• Non ci sono risultati.

Electromagnetic Compatibility in Railways – Electromagnetic Field Measurement

N/A
N/A
Protected

Academic year: 2021

Condividi "Electromagnetic Compatibility in Railways – Electromagnetic Field Measurement"

Copied!
10
0
0

Testo completo

(1)

First edition

Andrea Mariscotti

Andrea Mariscotti was born in 1968 and de‐ greed in 1991 in Electronics Engineering.  Since the military service as officer with quality  control and EMC testing duties he has been  working in the EMC sector.  At the University of Genova, after the Ph.D. in  Electrical Engineering in 1996, he has lectured  and carried out research in electrical systems  simulation, power quality, EMI/EMC, electrical  and electromagnetic measurements, design of  sensors and instrumentation.  Publications span across these topics and have  been published in international journals and  conference proceedings.  He is author of two other books:  EMC in Railways – Analysis and Management  and RF and Microwave Measurements.  He founded ASTM, where he is responsible for  measurement and testing services and the  development of new products. 

Railway and metro systems embed modern technolo‐

gies  and  interface  with  external  systems,  outside 

world and humans. This book focuses on electromag‐

netic field coupling and its experimental assessment. 

Electromagnetics,  transmission  lines,  antennas,  the 

spectrum analyzer, time‐frequency transforms, prob‐

ability, statistics and uncertainty are the background. 

Six  chapters  follow  that  discuss  standards,  scientific 

literature, measurement methods, procedures. 

Emissions  of  rolling  stock,  line  and  substation  using 

2006  and  2015  versions  of  EN  50121  are  considered, 

discussing infrastructure influence, variability and syn‐

chronization with train operation, consistency. 

RF emissions of current collection system and impact 

to  radio  communications  are  evaluated  by  means  of 

joint time‐frequency transforms, APD and BER. 

Low‐frequency  magnetic  field  is  a  possible  threat  to 

susceptible medical and scientific equipment. 

For human exposure of personnel and passengers the 

presence  of  large  power  equipment,  the    relatively 

short distance and the time‐varying nature of sources 

shall  be  taken  into  account  with    suitable  evaluation 

methods against EN 50550 and ICNIRP limits. 

The  aim  is  supporting  EMC  and  test  engineers,  R&D 

and  academic  staff  in  their  activities,  while  planning 

and preparing on‐site tests in modern electrified trans‐

portation systems, bridging analysis and simulation. 

Examples and practical considerations are the result of 

many years of experience of EMC testing in railways. 

EMC in Railways

EMC in Railways

Electromagnetic Field Measurement

EMC in Ra

ilwa

ys —

Electrom

agnetic Field Measurement

First edition

Mari

scotti

www.astm-e.ch

ASTM Analysis, Simulation, Test and Measurement

(2)

Contents

I Theory and background

13

1 Electromagnetic theory fundamentals 15

1.1 Transmission lines . . . 15

1.1.1 Telegrapher’s equations . . . 16

1.1.2 The Characteristic Impedance . . . 19

1.1.3 Input impedance and reflection coefficient . . . 22

1.1.4 Line parameters from measured input impedance . . . 25

1.1.5 Standing wave pattern and VSWR . . . 26

1.2 Electromagnetic Field . . . 28

1.2.1 Electric field . . . 28

1.2.2 Magnetic field . . . 29

1.2.3 Electromagnetic wave . . . 30

1.3 Antennas and electromagnetic field radiation . . . 32

1.3.1 Antenna parameters . . . 33

1.3.2 Elementary antenna - the Hertzian dipole . . . 38

1.3.3 Dipole antenna . . . 40

1.3.4 The monopole . . . 45

1.3.5 Elementary antenna - small loop antenna . . . 47

1.3.6 Loop antenna . . . 48

1.3.7 Long wire antenna . . . 48

1.4 Circuit theory and devices . . . 49

1.4.1 Ports and matrix representation . . . 50

1.4.2 Interpretation of return and insertion loss . . . 56

1.5 Attenuators . . . 59

1.5.1 Circuit approach and calculation . . . 59

1.5.2 Design formulas [156] . . . 61

1.5.3 Improving matching with attenuators . . . 61

2 Measurement fundamentals 65 2.1 Signal quantities . . . 65

2.1.1 Decibel and distribution of measured quantities . . . 65

2.2 Probability and statistics . . . 67

2.2.1 Expectations and statistical moments . . . 68

2.2.2 Time averages . . . 69

2.2.3 Statistical distributions . . . 69

2.2.4 Statistical sampling and estimates . . . 72

2.3 Time-frequency transforms . . . 73

2.3.1 Fourier transform . . . 73

2.3.2 Joint time-frequency transforms . . . 74

(3)

