• Non ci sono risultati.

Measurement of the φ→π0e+e- transition form factor with the KLOE detector

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the φ→π0e+e- transition form factor with the KLOE detector"

Copied!
6
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

φ

π

0

e

+

e

transition

form

factor

with

the

KLOE

detector

KLOE-2

Collaboration

A. Anastasi

e

,

d

,

D. Babusci

d

,

,

G. Bencivenni

d

,

M. Berlowski

u

,

C. Bloise

d

,

F. Bossi

d

,

P. Branchini

r

,

A. Budano

q

,

r

,

L. Caldeira Balkeståhl

t

,

B. Cao

t

,

F. Ceradini

q

,

r

,

P. Ciambrone

d

,

F. Curciarello

e

,

b

,

l

,

E. Czerwi ´nski

c

,

G. D’Agostini

m

,

n

,

E. Danè

d

,

V. De Leo

r

,

E. De Lucia

d

,

A. De Santis

d

,

P. De Simone

d

,

A. Di Cicco

q

,

r

,

A. Di Domenico

m

,

n

,

R. Di Salvo

p

,

D. Domenici

d

,

A. D’Uffizi

d

,

A. Fantini

o

,

p

,

G. Felici

d

,

S. Fiore

s

,

n

,

A. Gajos

c

,

P. Gauzzi

m

,

n

,

G. Giardina

e

,

b

,

S. Giovannella

d

,

E. Graziani

r

,

F. Happacher

d

,

L. Heijkenskjöld

t

,

W. Ikegami Andersson

t

,

T. Johansson

t

,

D. Kami ´nska

c

,

W. Krzemien

u

,

A. Kupsc

t

,

S. Loffredo

q

,

r

,

G. Mandaglio

f

,

g

,

M. Martini

d

,

k

,

M. Mascolo

d

,

,

R. Messi

o

,

p

,

S. Miscetti

d

,

G. Morello

d

,

D. Moricciani

p

,

P. Moskal

c

,

M. Papenbrock

t

,

A. Passeri

r

,

V. Patera

j

,

n

,

E. Perez del Rio

d

,

A. Ranieri

a

,

P. Salabura

c

,

P. Santangelo

d

,

I. Sarra

d

,

M. Schioppa

h

,

i

,

M. Silarski

d

,

F. Sirghi

d

,

L. Tortora

r

,

G. Venanzoni

d

,

W. Wi´slicki

u

,

M. Wolke

t

aINFNSezionediBari,Bari,Italy bINFNSezionediCatania,Catania,Italy

cInstituteofPhysics,JagiellonianUniversity,Cracow,Poland dLaboratoriNazionalidiFrascatidell’INFN,Frascati,Italy

eDipartimentodiFisicaeScienzedellaTerradell’UniversitàdiMessina,Messina,Italy

fDipartimentodiScienzeChimiche,Biologiche,FarmaceuticheedAmbientalidell’UniversitàdiMessina,Messina,Italy gINFNGruppocollegatodiMessina,Messina,Italy

hDipartimentodiFisicadell’UniversitàdellaCalabria,Rende,Italy iINFNGruppocollegatodiCosenza,Rende,Italy

jDipartimentodiScienzediBaseedApplicateperl’Ingegneriadell’Università“Sapienza”,Roma,Italy kDipartimentodiScienzeeTecnologieapplicate,Università“GuglielmoMarconi”,Roma,Italy lNovosibirskStateUniversity,630090Novosibirsk,Russia

mDipartimentodiFisicadell’Università“Sapienza”,Roma,Italy nINFNSezionediRoma,Roma,Italy

oDipartimentodiFisicadell’Università“TorVergata”,Roma,Italy pINFNSezionediRomaTorVergata,Roma,Italy

qDipartimentodiMatematicaeFisicadell’Università“RomaTre”,Roma,Italy rINFNSezionediRomaTre,Roma,Italy

sENEAUTTMAT-IRR,CasacciaR.C.,Roma,Italy

tDepartmentofPhysicsandAstronomy,UppsalaUniversity,Uppsala,Sweden uNationalCentreforNuclearResearch,Warsaw,Poland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received26January2016

Receivedinrevisedform6April2016 Accepted7April2016

Availableonline11April2016 Editor:M.Doser

A measurement of the vector to pseudoscalar conversion decay φ

π

0e+ewith the KLOE experiment

is presented. A sample of ∼9500 signal events was selected from a data set of 1.7 fb−1 of e+e

collisions at √s collected at the DANE e+e− collider. These events were used to perform the first measurement of the transition form factor |Fφπ0(q2)| and a new measurement of the branching

*

Correspondingauthors.

