• Non ci sono risultati.

The repetitive component of the sunflower genome.

N/A
N/A
Protected

Academic year: 2021

Condividi "The repetitive component of the sunflower genome."

Copied!
10
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Current

Plant

Biology

j ou rn a l h o m ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / c p b

The

repetitive

component

of

the

sunflower

genome

T.

Giordani,

A.

Cavallini,

L.

Natali

DepartmentofAgriculture,Food,andEnvironment,UniversityofPisa,ViadelBorghetto80,I-56124Pisa,Italy

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received1February2014

Receivedinrevisedform19May2014

Accepted24May2014 Keywords: Genomecomposition Helianthus LTR-retrotransposons RepetitiveDNA Sunflower

a

b

s

t

r

a

c

t

Thesunflower(Helianthusannuus)andspeciesbelongingtothegenusHelianthusareemergingasa modelspeciesandgenusforanumberofstudiesongenomeevolution.Inthisreview,wereportonthe repetitivecomponentoftheH.annuusgenomeatthebiochemical,molecular,cytological,andgenomic levels.Recentworkonsunflowergenomecompositionisdescribed,withemphasisondifferenttypes ofrepeatsequences,especiallyLTR-retrotransposons,ofwhichwereportonisolation,characterisation, cytologicallocalisation,transcription,dynamicsofproliferation,andcomparativeanalyseswithinthe genusHelianthus.

©2014TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/3.0/).

Contents

1. Introduction... 45

1.1. Therepetitivecomponentofplantgenomes... 45

1.2. TheHelianthusgenus ... 46

2. TheHelianthusgenomestructure... 46

3. RepeattypesintheHelianthusgenome... 47

3.1. TheSUNREPdatabase... 47

3.2. LTR-retrotransposons... 48

3.3. Theso-called“Contig61”... 48

3.4. Tandemrepeats... 49

3.5. Otherrepeattypes... 50

4. RetrotransposonsintheevolutionoftheHelianthusgenus... 51

5. Retrotransposonsasmolecularmarkersinsunflower... 51

6. Conclusionsandperspectives... 52

Acknowledgements... 52

References... 52

1. Introduction

1.1. Therepetitivecomponentofplantgenomes

Eukaryotesshowlargevariationingenomesize,especiallyin higherplants.Angiospermgenomesize(1C)rangesfrom63Mbp inGenliseamargaretaeto150GbpinParisjaponica[1,2].Such differ-encesarisefromtwomainprocesses:polyploidyandamplification oftransposons andrelated sequences.Transposonamplification

∗ Correspondingauthor.Tel.:+390502216665;fax:+390502216661.

E-mailaddresses:lucia.natali@unipi.it,lnatali@agr.unipi.it(L.Natali).

has resulted in theaccumulation of many repeatedsequences (i.e., sequences that are identical or similarto sequences else-where in the genome but whose copy number is much larger than that possibly achieved through polyploidisation). Some repeats are considered to be non-functional, whereas others haveplayedkeyrolesintheevolutionofspecies[3].For exam-ple, the mutagenic action of transposons provides substantial increasesingeneticvariability[4].Transposonsalsocreatenovel functions by fine-tuning gene activity, resulting in phenotypic variation [5,6]. Although changes in the repetitive component have played major roles in the evolution of plant genomes, large datasets of repetitive DNA are available for such mono-cots as maize, rice, and barley, and a comprehensive analysis http://dx.doi.org/10.1016/j.cpb.2014.05.001

(2)

of the repetitive component is still lacking in many genera of dicots.

Amongdicotyledonousspecies,sunflowers(Helianthusspp.)are emergingasamodelsystemforgenomicresearchonadaptation andspeciation[7,8].Giventheextensivecharacterisationoftheir ecologyandgenomes,sunflowersareverysuitableforestablishing theoccurrenceofdifferenttypesofrepeats,theirtimingof amplifi-cationorreduction,andtherole(s)ofdifferentrepetitivesequences inthemaintenanceofauniquegenome.Exploringthediversityand evolutionarydynamicsoftransposableelementsinthesunflower (H.annuusL.)isofconsiderableimportanceforunderstandingthe evolutionaryhistoryofthis species,givenitslargegenomesize (3500Mbp)[9]andthewell-documentedcasesofretrotransposon amplificationwithinthegenus[10,11].

