• Non ci sono risultati.

The repetitive component of the sunflower genome.

N/A
N/A
Protected

Academic year: 2021

Condividi "The repetitive component of the sunflower genome."

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Current

Plant

Biology

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c p b

The

repetitive

component

of

the

sunflower

genome

T.

Giordani,

A.

Cavallini,

L.

Natali

DepartmentofAgriculture,Food,andEnvironment,UniversityofPisa,ViadelBorghetto80,I-56124Pisa,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1February2014

Receivedinrevisedform19May2014

Accepted24May2014 Keywords: Genomecomposition Helianthus LTR-retrotransposons RepetitiveDNA Sunflower

a

b

s

t

r

a

c

t

Thesunflower(Helianthusannuus)andspeciesbelongingtothegenusHelianthusareemergingasa modelspeciesandgenusforanumberofstudiesongenomeevolution.Inthisreview,wereportonthe repetitivecomponentoftheH.annuusgenomeatthebiochemical,molecular,cytological,andgenomic levels.Recentworkonsunflowergenomecompositionisdescribed,withemphasisondifferenttypes ofrepeatsequences,especiallyLTR-retrotransposons,ofwhichwereportonisolation,characterisation, cytologicallocalisation,transcription,dynamicsofproliferation,andcomparativeanalyseswithinthe genusHelianthus.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Contents

1. Introduction... 45

1.1. Therepetitivecomponentofplantgenomes... 45

1.2. TheHelianthusgenus ... 46

2. TheHelianthusgenomestructure... 46

3. RepeattypesintheHelianthusgenome... 47

3.1. TheSUNREPdatabase... 47

3.2. LTR-retrotransposons... 48

3.3. Theso-called“Contig61”... 48

3.4. Tandemrepeats... 49

3.5. Otherrepeattypes... 50

4. RetrotransposonsintheevolutionoftheHelianthusgenus... 51

5. Retrotransposonsasmolecularmarkersinsunflower... 51

6. Conclusionsandperspectives... 52

Acknowledgements... 52

References... 52

1. Introduction

1.1. Therepetitivecomponentofplantgenomes

Eukaryotesshowlargevariationingenomesize,especiallyin higherplants.Angiospermgenomesize(1C)rangesfrom63Mbp inGenliseamargaretaeto150GbpinParisjaponica[1,2].Such differ-encesarisefromtwomainprocesses:polyploidyandamplification oftransposons andrelated sequences.Transposonamplification

∗ Correspondingauthor.Tel.:+390502216665;fax:+390502216661.

E-mailaddresses:[email protected],[email protected](L.Natali).

has resulted in theaccumulation of many repeatedsequences (i.e., sequences that are identical or similarto sequences else-where in the genome but whose copy number is much larger than that possibly achieved through polyploidisation). Some repeats are considered to be non-functional, whereas others haveplayedkeyrolesintheevolutionofspecies[3].For exam-ple, the mutagenic action of transposons provides substantial increasesingeneticvariability[4].Transposonsalsocreatenovel functions by fine-tuning gene activity, resulting in phenotypic variation [5,6]. Although changes in the repetitive component have played major roles in the evolution of plant genomes, large datasets of repetitive DNA are available for such mono-cots as maize, rice, and barley, and a comprehensive analysis http://dx.doi.org/10.1016/j.cpb.2014.05.001

(2)

of the repetitive component is still lacking in many genera of dicots.

Amongdicotyledonousspecies,sunflowers(Helianthusspp.)are emergingasamodelsystemforgenomicresearchonadaptation andspeciation[7,8].Giventheextensivecharacterisationoftheir ecologyandgenomes,sunflowersareverysuitableforestablishing theoccurrenceofdifferenttypesofrepeats,theirtimingof amplifi-cationorreduction,andtherole(s)ofdifferentrepetitivesequences inthemaintenanceofauniquegenome.Exploringthediversityand evolutionarydynamicsoftransposableelementsinthesunflower (H.annuusL.)isofconsiderableimportanceforunderstandingthe evolutionaryhistoryofthis species,givenitslargegenomesize (3500Mbp)[9]andthewell-documentedcasesofretrotransposon amplificationwithinthegenus[10,11].

1.2. TheHelianthusgenus

TheAsteraceaefamilyisthelargestplantfamilyonEarth,with more than 24,000 described species, corresponding roughly to 10%ofallangiosperms[12].Asteraceaespeciesliveinanumber ofdifferentenvironments,includingforests, grasslands,deserts, wetlands, mountain tops, salt marshes, lawns, and agricultural fields[13].Theyincludeeconomicallyimportantcrops, wildflow-ers,valuablemedicinals,invasiveplants,andrangelandweeds[14]. Themostimportantcropisthecultivatedsunflower(H.annuusL.), whichranked14thin2012amongtheworld’sfoodcropsinterms ofareaharvested(http://www.fao.org/).

Helianthusincludes 49species, which arewidespread inthe continentalUnitedStates[15],althoughotherecotypesare assum-ingthestatus of thespecies[16].These speciesdiffer in many phenotypictraits,includingreproductivetiming,branching pat-terns,height[17,18],andespeciallyhabitatpreferences.Insome cases,species coexistinthesameenvironment,and interbreed-ing between species is very common [19], despite large-scale karyotypicdifferences[20,21]andhighlevelsofpollenandseed non-viabilityinthehybrids[22].

The described sunflower species, native to diverse environ-mentsthroughoutNorthAmerica,includeexamplesofallo-and

autopolyploids[23],ecologicallyisolatedsympatricandallopatric species[15],karyotypicallydivergentspecies[20,21,24],allopatric specieswithweakbarrierstogeneflow[15],andseveralhomoploid hybrids[25].Suchdiversityofspeciationmechanismsand barri-erstogeneflowmakesunfloweranidealmodelforunderstanding speciationandspeciesdivergence[26,27].

2. TheHelianthusgenomestructure

Sunflowergenomic DNAwas firststudied bythermal dena-turation and analysis of reassociation kinetics [28,29]. Fig. 1A showsthemeltingprofileandthefirstderivativecurveoftheDNA extractedfromrootsofseedlingsofaselfedsunflowerline.TheTm valueindicatesaGCcontentaround40%.Clear-cutshoulderswere observedbothonthelightandtheheavysidesofthederivative curves,indicatingthatminorspecificDNArepeatfamiliesoccurin thegenome[28,29].

Analysisofthereassociationcurves(Fig.1B)revealedthatthe genomeisorganisedintothreemainfractionsaccordingtotheir redundancy.Highlyrepeated(HR)sequencesaccountfor5%ofthe genome,mediumrepeated(MR)sequencesforaround60%,and theso-calleduniquesequencescomprisetheremaining35%ofthe genome[28,29].Thesameanalyses,performedondifferent sun-flowergenotypes,showeddifferences intherepetitivefractions (eitherHRorMR),reflectingvariationsinthegenomesize[28,29]. BiochemicalanalysesdidnotconsiderDNAsequencebutonly denaturation and reassociation kinetics of DNA. Therefore, the sequence composition of theisolated fractionwas not studied. Moreover,thoseanalysescouldnotevaluatetheoccurrenceinthe “unique”fractionofthegenomeofrareformsofrepeats,suchas retrotransposonremnants,thatwereexcludedfromtherepetitive component.

Therepetitivefractionofthesunflowergenomewas charac-terisedatthemolecularlevelusingaSanger-sequencedsmallinsert library[30].Thatlibraryprovidedafirstsetofsequences(1638,for atotalof954,517bp)thatwereused,incombinationwithslot-blot hybridisationandfluorescentinsituhybridisation(FISH),to ana-lysethecompositionofthegenomeintermsofrepeattypesand

Fig.1.(a)FirstderivativecurvesofthemeltingprofileofsunflowergenomicDNA.SmallshouldersindicatespecificA-TorG-Crichfamiliesofrepeats.(b)Reassociation

kineticsofthesameDNA(circles)andofDNAofE.coli(triangles).Horizontallinesseparategroupsofsunflowersequencesaccordingtotheirredundancy.