E-mailaddresses:danilo.babusci@lnf.infn.it(D. Babusci),mascolo.matteo@gmail.com(M. Mascolo). http://dx.doi.org/10.1016/j.physletb.2016.04.015

0370-2693/©2016TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Keywords: e+e−collisions Conversiondecay Transitionformfactor

ratio of the decay: BR

π

0e+e)= (1.35 ±0.05+0.05 −0.10)×10−

5. The result improves significantly on previous measurements and is in agreement with theoretical predictions.

©2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The conversion decays of a light vector resonance (V) into a pseudoscalarmeson (P) anda lepton pair, V

P

γ

P



+



−, represent a stringent test for theoretical models of the nature of mesons. In these processes, the squared dilepton invariant mass,m2

,correspondstothevirtual photon4-momentum trans-fer squared, q2. The q2 distribution depends on the underlying electromagneticdynamicalstructureofthetransitionV

P

γ

∗.

Thedescription ofthe couplingofthe mesonsto virtual pho-tons is typically parametrized by the so-called Transition Form Factor(TFF), FV P

(

q2

).

TFFs arefundamental quantities playingan

importantroleinmanyfieldsofparticlephysics,suchasthe calcu-lationofthehadronicLight-by-Lightcontributionto theStandard Modelpredictionofthemuonanomalousmagneticmoment

[1]

.

Recently, the increasing interest in conversion decays was mostly drivenby the discrepancybetweentheexperimental data from NA60 [2] and Lepton G [3], and the Vector Meson Domi-nance(VMD)predictionforthe

ω

π

0

μ

+

μ

TFFFω π0

(

q2

).

Over theyears, severaltheoretical modelshave beendeveloped to ex-plainthisdiscrepancy[4–7]. Inorderto check theconsistencyof themodels,a measurementofthe Fφπ0

(

q2

)

TFF,whichhasnever

been measured so far, was strongly recommended. In particular, becauseofitskinematics,the

φ

π

0e+eprocessisaverygood benchmarktoinvestigatetheobservedsteepriseinNA60dataat

q2 closetothe

ρ

resonancemass.

Atpresent, theexistingdata on

φ

π

0e+ecome fromSND

[8]and CMD-2[9] experiments which were able to extract only thevalueoftheBranchingRatio(BR).TheFφπ0

(

q2

)

TFFhence,was

nevermeasuredsofar.Itsmodulussquareentersinthecalculation ofthe

φ

π

0e+edouble-differentialdecaywidth:

d2

π

0e+e

)

dq2d cos

θ

=

3 8



q2 q2

+

2m2 e



(

2

− β

2sin2

θ

)

×

d

π

0e+e

)

dq2 (1) with

β

=



1

4m2 e

/

q2



1/2 and

[10]

: d

π

0e+e

)

dq2

= (φ →

π

0

γ

)

α

3

π

β

|

Fφπ0

(

q2

)

|

2 q2



1

+

2m 2 e q2



×



1

+

q 2 m2φ

m2 π

2

4m 2 φq2

(

m2φ

m2 π

)

2

3/2

,

(2)

whereme isthemassoftheelectron,and,mπ arethemasses ofthe

φ

and

π

0mesons,respectively.

θ

istheanglebetweenthe

φ

and the e+ direction in the e+e− rest frame. Its cosine is an invariantquantitywhichcanbewrittenas

[11]

:

cos

θ

=

(

q 2

+

m2 φ

m2π

)

4 pφ

·

pe+

β

q2

m2 φ

m2π



2

4 m2 πm2φ

,

(3)

where isthe4-momentumof

φ

andpe+ ofthepositron.