1.2. TheHelianthusgenus

TheAsteraceaefamilyisthelargestplantfamilyonEarth,with more than 24,000 described species, corresponding roughly to 10%ofallangiosperms[12].Asteraceaespeciesliveinanumber ofdifferentenvironments,includingforests, grasslands,deserts, wetlands, mountain tops, salt marshes, lawns, and agricultural fields[13].Theyincludeeconomicallyimportantcrops, wildflow-ers,valuablemedicinals,invasiveplants,andrangelandweeds[14]. Themostimportantcropisthecultivatedsunflower(H.annuusL.), whichranked14thin2012amongtheworld’sfoodcropsinterms ofareaharvested(http://www.fao.org/).

Helianthusincludes 49species, which arewidespread inthe continentalUnitedStates[15],althoughotherecotypesare assum-ingthestatus of thespecies[16].These speciesdiffer in many phenotypictraits,includingreproductivetiming,branching pat-terns,height[17,18],andespeciallyhabitatpreferences.Insome cases,species coexistinthesameenvironment,and interbreed-ing between species is very common [19], despite large-scale karyotypicdifferences[20,21]andhighlevelsofpollenandseed non-viabilityinthehybrids[22].

The described sunflower species, native to diverse environ-mentsthroughoutNorthAmerica,includeexamplesofallo-and

autopolyploids[23],ecologicallyisolatedsympatricandallopatric species[15],karyotypicallydivergentspecies[20,21,24],allopatric specieswithweakbarrierstogeneflow[15],andseveralhomoploid hybrids[25].Suchdiversityofspeciationmechanismsand barri-erstogeneflowmakesunfloweranidealmodelforunderstanding speciationandspeciesdivergence[26,27].

2. TheHelianthusgenomestructure

Sunflowergenomic DNAwas firststudied bythermal dena-turation and analysis of reassociation kinetics [28,29]. Fig. 1A showsthemeltingprofileandthefirstderivativecurveoftheDNA extractedfromrootsofseedlingsofaselfedsunflowerline.TheTm valueindicatesaGCcontentaround40%.Clear-cutshoulderswere observedbothonthelightandtheheavysidesofthederivative curves,indicatingthatminorspecificDNArepeatfamiliesoccurin thegenome[28,29].

Analysisofthereassociationcurves(Fig.1B)revealedthatthe genomeisorganisedintothreemainfractionsaccordingtotheir redundancy.Highlyrepeated(HR)sequencesaccountfor5%ofthe genome,mediumrepeated(MR)sequencesforaround60%,and theso-calleduniquesequencescomprisetheremaining35%ofthe genome[28,29].Thesameanalyses,performedondifferent sun-flowergenotypes,showeddifferences intherepetitivefractions (eitherHRorMR),reflectingvariationsinthegenomesize[28,29]. BiochemicalanalysesdidnotconsiderDNAsequencebutonly denaturation and reassociation kinetics of DNA. Therefore, the sequence composition of theisolated fractionwas not studied. Moreover,thoseanalysescouldnotevaluatetheoccurrenceinthe “unique”fractionofthegenomeofrareformsofrepeats,suchas retrotransposonremnants,thatwereexcludedfromtherepetitive component.

Therepetitivefractionofthesunflowergenomewas charac-terisedatthemolecularlevelusingaSanger-sequencedsmallinsert library[30].Thatlibraryprovidedafirstsetofsequences(1638,for atotalof954,517bp)thatwereused,incombinationwithslot-blot hybridisationandfluorescentinsituhybridisation(FISH),to ana-lysethecompositionofthegenomeintermsofrepeattypesand

Fig.1.(a)FirstderivativecurvesofthemeltingprofileofsunflowergenomicDNA.SmallshouldersindicatespecificA-TorG-Crichfamiliesofrepeats.(b)Reassociation

kineticsofthesameDNA(circles)andofDNAofE.coli(triangles).Horizontallinesseparategroupsofsunflowersequencesaccordingtotheirredundancy.

(3)

Table1

Percentagedistributionofdifferentfunctionalclassesofrepeatsinthesunflowergenome,basedondataofthesmallinsertSanger-sequencedlibrary[30]andmappingdata

ontheIlluminaplus454readsassemblies[40].Theobserveddifferencesaremainlyrelatedtothehugeamountofsequencedatapublishedbetween2010and2013:actually,

thepercentageofsequencesclassifiedasrepeatsbyNatalietal.[40]isnearlytwo-foldthatbyCavallinietal.[30].