(3)

Table1

Percentagedistributionofdifferentfunctionalclassesofrepeatsinthesunflowergenome,basedondataofthesmallinsertSanger-sequencedlibrary[30]andmappingdata

ontheIlluminaplus454readsassemblies[40].Theobserveddifferencesaremainlyrelatedtothehugeamountofsequencedatapublishedbetween2010and2013:actually,

thepercentageofsequencesclassifiedasrepeatsbyNatalietal.[40]isnearlytwo-foldthatbyCavallinietal.[30].

Sequencetype Percentageinthesmallinsertlibrary[31] PercentageintheIlluminaplus454assemblies[39]

ClassI(retrotransposons) LTR-Copia 3.54 19.22

LTR-Gypsy 15.57 49.22

LTR-unknown 0.37 9.90

Non-LTR 0.43 0.71

Other/unclassified – 0.48

ClassII DNAtransposons 0.73 2.56

Tandemrepeats RibosomalDNA 1.16 0.35

Othertandemrepeats 0.37 0.60

Unknownrepeats 25.58 7.90

Total(classifiedasrepeats) 47.75 90.94

abundance.About62%ofthesequencesofthelibrarybelongedto therepetitivefraction,whileputativefunctionalgenesaccounted for4%.Thelargestcomponentwasmadeoflongterminalrepeat (LTR)retrotransposons (REs),especially of theGypsy superfam-ily.

Itappeared thatnotransposonfamilywasamplifiedtovery highlevelsinthesunflowerunlikeinotherspecies,inwhich spe-cificfamiliescanaccountforlargefractionsofthegenome[31–34]. Allknowntypesofrepetitiveelementswerefoundinthelibrary, althoughsomeclasses(i.e.,ClassIItransposableelements)were scarcelyrepresented.Onerepeatfamilyofunknownnature(the so-calledContig 61)wasshown tobethemostrepeatedinthe sunflowergenome[30].

DuetodramaticadvancementsofDNAsequencingtechnology in thepastdecade that have madesequencing and assembling a new genome more practical and much less expensive [35], thesunflowergenomeiscurrentlybeingsequenced,despiteits large size [36]. Next-generation sequencing technologies were usedtocharacterisetherepetitivecomponentof thesunflower genome.Statonet al. [37]have analysed approximately25% of thegenomeusing454randomsequencingandshowedthatthe sunflowergenomeis composedofmore than81% transposable elements, 77% of which were LTR-REs. The LTR-REs were also studiedin bacterialartificialchromosomes (BAC) clones, which resulteddisproportionatelycomposedofGypsyLTR-REs contain-ingachromodomain(“chromoviruses”)[38],withthemajorityof theintactchromovirusesshowingchromodomaintandem dupli-cations[37].

Inotherexperiments[39,40],Illuminaand454sequencing tech-nologieswereusedtoproduceawholegenomesetofsequencesof sunflowerbydifferentcomputationalassemblyapproaches. Map-ping a largesample of Illumina reads to this set of sequences (composedof 283,300 contigs)provided a pictureof sunflower genomecomposition[40].ConsideringthatIlluminareadsare sam-pledwithoutbiasforparticularsequencetypes,thepercentageof readsthatmatchedtoarepeatclassshouldindicatetheproportion ofthatclassinthegenome.Mappingresults,and,hence,sunflower genomecomposition,aresummarisedinTable1,inwhicha com-parisontoresultspreviouslyobtainedbyCavallinietal.[30]isalso reported.Thedifferentresultsobtainedfromanalysingthesmall insertlibraryaremainlyrelatedtothehugeamountofsequence datapublishedfrom2010to2013;specifically,thepercentageof sequencesclassifiedasrepeatsbyNatalietal.[40]isnearlytwo-fold thatbyCavallinietal.[30].

MappingresultsconfirmedthatLTR-REswerebyfarthemost abundantclassofsequencesinthesunflowergenome, account-ingforatleast79.53%ofthereadsmatchingthecontigs.Theratio betweenGypsy and CopiaREfrequencies in thewholegenome amounted to 2.29. This ratio is generally species-specific. The GypsytoCopiafrequencyratioisevenhigherinpapaya(5:1)[41], sorghum(4:1)[42],andrice(3:1)[43]comparedtosunflower.In

othercases,suchasinmaize[31]andolive[44],asimilarabundance ofthetwosuperfamilieswasobserved.Ingrapevine,anopposite trendwasfound,withCopiaelementsrepresentingtwo-foldmore thanGypsy[45].

3. RepeattypesintheHelianthusgenome

3.1. TheSUNREPdatabase

Adatabaseofrepetitivesequencesofsunflowerwasobtainedby subdividingthepreviouslydescribedwholegenomesetof assem-bled sequences[40] according totheaveragecoverage of each sequence.Thedatabase(SUNREP)isavailableattheDepartment ofAgriculture,Food,andEnvironmentofPisaUniversitywebsite ( http://www.agr.unipi.it/ricerca/plant-genetics-and-genomics-lab/sequence-repository.html).

The distribution of different sequence types in SUNREP is reportedinTable2.Around11%ofsequencesdidnotfindanyhits inthepublicdatabasesusedforannotation.Amongtheannotated sequencetypes,REsandespeciallyLTR-REswereclearlythemost represented.Ofthese,elementsbelongingtotheGypsysuperfamily were2.3-foldmorerepresentedthanthosebelongingtotheCopia superfamily.

TheassembledsequencesformingSUNREPwerealsoanalysed toestimatetheoccurrenceoffamilies(i.e.,composedofatleasttwo sequences)withineachrepeatclassorsuperfamily.Themost repre-sentedfamily,belongingtotheGypsyLTR-REsuperfamily,included only96sequences,andonlyfourGypsyfamilieswerecomposedof Table2

FunctionalpercentagedistributionofthesequencesintheSUNREPdatabase,as

reportedinNatalietal.[40].

Sequencetype Number(%)

ClassI(retrotransposons) Unclassified 192(0.40) LTR-Copia 8605(17.96) LTR-Gypsy 19,726(41.16) LTR-unknown 5636(11.76) Non-LTR 261(0.54) Pararetrovirus 11(0.02) ClassII(DNAtransposons) Unclassified 373(0.78) Tc1Mariner 5(0.01) hAT 67(0.14) Mutator 101(0.21) PIF-Harbinger 18(0.04) CACTA 64(0.13) Helitron 324(0.68) MITE 382(0.80) Tandemrepeats rDNA 84(0.18) Othertandemrepeat 385(0.80)

Putativegenes 483(1.01)

Unknownrepeats Unclassified 4739(9.89) Contig61-type 957(2.00)

Nohitsfound 5511(11.50)

(4)

morethan50sequences.Consideringthe30mostnumerous

LTR-REsfamilies,thevastmajoritybelongedtotheGypsysuperfamily.

Amongthe30mostnumerousDNAtransposons,themostcommon

familiesbelongedtothehelitronclass,followedbyputative

minia-tureinverted-repeattransposableelements(MITEs).Overall,the

numberofsequencescomprisingafamilywasgenerallylow,

con-firmingthattherearenotprominentrepeatfamiliesinthisspecies

[30,37].

3.2. LTR-retrotransposons

ThefirstREsequencefragmentofsunflowerwasisolatedbyPCR usingtheuniversalprimersdesignedfromtheCopia retrotranscrip-tasedomain[46].TheREcomponentofthesunflowergenomewas analysedindetailusingtwosequencesisolatedfromagenomic DNAlibrary,pHaS13andpHaS211:theformerrepresenting por-tionsoftheintegrasegeneofaGypsyretroelementandthelatter correspondingtoanRNase-HgeneofaCopiaretroelement[47,48]. Southernblottingpatternsobtainedbyhybridisingthetwoprobes torestrictedgenomicDNAfromdifferentHelianthusspeciesand fromotherAsteraceaespeciesshowedpHaS13andpHaS211were partsofdispersedrepeatsatleast8and7kbinlength,respectively. Insitu hybridisation experiments showed that sequences of both Gypsyand Copia superfamilies weredispersed throughout allchromosomesinH.annuus[30,47].However,Gypsysequences werelocalisedpreferentiallyatthecentromericregions,whereas Copia sequences were less represented or absent around the centromeres;onlyoneCopiasequencewasplentifulatthe chro-mosomeends.