8 CONTENTS

2.4 Rise time and bandwidth . . . 83

2.4.1 Rise time . . . 83

2.4.2 Cascaded LTI systems and rise-time propagation . . . 84

2.4.3 Signal bandwidth . . . 85

2.4.4 Rectangular and trapezoidal pulse train . . . 86

2.5 Random processes: definitions and stationarity . . . 90

2.5.1 Basic definitions . . . 90

2.5.2 Stationarity and ergodicity . . . 91

2.6 Auto-correlation and Power Spectral Density . . . 92

2.6.1 Random signals and Linear Time Invariant systems . . . 93

2.6.2 Power Spectral Density estimate . . . 96

2.7 Accuracy and uncertainty . . . 101

2.7.1 Definitions . . . 101

2.7.2 Type A and Type B approaches . . . 102

2.7.3 Combined standard uncertainty . . . 104

2.7.4 Expanded uncertainty . . . 106

2.7.5 Safe estimate and uncertainty . . . 106

3 Instrumentation 107 3.1 Spectrum Analyzer . . . 107

3.1.1 Architecture and block diagram . . . 108

3.1.2 Trace processing . . . 120

3.1.3 Performance and operations . . . 120

3.1.4 Zero span . . . 129

3.1.5 Local Oscillator feed-through . . . 130

3.1.6 Swept versus Fourier analysis . . . 131

3.1.7 Dynamic range and mixer operating point . . . 133

3.1.8 Accuracy of amplitude measurements . . . 134

3.1.9 Repetitive pulse signals, discrete and envelope spectrum . . . 138

3.1.10 Averaging and noise power . . . 141

3.1.11 Channel power measurement . . . 144

3.2 Antennas and probes . . . 148

3.2.1 Magnetic field antennas . . . 148

3.2.2 Electric field antennas . . . 148

3.2.3 Magnetic field probes . . . 152

3.2.4 Electric field probes . . . 155

3.2.5 Elements of uncertainty . . . 158

3.3 Design of setup . . . 163

3.3.1 Post-processing of measured data . . . 163

3.3.2 Size of EUT . . . 165

3.3.3 Antenna use . . . 165

3.3.4 Earthing and connections . . . 167

3.3.5 Synchronization and rolling stock operation . . . 167

3.4 Measurement uncertainty . . . 168

3.4.1 Overall uncertainty requirements . . . 168

3.4.2 Variability of operating conditions and synchronization . . . 169

3.4.3 Uncertainty of radiated emissions measurement . . . 169

CONTENTS 9

II Electromagnetic field emissions

175

4 Electromagnetic radiated emissions from rolling stock 177 4.1 Problem description . . . 177

4.2 Reference standards and limits . . . 179

4.3 Measurement procedures and techniques . . . 179

4.3.1 Preliminary checks and conditions . . . 179

4.3.2 Test operating conditions . . . 182

4.3.3 Antenna orientation and position . . . 184

4.3.4 Measurement settings . . . 185

4.3.5 Measurement execution . . . 187

4.4 Further considerations . . . 189

4.4.1 Definition of the measurement area in front of the antenna . . . 189

4.4.2 Intermittent emissions from a moving source . . . 190

4.4.3 Sweep time . . . 190

4.4.4 Background noise . . . 191

4.4.5 Repeatability . . . 192

4.4.6 Antenna position and maximum emissions . . . 196

4.4.7 Operating conditions and maximum emissions . . . 197

4.4.8 Diesel locos and coaches . . . 197

5 Electromagnetic radiated emissions from traction line 199 5.1 Problem description . . . 199

5.2 Reference standards and limits . . . 201

5.2.1 Removal of interval A from limits . . . 201

5.2.2 Limits . . . 202

5.3 Measurement procedures and techniques . . . 203

5.3.1 Preliminary checks and conditions . . . 203

5.3.2 Test operating conditions . . . 204

5.3.3 Antenna orientation and position . . . 206

5.3.4 Measurement settings . . . 207

5.3.5 Measurement execution . . . 209

5.4 Further considerations . . . 211

5.4.1 Selection and exclusion of transients . . . 211

5.4.2 Measurement distance . . . 211

5.4.3 Distance from other vehicles . . . 212

5.4.4 Repeatability . . . 213

5.4.5 Sweep time and speed . . . 216

5.4.6 Other than open area site measurements . . . 220

5.4.7 Normal commercial conditions . . . 223

6 Electromagnetic radiated emissions from substation 225 6.1 Problem description . . . 225

6.2 Reference standards and limits . . . 225

6.3 Measurement procedures and techniques . . . 227

6.3.1 Preliminary checks and conditions . . . 227

6.3.2 Test operating conditions . . . 228

6.3.3 Antenna position . . . 229

6.3.4 Measurement settings . . . 229

6.3.5 Measurement execution . . . 230

(4)

10 CONTENTS

7 Radio interference and emissions from sliding contact 233

7.1 Sliding contact emissions . . . 233

7.1.1 Electric arc characteristics . . . 235

7.1.2 Electric arc radiated emissions . . . 238

7.1.3 Overhead contact wire radiated emissions . . . 243

7.2 Interference to radio systems . . . 245

7.2.1 Evaluation of interference . . . 246

7.2.2 Effect of error correcting codes . . . 248

7.2.3 Spectrum distribution of interference . . . 248

7.3 Interference to GSM-R system . . . 250

7.3.1 GSM protocol . . . 252

7.3.2 In-band interference and noise transients characterization . . . 255

8 Low-frequency magnetic-field emissions 263 8.1 Sources and propagation . . . 263

8.1.1 Traction line current low-frequency spectrum . . . 264

8.1.2 Magnetic field emission from the traction line . . . 264

8.1.3 Influence other than emissions . . . 268

8.2 Victims, reference standards and limits . . . 268

8.2.1 Medical diagnostic equipment . . . 269

8.2.2 Geomagnetic instrumentation . . . 271

8.3 Used instrumentation . . . 271

8.4 Measurement procedures and techniques . . . 272

8.4.1 Sensing and acquisition . . . 272

8.4.2 Intrinsic instrumentation noise and sensitivity . . . 273

8.4.3 Conductive and magnetic objects . . . 274

8.4.4 Probe movement and vibrations . . . 274

8.4.5 Measurement in off conditions . . . 274

9 Human exposure to electromagnetic field 275 9.1 Problem description . . . 275

9.2 Theoretical background . . . 276

9.3 Reference standards and limits . . . 277

9.4 Verification of compliance . . . 279

9.4.1 Comparison with frequency-domain limits . . . 280

9.4.2 Calculation of ICNIRP index . . . 282

9.4.3 Considerations on noise, spectral leakage and uncertainty . . . 283

9.5 Used instrumentation . . . 285

(5)

Bibliography

[1] Agilent, “Spectrum Analysis Basics,” Application Note 150, 1971 (revised in 2014).

[2] Agilent, “Spectrum Analyzer – Measurements and Noise,” Application Note 1303, code 5966-4008E, Apr. 2, 2008.

[3] D. Agrez, “Weighted Multipoint Interpolated DFT to Improve Amplitude Estima-tion of Multifrequency Signal,” IEEE TransacEstima-tions on InstrumentaEstima-tion and Mea-surements, Vol. 51, no. 2, Apr. 2002, pp. 287-292. doi: 10.1109/19.997826. [4] B. Andò, S. Baglio, A.R. Bulsara, and V. Sacco, “RTD Fluxgate: A Low-Power

Nonlinear Device to Sense Weak Magnetic Fields,” IEEE Instrumentation & Mea-surement Magazine, Oct. 2005, pp. 64-73. doi: 10.1109/MIM.2005.1518626. [5] F. Auger, P. Flandrin, P. Gonçalvès and O. Lemoine, Time-Frequency Toolbox,

[online] tftb.nongnu.org/tutorial.pdf (last access March 2016).

[6] B.A. Austin and A.P.C. Fourie, “Characteristics of the Wire Biconical Antenna Used for EMC Measurements,” IEEE Transactions on Electromagnetic Compatibil-ity, Vol. 33, no. 3, pp. 179-187, Aug. 1991. doi: 10.1109/15.85131.

[7] M. Babinet, “Memoires d’optique metrologique,” Comptes Rendus de l’Academie de Science, Vol. 4, pp. 638 - 648, 1837.