Sequencetype Percentageinthesmallinsertlibrary[31] PercentageintheIlluminaplus454assemblies[39]

ClassI(retrotransposons) LTR-Copia 3.54 19.22

LTR-Gypsy 15.57 49.22

LTR-unknown 0.37 9.90

Non-LTR 0.43 0.71

Other/unclassified – 0.48

ClassII DNAtransposons 0.73 2.56

Tandemrepeats RibosomalDNA 1.16 0.35

Othertandemrepeats 0.37 0.60

Unknownrepeats 25.58 7.90

Total(classifiedasrepeats) 47.75 90.94

abundance.About62%ofthesequencesofthelibrarybelongedto therepetitivefraction,whileputativefunctionalgenesaccounted for4%.Thelargestcomponentwasmadeoflongterminalrepeat (LTR)retrotransposons (REs),especially of theGypsy superfam-ily.

Itappeared thatnotransposonfamilywasamplifiedtovery highlevelsinthesunflowerunlikeinotherspecies,inwhich spe-cificfamiliescanaccountforlargefractionsofthegenome[31–34]. Allknowntypesofrepetitiveelementswerefoundinthelibrary, althoughsomeclasses(i.e.,ClassIItransposableelements)were scarcelyrepresented.Onerepeatfamilyofunknownnature(the so-calledContig 61)wasshown tobethemostrepeatedinthe sunflowergenome[30].

DuetodramaticadvancementsofDNAsequencingtechnology in thepastdecade that have madesequencing and assembling a new genome more practical and much less expensive [35], thesunflowergenomeiscurrentlybeingsequenced,despiteits large size [36]. Next-generation sequencing technologies were usedtocharacterisetherepetitivecomponentof thesunflower genome.Statonet al. [37]have analysed approximately25% of thegenomeusing454randomsequencingandshowedthatthe sunflowergenomeis composedofmore than81% transposable elements, 77% of which were LTR-REs. The LTR-REs were also studiedin bacterialartificialchromosomes (BAC) clones, which resulteddisproportionatelycomposedofGypsyLTR-REs contain-ingachromodomain(“chromoviruses”)[38],withthemajorityof theintactchromovirusesshowingchromodomaintandem dupli-cations[37].

Inotherexperiments[39,40],Illuminaand454sequencing tech-nologieswereusedtoproduceawholegenomesetofsequencesof sunflowerbydifferentcomputationalassemblyapproaches. Map-ping a largesample of Illumina reads to this set of sequences (composedof 283,300 contigs)provided a pictureof sunflower genomecomposition[40].ConsideringthatIlluminareadsare sam-pledwithoutbiasforparticularsequencetypes,thepercentageof readsthatmatchedtoarepeatclassshouldindicatetheproportion ofthatclassinthegenome.Mappingresults,and,hence,sunflower genomecomposition,aresummarisedinTable1,inwhicha com-parisontoresultspreviouslyobtainedbyCavallinietal.[30]isalso reported.Thedifferentresultsobtainedfromanalysingthesmall insertlibraryaremainlyrelatedtothehugeamountofsequence datapublishedfrom2010to2013;specifically,thepercentageof sequencesclassifiedasrepeatsbyNatalietal.[40]isnearlytwo-fold thatbyCavallinietal.[30].

MappingresultsconfirmedthatLTR-REswerebyfarthemost abundantclassofsequencesinthesunflowergenome, account-ingforatleast79.53%ofthereadsmatchingthecontigs.Theratio betweenGypsy and CopiaREfrequencies in thewholegenome amounted to 2.29. This ratio is generally species-specific. The GypsytoCopiafrequencyratioisevenhigherinpapaya(5:1)[41], sorghum(4:1)[42],andrice(3:1)[43]comparedtosunflower.In

othercases,suchasinmaize[31]andolive[44],asimilarabundance ofthetwosuperfamilieswasobserved.Ingrapevine,anopposite trendwasfound,withCopiaelementsrepresentingtwo-foldmore thanGypsy[45].