AlthoughGypsyandCopiaLTR-REsarebyfarthemajor frac-tionofsunflowerrepetitiveDNA,largenumbersofsequenceswere identifiedasLTR-REs,ofwhichthesuperfamilycouldnotbe deter-mined[40,49].Suchelements,calledTRIMsorLARDs[50,51],are non-autonomous,usuallyspecies-specific,andlackanydistinctive protein-codingsequences.

Thelargenumber ofobserved REs indicatestheyhave been activelyreplicatingduringtheevolutionof H.annuus.Thelarge abundanceofGypsyelementscomparedtoCopiacanbeexplained bythreehypotheses,notmutuallyexcluding:(i)Gypsyelements havebeenmoreactiveduringsunflowerevolution;(ii)theyhave beenactivemorerecently,sothataremoreeasilyrecognisableby similaritysearches,havingbeensubjectedtofewermutations;and (iii)theyhavebeenlesspronetoDNAremoval.

TostudyREdynamicsindetail,itisnecessarythatfull-length elementsareavailable.Full-lengthREshaveabuilt-inmolecular clockusefulforestimatingtheirinsertiontimes,basedon sister-LTRdivergence.Infact,whenanREinsertsintothegenome,its LTRsareusually100%identical[52].Mutationsthenoccurwithin thetwoLTRs,andasmoretimepassessincetheinsertion,thelarger thegeneticdistancebetweenLTRs.Hence,theREinsertiontimecan beestimatedusinganucleotidesubstitutionratesuitableforsuch elementsthatisassumedtobehigherthanthatofgeneregions [53–55].

Sunflowerfull-lengthLTR-REswereidentifiedanalysinglarge sequencesbelongingtoBAClibraries[37,49,55].Inparticular,Buti etal.[49]performedafineannotationofthreeBACclones, iden-tifying18full-lengthLTR-REs.Insomecases,REsformednested structures,withoneelementinsertedintoanother,similartothose commonlyfoundinmaize[53].Analysisoftheinsertiontimeof full-lengthREsshowedthattheyinsertedrelativelyrecently(during thepast3millionyears).Gypsyelementsweregenerallyyounger thanCopia,thoughsomeCopiaelementswererelativelyyoung,as well(Fig.2)[49].Statonetal.[37]confirmedandextendedthese findings,showingthat mostintactLTR-REs likelyhave inserted sincetheoriginofH.annuus,providingfurtherevidencethatbiased

Fig.2.DistributionsofCopia,Gypsyandunknownfull-lengthelementsidentifiedin

threesequencedBACclonesaccordingtotheirestimatedinsertionages(millionsof

years,MYRS).Meaninsertionageforeachsuperfamilyisreportedinparentheses.

Redrawnfrom[49].

LTR-REactivityhasplayedamajorroleinshapingtheDNA land-scapeofthesunflowergenome.

That retrotransposition in sunflower has been and is prob-ably still occurringis also indicated by recent studiesshowing that sunflower LTR-REs are transcriptionally active [30,56−58]. Forexample,RT-PCRdatashowedthatbothCopiaandGypsyREs transcriptionoccurredinallanalysedsunflowerorgans(embryos, leaves, roots, and flowers). Transcription was apparently not inducedbyenvironmentalfactorsorcultureconditions.Analyses madeonprogeniesofaselfedlineshowedoneoutof64individuals exhibitedtheintegrationofanewelementintothegenome[57].

Similar results were obtained by Kawakami et al. [58]. In theirtranscriptionalassays,multiplelineagesofGypsyandCopia elements were found to be active in natural populations of H. annuus and H. petiolaris and in their natural interspecific hybrids.Inthesespecies,transcriptionalactivitywasnot associ-atedwithcopy number increases,suggestingtheoccurrence of strongpost-transcriptionalmechanismsofrepressionthatreduce themutagenicpotentialityofREtransposition[59].Infact,REscan inactivategenesafterinsertingwithinornearbygenesequences, asobservedinsunflowergenesencodinga 2-methyl-6-phytyl-1,4-benzoquinonemethyltransferase[60]andalipidtransferprotein [49].

Itis knownthat LTR-REsaresubjectedtobothamplification andremoval[61–63].TheREremovalisdriveninplantsbyDNA rearrangements,illegitimaterecombination,andunequal homol-ogousrecombinationvia anumber ofmechanisms,suchasthe repairofdouble-strandbreaks(non-homologousend-joining)and slipstrandmispairing[33,56,64–67].

The occurrence of unequal homologous recombination typi-callyproducetheso-calledsolo-LTRs.MappingIlluminareadsto asetofintactLTR-REsindicatedtheoccurrenceofnumerous solo-LTRsformanyofthetestedREfamilies(Fig.3).Natalietal.[40] suggestedthatmassiveamplificationoftheseelementsinthe sun-flowergenome waspartly counterbalancedbysubstantial DNA loss,especiallyrelatedtoGypsyelements.However,inotherstudies onsunflowerrepeats,solo-LTRshave beenfoundforCopia ele-ments,aswell[30,37].

3.3. Theso-called“Contig61”

Clusteringanalysisofsequencesintheshortinsertlibrary[30] producedmanycontigsrepresentingrepetitiveDNAsequences.Of these,thelongestcontig(Contig61)wasidentifiedasthemost repeatedinthesunflowergenome,witharedundancyof27,000 copiesperhaploidgenome,estimatedbyslot-blotand hybridisa-tion.

(5)

Fig. 3.Distribution of sunflower LTR-retrotransposons according to the ratio

betweenredundancies(measuredby averagecoverage)ofLTRsandinter-LTR

regions(datainclude9retrotransposonsanalysedbyCavallinietal.[30]and19

analysedbyNatalietal.[40]).

ManycontigssharinghighsequencesimilaritytoContig61were alsofoundintheSUNREPdatabase.Mappingthesecontigswitha largesetofIlluminareadsestablishedthatthisrepeataccountsfor 2.81%ofthegenome[40].

Southern analysis confirmed high redundancy of Contig 61 repeats, with heavy labelling and many bands. The use of isoschizomereswithdifferentsensitivities tocytosine methyla-tioninthetargetsiteshowedthatthisrepeatedelementishighly methylated[30].

When hybridising sequences belonging to Contig 61 to metaphasechromosomesofH.annuus,scatteredlabelling through-outallchromosomeswasobserved,indicatingwidedispersalof DNAsequences[30].

The occurrence and redundancy of sequences belonging to Contig 61 were alsostudied in species belongingto thegenus Helianthus,bothannualandperennial,andtootherAsteraceaeby slot-blothybridisation[30].InHelianthus, thehybridisation sig-nalswereasstrongasthoseobservedinsunflower;inperennial species,theywerestrongerthaninannuals.Theseresultsindicate thatamplificationofthissequenceshouldhaveoccurredinthe pro-genitoroftheHelianthusgenus,and,aftersplittingbetweenannuals andperennials,amplificationhasoccurredintheperennial ances-torand/orlossofsequenceshasoccurredintheannualancestor. RegardingtheotherAsteraceae,someofthesequencesbelongingto Contig61alsoshowedstronghybridisationsignalstoViguiera mul-tifloragenomicDNA.ThegenusViguieraisconsideredtheclosest relativetoHelianthus.BecauseContig61isalsoapparentlyhighly repeatedinViguiera,itispresumablethattheinitialamplification ofthisrepeatpredatestheoriginofthegenusHelianthus.

