S. Eilenberg, I.Niven, The fundamental theorem of algebra for quater-nions.Bull.Amer. Math.So .50,(1944),246248.
[8℄ S. Eilenberg, N. Steenrod, Foundations of algebrai topology. Prin eton UniversityPress,Prin eton,NewJersey,1952.
[9℄ I.Gelfand,V.Retakh,R.Wilson,Quadrati -linearalgebrasasso iatedwith de ompositions of non ommutative polynomials anddierential p olynomi-als.Sele taMath. (N.S.)7,493523(2001).
[10℄ I.Gelfand, S. Gelfand, V. Retakh, R.L.Wilson, Fa torizations of polyno-mials overnon ommutativealgebrasandsu ientsetsofedges indire ted graphs.Lett.Math.Phys.74(2005),no.2,153167.
[11℄ G. Gentili, C. Stoppato, Zeros of regular fun tions and polynomials of a quaternioni variable. Mi higanMath. J.,56(2008),665667.
forregularfun tionsofahyper omplexvariable.InHyper omplexanalysis, eds. I. Sabadini, M. Shapiro and F. Sommen, Trends Math., Birkhäuser, Basel,2009,pp.165186.
[13℄ G. Gentili, D. Struppa, A new approa h toCullen-regular fun tions of a quaternioni variable. C.R.A ad.S i.Paris,342(2006),741744.
[14℄ G.Gentili, D.Struppa,Regularfun tionsonthespa eof Cayley numbers. ToappearinRo kyMountainJ.Math.
[15℄ G.Gentili,D.Struppa,Anewtheoryofregularfun tionsofaquaternioni variable. Adv.Math. 216(2007),279301.
[16℄ G. Gentili, D. Struppa, On the multipli ity of zeroes of polynomials with quaternioni oe ients.MilanJ.Math.,76(2008),1525.
[17℄ G. Gentili, D. Struppa,Regularfun tionson a CliordAlgebra. Complex Var.Ellipti Equ. 53(2008),475483.
[18℄ G.Gentili,D. Struppa,F.Vla i, Thefundamental theoremof algebrafor Hamilton andCayley numbers.Math. Z.,259(2008),895-902.
[19℄ K.Gürlebe k,K.HabethaandW. Sprössig,Holomorphi fun tionsin the planeand
n
-dimensionalspa e.Translatedfrom the2006Germanoriginal Funktionentheoriein EbeneundRaum, BirkhäuserVerlag,Basel,2008. [20℄ B.Gordon,T.S. Motzkin,Onthe zerosof polynomialsoverdivision rings.Trans.AMS1965,116,218226.
[21℄ Y. Jou, The fundamentaltheorem of algebra for Cayley numbers. A ad. Sini aS ien e Re ord3,(1950),2933.
[22℄ T.Y. Lam, A rst ourse in non ommutativerings. Springer-Verlag, New York,1991.
[23℄ I.Niven,Equationsinquaternions.Amer.Math.Monthly48,(1941),654 661.
[24℄ A. Pogorui, M.V. Shapiro, On the stru tureof the set of zeros of quater-nioni polynomials.ComplexVariables49,(2004)no.6,379389.
[25℄ H. Rodríguez-Ordóñez,A note onthe fundamental theorem of algebra for the o tonions.Expo.Math. 25(2007),no.4,355361.
[26℄ R.D.S hafer,Anintrodu tiontononasso iativealgebras.A ademi Press, NewYork-London1966.
[27℄ R.Serdio,Ono tonioni polynomials.Adv.Appl.CliordAlg.17(2007), 245258.
Alg.published online,(2008),DOI 10.1007/s00006-008-0140-5.
[29℄ R. Serdio,L.Siu,Zeros of quaternionpolynomials.Appl. Math.Lett.14 (2001),no.2,237239.
[30℄ A.Sudbery,Quaternioni analysis.Mat.Pro .Camb.Phil.So .85(1979), 199225.
[31℄ N.Topuridze,Onthe rootsofpolynomialsoverdivisionalgebras.Georgian Math. J.10(2003),no.4,745762.