3. RepeattypesintheHelianthusgenome

3.1. TheSUNREPdatabase

Adatabaseofrepetitivesequencesofsunflowerwasobtainedby subdividingthepreviouslydescribedwholegenomesetof assem-bled sequences[40] according totheaveragecoverage of each sequence.Thedatabase(SUNREP)isavailableattheDepartment ofAgriculture,Food,andEnvironmentofPisaUniversitywebsite ( http://www.agr.unipi.it/ricerca/plant-genetics-and-genomics-lab/sequence-repository.html).

The distribution of different sequence types in SUNREP is reportedinTable2.Around11%ofsequencesdidnotfindanyhits inthepublicdatabasesusedforannotation.Amongtheannotated sequencetypes,REsandespeciallyLTR-REswereclearlythemost represented.Ofthese,elementsbelongingtotheGypsysuperfamily were2.3-foldmorerepresentedthanthosebelongingtotheCopia superfamily.

TheassembledsequencesformingSUNREPwerealsoanalysed toestimatetheoccurrenceoffamilies(i.e.,composedofatleasttwo sequences)withineachrepeatclassorsuperfamily.Themost repre-sentedfamily,belongingtotheGypsyLTR-REsuperfamily,included only96sequences,andonlyfourGypsyfamilieswerecomposedof Table2

FunctionalpercentagedistributionofthesequencesintheSUNREPdatabase,as

reportedinNatalietal.[40].

Sequencetype Number(%)

ClassI(retrotransposons) Unclassified 192(0.40) LTR-Copia 8605(17.96) LTR-Gypsy 19,726(41.16) LTR-unknown 5636(11.76) Non-LTR 261(0.54) Pararetrovirus 11(0.02) ClassII(DNAtransposons) Unclassified 373(0.78) Tc1Mariner 5(0.01) hAT 67(0.14) Mutator 101(0.21) PIF-Harbinger 18(0.04) CACTA 64(0.13) Helitron 324(0.68) MITE 382(0.80) Tandemrepeats rDNA 84(0.18) Othertandemrepeat 385(0.80)

Putativegenes 483(1.01)

Unknownrepeats Unclassified 4739(9.89) Contig61-type 957(2.00)

Nohitsfound 5511(11.50)

(4)

morethan50sequences.Consideringthe30mostnumerous

LTR-REsfamilies,thevastmajoritybelongedtotheGypsysuperfamily.

Amongthe30mostnumerousDNAtransposons,themostcommon

familiesbelongedtothehelitronclass,followedbyputative

minia-tureinverted-repeattransposableelements(MITEs).Overall,the

numberofsequencescomprisingafamilywasgenerallylow,

con-firmingthattherearenotprominentrepeatfamiliesinthisspecies

[30,37].

3.2. LTR-retrotransposons

ThefirstREsequencefragmentofsunflowerwasisolatedbyPCR usingtheuniversalprimersdesignedfromtheCopia retrotranscrip-tasedomain[46].TheREcomponentofthesunflowergenomewas analysedindetailusingtwosequencesisolatedfromagenomic DNAlibrary,pHaS13andpHaS211:theformerrepresenting por-tionsoftheintegrasegeneofaGypsyretroelementandthelatter correspondingtoanRNase-HgeneofaCopiaretroelement[47,48]. Southernblottingpatternsobtainedbyhybridisingthetwoprobes torestrictedgenomicDNAfromdifferentHelianthusspeciesand fromotherAsteraceaespeciesshowedpHaS13andpHaS211were partsofdispersedrepeatsatleast8and7kbinlength,respectively. Insitu hybridisation experiments showed that sequences of both Gypsyand Copia superfamilies weredispersed throughout allchromosomesinH.annuus[30,47].However,Gypsysequences werelocalisedpreferentiallyatthecentromericregions,whereas Copia sequences were less represented or absent around the centromeres;onlyoneCopiasequencewasplentifulatthe chro-mosomeends.

AlthoughGypsyandCopiaLTR-REsarebyfarthemajor frac-tionofsunflowerrepetitiveDNA,largenumbersofsequenceswere identifiedasLTR-REs,ofwhichthesuperfamilycouldnotbe deter-mined[40,49].Suchelements,calledTRIMsorLARDs[50,51],are non-autonomous,usuallyspecies-specific,andlackanydistinctive protein-codingsequences.