Sequence analysis of Contig 61 and of related sequences obtained after Illumina and 454 assemblies revealed no struc-turalfeaturethatcouldhelpintheclassificationofthisfamilyof sequences,which,therefore,awaitsfurthercharacterisationand whosenatureremainsunknown.

3.4. Tandemrepeats

Onlyafewtandemrepeatshavebeencharacterisedinthe sun-flowergenome.Infact,onlyasmallnumberofcontigscontaining

tandemrepeatswerefoundinSUNREP.Mappingthesecontigswith alargesetofIlluminareadsestablishedthatribosomalDNA(rDNA) andothertandemrepeatsaccountforonly0.35%and0.60%ofthe genome,respectively[40].

TherDNAwaslocalisedinchromosomesbyinsitu hybridisa-tion[68].Fourchromosomepairswerelabelledattheendoftheir shortarm.Ofthese,threepairs showedsecondaryconstrictions andstronghybridisationsignals.Twoothersignalswere puncti-formattheendoftheshortarmofachromosomepairwherea satellitewasneverobserved.Thesefindingsareinagreementwith thoseobtainedbySchraderetal.[69]regardingthenumberof satel-litepairsandthosethatbearrDNAbutcontrastwiththeirresults regardingthelabellingintensity,sincetheyobservedfourstrong andfourweaksignals.

Two other tandem repeats, the sequences HAG004N15 and HAG002P01,were isolatedin thesmallinsertlibrary and char-acterised.HAG004N15was1071bpinlengthandwasmadeup of three tandemly arranged repeats having a lengthof 368bp, which falls into the typical range of satellite DNAs [70]. The CAAAAorGAAAAmotifs,previouslyassociatedwiththe amplifi-cationofrepeatedsequences[71,72],werefoundbetweenrepeats. SouthernhybridisationwithHAG004N15asaprobeproducedthe expectedladderpatternafterdigestionofgenomicDNAwith cyto-sinemethylation-sensitiveenzymes,showingthatthissequenceis highlymethylated.Itscopynumberperhaploid(1C)genomewas estimatedtobe7800.

AfterinsituhybridisationofHAG004N15repeats[68],allthe chromosomes were labelled at discrete regions (Fig. 4). Using an image analyser, the labelling was precisely localised in the metaphasechromosomes, despite theirnumber (2n=34),small size, and similar morphology (Fig. 4). The FISH signals were observedattheendsofbothchromosomearmsinfourpairsandat theendofonlyonearmineightotherpairs.HAG004N15repeats werenotfoundinthecentromericchromosomalregions,exceptfor onepair,wherethehybridisationsignalsreachedthecentromere intheshortarm,which wasentirelylabelled.Signalswerealso observedattheintercalary(mostlysub-telomeric)regionsinall thepairs,inbotharmsineightpairs,andinonlyonearminthe otherninepairs.

ThechromosomallocalisationofrDNAandHAG004N15repeats formedapatternthatallowedallofthecomplementpairstobe distinguishedfromeachother[68].Thishybridisationpatternwas thesameindifferentsunflowergenotypes.

Theredundancy ofHAG004N15 and thechromosomal local-isationofHAG004N15 andofrDNAwerealsostudiedinannual andperennialspeciesofHelianthusandinotherAsteraceae[73]. HAG004N15sequences,whichdidnotshowamplificationinother AsteraceaeexceptViguieramultiflora, wereredundantin allthe Helianthus species tested, but theirfrequency wassignificantly higherinperennialscomparedtoannuals.Thesesequenceswere locatedattheendsandintercalaryregionsofallchromosomepairs ofannualspecies.Asimilarpatternwasfoundintheperennials,but ametacentricpairintheircomplementwasnotlabelled.Ribosomal geneswerecarriedontwochromosomepairsinperennialsandon threepairsinannuals,exceptforH.annuus,whererDNAlociwere onfourpairs.Thesefindingssupportthehypothesisthatthe sep-arationbetweenannualandperennialHelianthusspeciesoccurred throughinterspecifichybridisationinvolvingatleastonedifferent parent[74].However,genomicinsituhybridisationinH.annuus (usingDNAfromtheperennialH.giganteusasblockingDNA)failed torevealdifferentgenomicassetsinannualandperennialspecies. The othertandemrepeat isolatedin thesmall insertlibrary [30],HAG002P01,wasestimatedtobepresentin2600copiesper haploid genome.Using this sequenceas aprobe, FISHrevealed an interspersed distribution withpossible enhanced hybridisa-tionatthecentromericregionsofmanychromosomes,indicating

(6)

Fig.4. (a–c)MetaphaseplateofH.annuuslineHA89afterDAPIstaining(a)andhybridisationwithHAG004N15repeats(b;fluorescein)orpTa71ribosomalprobe(c;Cy3).

Numeralsindicatemembersofeachchromosomepair.Bar=10␮m(fromCeccarellietal.[68],CharacterisationofthechromosomecomplementofHelianthusannuusby

insituhybridisationofatandemrepeatedDNAsequence.Genome,50:429–434,©CanadianSciencePublishingoritslicensors);(d)Idiogramofthehaploidchromosome

complementshowingthedistributionofHAG004N15-relatedtandemrepeats(yellow)andofribosomalcistrons(red).Thechromosomesaresubdividedintotwogroups,

fouracrocentricandthirteenmeta-tosubmetacentricpairs,andarrangedwithineachgroupaccordingtothetotallength,accordingtoRaicuetal.[88]classification.(For

interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

thatHAG002P01mayhavepreferentialparacentromeric localisa-tion.

3.5. Otherrepeattypes

Thenon-LTR-REswerepoorlyrepresentedintherepetitive frac-tionof the sunflowergenome, as frequentlyobserved in other plants. Putative DNA transposons accounted for a number of sequences.However,afractionofsuchsequenceswereclassified asDNAtransposonsonlybyvirtueofasequencesimilaritytothe shortdomainofthetransposasegene.AmongDNAtransposons,a prevalenceofMITEs[75]andhelitrons[5]wasobserved[40].

Interestingly, according to BLAST analysis, many repetitive sequences of the SUNREP database showed similarity to puta-tive protein-coding genes (Table 2) [40]. The most redundant gene family encodes the NBS-LRR class of proteins, receptors that recognisehighly variable pathogen effectors[76].Another redundantgenefamilyencodeDNAJproteins,whichfunctionin associationwithHsp70molecularchaperonestofacilitateprotein

folding and play an active role in regulating normal cellular events like protein degradation, morphogenesis, and cell cycle progression[77].Thethirdredundantgenefamilyisvery heteroge-neous,encodingproteinswithunspecifiedprotein-kinasedomains that areinvolved in the transductionof signals tobinding fac-tors,centromeres,andothereffectors.Inadditiontonon-specific kinases,serine/threonine/tyrosinekinasesalsowerefoundamong redundantgenefamilies.Finally,anotherredundantgenefamily encoding F-boxmotif-containing proteinswasidentifiedbythe presenceofproteininteractiondomainsthatbindubiquitination targets[78].

The occurrence of putative genes among repetitive DNA sequencesoftheSUNREPdatabasedeservesadditionalcomments. Insomecases,suchsequencesshowedsimilaritytogenefamilies alreadyknowntoberepeatedinplantgenomes,suchasNBS-LRR genes[76].In othercases,it islikely thatgeneportions encod-ingfunctionaldomains,andnotcomplete,full-lengthgenes,are apparentlyredundant.Forexample,F-boxproteinsincludealarge varietyoftypesthatshareashortmotif[78].Italsocouldbethatfor

(7)

otherassembledcontigs,agene(oragenefragment)liescloseto arepeatedsequence,andtheredundancyofthatcontigisrelated totherepeatedsequenceandnottothegenesequence.Itshould benotedthatSUNREPiscomposedofarelativelyhighnumberof putativehelitrons(Table2)knowntoincludeexonfragmentsin theirsequences[5],whichmightbepartiallyresponsibleforthe relativelyhighfrequencyofgenefragmentsinthedatabase.