[8] C.A. Balanis, Antenna Theory – Analysis and Design, 2nd ed., John Wiley & Sons, 1997.

[9] S.A. Barengolts, G.A. Mesyats and A.G. Chentsov, “Spontaneous Extinguishing of a Vacuum Arc in Terms of the Ecton Model,” IEEE Transactions on Plasma Science, Vol. 27, no. 4, Aug. 1999, pp. 817-820. doi: 10.1109/27.782244. [10] Bartington Instruments, Mag-03 Three-Axis Magnetic Field Sensors, [online]

www.bartington.com/Literaturepdf/Datasheets/Mag-03%20DS0013.pdf (last

access March 2016).

[11] D. Bellan, A. Gaggelli, F. Maradei, A. Mariscotti and S. Pignari “Time-Domain Measurement and Spectral Analysis of Non-Stationary Low-Frequency Magnetic Field Emissions on Board of Rolling Stock,” IEEE Transactions on Electromagnetic Compatibility, Vol. 46, no. 1, Feb. 2004, pp. 12-23. doi: 10.1109/TEMC.2004.823607.

[12] J.S. Bendat and A.G. Piersol, Engineering Applications of Correlation and Spectral Analysis, John Wiley & Sons, Canada, 1980.

[13] J.S. Bendat and A.G. Piersol, Random Data - Analysis and Measurement proce-dures, 2nd ed., John Wiley & Sons, Canada, 1986.

(6)

292 BIBLIOGRAPHY

[14] A. Bernardi, C. Fraser-Smith, and G. Villard, Jr., “Measurements of BART Mag-netic Fields with an Automatic GeomagMag-netic Pulsation Index Generator,” IEEE Transactions on Electromagnetic Compatibility, Vol. 31, no. 4, Nov. 1989. [15] BIPM, Evaluation of measurement data — Guide to the expression of uncertainty

in measurement, JCGM 100:2008.

[16] M. Bittera V. Smiesko K. Kovac J. Hallon, “Directional properties of the Bilog antenna as a source of radiated electromagnetic interference measurement un-certainty,” IET Microwaves, Antennas & Propagation, 2010, Vol. 4, no. 10, pp. 1469-1474. doi: 10.1049/iet-map.2009.0187.

[17] M. Bittera V. Smiesko K. Kovac J. Hallon, “Influence of Directivity Pattern of Bilog Antenna to Radiated EMI Measurement Uncertainty,” 14th IEEE Confer-ence on Microwave Techniques, COMITE 2008, Prague, Czech Republic, Apr. 23-24, 2008, pp. 1 - 4. doi: 10.1109/COMITE.2008.4569924.

[18] L.I. Bluestein, “A linear filtering approach to the computation of the discrete Fourier transform,” Northeast Electronics Research and Engineering Meeting Record, Vol. 10, 1968, pp. 218-219. (later published as “A linear filtering ap-proach to the computation of the discrete Fourier transform,”, IEEE Trans-actions on Audio Electroacoustics, Vol. 18, no. 4, pp. 451-455, 1970. doi: 10.1109/TAU.1970.1162132)

[19] J.T. Bolljahn, “Antennas near conducting sheets of finite size”, University of Cal-ifornia, 1950.

[20] G. Boschetti, A. Mariscotti and V. Deniau, “Assessment of the GSM-R suscepti-bility to repetitive transient disturbance”, Measurement, Elsevier, vol. 45, May 2012, pp. 2226-2236. doi: 10.1016/j.measurement.2012.04.004.

[21] R.N. Bracewell, The Fourier Transform and Its Applications, 2nd Ed., McGraw-Hill, New York, 1986.

[22] S. Braun, T. Donauer and P. Russer, “A real-time time-domain EMI measure-ment system for full-compliance measuremeasure-ments according to CISPR 16-1-1,” IEEE Transactions on Electromagnetic Compatibility, Vol. 50, no. 2, Apr. 2008, pp. 259-267. doi: 10.1109/TEMC.2008.918980.

[23] R. Briante and P. Imbesi, “Train carbody EMC shielding measurement,” 20th IMEKO TC4 International Symposium, Benevento, Italy, 2014, Sept. 15-17, 2014, pp. 1064-1068.

[24] G. Bucca and A. Collina, “A procedure for the wear prediction of collector strip and contact wire in pantograph–catenary system,” Wear, Elsevier, Vol. 266, 2009, pp. 46-59. doi: 10.1016/j.wear.2008.05.006.

[25] B. Carlson, Communication Systems – An Introduction to Signals and Noise in Electrical Communication, 3rd ed., New York, McGraw Hill, 1988.

[26] C. Carobbi, S. Lazzerini, L. Millanta, “High frequency operation of the coils for standard magnetic field generation using the bulk-current technique,” IEEE Transactions on Instrumentation and Measurements, Vol. 54, no. 4, Aug. 2005, pp. 1427-1432.

[27] CENELEC EN 50121-2 (IEC 62236-2), Railway applications - Electromagnetic compatibility - Part 2: Emission of the whole railway system to the outside world, 2006-07.

[28] CENELEC EN 50121-3-1 (IEC 62236-3-1), Railway applications - Electromagnetic compatibility - Rolling stock - Part 3.1: Train and complete vehicle, 2006-07.

BIBLIOGRAPHY 293

[29] CENELEC EN 50121-2 (IEC 62236-2), Railway applications - Electromagnetic compatibility - Part 2: Emission of the whole railway system to the outside world, 2015-03.

[30] CENELEC EN 50121-3-1 (IEC 62236-3-1), Railway applications - Electromagnetic compatibility - Rolling stock - Part 3.1: Train and complete vehicle, 2015-03. [31] CENELEC EN 50357, Evaluation of human exposure to electromagnetic fields from

devices used in Electronic Article Surveillance (EAS), Radio Frequency Identification (RFID) and similar applications, 2001-10.

[32] CENELEC EN 50392, Generic standard to demonstrate the compliance of electronic and electrical apparatus with the basic restrictions related to human exposure to electromagnetic fields (0 GHz – 300 GHz), 2008-02.

[33] CENELEC Std. EN 50500, Measurement procedures of magnetic field levels gener-ated by electronic and electrical apparatus in the railway environment with respect to human exposure, 2008-07.

[34] Liu Chang, Min Wang, Lei Liu, Siwei Luo and Pan Xiao, “A brief introduction to giant magnetoresistance,” arXiv preprint arXiv:1412.7691. 2014 Dec 21. [35] R.A. Chipman, Schaum’s outline of Theory and Problems of Transmission Lines,

McGraw Hill, 1968.