Thelargenumber ofobserved REs indicatestheyhave been activelyreplicatingduringtheevolutionof H.annuus.Thelarge abundanceofGypsyelementscomparedtoCopiacanbeexplained bythreehypotheses,notmutuallyexcluding:(i)Gypsyelements havebeenmoreactiveduringsunflowerevolution;(ii)theyhave beenactivemorerecently,sothataremoreeasilyrecognisableby similaritysearches,havingbeensubjectedtofewermutations;and (iii)theyhavebeenlesspronetoDNAremoval.

TostudyREdynamicsindetail,itisnecessarythatfull-length elementsareavailable.Full-lengthREshaveabuilt-inmolecular clockusefulforestimatingtheirinsertiontimes,basedon sister-LTRdivergence.Infact,whenanREinsertsintothegenome,its LTRsareusually100%identical[52].Mutationsthenoccurwithin thetwoLTRs,andasmoretimepassessincetheinsertion,thelarger thegeneticdistancebetweenLTRs.Hence,theREinsertiontimecan beestimatedusinganucleotidesubstitutionratesuitableforsuch elementsthatisassumedtobehigherthanthatofgeneregions [53–55].

Sunflowerfull-lengthLTR-REswereidentifiedanalysinglarge sequencesbelongingtoBAClibraries[37,49,55].Inparticular,Buti etal.[49]performedafineannotationofthreeBACclones, iden-tifying18full-lengthLTR-REs.Insomecases,REsformednested structures,withoneelementinsertedintoanother,similartothose commonlyfoundinmaize[53].Analysisoftheinsertiontimeof full-lengthREsshowedthattheyinsertedrelativelyrecently(during thepast3millionyears).Gypsyelementsweregenerallyyounger thanCopia,thoughsomeCopiaelementswererelativelyyoung,as well(Fig.2)[49].Statonetal.[37]confirmedandextendedthese findings,showingthat mostintactLTR-REs likelyhave inserted sincetheoriginofH.annuus,providingfurtherevidencethatbiased

Fig.2.DistributionsofCopia,Gypsyandunknownfull-lengthelementsidentifiedin

threesequencedBACclonesaccordingtotheirestimatedinsertionages(millionsof

years,MYRS).Meaninsertionageforeachsuperfamilyisreportedinparentheses.

Redrawnfrom[49].

LTR-REactivityhasplayedamajorroleinshapingtheDNA land-scapeofthesunflowergenome.

That retrotransposition in sunflower has been and is prob-ably still occurringis also indicated by recent studiesshowing that sunflower LTR-REs are transcriptionally active [30,56−58]. Forexample,RT-PCRdatashowedthatbothCopiaandGypsyREs transcriptionoccurredinallanalysedsunflowerorgans(embryos, leaves, roots, and flowers). Transcription was apparently not inducedbyenvironmentalfactorsorcultureconditions.Analyses madeonprogeniesofaselfedlineshowedoneoutof64individuals exhibitedtheintegrationofanewelementintothegenome[57].

Similar results were obtained by Kawakami et al. [58]. In theirtranscriptionalassays,multiplelineagesofGypsyandCopia elements were found to be active in natural populations of H. annuus and H. petiolaris and in their natural interspecific hybrids.Inthesespecies,transcriptionalactivitywasnot associ-atedwithcopy number increases,suggestingtheoccurrence of strongpost-transcriptionalmechanismsofrepressionthatreduce themutagenicpotentialityofREtransposition[59].Infact,REscan inactivategenesafterinsertingwithinornearbygenesequences, asobservedinsunflowergenesencodinga 2-methyl-6-phytyl-1,4-benzoquinonemethyltransferase[60]andalipidtransferprotein [49].

Itis knownthat LTR-REsaresubjectedtobothamplification andremoval[61–63].TheREremovalisdriveninplantsbyDNA rearrangements,illegitimaterecombination,andunequal homol-ogousrecombinationvia anumber ofmechanisms,suchasthe repairofdouble-strandbreaks(non-homologousend-joining)and slipstrandmispairing[33,56,64–67].

The occurrence of unequal homologous recombination typi-callyproducetheso-calledsolo-LTRs.MappingIlluminareadsto asetofintactLTR-REsindicatedtheoccurrenceofnumerous solo-LTRsformanyofthetestedREfamilies(Fig.3).Natalietal.[40] suggestedthatmassiveamplificationoftheseelementsinthe sun-flowergenome waspartly counterbalancedbysubstantial DNA loss,especiallyrelatedtoGypsyelements.However,inotherstudies onsunflowerrepeats,solo-LTRshave beenfoundforCopia ele-ments,aswell[30,37].