4. RetrotransposonsintheevolutionoftheHelianthus genus

Southern blotting patterns obtainedby hybridising the first isolated Gypsy and Copia RE fragments (pHaS13 and pHAS211, respectively) [47] to restricted genomic DNA from different HelianthusspeciesandfromotherAsteraceaeshowedthatthese elementswereconservedinallHelianthusspeciesstudiedand,to alesser extent,in Tithoniarotundifolia,a speciesbelongingtoa genusstrictlyclosetoHelianthus[47,48].Comparablehybridisation patternswereobtainedinallHelianthusspeciesusingtheGypsy pHaS13asa probe.Conversely,thepatternsobtainedby hybri-dising theCopia pHAS211 clearly differentiated annual species fromperennials[47],attestingadifferentamplificationhistoryof thetwo superfamiliesof LTR-REsin theevolution ofthegenus Helianthus[30].

Asobserved in H.annuus, FISH analysis of Gypsy and Copia sequencesconfirmedscatteredlabellingthroughoutallmetaphase chromosomesalsoindifferentspeciesofHelianthus[48].However, preferentiallocalisationofGypsysequencesatcentromeric chro-mosomeregions wasobservedin allofthespecies.Conversely, Copiasequencesshowedpreferentiallocalisationatthe chromo-someendsonlyinH.annuus.

Theevolution of therepetitivecomponent in theHelianthus genusandinotherAsteraceaewasstudiedbycomparativeanalysis ofthehybridisationofgenomicDNAsisolatedfromthesespecies tothesunflowersmallinsertlibrary(Fig.5),whichrevealedsome similarityonlybetweenHelianthusspeciesandViguieramultiflora. RegardingREs,comparablehybridisationpatternswereobserved amongHelianthusspecies,whilenohybridisationoccurredusing otherAsteraceae.SuchresultsindicatethespecificityofREfamilies totheHelianthusgenus.

AninterestingexampleofhowREshaveaccompaniedthe evo-lutionofspecieswithinthegenusHelianthusconcernsthemassive amplificationoftransposableelementsafterinterspecific hybrid-isationoccurredinthree species ofsunflowers, H.anomalus,H. deserticola,andH.paradoxus[10].Allofthemoriginatedby hybrid-isationbetweentwoancestralspecies,H.annuusandH.petiolaris

Fig.5. ExamplesofhybridisationpatternsoflabelledgenomicDNAfromdifferent

speciesto36clonesofthesunflowersmall-insertlibrary,spottedinanon-regular

duplicatearrangement.Forfourclones,theputativeannotationisreported:forthree

ofthese,hybridisationisobservedintheDNAofthetwoHelianthusspeciesandin

Viguieramultiflora;rDNAcontainingcloneislabelledalsoinXanthiumstrumarium

DNA.Forthetechnicalproceduresee[30].

[25]andhavethesamechromosomenumber(n=17)andgenome sizesatleast50%largerthantheirparentalspecies.Suchgenome sizeincreaseispartiallyexplainedbyproliferationofGypsyand,to alesserextent,ofCopiaLTR-REsinhybrids[10,11].

In particular,Gypsy sequenceswerefirst shown tobemuch moreredundantinthethreehybrids[10].Ungereretal.[79]later demonstratedthatGypsyREsexistasmultiple,well-supported sub-lineagesinboththeparentalandhybridderivativespeciesandthat thesesequencesunderwentproliferationineachhybridspecies’ genome,occurringapproximately0.5–1millionyearsago.

In contrastto Gypsy,theburst of transpositionof CopiaREs variedamonghybridspeciesandwasmostpronouncedinH. para-doxus,aspeciesadaptedtosalineenvironments(H.anomalusand H.deserticolaarefoundindesert-likehabitats).Althoughexternal stressfactorsmaycontributetode-repressionoftransposable ele-ments[80],theassociationbetweenhabitatandREfrequencymay bepurelycoincidental.CopiaRElineagesunderlyingtheburstare ancientandpredatetheoriginofthesunflowergroup.However, themajority(70%)ofsequenceswerederivedfromasinglelineage ofelements,whichimplicatesarecentproliferationevent[79].

5. Retrotransposonsasmolecularmarkersinsunflower

TheLTR-REsinplantgenomeshavebeenemployedto gener-atemolecularmarkers [81,82].In fact,theubiquity,abundance, dispersion,anddynamismof theseelementsmakethem excel-lenttoolstoexploregeneticvariabilityevenwithinspecies[83]. ThemethodsgenerallyrelyonPCRamplificationbetweena con-served RE feature, most often the LTR, and another abundant,

Fig.6. IRAPfingerprintsobtainedwithLTR-Copiaspecificprimers[86]ineight

individuals(A–H)belongingtoawildaccession(USDA-PI597907)ofH.annuus.

Molecularweightmarker(M,GeneRulerDNALadderMix,Fermentas)wasalso

(8)

dispersed,conservedfeatureinthegenome.Thissecondsitemaybe arestrictionsiteadapterinsequence-specificamplified polymor-phism(SSAP)[84],amicrosatelliteinRE-microsatelliteamplified polymorphism(REMAP)[85],oranotherREininter-REamplified polymorphism(IRAP)[85].Thesemethodsidentifygeneticvariants relatedtotheinsertion/lossofaretroelementortoDNAsequence variations(nucleotidesubstitutionsorindels),whicharecommon withinREsbecauseoftheerror-pronemodeofretrotranscription usedbytheseelementsand extensiveDNA methylationwithin RE-richgenomeregions.

TheIRAPprotocolwasappliedwithinthegenusHelianthusto assessintraspecificvariabilitybasedonREsequencesamong 36 wildaccessionsand 26 cultivars of H.annuus and interspecific variability among 39 species of Helianthus [86]. Two groups of LTRs,onebelongingtoaCopiaretroelementandtheothertoan REofunknownnature,wereisolatedandsequenced,andprimers weredesignedtoobtainIRAPfingerprints.AnexampleofIRAP fin-gerprintsin plants ofa wildaccessionof H.annuus isreported in Fig.6. Thenumber ofpolymorphic bands and RE variability amongH.annuuswildaccessionsareashighasamongdifferent Helianthusspecies.Conversely,RE-relatedvariabilitywasreduced amongdomesticatedH.annuus.

LargeRE-relatedvariability wasalsofoundamongsunflower inbredlines[87].Itwasobservedthatbetween-linegenetic dis-tance correlated to heterosis in hybrids between those lines, suggesting that variations in the repetitive component of the genome,especiallyLTR-REs,affectthedisplayofheterosis.

6. Conclusionsandperspectives

Repetitive DNA and especially transposons apparently have a central role in the biology and evolution of plants. These sequencescanalsobeemployedtogeneratemolecularmarkers that have proved efficient in distinguishingeven similar geno-types.

TherepetitivecomponentoftheH.annuusgenomehasbeen studiedatthebiochemical, cytological,molecular,and genomic levels.Data are now availablethat indicate a genomemade of alargenumberof LTR-REs,especiallyof theGypsy superfamily. TheLTR-REs areapparently expressed, and theREburstseems tobe unexhausted as shown by therelatively recent insertion timesofmany REs.It isalsoworthnoting thelargenumber of LTR-REsofunknownnature,whichhavebeen(andpresumably are) active because of enzymes produced by intact retroele-ments.

Theconsequencesof suchREmobilisationareevident when observing theevolution of Helianthus interspecific hybrids that probablyhavecompletedtheirspeciationbecauseofchromosomal differentiationfromparentalspeciesduetoinsertionsof transpos-ableelements.