[36] D.K. Chy and Md. Khaliluzzaman, “Evaluation of SNR for AWGN, Rayleigh and Rician Fading Channels Under DPSK Modulation Scheme with Constant BER,” International Journal of Wireless Communications and Mobile Computing, 2015, Vol. 3, no. 1, pp. 7-12. doi: 10.11648/j.wcmc.20150301.12.

[37] CISPR 12, Vehicles, boats and internal combustion engines – Radio disturbance characteristics – Limits and methods of measurement for the protection of off-board receivers, 2009-03.

[38] CISPR 16-1-1, Specification for radio disturbance and immunity measuring ratus and methods – Part 1-1: Radio disturbance and immunity measuring appa-ratus - Measuring appaappa-ratus, 2015-09.

[39] CISPR 16-1-4, Specification for radio disturbance and immunity measuring ratus and methods – Part 1-4: Radio disturbance and immunity measuring appa-ratus - Antennas and test sites for radiated disturbance measurements, 2012-07. [40] CISPR 16-2-1, Specification for radio disturbance and immunity measuring

ap-paratus and methods – Part 2-1: Methods of measurement of disturbances and immunity - Conducted disturbance measurements, 2014-02.

[41] CISPR 16-2-3, Specification for radio disturbance and immunity measuring ap-paratus and methods – Part 2-3: Methods of measurement of disturbances and immunity - Radiated disturbance measurements, 2014-03.

[42] CISPR 16-4-1, Specification for radio disturbance and immunity measuring apparatus and methods – Part 42: Uncertainties, statistics and limit modelling -Uncertainty in standardized EMC tests, 2009-02.

[43] CISPR 16-4-2, Specification for radio disturbance and immunity measuring apparatus and methods – Part 42: Uncertainties, statistics and limit modelling -Uncertainty in EMC measurements, 2003-11.

[44] S. Ciurlo, A. Mariscotti and A. Viacava, “A Helmholtz coil for high frequency high field intensity applications”, Metrology and Measurement Systems, Vol. XVI, n. 1, Jan. 2009, pp. 117-125.

(7)

294 BIBLIOGRAPHY

[45] R.E. Collin, Foundations for Microwave Engineering, 2nd ed., IEEE Press, New York, 2001.

[46] Da Hai He, “Test Method of Arcing Behaviour for Railway Current Collection System,” World Congress on Railway Research, WCRR 2001, Koln, Germany, Nov. 25-29, 2001.

[47] A.W. Drake, Fundamentals of Applied Probability Theory, McGraw-Hill, New York, 1967.

[48] S. Dudoyer, V. Deniau, S. Ambellouis, M. Heddebaut, A. Mariscotti and N. Pasquino, “Test bench for the evaluation of GSM-R operation in the presence of electric arc interference,” ESARS 2012, Bologna, IT, Oct. 17-19, 2012, doi: 10.1109/ESARS.2012.6387486.

[49] S. Dudoyer, V. Deniau, S. Ambellouis, M. Heddebaut and A. Mariscotti, “Classifi-cation of Transient EM Noise Depending on their Effect on the Quality of GSM-R Reception”, IEEE Transactions on Electromagnetic Compatibility, Vol. 55, no. 5, Oct. 2013, pp. 867-874, doi: 10.1109/TEMC.2013.2239998.

[50] ETSI Std. ETS 300 577, Digital cellular telecommunications system (Phase 2); Radio transmission and reception, Mar. 1997.

[51] European Directive 2004/104 adapting to technical progress Council Directive 72/245/EEC relating to the radio interference (electromagnetic compatibility) of vehicles and amending Directive 70/156/EEC on the approximation of the laws of the Member States relating to the type-approval of motor vehicles and their trailers, Oct. 14, 2004.

[52] D.A. Frickey, “Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances,” IEEE Transactions on Mi-crowave Theory and Techniques, Vol. 42, no. 2, Feb. 1994, pp. 205-211. doi: 10.1109/22.275248

[53] D.A. Frickey, “Using the Inverse Chirp-Z Transform for Time-Domain Analysis of Simulated Radar Signals,” International Conference on Signal Processing Appli-cations and Technology (ICSPAT), Oct. 18-21, 1994.

[54] R. Geise, O. Kerfin, B. Neubauer, G. Zimmer and A. Enders, “EMC Anal-ysis Including Receiver Characteristics - Pantograph Arcing and the Instru-ment Landing System,” IEEE International Symposium on Electromagnetic Compatibility, Dresden, Germany, Aug. 16-22, 2015, pp. 1213-1217. doi: 10.1109/ISEMC.2015.7256342.

[55] T. Grandke, “Interpolation Algorithms for Discrete Fourier Transforms of Weighted Signals,” IEEE Transactions on Instrumentation and Measurements, Vol. 32, no. 2, June 1983, pp. 350-355. doi: 10.1109/TIM.1983.4315077.

[56] GSM, Recommendation 05.03, Channel Coding, ver. 3.6.1., Oct. 1994.

[57] A.E. Guile and S.F. Mehta, “Arc Movement Due to the Magnetic Field of Current Flowing in the Electrodes,” Proceedings of IEE – Part A: Power Engineering, Vol. 1, 1958, pp. 533-540. doi: 10.1049/pi-a.1957.0126.

[58] E. Hallén, “On antenna impedances”, Transactions of the Royal Institute of Tech-nology, Stockholm, n. 13, 1947.

[59] R.C. Hansen, “Fundamental limitations in antennas,” Proceedings of the IEEE, Vol. 69, no. 2, pp. 170-182, Feb. 1981.

BIBLIOGRAPHY 295

[60] F.J. Harris, “On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform,” Proceedings of IEEE, Vol. 66, no. 1, Jan. 1978, pp. 51-83. doi: 10.1109/PROC.1978.10837

[61] S. Hartwig, H.H. Albrecht, H.J. Scheer, M. Burghoff and L. Trahms, “A Supercon-ducting Quantum Interference Device Measurement System for Ultra Low-Field Nuclear Magnetic Resonance,” Applied Magnetic Resonance, Vol. 44, 2013, pp. 9–22.

[62] P. Horowitz and W. Hill, The art of electronics, 2nd ed., Cambridge University Press, 1989.

[63] R.M. Howard, Principles of Random Signal Analysis and Low Noise Design, John Wiley & Sons, New York, 2002.