Thankstothelargeamountofcollected

φ

decays(

5.6

×

109), theKLOEexperimenthasbeenablebothtoperformthefirst mea-surement of the Fφπ0

(

q2

)

TFF and to significantly improve the

determinationofthebranchingratioof

φ

π

0e+e.

2. TheKLOEdetector

DANE, the Frascati

φ-factory,

is an e+e− colliderrunning at a center-of-mass energy of

1020 MeV. Positron and electron beams collide at an angle of

π

-25 mrad, producing

φ

mesons nearlyatrest.

TheKLOE apparatusconsistsofa largecylindricalDrift Cham-ber (DC) surrounded by a lead-scintillating fiber electromagnetic calorimeterbothinsertedinside asuperconductingcoil, providing a 0.52 Taxial field. The beampipe attheinteraction region isa

sphere with 10 cm radius, made of a 0.5 mm thick Beryllium–

Aluminum alloy. The drift chamber [12], 4 m in diameter and 3.3 mlong,has12,582all-stereotungsten sensewiresand37,746

aluminum field wires, with a shell made of carbon fiber-epoxy

compositewithaninternalwallof

1 mmthickness.Thegasused is a 90% helium,10% isobutane mixture. The momentum resolu-tionis

σ

(

p

)/

p

0.4%.Verticesarereconstructedwithaspatial resolutionof

3 mm.Thecalorimeter

[13]

,withareadout granu-larityof

(4.4

×

4.4) cm2,foratotalof2440cellsarrangedinfive layers,covers98% ofthesolid angle.Eachcellisreadout atboth endsbyphotomultipliers,bothinamplitudeandtime.Theenergy depositsare obtainedfromthesignal amplitude whilethearrival timesandtheparticlepositionsareobtainedfromthetimeofthe signals collected at the two ends. Cells close in time and space aregroupedintoenergyclusters. Energyandtime resolutionsare

σE

/

E

=

5.7%/

E

(GeV)

and

σ

t

=

57 ps/

E

(GeV)

100 ps, re-spectively.Thetrigger

[14]

usesbothcalorimeterandchamber in-formation.Inthisanalysistheeventsareselectedbythe calorime-tertrigger,requiringtwoenergydepositswithE

>

50 MeV forthe barrelandE

>

150 MeV fortheendcaps.

Large angle Bhabha scattering events are used to obtain lu-minosity,center-of-massenergyandcrossingangleof thebeams. Aprecision measurement of

s,withnegligible statistical uncer-tainty anda systematicerrorof

30 keV,isroutinelyperformed onthebasisof200 nb−1 ofintegratedluminosity.Thesystematic errorisinfactontheabsolutemomentumscale,derivedfromthe analysisofthe

φ

lineshape

[15]

.Thecenter-of-massenergy distri-butionwidthisabout330 keVfromthecontributionsofi)DANE beam energy spread (0.06%) and ii) radiative corrections/effects. Collected data are processedby an eventclassification algorithm

[16],whichstreams various categoriesofevents indifferent out-putfiles.

3. Dataanalysis

The analysisofthe decay

φ

π

0e+e(

π

0

γ γ

),has been performedonadatasampleof1.69 fb−1 fromthe2004/2005data takingcampaign.

The simulationofboth signal andbackgroundeventsis based on the KLOE Monte Carlo (MC),

GEANFI

[16], that includes ra-diative contributions to the process under study and takes into account variations of beam energy, crossing angle and machine backgroundconditions ona run-by-runbasis. The MC simulation

(3)

Fig. 1. Data-MCcomparisonafteralltheanalysiscutsfortheinvariant-massspectrumofe+e−(left)andofthetwophotons(right).Blackdotsaredata,solidredlineisthe sumofMChistogramcomponents:signal(cyan),φπ0γ background(orange)andradiativeBhabhascattering(green).(Forinterpretationofthereferencestocolorinthis figurelegend,thereaderisreferredtothewebversionofthisarticle.)

ofthesignal hasbeenproduced accordingtoEq.(1),assuming a point-like TFF (i.e.

|

Fφπ0

(

q2

)

|

2

=

1). The radiative emission from

theleptonsinthefinalstateofthechannelunderstudyisalso in-cludedin thesimulationby means ofthe