3.3. Theso-called“Contig61”

Clusteringanalysisofsequencesintheshortinsertlibrary[30] producedmanycontigsrepresentingrepetitiveDNAsequences.Of these,thelongestcontig(Contig61)wasidentifiedasthemost repeatedinthesunflowergenome,witharedundancyof27,000 copiesperhaploidgenome,estimatedbyslot-blotand hybridisa-tion.

(5)

Fig. 3.Distribution of sunflower LTR-retrotransposons according to the ratio

betweenredundancies(measuredby averagecoverage)ofLTRsandinter-LTR

regions(datainclude9retrotransposonsanalysedbyCavallinietal.[30]and19

analysedbyNatalietal.[40]).

ManycontigssharinghighsequencesimilaritytoContig61were alsofoundintheSUNREPdatabase.Mappingthesecontigswitha largesetofIlluminareadsestablishedthatthisrepeataccountsfor 2.81%ofthegenome[40].

Southern analysis confirmed high redundancy of Contig 61 repeats, with heavy labelling and many bands. The use of isoschizomereswithdifferentsensitivities tocytosine methyla-tioninthetargetsiteshowedthatthisrepeatedelementishighly methylated[30].

When hybridising sequences belonging to Contig 61 to metaphasechromosomesofH.annuus,scatteredlabelling through-outallchromosomeswasobserved,indicatingwidedispersalof DNAsequences[30].

The occurrence and redundancy of sequences belonging to Contig 61 were alsostudied in species belongingto thegenus Helianthus,bothannualandperennial,andtootherAsteraceaeby slot-blothybridisation[30].InHelianthus, thehybridisation sig-nalswereasstrongasthoseobservedinsunflower;inperennial species,theywerestrongerthaninannuals.Theseresultsindicate thatamplificationofthissequenceshouldhaveoccurredinthe pro-genitoroftheHelianthusgenus,and,aftersplittingbetweenannuals andperennials,amplificationhasoccurredintheperennial ances-torand/orlossofsequenceshasoccurredintheannualancestor. RegardingtheotherAsteraceae,someofthesequencesbelongingto Contig61alsoshowedstronghybridisationsignalstoViguiera mul-tifloragenomicDNA.ThegenusViguieraisconsideredtheclosest relativetoHelianthus.BecauseContig61isalsoapparentlyhighly repeatedinViguiera,itispresumablethattheinitialamplification ofthisrepeatpredatestheoriginofthegenusHelianthus.

Sequence analysis of Contig 61 and of related sequences obtained after Illumina and 454 assemblies revealed no struc-turalfeaturethatcouldhelpintheclassificationofthisfamilyof sequences,which,therefore,awaitsfurthercharacterisationand whosenatureremainsunknown.

3.4. Tandemrepeats

Onlyafewtandemrepeatshavebeencharacterisedinthe sun-flowergenome.Infact,onlyasmallnumberofcontigscontaining

tandemrepeatswerefoundinSUNREP.Mappingthesecontigswith alargesetofIlluminareadsestablishedthatribosomalDNA(rDNA) andothertandemrepeatsaccountforonly0.35%and0.60%ofthe genome,respectively[40].

TherDNAwaslocalisedinchromosomesbyinsitu hybridisa-tion[68].Fourchromosomepairswerelabelledattheendoftheir shortarm.Ofthese,threepairs showedsecondaryconstrictions andstronghybridisationsignals.Twoothersignalswere puncti-formattheendoftheshortarmofachromosomepairwherea satellitewasneverobserved.Thesefindingsareinagreementwith thoseobtainedbySchraderetal.[69]regardingthenumberof satel-litepairsandthosethatbearrDNAbutcontrastwiththeirresults regardingthelabellingintensity,sincetheyobservedfourstrong andfourweaksignals.