[64] ICNIRP, “ICNIRP Guidelines for limiting exposure to time-varying

electric, magnetic, and electromagnetic fields (up to 300 GHz),”

Health Physics, Vol. 74, no. 4, pp. 494-522, Apr. 1998, [online]

www.icnirp.org/cms/upload/publications/ICNIRPemfgdl.pdf (last access

March 2016).

[65] ICNIRP, “ICNIRP Statement – Guidelines for limiting exposure to time-varying electric and magnetic fields (1 Hz to 100 kHz),” Health Physics, Vol. 99, no. 6, pp. 818-836, Dec. 2010. doi: 10.1097/HP.0b013e3181f06c86, [online] http://www.icnirp.org/cms/upload/publications/ICNIRPLFgdl.pdf (last access March 2016).

[66] ICNIRP, “Guidance on determining compliance of exposure to pulsed and complex non-sinusoidal waveforms below 100 kHz with ICNIRP

guidelines”, Health Physics, Vol. 84, pp. 383-387, 2003, [online]

http://www.icnirp.org/cms/upload/publications/ICNIRPpulsed.pdf (last access March 2016).

[67] ICNIRP, “Guidelines on limits of exposure to static magnetic fields,”

Health Physics, Vol. 96, no. 4, pp. 505-514, Apr. 2009, [online]

http://www.icnirp.org/cms/upload/publications/ICNIRPstatgdl.pdf (last access March 2016).

[68] IEC 60096-1, Radio-frequency cables – Part1: General requirements and measur-ing methods, 1986-01.

[69] ANSI/IEEE Std. 376, IEEE Standard for the Measurement of Impulse Strength and Impulse Bandwidth, 1975.

[70] IEEE Std. 644, IEEE Standard Procedures for Measurement of Power Frequency Electric and Magnetic Fields From AC Power Lines, 1994.

[71] IEEE Std. 748, IEEE Standard for Spectrum Analyzers, 1979.

[72] ANSI Std. C63.2, Electromagnetic Noise and Field Strength, 10 kHz to 40 GHz – Specifications, 1987.

[73] ISO/IEC Guide 98-3/Suppl. 1, Uncertainty of measurement – Part 3: Guide to the expression of uncertainty in measurement (GUM:1995) – Supplement 1: Propaga-tion of distribuPropaga-tions using a Monte Carlo method, 2008.

[74] A.J. Iverson, Electro-optic pockels cell voltage sensors for accelerator diagnos-tics, Thesis of Masters of Science in Electrical Engineering, Montana State Uni-versity, Bozeman, MT, USA, July 2004.

(8)

296 BIBLIOGRAPHY

[75] V.K. Jain, W.L. Collins and D.C. Davis, “High-Accuracy Analog Measurements via Interpolated FFT,” IEEE Transactions on Instrumentation and Measurements, Vol. 28, no. 2, June 1979, pp. 113-122. doi: 10.1109/TIM.1979.4314779. [76] JEOL, 64x0 MP series environmental specification sheet, rev. 1c, June 26, 2008. [77] H.W. Johnson and M. Graham, High-Speed Digital Design - A Handbook of Black

Magic, Prentice Hall, Englewood Cliffs, New Jersey, 1988.

[78] J.F. Kaiser, “Nonrecursive Digital Filter Design Using the I0-sinh Window Func-tion,” Proc. IEEE Symp. Circuits and Systems, Apr. 1974, pp. 20-23.

[79] T.-W.Kang, Y.-C.Chung, S.-H.Won and H.-T.Kim, “Interlaboratory comparison of radiated emission measurements using a spherical dipole radiator,” IEE Proceed-ings – Science Measurement Technology, Vol. 148, No. 1 , Jan. 2001, pp. 35-40. doi: 10. 1049/ip20010184.

[80] D. Karakelian, S.L. Klemperer, A.C. Fraser-Smith, and G.C. Beroza, “A Trans-portable System for Monitoring Ultra Low Frequency Electromagnetic Signals Associated with Earthquakes,” Seismological Research Letters, Vol. 71, no. 4, July/Aug. 2000, pp. 423-436.

[81] S.M. Kay and S.L. Marple, “Spectrum Analysis – A Modern Perspective,” Proceedings of the IEEE, Vol. 69, no. 11, Nov. 1981, pp. 1380-1419. doi: 10.1109/PROC.1981.12184.

[82] D. Klapas, R. Hackam and F.A. Benson, “Electric arc power collection for high-speed trains,” Proceedings of the IEEE, Vol. 64, no. 12, Dec. 1976, pp. 1699-1715. doi: 10.1109/PROC.1976.10410.

[83] D. Klapas, R.H. Apperley, R. Hackam and F.A. Benson, “Electromagnetic Inter-ference from Electric Arcs in the Frequency Range 0.1-1000 MHz,” IEEE Trans-actions on Electromagnetic Compatibility, Vol. 20, no. 1, Feb. 1978, pp. 198-202. doi: 10.1109/TEMC.1978.303647.

[84] J.D. Krause and R.J. Marhefka, Antennas, 3rd ed., McGraw Hill, New York, 2002. [85] A. Kriz, “Calculation of Antenna Pattern Influence on Radiated Emission Mea-surement Uncertainty,” IEEE International Symposium on Electromagnetic Com-patibility, Detroit, USA, 18-22 Aug. 2008. doi: 10.1109/ISEMC.2008.4652052. [86] S. Kubo and K. Kato, “Effect of arc discharge on wear rate of Cu-impregnated

carbon strip in unlubricated sliding against Cu trolley under electric cur-rent,” Wear, Elsevier, Vol. 216, 1998, pp. 172-178. doi: 10.1016/S0043-1648(97)00184-1.

[87] E.A. Laport, “Long-wire antennas” in Antenna Engineering Handbook, (R.C. Johnson ed.), 3rd ed., McGraw Hill, New York, 1993.

[88] M.P. Ledbetter, T. Theis, J.W. Blanchard, H. Ring, P. Ganssle, S. Appelt, B. Blümich, A. Pines and D. Budker, “Near-Zero-Field Nuclear Magnetic Reso-nance,” Physical Review Letters, Vol. 107, Sept. 2011, pp. 107601-1/5. doi: 10.1103/PhysRevLett.107.107601.

[89] Yu-Jen Liu, G.W. Chang and H.M. Huang, “Mayr’s Equation-Based Model for Pantograph Arc of High-Speed Railway Traction System,” IEEE Transactions on Power Delivery, Vol. 25, no. 3, July 2010, pp. 2025-2027. doi: 10.1109/TP-WRD.2009.2037521.

[90] R.G. Lyons, Understanding Digital Signal Processing, Prentice Hall, 2001.