PHOTOS

MCgenerator

[17].Thesignal productioncorresponds toanintegrated luminos-ity 1000 times larger than for the collected data. The dominant contributions to background events originate fromdouble radia-tiveBhabhascattering(e+e

e+e

γ γ

)andfromthe

φ

π

0

γ

decay,wherethe

γ

convertstoae+e−pairintheinteractionwith thebeampipeordriftchamberwalls.(The

φ

π

0

γ

withthe

π

0 Dalitzdecayto

γ

e+e−alsocontributestothebackgroundbutitis almostcompletelysuppressedbytheanalysiscuts.) Allother back-ground events, i.e. the other

φ

meson decays, the non-resonant

e+e

ωπ

0 process andthe

π

0 production via

γ γ

interaction,

e+e

π

0e+e,werealsosimulated,resultingfullynegligibleat theendoftheanalysispath.

Asafirststepoftheanalysis,eventsareselectedrequiringtwo opposite-chargetracksextrapolatedtoacylinderaroundthe inter-actionpoint(IP)withradius4cmand20 cmlongandtwoprompt photoncandidatesfromIP(i.e.withenergyclustersEclu

>

7 MeV not associatedto anytrack, inthe angularregion

|

cos

θ

γ

|

<

0.92

andin the time window

|

/

c

|

<

min

(3

σt

,

2ns)). In order toenhance thesignal-to-background ratio,furtherconstraintsare appliedonthispreselecteddatasample:

a cut on the energies of the final state particles requiring:

(30

<

Ee±

<

460) MeV,

>

70 MeV,

(300

<

1

+

2

<

670)MeV and

(470

<

Ee+

+

Ee

<

750)MeV;

angular cuts: 45◦

< θ

e±

,

θ

γ

<

135◦,

θ

e+e

<

145◦ and 27◦

<

θ

γ γ

<

57◦;

two cuts on the invariant mass of the two photons and on the recoil mass against e+e− to select events with a

π

0 in thefinalstate,i.e.

(90

<

minv

γ γ

<

190)MeV and

(80

<

memiss+e

<

180)MeV;

acutontheinvariantmassandthedistancebetweenthetwo trackscalculated atthe surfacesofthe beampipe (BP)or of theDCwallsurfaces;

a cut based on the time of flight (ToF) of the tracks to the calorimeter.

All the cuts have been optimized in order to maximize the available rangeof the e+e− invariant mass spectrum fortheTFF extraction.The constraints on angularand energyvariables have beenobtained looking atthe differencesbetween thesignal and

Bhabhareconstructedangularandenergydistributionsoffinal lep-tons and photons. The cuts on the energies and on the opening angles

θ

e+e− and

θ

γ γ oftracksandclustersallowtostrongly

sup-press the dominant background (S/B

5

×

10−4) from the QED process e+e

e+e

γ γ

. The

θ

e+e

145◦ requirement is also

very effectiveinrejecting oftheirreducible backgroundfromthe

γ γ

processe+e

e+e

π

0,inwhichthefinal stateleptons are emitted in the forward direction(i.e. atsmall polar angles with respect to the beam line) forthis kind ofevents. The

φ

π

0

γ

contamination, withthe

γ

converting on the BP or DCwalls, is suppressed by tracing back the tracks of the e+

/

e− candidates, by reconstructing the invariant mass (meBP,DC+e− ) and the distance

(deBP,DC+e− ) of the track pair both at the BP and DC wall surfaces.

Both variables are expected to be small for photon conversion events,so that thisbackgroundis suppressedby rejecting events with:meBP+e

<

10 MeV andd

BP

e+e

<

2 cm,orm

DC

e+e

<

80 MeV and

dDC

e+e

<

3 cm. Thecut on the time offlight tothe calorimeteris

usedtoremoveresidualbackgroundeventswithmuonsorcharged pions in the final state. When an energy cluster is associated to a track, the ToF to the calorimeter is evaluated using both the calorimeter timing (tclu) and the time along the tracktrajectory, namely ttrk

=

Ltrk

c,where Ltrk is the length ofthe trackpath. The difference



t

=

ttrk

tclu is then evaluated in the electron hypothesis; all events with



t

<

0.8 ns are retained for further analysis. Thisalgorithm, together withthe cut ontheenergies of thefinalparticles,turnsouttobecrucialforreducingthe contam-inationfromthedecay

φ

π

+

π

π

0 toanegligiblelevel.