Manydataarealsoavailableonotherrepeatedsequences,such ashelitrons,whoseredundancyisrelativelyhighcomparedtothat foundinotherspecies.Allthesedatacanbecombinedtoproduce acollectionofsequencesthatwillbeusefulintheannotationof thesunflowergenomesequencewhenitiscomplete.Untilthen, theenormousmassofavailabledatawillbeusefulforcomparative studiesongenomeevolutioninagenus(Helianthus)thathasbeen studiedattheevolutionaryandecologicallevelsandespeciallyfor itsprotein-codingcomponents.ThecompletionoftheH.annuus wholegenomesequenceinconjunctionwiththeavailabilityofnew sequencingtechniquesallowingtheproductionofverylargeDNA sequences(i.e.,Pac-Biotechnology)willbeusefulforcomparative studiesamongHelianthusspeciesandaccessionsandforclarifying manyaspectsofgenomeevolutioninthisgenus.

Acknowledgements

ThisworkwassupportedbyPRIN-MIUR,Italy,Project “SUN-REP:caratterizzazionemolecolaredellacomponenteripetitivadel genomadigirasole”.

References

[1]J.Greilhuber,T.Borsch,K.Müller,A.Worberg,S.Porembski,W.Barthlott, SmallestangiospermgenomesfoundinLentibulariaceae,withchromosomes ofbacterialsize,PlantBiol.8(2006)770–777.

[2]J.Pellicer,M.F.Fay,I.J.Leitch,Thelargesteukaryoticgenomeofthemall?Bot. J.LinneanSoc.164(2010)10–15.

[3]R.J.Britten,Transposableelementinsertionshavestronglyaffectedhuman evolution,Proc.Natl.Acad.Sci.U.S.A.107(2010)19945–19948.

[4]M.Morgante,E.DePaoli,S.Radovic,Transposableelementsandtheplant pan-genomes,Curr.Opin.PlantBiol.10(2007)149–155.

[5]M.Morgante,S.Brunner,G.Pea,K.Fengler,A.Zuccolo,A.Rafalski,Gene dupli-cationandexonshufflingbyhelitron-liketransposonsgenerateintraspecies diversityinmaize,Nat.Genet.37(2005)997–1002.

[6]R.K.Slotkin,R.Martienssen,Transposableelementsandtheepigenetic regula-tionofthegenome,Nat.Rev.Genet.8(2007)272–285.

[7]D.A.Rasmussen,M.A.F.Noor,Whatcanyoudowith0.1×genomecoverage? AcasestudybasedonagenomesurveyofthescuttleflyMegaseliascalaris (Phoridae),BMCGenomics10(2009)382.

[8]R.M. Lee, J. Thimmapuram, K.A. Thinglum, G. Gong, A.G. Hernandez, C.L. Wright, et al., Sampling the waterhemp (Amaranthus tubercula-tus) genome using pyrosequencing technology, Weed Sci. 57 (2009) 463–469.

[9]E.J.Baack,K.D.Whitney,L.H.Rieseberg,Hybridizationandgenomesize evo-lution:timingandmagnitudeofnuclearDNAcontentincreasesinHelianthus homoploidhybridspecies,NewPhytol.167(2005)623–630.

[10]M.C.Ungerer,S.C.Strakosh,Y.Zhen,Genomeexpansioninthreehybrid sun-flowerspeciesisassociatedwithretrotransposonproliferation,Curr.Biol.16 (2006)R872–R873.

[11]T.Kawakami,S.C.Strakosh,Y.Zhen,M.C.Ungerer,DifferentscalesofTy1/copia likeretrotransposonproliferationinthegenomesofthreediploidhybrid sun-flowerspecies,Heredity104(2010)341–350.

[12]P.Stevens,AngiospermPhylogeny,2010,Availablefromhttp://www.Mobot.

Org/mobot/research/apweb/

[13]V.Funk,A.Susanna,T.Stuessy,R.Bayer,Systematics,Evolutionand Biogeog-raphyoftheCompositae,InternationalAssociationofPlantTaxonomy,Vienna, Austria,2009.

[14]H.Dempewolf,L.H.Rieseberg,Q.C.Cronk,Cropdomesticationinthe Com-positae:afamily-widetraitassessment,Genet.Resour.CropEvol.55(2008) 1141–1157.

[15]C.B.Heiser,D.M.Smith,S.Clegenger,W.C.Martin,TheNorthAmerican sun-flowers(Helianthus),Mem.TorreyBot.Club22(1969)1–218.

[16]B.T.Moyers,L.H.Rieseberg,Divergenceingeneexpressionisuncoupledfrom divergenceincodingsequenceinasecondarilywoodysunflower,Int.J.Plant Sci.174(2013)1079–1089.

[17]D.M. Rosenthal,A.E.Schwarzbach,L.A. Donovan,O. Raymond,L.H. Riese-berg,Phenotypicdifferentiationbetweenthreeancienthybridtaxaandtheir parentalspecies,Int.J.PlantSci.163(2002)387–398.

[18]D.M. Rosenthal, L.H.Rieseberg, L.A. Donovan, Re-creatingancient hybrid species’complexphenotypesfromearly-generationsynthetichybrids:three examplesusingwildsunflowers,Am.Nat.166(2005)26–41.

[19]L.H.Rieseberg,S.J.E.Baird,A.M.Desrochers,Patternsofmatinginwild sun-flowerhybridzones,Evolution52(1998)713–726.

[20]J.M.Burke,Z.Lai,M.Salmaso,T.Nakazato,S.Tang,A.Heesacker,etal., Compar-ativemappingandrapidkaryotypicevolutioninthegenusHelianthus,Genetics 167(2004)449–457.

[21]Z.Lai,T.Nakazato,M.Salmaso,J.M.Burke,S.Tang,S.J.Knapp,etal., Exten-sivechromosomalrepatterningandtheevolutionofsterilitybarriersinhybrid sunflowerspecies,Genetics171(2005)291–303.

[22]L.H.Rieseberg,M.J.Kim,G.J.Seiler,Introgressionbetweenthecultivated sun-flowerandasympatricwildrelative,Helianthuspetiolaris(Asteraceae),Int.J. PlantSci.160(1999)102–108.

[23]R.E.Timme,B.B.Simpson,R.C.Linder,High-resolutionphylogenyforHelianthus (Asteraceae)usingthe18S-26SribosomalDNAexternaltranscribedspacer,Am. J.Bot.94(2007)1837–1852.

[24]J.M.Chandler,C.C.Jan,B.H.Beard,Chromosomaldifferentiationamongthe annualHelianthusspecies,Syst.Bot.11(1986)354–371.

[25]L.H.Rieseberg,HomoploidreticulateevolutioninHelianthus(Asteraceae): evi-dencefromribosomalgenes,Am.J.Bot.78(1991)1218–1237.

[26]L.H.Rieseberg,C.R.Linder,G.J.Seiler,Chromosomalandgenicbarriersto intro-gressioninHelianthus,Genetics141(1995)1163–1171.

[27]N.C.Kane,J.M.Burke,L.Marek,G.Seiler,F.Vear,G.Baute,S.J.Knapp,etal., Sunflowergenetic,genomicandecologicalresources,Mol.Ecol.Res.13(2013) 10–20.

[28]A.Cavallini,C.Zolfino,G.Cionini,R.Cremonini,L.Natali,O.Sassoli,etal.,Nuclear DNAchangeswithinHelianthusannuusL.:cytophotometric,karyologicaland biochemicalanalyses,Theor.Appl.Genet.73(1986)20–26.

(9)

[29]L.Natali,A.Cavallini,G.Cionini,O.Sassoli,P.G.Cionini,M.Durante,Nuclear DNAchangeswithinHelianthusannuusL.:changeswithinsingleprogenies andtheirrelationshipswithplantdevelopment,Theor.Appl.Genet.85(1993) 506–512.

[30]A.Cavallini,L.Natali,A.Zuccolo,T.Giordani,I.Jurman,V.Ferrillo,etal.,Analysis oftransposonsandrepeatcompositionofthesunflower(HelianthusannuusL.) genome,Theor.Appl.Genet.120(2010)491–508.