BIBLIOGRAPHY 297

[91] Lan Ma, A. Marvin, Y. Wen, E. Karadimou and R. Armstrong, “An Investi-gation of the Total Radiated Power of Pantograph Arcing Measured in a Re-verberation Chamber,” International Conference on Electromagnetics in Ad-vanced Applications (ICEAA), Aruba, Aug. 3-8, 2014, pp. 550-553. doi: 10.1109/ICEAA.2014.6903919.

[92] Lan Ma, A. Marvin, E. Karadimou, R. Armstrong and Y. Wen, “An Experimen-tal Programme to Determine the Feasibility of Using a Reverberation Cham-ber to Measure the Total Power Radiated by an Arcing Pantograph,” 2014 In-ternational Symposium on Electromagnetic Compatibility (EMC Europe 2014), Gothenburg, Sweden, September 1-4, 2014, pp. 269-273.

[93] A. Mariscotti and P. Pozzobon, “Synthesis of line impedance expressions for railway traction systems,” IEEE Transactions on Vehicular Technology, Vol. 52, no. 2, March 2003, pp. 420-430. doi: 10.1109/TVT.2003.808750.

[94] A. Mariscotti, “Evaluation and Testing of Off-the-shelf Hall Sensors

for Compliant Magnetic Field”, IEEE International Measurement Techni-cal Conference IMTC 2006, Sorrento, Italy, April 20-23, 2006. doi: 10.1109/IMTC.2006.328176.

[95] A. Mariscotti, “On Time- and Frequency-domain equivalence for compliant EMI measurements”, IEEE International Measurement Technical Conference IMTC 2007, Warsaw, Poland, May 2-4, 2007. doi: 10.1109/IMTC.2007.379171. [96] A. Mariscotti, “Measurement Procedures and Uncertainty Evaluation for

Elec-tromagnetic Radiated Emissions from Large Power Electrical Machinery,” IEEE Transactions on Instrumentation and Measurement, Vol. 56, no. 6, Dec. 2007, pp. 2452-2463. doi: 10.1109/TIM.2007.908351.

[97] A. Mariscotti, “A Magnetic Field Probe with MHz Bandwidth and 7 decades Dy-namic Range,” IEEE Transactions on Instrumentation and Measurement, Vol. 58, no. 8, Aug. 2009, pp. 2643-2652. doi: 10.1109/TIM.2009.2015693.

[98] A. Mariscotti, “Assessment of Electromagnetic Emissions from Synchronous Generators and its Metrological Characterization,” IEEE Transactions on In-strumentation and Measurement, Vol. 59, no. 2, Feb. 2010, pp. 450-457. doi: 10.1109/TIM.2009.2024696.

[99] A. Mariscotti, RF and Microwave Measurements – Device characterization, signal integrity and spectrum analysis, ASTM, Chiasso, Switzerland, 2015. ISBN: 978-88-941091-0-8.

[100] S.L. Marple, Digital Spectral Analysis, Prentice Hall, Englewood Cliffs, NJ, 1987. [101] W. Marshall Leach, Jr., Fundamentals of Low-Noise Electronic Analysis and Design,

Kendall Hunt publishing, 2000.

[102] W. Martin and P. Flandrin, “Wigner-Ville Spectral Analysis of Nonstationary Pro-cesses,” IEEE Transactions on Acoustics, Speech, and Signal Processing, Vol. 33, no. 6, Dec. 1985, pp. 1461-1470. doi: 10.1109/TASSP.1985.1164760.

[103] A.C. Marvin and J. Ahmadi, “Comparison of open-field test sites used for radi-ated emission measurements,” IEE Proceedings - Part A, Vol. 140, no. 2, March 1993, pp. 161-165.

[104] S.A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, Boston, 1998.

[105] Y. Matsumoto, “On the relation between the amplitude probability distribution of noise and bit error probability,” IEEE Transactions on Electromagnetic Compati-bility, Vol. 49, no. 4, pp. 940-941, Nov. 2007. doi: 10.1109/TEMC.2007.908280.

(9)

298 BIBLIOGRAPHY

[106] Y. Matsumoto and K. Gotoh, “A method of defining emission limits including the gradient of an amplitude-probability-distribution curve,” International Sympo-sium of Electromagnetic Compatibility, Gothenburg, Sweden, Sep. 1-4, 2014, pp. 895-900. doi: 10.1109/EMCEurope.2014.6931030.

[107] A.J. Mauriello and J.M. Clarke, “Measurement and analysis of radiated elec-tromagnetic emissions from rail-transit vehicles,” IEEE Transactions on Elec-tromagnetic Compatibility, Vol. 25, no. 4, Nov. 1983, pp. 405-411. doi: 10.1109/TEMC.1983.304129.

[108] Metropolitan Council, “Electromagnetic Interference - Measurement and Assess-ment,” St. Paul, MN, May 2008.

[109] D. Middleton, “Statistical-Physical Models of Electromagnetic Interference,” IEEE Transactions on Electromagnetic Compatibility, Vol. 19, no. 3, Aug. 1977, pp. 106-127. doi: 10.1109/TEMC.1977.303527.

[110] MIL STD 461-F, Requirements for the Control of Electromagnetic Interference Char-acteristics of Subsystems and Equipment, 2007-10.

[111] S. Midya, D. Bormann, T. Schutte and R. Thottappillil, “DC Component From Pantograph Arcing in AC Traction System – Influencing Parameters, Impact, and Mitigation Techniques,” IEEE Transactions on Power Delivery, Vol. 53, no. 1, Feb. 2011, pp. 18-27. doi: 10.1109/TEMC.2010.2045159.

[112] S. Midya, D. Bormann, T. Schutte and R. Thottappillil, “Pantograph Arcing in Electrified Railways – Mechanism and Influence of Various Parameters – Part I: With DC Traction Power Supply,” IEEE Transactions on Power Delivery, Vol. 24, no. 4, Oct. 2009, pp. 1931-1939. doi: 10.1109/TPWRD.2009.2021035. [113] S. Midya, D. Bormann, T. Schutte and R. Thottappillil, “Pantograph Arcing in

Electrified Railways – Mechanism and Influence of Various Parameters – Part II: With AC Traction Power Supply,” IEEE Transactions on Power Delivery, Vol. 24, no. 4, Oct. 2009, pp. 1940-1950. doi: 10.1109/TPWRD.2009.2021036. [114] D.C. Montgomery and G.C. Runger, Applied statistics and probability for

engi-neers, John Wiley & Sons, New York, 2003.