Afteralltheabovedescribedcutstheoverallefficiency,as esti-mated bytheMC, is15.4%.Theefficiencyis19.5%atlowere+e

invariant masses, decreasing to afew percent atthe highest val-uesofmomentumtransfer. Forthisreasontheanalysisislimited up to



q2

=

700 MeV. At the end of the analysis chain, 14670 events areselected, witharesidual backgroundcontamination of

35%,equallydividedbetweentheBhabhaand

φ

π

0

γ

compo-nent,correspondingtoabout9500signalevents.

The agreement betweendata andMonte Carlosimulation, af-ter all selection cuts, is shown in Fig. 1 for the



q2 and mγ γ distributions. Asshownintheleft panelofthisFigure,in the re-gion



q2

>

400 MeV the

φ

π

0

γ

backgroundis negligibleand onlytheBhabhabackgroundispresent.Furthermore,asacheckof Eq.(3),in

Fig. 2

weshow thedistributionof

|

cos

θ

|

ascompared totheMCprediction.

(4)

Fig. 2. Data-MCcomparisonafteralltheanalysiscutsfor

|

cosθ∗|.Codeofsymbols andcolorsasinFig. 1.(Forinterpretationofthereferencestocolorinthisfigure legend,thereaderisreferredtothewebversionofthisarticle.)

In order to subtract the residual background from data, the

e+e− invariant-massspectrum isdivided into15bins of increas-ingwidth(topreservethestatistics ofsignalcandidates). Ineach binof



q2,the mmiss

e+e− distribution is fit by a sumof two

Gaus-sianfunctions,parametrizingthesignal,andathird-order polyno-mial,parametrizingthebackground.Someexamples ofthefitsto thememiss+e− distributions are shownin Fig. 3. Apartfrom a global

normalization,theparameters oftheGaussian functionsare fixed by a fit of the MC signal distribution. The background contribu-tionisevaluatedbinbybin,withoutanyassumptionorconstraint for the polynomial parameters. Once the residual background is parametrized,itisbinbybinsubtractedfromdata.

Table 1

KLOEmeasurementofthetransitionformfactor

|

Fφπ0(q2)|ofthe φπ0e+e

decay. Bin # q2-range (MeV) Bincenter (MeV)  q2(UChT) (MeV) |Fφπ0(q2)|2 1 2me÷30 15.5 9.0 1.00±0.11 2 30÷60 45 43.3 1.18±0.22 3 60÷90 75 74.0 0.93±0.21 4 90÷120 105 104.2 1.09±0.19 5 120÷150 135 134.4 1.19±0.23 6 150÷190 170 169.0 1.42±0.33 7 190÷230 210 209.1 1.46±0.47 8 230÷270 250 249.1 1.22±0.58 9 270÷310 290 288.8 2.30±0.53 10 310÷350 330 327.5 2.17±0.65 11 350÷400 375 380.0 3.01±1.34 12 400÷450 425 426.6 3.14±1.71 13 450÷500 475 476.1 6.07±2.05 14 500÷550 525 526.0 8.49±4.27 15 550÷700 625 632.9 17.4±10.3 3.1. Measurementof

|

Fφπ0

(

q2

)

|

2

ThemodulussquareoftheTFF,

|

Fφπ0

(

q2

)

|

2,isafactorinfront

oftheq2differentialcrosssection(seeEq.(2)),henceitcanbe ex-tracted fromdataby dividing themeasured e+e− invariant-mass spectrumbythespectrumofreconstructedMCsignalevents, gen-erated with a constant Fφπ0

(

q2

),

after all the analysis cuts. The

resultis reportedin

Table 1

.The measured TFFis normalizedso that

|

Fφπ0

(

q2

)

|

2

=

1 inthefirst bin.The errors includeboth the

statisticalandthesystematicuncertainty.