[31]B.C.Meyers,S.V.Tingey,M.Morgante,Abundance,distribution,and transcrip-tionalactivityofrepetitiveelementsinthemaizegenome,GenomeRes.11 (2001)1660–1676.

[32]C.M. Vicient,R. Kalendar, A.H. Schulman,Variability, recombination,and mosaicevolutionofthebarleyBARE-1retrotransposon,J.Mol.Evol.61(2005) 275–291.

[33]P.Neumann,A.Koblizkova,A.Navratilova,J.Macas,Significantexpansionof Viciapannonicagenomesizemediatedbyamplificationofasingletypeofgiant retroelement,Genetics173(2006)1047–1056.

[34]C.Vitte,J.L.Bennetzen,Analysisofretrotransposonstructuraldiversity uncov-erspropertiesandpropensitiesinangiospermgenomeevolution,Proc.Natl. Acad.Sci.U.S.A.103(2006)17638–17643.

[35]E.R.Mardis,Theimpactofnext-generationsequencingtechnologyongenetics, TrendsGenet.24(2008)133–141.

[36]N.C. Kane, N. Gill, M.G. King, J.E. Bowers, H. Berges, J. Gouzy, et al., Progress towards a reference genome for sunflower, Botany 89 (2011) 429–437.

[37]S.E.Staton,B.H.Bakken,B.K.Blackman,M.A.Chapman,N.C.Kane,S.Tang, etal.,Thesunflower(HelianthusannuusL.)genomereflectsarecent his-tory ofbiasedaccumulation oftransposableelements, PlantJ. 72(2012) 142–153.

[38]D.Kordis,Agenomicperspectiveonthechromodomain-containing retrotrans-posons:chromoviruses,Gene347(2005)161–173.

[39]R.M.Cossu,L.Natali,E.Barghini,T.Giordani,M.Buti,F.Mascagni,etal.,Using differentproceduresforassemblingnextgenerationsequencingreadsallows toobtainacompletedescriptionoftherepetitivecomponentofthesunflower genome,in:PlantGenomeEvolution2013–ACurrentOpinionConference, Amsterdam,2013,AbstractBookP040.

[40]L.Natali,R.M.Cossu,E.Barghini,T.Giordani,M.Buti,F.Mascagni,M. Mor-gante,etal.,Therepetitivecomponentofthesunflowergenomeasrevealedby differentproceduresforassemblingnextgenerationsequencingreads,BMC Genomics14(2013)686.

[41]R.Ming,S.Hou,Y.Feng,Q.Yu,A.Dionne-Laporte,H.Albert,etal.,Thedraft genomeofthetransgenictropicalfruittreepapaya(CaricapapayaLinnaeus), Nature452(2008)991–997.

[42]A.H.Paterson,J.E.Bowers,R.Bruggmann,I.Dubchak,J.Grimwood,H.Gundlach, etal.,TheSorghumbicolorgenomeandthediversificationofgrasses,Nature457 (2009)551–556.

[43]TheInternationalRiceGenomeSequencingProject,Themapbasedsequence ofthericegenome,Nature436(2005)793–800.

[44]E.Barghini,L.Natali,R.M.Cossu,T.Giordani,M.Pindo,F.Cattonaro,etal., Thepeculiarlandscapeofrepetitivesequencesintheolive(OleaeuropaeaL.) genome,GenomeBiol.Evol.6(2014)776–791.

[45]O.Jaillon,J.M.Aury,B.Noel,A.Policriti,C.Clepet,A.Casagrande,etal.,The grapevine genomesequencesuggestsancestralhexaploidizationinmajor angiospermphyla,Nature449(2007)463–467.

[46]D.F.Voytas,M.P.Cummings,A.Konieczny,F.M.Ausubel,S.R.Rodermel, Copia-likeretrotransposonsareubiquitousamongplants,Proc.Natl.Acad.Sci.U.S. A.89(1992)7124–7128.

[47]S.Santini,A.Cavallini,L.Natali,S.Minelli,F.Maggini,P.G.Cionini, Ty1/copia-andTy3/gypsy-likeDNAsequencesinHelianthusspecies,Chromosoma111 (2002)192–200.

[48]L.Natali,S.Santini,T.Giordani,S.Minelli,P.Maestrini,P.G.Cionini,etal., Distri-butionofTy3-gypsy-andTy1-copia-likeDNAsequencesinthegenusHelianthus andotherAsteraceae,Genome49(2006)64–72.

[49]M.Buti,T.Giordani,F.Cattonaro,R.M.Cossu,L.Pistelli,M.Vukich,etal., Temporaldynamicsintheevolutionofthesunflowergenomeasrevealedby sequencingandannotationofthreelargegenomicregions,Theor.Appl.Genet. 123(2011)779–791.

[50]C.P.Witte,Q.H.Le,T.Bureau,A.Kumar,Terminal-repeatretrotransposonsin miniature(TRIM)areinvolvedinrestructuringplantgenomes,Proc.Natl.Acad. Sci.U.S.A.98(2001)13778–13783.

[51]R.Kalendar,C.M.Vicient,O.Peleg,K.Anamthawat-Jonsson,A.Bolshoyb,A.H. Schulman,Largeretrotransposonderivatives:abundant,conservedbut nonau-tonomousretroelementsofbarleyandrelatedgenomes,Genetics166(2004) 1437–1450.

[52]A.Kumar,J.L.Bennetzen,Plantretrotransposons,Annu.Rev.Genet.33(1999) 479–532.

[53]P.SanMiguel,A.Tikhonov,Y.K.Jin,N.Motchoulskaia,D.Zakharov,A. Melake-Berhan,etal.,Nestedretrotransposonsintheintergenicregionsofthemaize genome,Science274(1996)765–768.

[54]P.SanMiguel,J.L.Bennetzen,Evidencethatarecentincreaseinmaizegenome sizewascausedbythemassiveamplificationofintergeneretrotransposons, Ann.Bot.82(1998)37–44.

[55]M. Buti, T. Giordani, M. Vukich, L. Gentzbittel, L. Pistelli, F. Cattonaro, etal.,HACRE1,arecentlyinsertedcopia-likeretrotransposonofsunflower (HelianthusannuusL.),Genome11(2009)904–911.

[56]J. Ma,J.L.Bennetzen,Rapidrecentgrowthanddivergenceofricenuclear genomes,Proc.Natl.Acad.Sci.U.S.A.101(2004)12404–12410.

[57]M.Vukich,T.Giordani,L.Natali,A.Cavallini,CopiaandGypsy retrotrans-posonsactivityinsunflower(HelianthusannuusL.),BMCPlantBiol.9(2009) 150.

[58]T.Kawakami,P.Dhakal,A.N.Katterhenry,C.A.Heatherington,M.C.Ungerer, Transposableelementproliferationandgenomeexpansionarerarein con-temporarysunflowerhybridpopulationsdespitewidespreadtranscriptional activityofLTRretrotransposons,GenomeBiol.Evol.3(2011)156–167.

[59]D.Lisch,Epigeneticregulationoftransposableelementsinplants,Ann.Rev. PlantBiol.60(2009)43–66.

[60]S.Tang,C.G.Hass,S.J.Knapp,Ty3/gypsy-likeretrotransposonknockoutofa 2-methyl-6-phytyl-1,4-benzoquinonemethyltransferaseisnon-lethal, uncov-ersacrypticparalogousmutation,andproducesnoveltocopherol(vitaminE) profilesinsunflower,Theor.Appl.Genet.113(2006)783–799.

[61]K.M.Devos,J.K.M.Brown,J.L.Bennetzen,Genomesizereductionthrough illegit-imaterecombinationcounteractsgenomeexpansioninArabidopsis,Genome Res.12(2002)1075–1079.