[115] D.A. Muller and J. Grazul, “Optimizing the environment for a sub-0.2 nm scan-ning transmission electron microscopy,” Journal of Electron Microscopy, Vol. 50, no. 3, 2001, pp. 219-226.

[116] D.A. Muller, E.J. Kirkland, M.G. Thomas, J.L. Grazul, L. Fittinga and M. Weyland, “Room design for high-performance electron microscopy,” Ul-tramicroscopy, Vol. 106, no. 11-12, Oct.-Nov. 2006, pp. 1033-1040. doi: 10.1016/j.ultramic.2006.04.017.

[117] T. Nakai and Z. Kawasaki, “On Impulsive Noise from Shinkansen,” IEEE Trans-actions on Electromagnetic Compatibility, Vol. 25, no. 4, pp. 396-404, Nov. 1983. doi: 10.1109/TEMC.1983.304128.

[118] NIST/SEMATECH, e-Handbook of Statistical Methods, [online]

http://www.itl.nist.gov/div898/handbook/ (last access Aug. 2014).

[119] A. Ogunsola and A. Mariscotti, Electromagnetic Compatibility in Railways – Anal-ysis and Management, Springer, 2012.

[120] M.A. O’Keefe, J.H. Turner, J.A. Musante, J.D. Hetherington, A.G. Cullis, B. Car-ragher, R. Jenkins, J. Milgrim, R.A. Milligan, C.S. Potter, L.F. Allard, D.A. Blom, L. Degenhardt, and W.H. Sides, “Laboratory Design for High-Performance Elec-tron Microscopy,” Microscopy Today, May 2014, pp. 8-14.

BIBLIOGRAPHY 299

[121] A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Prentice Hall, Englewood Cliffs, NJ, 1989.

[122] A. Papoulis, Probability, Random variables and Stochastic processes, 2nd ed., McGraw-Hill, 1987.

[123] C.R. Paul, Multiconductor Transmission Lines, 2nd. ed., John Wiley & Sons, New Jersey, 2008.

[124] S. C. Pei and J. J. Ding, “Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing,” IEEE Trans-actions on Signal Processing, Vol. 55, no. 10, pp. 4839-4850, Oct. 2007. doi: 10.1109/TSP.2007.896271.

[125] M. Pluska, Ł. Oskwarek, R.J. Rak, and A. Czerwinski, “Measurement of Mag-netic Field Distorting the Electron Beam Direction in Scanning Electron Micro-scope,” IEEE Transactions on Instrumentation and Measurement, Vol. 58, no. 1, Jan. 2009, pp. 173-179. doi: 10.1109/TIM.2008.928415.

[126] M. Pous and F. Silva, “APD radiated transient measurements produced by elec-tric sparks employing time-domain captures,” International Symposium on Elec-tromagnetic Compatibility EMC Europe 2014, Gothenburg, Sweden, Sept. 1-4, 2014, pp. 813-817. doi: 10.1109/EMCEurope.2014.6931016.

[127] M. Pous and F. Silva, “Full-spectrum APD measurement of transient interfer-ences in time domain,” IEEE Transactions on Electromagnetic Compatibility, Vol. 56, no. 6, pp. 1352-1360, Dec. 2014. doi: 10.1109/TEMC.2014.2352393. [128] M. Pous, M.A. Azpúrua and F. Silva, “Measurement and Evaluation Techniques

to Estimate the Degradation Produced by the Radiated Transients Interference to the GSM System,” IEEE Transactions on Electromagnetic Compatibility, Vol. 57, no. 6, Dec. 2015, pp. 1382-1390. doi: 10.1109/TEMC.2015.2472983.

[129] D.M. Pozar, Microwave Engineering, John Wiley & Sons, 2nd ed., 1998.

[130] F. Primdahl, “The fluxgate mechanism, Part 1: the gating curves of parallel and orthogonal fluxgates,” IEEE Transactions on Magnetics, Vol. 6, no. 2, pp. 376-383, 1970. doi: 10.1109/TMAG.1970.1066795.

[131] J.G. Proakis and D.G. Manolakis, Digital Signal Processing - Principles, Algo-rithms, and Applications, 3rd ed., Prentice Hall, 1996.

[132] L.R. Rabiner, R.W. Shafer and C.M. Rader, “The chirp z-transform algorithm,” IEEE Transactions on Audio Electroacoustics, Vol. 17, no. 2, pp. 86-92, 1969. doi: 10.1109/TAU.1969.1162034.

[133] S. Ramakrishnan, A.D. Stokes and J.J. Lowke, “An approximate model for high-current free-burning arcs,” Journal of Physics – Part D: Applied Physics, Vol. 11, 1978, pp. 2267-2280. doi: 10.1088/0022-3727/11/16/014.

[134] C. Rauscher, V. Janssen and R. Minihold, Fundamentals of Spectrum Analysis, Rohde & Schwarz, 2001.

[135] C. Reig, M.-D. Cubells-Beltran and D. Ramirez Muñoz, “Magnetic Field

Sensors Based on Giant Magnetoresistance (GMR) Technology:

Applica-tions in Electrical Current Sensing,” Sensors, Vol. 9, 2009, pp. 7919-7942. doi:10.3390/s91007919.

[136] P. Ripka, M. Pribil and M. Butta, “Fluxgate Offset Study,” IEEE Transactions on Magnetics, Vol. 50, no. 11, Nov. 2014. doi: 10.1109/TMAG.2014.2329777.

(10)

300 BIBLIOGRAPHY

[137] E. Rubiola and F. Vernotte, “The cross-spectrum experimental method,” arXiv:1003.0113v1 [physics.ins-det], Feb. 27, 2010, pp. 1-39.

[138] N. Saulig, “Rényi Entropy Based Complexity Estimation of Nonstationary Sig-nals,” Ph.D. Thesis, Faculty of Electrical Engineering and Computing, University of Zagreb, 2015.

[139] I.M. Savukov, S.J. Seltzer and M.V. Romalis, “Detection of NMR signals with a radio-frequency atomic magnetometer,” Journal of Magnetic Resonance, Vol. 185, 2007, pp. 214-220. doi: 10.1016/j.jmr.2006.12.012.

[140] E. Schmautzer, G. Propst and K. Friedl, “The Effect of Reduction Conduc-tors on the Magnetic Field of Electrified Railway Systems near Hospitals,” International Conference on Electrical Systems for Aircraft, Railway and Ship Propulsion (ESARS), Bologna, Italy, Oct. 19-21, 2010, pp. 1-5. doi: 10.1109/ESARS.2010.5665261.