Two other tandem repeats, the sequences HAG004N15 and HAG002P01,were isolatedin thesmallinsertlibrary and char-acterised.HAG004N15was1071bpinlengthandwasmadeup of three tandemly arranged repeats having a lengthof 368bp, which falls into the typical range of satellite DNAs [70]. The CAAAAorGAAAAmotifs,previouslyassociatedwiththe amplifi-cationofrepeatedsequences[71,72],werefoundbetweenrepeats. SouthernhybridisationwithHAG004N15asaprobeproducedthe expectedladderpatternafterdigestionofgenomicDNAwith cyto-sinemethylation-sensitiveenzymes,showingthatthissequenceis highlymethylated.Itscopynumberperhaploid(1C)genomewas estimatedtobe7800.

AfterinsituhybridisationofHAG004N15repeats[68],allthe chromosomes were labelled at discrete regions (Fig. 4). Using an image analyser, the labelling was precisely localised in the metaphasechromosomes, despite theirnumber (2n=34),small size, and similar morphology (Fig. 4). The FISH signals were observedattheendsofbothchromosomearmsinfourpairsandat theendofonlyonearmineightotherpairs.HAG004N15repeats werenotfoundinthecentromericchromosomalregions,exceptfor onepair,wherethehybridisationsignalsreachedthecentromere intheshortarm,which wasentirelylabelled.Signalswerealso observedattheintercalary(mostlysub-telomeric)regionsinall thepairs,inbotharmsineightpairs,andinonlyonearminthe otherninepairs.

ThechromosomallocalisationofrDNAandHAG004N15repeats formedapatternthatallowedallofthecomplementpairstobe distinguishedfromeachother[68].Thishybridisationpatternwas thesameindifferentsunflowergenotypes.

Theredundancy ofHAG004N15 and thechromosomal local-isationofHAG004N15 andofrDNAwerealsostudiedinannual andperennialspeciesofHelianthusandinotherAsteraceae[73]. HAG004N15sequences,whichdidnotshowamplificationinother AsteraceaeexceptViguieramultiflora, wereredundantin allthe Helianthus species tested, but theirfrequency wassignificantly higherinperennialscomparedtoannuals.Thesesequenceswere locatedattheendsandintercalaryregionsofallchromosomepairs ofannualspecies.Asimilarpatternwasfoundintheperennials,but ametacentricpairintheircomplementwasnotlabelled.Ribosomal geneswerecarriedontwochromosomepairsinperennialsandon threepairsinannuals,exceptforH.annuus,whererDNAlociwere onfourpairs.Thesefindingssupportthehypothesisthatthe sep-arationbetweenannualandperennialHelianthusspeciesoccurred throughinterspecifichybridisationinvolvingatleastonedifferent parent[74].However,genomicinsituhybridisationinH.annuus (usingDNAfromtheperennialH.giganteusasblockingDNA)failed torevealdifferentgenomicassetsinannualandperennialspecies. The othertandemrepeat isolatedin thesmall insertlibrary [30],HAG002P01,wasestimatedtobepresentin2600copiesper haploid genome.Using this sequenceas aprobe, FISHrevealed an interspersed distribution withpossible enhanced hybridisa-tionatthecentromericregionsofmanychromosomes,indicating

(6)

Fig.4. (a–c)MetaphaseplateofH.annuuslineHA89afterDAPIstaining(a)andhybridisationwithHAG004N15repeats(b;fluorescein)orpTa71ribosomalprobe(c;Cy3).

Numeralsindicatemembersofeachchromosomepair.Bar=10␮m(fromCeccarellietal.[68],CharacterisationofthechromosomecomplementofHelianthusannuusby

insituhybridisationofatandemrepeatedDNAsequence.Genome,50:429–434,©CanadianSciencePublishingoritslicensors);(d)Idiogramofthehaploidchromosome

complementshowingthedistributionofHAG004N15-relatedtandemrepeats(yellow)andofribosomalcistrons(red).Thechromosomesaresubdividedintotwogroups,

fouracrocentricandthirteenmeta-tosubmetacentricpairs,andarrangedwithineachgroupaccordingtothetotallength,accordingtoRaicuetal.[88]classification.(For

interpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

thatHAG002P01mayhavepreferentialparacentromeric localisa-tion.

3.5. Otherrepeattypes

Thenon-LTR-REswerepoorlyrepresentedintherepetitive frac-tionof the sunflowergenome, as frequentlyobserved in other plants. Putative DNA transposons accounted for a number of sequences.However,afractionofsuchsequenceswereclassified asDNAtransposonsonlybyvirtueofasequencesimilaritytothe shortdomainofthetransposasegene.AmongDNAtransposons,a prevalenceofMITEs[75]andhelitrons[5]wasobserved[40].