Thesystematicuncertaintyconsistsoftwomajorcontributions: the first due to the experimental resolution of the variables to whichtheanalysiscutsare applied,andthe secondassociatedto thebackgroundfittingprocedure.

Fig. 3. mmiss

e+e− distributions(unitsMeV)forsome 

q2binsshowingthetotalbackgroundcontribution(redcurve)evaluatedfromafittothedata(blackpoints),withfixed signalshape(bluecurve).Thedashedgreencurverepresentstheglobalfitofdata,includingthebackgroundfunctionandthesignalparametrization.

(5)

Fig. 4. Comparisonbetweenthemeasurementof

|

Fφπ0(q2)|2(blackpoints)andthe

theoreticalpredictionsforthisquantitybasedon:thedispersiveanalysisofRef.[5] (orangeandcyanbands)andRef.[7](bluedashedline),thechiraltheoryapproach ofRef.[6](greenband),andtheone-poleVMDmodel(solidredline)(seeEqs. (49) and(50)ofRef.[7]).(Forinterpretationofthereferences tocolorinthis figure legend,thereaderisreferredtothewebversionofthisarticle.)

Thesystematicuncertaintyduetotheanalysiscutsisevaluated moving by

±

1

σ

allthevariables onwhicha selectionisapplied. Cutsaremovedonceatatime,loggingthedeviationofcountsin each binof



q2 fromthe originalone. The relativedeviations of countscomingfromthedifferentcutsarethensummedbinbybin inquadraturetogetthetotalrelativeuncertainty.Whenavariable isselectedwithinawindow,itsedgesarealwaysmovedoppositely inordertomakethewindowwiderornarroweraccordingtothe resolution.Theresultingfractional uncertaintyisofafewpercent inmostofthebinsoflower



q2,increasingupto20%insomeof thebinsof higher4-momentumtransfer.There isnoevidence of asingledominantcutwithrespecttotheothers;thecontribution ofthevariousanalysiscutsisdifferentforeachbinof



q2.

Thesystematicerrorassociatedtothefittingprocedureis eval-uated computing the deviation of the yield of the background function,withrespecttothenominalone,wheneach ofthefour parametersismovedby

±

1

σ

whilefixingtheotheronesaccording tothecorrelationmatrix.Thefourcontributionsthusobtainedare summed in quadrature to get the total uncertainty on the back-groundyield in each bin of



q2. This error contributionis then propagated to Fφπ0

(

q2

)

through the numberofsignal candidates

ineachbin,whichenters inthecomputation.The contributionin eachbinof



q2isofafewpercent.

In

Fig. 4

,our resultson

|

Fφπ0

(

q2

)

|

2 are compared withthree

different theoretical predictions. The best agreement is obtained withthe Unconstrained ResonantChiralTheory (UChT), with pa-rametersextractedfromafitoftheNA60 data[6].We notethat, asa consequence of the steepness and nonlinearityof the e+e

invariant-mass spectrum, theTFF measured in a



q2 bin cannot be associated to the corresponding bin center. For this reason, each experimental pointof Fig. 4 isassociated witha



q2 value weighted according to the theoretical shape predicted by UChT (seecolumnlabeled“



q2UChT”in

Table 1

).Asshownin

Table 1

, withthegivenbinwidths,thebincenterisagoodapproximation ofthe weighted



q2 ineach bin,withthe exception ofthevery firstbin,wheretheme+e− functionissteeper.

The transitionformfactors areoften representedby a simple, VMD-inspired,one-poleparametrization:

F

(

q2

)

=

1

1

q2

/

2

,

(4)

Table 2

PreviousdeterminationofBR(φ→π0e+e)bySND[8]andCMD-2[9].ThePDG averageis(1.12±0.28)×10−5[20].Thetheoreticalpredictionsarealsoreported. ForRef.[5]“once”(“twice”)referstothedispersiveanalysiswithone(two) sub-tractions.

BR(φ→π0e+e)×105

Experiment SND 1.01±0.28±0.29

CMD-2 1.22±0.34±0.21

Theory Schneider et al.[5](“once”) (1.39 . . . 1.51) Schneider et al.[5](“twice”) (1.40 . . . 1.53) Danilkin et al.[7] 1.45

fromwhichtheformfactorslopeparameterisobtained:

b

=

dF

(

q 2

)

dq2





q2=0

= 

−2

.