[141] A.W. Scott, Understanding Microwaves, John Wiley & Sons, 1993.

[142] Q. Shan and Y. Wen, “Research on the BER of the GSM-R Communications Provided by the EM Transient Interferences in High-Powered Catenary Sys-tem Environment,” International Conference on Electromagnetics in Advanced Applications (ICEAA), Sidney, Australia, Sept. 20-24, 2010, pp. 757-760. doi: 10.1109/ICEAA.2010.5653976.

[143] Zhi Wei Sim and Jian Song, “Radiated spurious emission measurements using fast Fourier transform-based time domain scan,” IET Science, Measurement & Technology, Vol. 9, no. 7, 2015, pp. 882-889. doi: 10.1049/iet-smt.2014.0333. [144] N.B. Slimen, V. Deniau, J. Rioult, S. Dudoyer and S. Baranowski,

“Statisti-cal characterisation of the EM interferences acting on GSM-R antennas fixed above moving train,” The European Journal of Applied Physics, Vol. 48, p. 21202-1–21202-7, 2009.

[145] M. Stecher, “Possible effects of spread-spectrum-clock interference on wide-band radiocommunication services,” International Symposium on Electromag-netic Compatibility, Chicago, IL, USA, Aug. 8-12, 2005, Vol. 1, pp. 60-63. doi: 10.1109/ISEMC.2005.1513472.

[146] P.F. Stenumgaard, “Using the root-mean-square detector for weighting of dis-turbances according to its effect on digital communication services,” IEEE Trans-actions on Electromagnetic Compatibility, Vol. 42, no. 4, Nov. 2000, pp. 368-375. doi: 10.1109/15.902306.

[147] P.F. Stenumgaard, “On radiated emission limits for pulsed interference to protect modern digital wireless communication systems,” IEEE Trans-actions on Electromagnetic Compatibility, Vol. 49, no. 4, Nov. 2007. doi: 10.1109/TEMC.2007.908284.

[148] P.F. Stenumgaard and K.C. Wiklundh, “An improved method to estimate the impact on digital radio receiver performance of radiated electromagnetic dis-turbances,” IEEE Transactions on Electromagnetic Compatibility, Vol. 42, no. 2, May 2000, pp. 233-239. doi: 10.1109/15.852418.

[149] P. Stoica, and R.L. Moses, Introduction to Spectral Analysis, Prentice Hall, 1997. [150] J.E. Storer, “The impedance of an antenna over a large circular screen,” Journal

of Applied Physics, Vol. 22, pp. 1058-1066, Aug. 1951.

[151] J.E. Storer, “The radiation pattern of an antenna over a circular ground screen,” Journal of Applied Physics, Vol. 23, pp. 588-593, May 1952.

BIBLIOGRAPHY 301

[152] T. Thayaparan and S. Kennedy, “Application of Joint Time-Frequency Repre-sentations to a Maneuvering Air Target in Sea-Clutter: Analysis Beyond FFT,” Defence R&D Canada, Technical Memorandum, DRDC Ottawa, TM 2003-090, March 2003. [online] http://www.dtic.mil/dtic/tr/fulltext/u2/a416872.pdf (last access March 2016).

[153] M. Uchino, O. Tagiri and T. Shinozuka, “Real-Time Measurement of Noise Statis-tics,” IEEE Transactions on Electromagnetic Compatibility, Vol. 43, no. 4, Nov. 2001, pp. 629-636. doi: 10.1109/15.974644.

[154] G.E. Valley and H. Wallman, Vacuum Tube Amplifiers, MIT Radiation Laboratory Series 18, McGraw-Hill, 1948.

[155] N. van Dijk, “Uncertainties in 3-m Radiated Emission Measurements Due to the Use of Different Types of Receive Antennas,” IEEE Transactions on Electromagnetic Compatibility, Vol. 47, no. 1, Feb. 2005, pp. 77-85. doi: 10.1109/TEMC.2004.842112.

[156] M.E. van Valkenburg, Reference Data for Engineers: Radio, Electronics, Computer and Communication, 8th ed., Newnes, 1998.

[157] P. Volegov, A.N. Matlachov, M.A. Espy, J.S. George and R.H. Kraus Jr., “Simulta-neous Magnetoencephalography and SQUID Detected Nuclear MR in Microtesla Magnetic Fields,” Magnetic Resonance in Medicine, Vol. 52, 2004, pp. 467-470. doi: 10.1002/mrm.20193.

[158] B.C. Wadell, Transmission Line Design Handbook, Artech House, Norwood, MA, USA, 1991.

[159] K. Wiklundh, “Relation between the amplitude probability distribution of an interfering signal and its impact on digital radio receivers,” IEEE Transactions on Electromagnetic Compatibility, Vol. 48, no. 3, pp. 537-544, Aug. 2006. doi: 10.1109/TEMC.2006.877782.

[160] P.F. Wilson and M.T. Ma, “Fields Radiated by Electrostatic Discharges,” IEEE Transactions on Electromagnetic Compatibility, Vol. 33, no. 1, Feb. 1991, pp. 10-18. doi: 10.1109/15.68245.

[161] Wu Xi-xiu, Li Zhen-Biao, Tian Yun, Mao Wenjun, Xie Xun, “Investigate on the Simulation of Black-box Arc Model,” 1st IEEE International Conference on Elec-tric Power Equipment – Switching Technology, Xi’an, China, Oct. 23-27, 2011, pp. 629-636. doi: 10.1109/ICEPE-ST.2011.6123163.

Riferimenti

Documenti correlati

[r]

La storia successiva, “L’incidente”, si distingue per una maggior libertà nel gestire l’interno delle singole vignette: può accadere pertanto che momenti distinti

Come noto, la giurisprudenza della Corte di legittimità presenta una monolitica lettura della sentenza dichiarativa di fallimento nel quadro dei reati di bancarotta,

On voit ainsi apparaître clairement deux groupes de parlers, séparés l’un de l’autre par une distance prosodique clairement plus importante: les parlers d’Algarve (00q) et de

Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat à l ’Energie Atomique and Institut National

The corresponding SAR cross spectrum was computed using (2) and assumed to be the “observed” SAR cross spectrum. The inversions were carried out by exploiting three different

By comparing the observed to the synthetic spectra in the model grid we obtained the instantaneous radial velocities of the Cepheids, which includes the barycentric velocity of the

(2016) What Medical Oncologist Residents Think about the Italian Speciality Schools: A Survey of the Italian Association of Medical Oncology (AIOM) on Educational, Clinical and