[62]J.Ma,K.M.Devos,J.L.Bennetzen,AnalysesofLTRretrotransposonstructures revealrecentandrapidgenomicDNAlossinrice,GenomeRes.14(2004) 860–869.

[63]C.Grover,J.Hawkins,J.Wendel,Phylogeneticinsightsintothepaceandpattern ofplantgenomesizeevolution,in:J.N.Volff(Ed.),PlantGenomes.Genome Dynamics,vol.4,Karger,Basel,CH,2008,pp.57–68.

[64]R.Kalendar, J. Tanskanen, S.Immonen,E.Nevo,A.H.Schulman,Genome evolutionofwildbarley(Hordeumspontaneum)byBARE-1retrotransposon dynamicsinresponsetosharpmicroclimaticdivergence,Proc.Natl.Acad.Sci. U.S.A.97(2000)6603–6607.

[65]J.S.Ammiraju,A.Zuccolo,Y.Yu,X.Song,P.Piegu,F.Chevalier,etal.,Evolutionary dynamicsofanancientretrotransposonfamilyprovidesinsightsintoevolution ofgenomesizeinthegenusOryza,PlantJ.52(2007)342–351.

[66]J.S.Hawkins,G.Hu,R.A.Rapp,J.L.Grafenberg,J.F.Wendel,Phylogenetic deter-minationofthepaceoftransposableelementproliferationinplants:Copiaand LINE-likeelementsinGossypium,Genome51(2008)11–18.

[67]A.M.Morse,D.G.Peterson,M.N.Islam-Faridi,K.E.Smith,Z.Magbanua,etal., Evolution of genomesize and complexity in Pinus, PLoS ONE 4 (2009) e4332.

[68]M.Ceccarelli,V.Sarri,L.Natali,T.Giordani,A.Cavallini,A.Zuccolo,etal., CharacterizationofthechromosomecomplementofHelianthusannuusby insituhybridizationofatandemlyrepeatedDNAsequence,Genome50(2007) 429–434.

[69]O.Schrader,R.Ahne,J.Fuchs,I.Schubert,KaryotypeanalysisofHelianthus annuususingGiemsabandingandfluorescenceinsituhybridization, Chromo-someRes.5(1997)451–456.

[70]J.Macas,T.Meszaros,M.Nouzova,PlantSat:aspecializeddatabaseforplant satelliterepeats,Bioinformatics18(2002)28–35.

[71]R.Appels,L.B.Moran,J.P.Gustafson,Ryeheterochromatin:studiesonclustersof majorrepeatingsequencesandtheidentificationofanewdispersedrepetitive sequenceelement,Can.J.Genet.Cytol.28(1986)3389–3402.

[72]A.Katsiotis,M.Hagidimitriov,A.Douka,P.Hatzopolus,Genomicorganization, sequenceinterrelationshipandphysicallocalizationusinginsituhybridization oftandemlyrepeatedDNAsequencesinthegenusOlea,Genome41(1998) 527–534.

[73]L.Natali,M.Ceccarelli,T.Giordani,V.Sarri,A.Zuccolo,I.Jurman,etal., Phy-logeneticrelationshipsbetweenannualandperennialspeciesofHelianthus: evolutionofatandemrepeatedDNAsequenceandcytologicalhybridization experiments,Genome51(2008)1047–1053.

[74]K.Sossey-Alaoui,H.Serieys,M.Tersac,P.Lambert,E.E.Schilling,Y.Griveau, etal.,EvidenceforseveralgenomesinHelianthus,Theor.Appl.Genet.97(1998) 422–430.

[75]S.R.Wessler,T.E.Bureau,S.E.White,LTR-retrotransposonsandMITEs: impor-tantplayersintheevolutionofplantgenomes,Curr.Opin.Genet.Dev.5(1995) 814–821.

[76]L.McHale,X.Tan,P.Koehl,R.W.Michelmore,PlantNBS-LRRproteins:adaptable guards,GenomeBiol.7(2006)212.

[77]G.Frugis,G.Mele,D.Giannino,D.Mariotti,MsJ1,analfalfaDnaJ-likegene,is tissue-specificandtranscriptionallyregulatedduringcellcycle,PlantMol.Biol. 40(1999)397–408.

[78]J.Jin,T.Cardozo,R.C.Lovering,S.J.Elledge,M.Pagano,J.W.Harper,Systematic analysisandnomenclatureofmammalianF-boxproteins,GenesDev.18(2004) 2573–2580.

[79]M.C.Ungerer, S.C.Strakosh,K.M.Stimpson,ProliferationofTy3/gypsy-like retrotransposonsinhybridsunflowertaxainferredfromphylogeneticdata, BMCBiol.7(2009)40.

[80]M.A.Grandbastien,Activationofplantretrotransposonsunderstress condi-tions,TrendsPlantSci.3(1998)181–187.

[81]A.H.Schulman,A.J.Flavell,T.H.N.Ellis, Theapplication ofLTR retrotrans-posons as molecular markers in plants, Methods Mol. Biol. 260 (2004) 145–173.

[82]R.Kalendar,A.H.Schulman,IRAPandREMAPforretrotransposonbased geno-typingandfingerprinting,Nat.Protoc.1(2006)2478–2484.

[83]C.D’Onofrio,G.DeLorenzis,T.Giordani,L.Natali,A.Cavallini,G.Scalabrelli, Retrotransposon-basedmolecularmarkersforgrapevinespeciesandcultivars identification,TreeGenet.Genomes6(2010)451–466.

[84]R.Waugh,K.McLean,A.J.Flavell,S.R.Pearce,A.Kumar,W.T.B.Thomas,etal., GeneticdistributionofBARE-1-likeretrotransposableelementsinthebarley genomerevealedbysequence-specificamplificationpolymorphisms(S-SAP), Mol.Gen.Genet.253(1997)687–694.

(10)

[85]R.Kalendar,T.Grob,M.Regina,A.Suoniemi,A.H.Schulman,IRAPandREMAP: twonewretrotransposon-basedDNAfingerprintingtechniques,Theor.Appl. Genet.98(1999)704–711.

[86]M.Vukich,A.H.Schulman,T.Giordani,L.Natali,R.Kalendar,A.Cavallini,Genetic variabilityinsunflower(HelianthusannuusL.)andintheHelianthusgenusas assessedbyretrotransposonbasedmolecularmarkers,Theor.Appl.Genet.119 (2009)1027–1038.

[87]M. Buti, T. Giordani, M. Vukich, C. Pugliesi, L. Natali, A. Cavallini, Retrotransposon-related geneticdistanceand hybridperformancein sun-flower(HelianthusannuusL.),Euphytica192(2013)289–303.

[88]P.Raicu,V.Vranceanu,A.Mihailescu,C.Popescu,M.KirillovaMotz,Research ofthechromosomecomplementinHelianthusL.genus,Caryologia29(1976) 307–316.

Riferimenti

Documenti correlati

The proposed numerical optimizer using the information of a DT + CR (both in case of known FRA or in the case of approximated value with average error of 0.5 ◦ ) is compared with

Children aged between 1 and 4 years, who had historically been affected by varicella diseases and were enrolled in the current uni- versal programme of varicella vaccination

Si è rilevato altresì che si deve scorgere un rapporto di discendenza diretta fra i visconti attestati agli inizi del secolo XII a Goito con il gruppo parentale che via via

• Experimental modal analysis and comparison with the FEM modal analysis • Experimental test on Noise Reduction assessment by using a sound intensity probe • Boundary

In particular discrete gradient structure have been prepared stacking two different homogeneous layers (see Material and Methods section). Samples have been mechanically

For each imaging session, the following parameters were calculated: spine density (number of spines for dendritic length), fraction of gained and lost spines (Gain and Loss)

Since any interaction among systems implies a restriction of their global cartesian state automaton, interactions represent a valuable information in order to

Results: FUP caused a significant increase in microcirculatory flux in the recovery period in PAD patients (*p<0,05 vs rest - figure) while it caused no significant changes