By fitting our data according to (4), we get bφπ0

= (

2.02

±

0.11)GeV−2, to be compared with the one-pole approximation expectation,bφπ0

=

Mφ−2,andthepredictionofthedispersive

anal-ysis,bφπ0

= (

2.52

· · ·

2.68)GeV−2,ofRef.[5].

3.2. MeasurementofBR(φ

π

0e+e

)

The branching ratio of the

φ

π

0e+edecay was obtained

fromthebackground-subtractede+e− massspectrumbyapplying anefficiencycorrectionevaluatedbinbybin:

BR

π

0e+e

)

=



iNi/



i

σ

φ

×

L

int

×

BR

(

π

0

γ γ

)

,

(5)

where

σ

φ istheeffective

φ

productioncross-section,

σ

φ

= (

3310

±

120)nb[18],

L

int

= (

1.69

±

0.01)fb−1[19]istheintegrated lumi-nosity ofdata,andBR(

π

0

γ γ

)

thebranching ratioof

π

0 into twophotons

[20]

.Niisthenumberofsignalcandidatesintheith

binof



q2 and



i isthecorrespondingselectionefficiency,

evalu-atedasthenumberofMCsignaleventsintheithbinafterallthe analysis steps, divided by the numberof the corresponding gen-erated events. The result covers the range



q2

<

700 MeV (the upperedgeofthehigherbinof



q2)andisequalto:

BR

π

0e+e

;



q2

<

700 MeV

)

= (

1

.

19

±

0

.

05+0.05

−0.10

)

×

10−5

.

(6)

Here,thefirsterrorresultsfromthecombinationofthestatistical one (2.2%infraction) withtheabove quoted uncertaintieson

σ

φ and

L

int.The secondisa systematiconeduetotheanalysiscuts andbackgroundsubtraction(see sec. 3.1). The erroron



i dueto

theparametrizationoftheTFFintheMCisnegligible.

The result can be extended to the full



q2 range evaluating the fraction ofthe integral in thee+e− invariant-mass spectrum which isnot covered bythe analysis. Theextrapolation hasbeen computedaccordingtothetheoreticalmodelthatbestfitsthedata

[6].Theestimateofthetotalbranchingratiois:

BR

π

0e+e

)

= (

1

.

35

±

0

.

05+0.050.10

)

×

10−5

.

(7)

This result improves the previous measurements by SND and

CMD-2experimentsandisinagreementwiththetheoretical pre-dictionsshownin

Table 2

.

4. Conclusions

Analyzingtheconversiondecay

φ

π

0e+e,wemeasuredfor

thefirsttimethemodulussquareofthe Fφπ0 transitionform

(6)

theoreticalpredictionbasedontheUnconstrainedResonantChiral Theory(UChT),withparameters extractedfromafit oftheNA60

data. From the same data set we obtained a value of BR(φ

π

0e+e

;



q2

<

700MeV)

= (

1.19

±

0.05+0.05

−0.10

)

×

10−5.An extrap-olationbasedonthetheoreticalmodelinagreementwiththedata has been used to extend the result to the full



q2 range. The value obtained is BR

π

0e+e

)

= (

1.35

±

0.05+0.05

−0.10

)

×

10−5, thatimprovessignificantlytheresultsobtainedbySNDandCMD-2 experiments,andisinagreementwiththeoreticalpredictions.

Acknowledgements

We warmly thank our former KLOE colleagues forthe access tothe data collected during the KLOE datataking campaign. We thankthe DANEteamfortheireffortsinmaintaininglow back-groundrunning conditionsandtheir collaboration during alldata taking. We want to thank our technical staff: G.F. Fortugno and F. Sborzacchi for their dedication in ensuring efficient operation oftheKLOE computingfacilities;M. Anelliforhis continuous at-tentionto thegas systemanddetectorsafety;A. Balla, M. Gatta, G. Corradi and G. Papalino forelectronics maintenance; M. San-toni, G. Paoluzzi and R. Rosellini for general detector support; C. Piscitelli for his help during major maintenance periods. We thankProf.B.KubisandDr.I.Danilkinforthedetailedresultofthe calculationofRefs.[5]and

[7]

,respectively.Wearealsovery grate-fultoDr.S.Ivashynforprovidingustheformulaforcos

θ

∗ andfor the many enlightening discussions during all the phases of the analysis.Thisworkwas supportedinpartbytheEUIntegrated

In-frastructureInitiativeHadronPhysicsProjectundercontract num-berRII3-CT-2004-506078;bytheEuropeanCommissionunderthe 7thFramework Programme through the‘Research Infrastructures’ actionofthe‘Capacities’Programme,Call:

FP7-INFRASTRUCTURES-2008-1, Grant Agreement No. 227431; by the Polish National

Science Centre through the Grants Nos. 2011/03/N/ST2/02652, 2013/08/M/ST2/00323,2013/11/B/ST2/04245,2014/14/E/ST2/00262, 2014/12/S/ST2/00459.

References

[1]F.Jegerlehner,A.Nyffeler,Phys.Rep.477(2009)1. [2]G.Usai,etal.,Nucl.Phys.A855(2011)189. [3]R.I.Dzhelyadin,etal.,Phys.Lett.B102(1981)296. [4]C.Terschlusen,S.Leupold,Phys.Lett.B691(2010)191.

[5]S.P.Schneider,B.Kubis,F.Niecknig,Phys.Rev.D86(2012)054013. [6]S.Ivashyn,Probl.At.Sci.Tech.2012 (1)(2012)179.

[7]I.Danilkin,etal.,Phys.Rev.D91(2015)094029. [8]M.N.Achasov,etal.,JETPLett.75(2002)449. [9]R.R.Akhmetshin,etal.,Phys.Lett.B503(2001)237. [10]L.G.Landsberg,Phys.Rep.128(1985)301. [11] S.Ivashyn,privatecommunication.

[12]M.Adinolfi,etal.,Nucl.Instrum.MethodsA488(2002)51. [13]M.Adinolfi,etal.,Nucl.Instrum.MethodsA482(2002)364. [14]M.Adinolfi,etal.,Nucl.Instrum.MethodsA492(2002)134. [15]F.Ambrosino,etal.,J.HighEnergyPhys.12(2007)073. [16]F.Ambrosino,etal.,Nucl.Instrum.MethodsA534(2004)403. [17]E.Barberio,Z.Was,Comput.Phys.Commun.79(1984)291. [18]D.Babusci,etal.,Phys.Lett.B742(2015)1,andreferencestherein. [19]F.Ambrosino,etal.,Eur.Phys.J.C47(2006)589.

Figura

Fig. 1. Data-MC comparison after all the analysis cuts for the invariant-mass spectrum of e + e − (left) and of the two photons (right)
Fig. 2. Data-MC comparison after all the analysis cuts for  |  cos θ ∗ | . Code of symbols and colors as in Fig
Fig. 4. Comparison between the measurement of  | F φπ 0 ( q 2 ) | 2 (black points) and the

Riferimenti

Documenti correlati

Table VIII: Intuitive thinking, reasoning and the effect on narrow framing This table shows marginal values of probit estimates of the effect of accessibility to pre-existing risks

After the discussions about global and regional models of collaboration, the analysis of the dialogue between the two European Courts and the role of national Constitutional Courts

* Percentage change in the number of persons employed in resident production units compared with the previous quarter based on. seasonally

This further indicates that the syntactic position of the demonstrative in Ancient Greek, when it occurred with another definiteness-assigning element (the article), was not that of

First, Question Listing (QL), before the visit with their oncologist, patients have been encouraged to generate their own list of questions 10 about their cancer and

Nell’Ottocento, accanto al romanzo popolare, la distribuzione seriale della narrativa attraverso la stampa vedeva la comparsa di un genere allora in evoluzione, il grande

The data are compared to LO QCD results obtained by different MC simulations normalized to the measured inclusive two-jet cross-section, using the K-factors of Table 5.8. The

imaging approaches of colorectal liver metastases colorectal liver metastases (CRLMs) reporting the technical features, the clinical indications, the advantages and the