Interestingly, according to BLAST analysis, many repetitive sequences of the SUNREP database showed similarity to puta-tive protein-coding genes (Table 2) [40]. The most redundant gene family encodes the NBS-LRR class of proteins, receptors that recognisehighly variable pathogen effectors[76].Another redundantgenefamilyencodeDNAJproteins,whichfunctionin associationwithHsp70molecularchaperonestofacilitateprotein

folding and play an active role in regulating normal cellular events like protein degradation, morphogenesis, and cell cycle progression[77].Thethirdredundantgenefamilyisvery heteroge-neous,encodingproteinswithunspecifiedprotein-kinasedomains that areinvolved in the transductionof signals tobinding fac-tors,centromeres,andothereffectors.Inadditiontonon-specific kinases,serine/threonine/tyrosinekinasesalsowerefoundamong redundantgenefamilies.Finally,anotherredundantgenefamily encoding F-boxmotif-containing proteinswasidentifiedbythe presenceofproteininteractiondomainsthatbindubiquitination targets[78].

The occurrence of putative genes among repetitive DNA sequencesoftheSUNREPdatabasedeservesadditionalcomments. Insomecases,suchsequencesshowedsimilaritytogenefamilies alreadyknowntoberepeatedinplantgenomes,suchasNBS-LRR genes[76].In othercases,it islikely thatgeneportions encod-ingfunctionaldomains,andnotcomplete,full-lengthgenes,are apparentlyredundant.Forexample,F-boxproteinsincludealarge varietyoftypesthatshareashortmotif[78].Italsocouldbethatfor

(7)

otherassembledcontigs,agene(oragenefragment)liescloseto arepeatedsequence,andtheredundancyofthatcontigisrelated totherepeatedsequenceandnottothegenesequence.Itshould benotedthatSUNREPiscomposedofarelativelyhighnumberof putativehelitrons(Table2)knowntoincludeexonfragmentsin theirsequences[5],whichmightbepartiallyresponsibleforthe relativelyhighfrequencyofgenefragmentsinthedatabase.

4. RetrotransposonsintheevolutionoftheHelianthus genus

Southern blotting patterns obtainedby hybridising the first isolated Gypsy and Copia RE fragments (pHaS13 and pHAS211, respectively) [47] to restricted genomic DNA from different HelianthusspeciesandfromotherAsteraceaeshowedthatthese elementswereconservedinallHelianthusspeciesstudiedand,to alesser extent,in Tithoniarotundifolia,a speciesbelongingtoa genusstrictlyclosetoHelianthus[47,48].Comparablehybridisation patternswereobtainedinallHelianthusspeciesusingtheGypsy pHaS13asa probe.Conversely,thepatternsobtainedby hybri-dising theCopia pHAS211 clearly differentiated annual species fromperennials[47],attestingadifferentamplificationhistoryof thetwo superfamiliesof LTR-REsin theevolution ofthegenus Helianthus[30].

Asobserved in H.annuus, FISH analysis of Gypsy and Copia sequencesconfirmedscatteredlabellingthroughoutallmetaphase chromosomesalsoindifferentspeciesofHelianthus[48].However, preferentiallocalisationofGypsysequencesatcentromeric chro-mosomeregions wasobservedin allofthespecies.Conversely, Copiasequencesshowedpreferentiallocalisationatthe chromo-someendsonlyinH.annuus.

Theevolution of therepetitivecomponent in theHelianthus genusandinotherAsteraceaewasstudiedbycomparativeanalysis ofthehybridisationofgenomicDNAsisolatedfromthesespecies tothesunflowersmallinsertlibrary(Fig.5),whichrevealedsome similarityonlybetweenHelianthusspeciesandViguieramultiflora. RegardingREs,comparablehybridisationpatternswereobserved amongHelianthusspecies,whilenohybridisationoccurredusing otherAsteraceae.SuchresultsindicatethespecificityofREfamilies totheHelianthusgenus.

AninterestingexampleofhowREshaveaccompaniedthe evo-lutionofspecieswithinthegenusHelianthusconcernsthemassive amplificationoftransposableelementsafterinterspecific hybrid-isationoccurredinthree species ofsunflowers, H.anomalus,H. deserticola,andH.paradoxus[10].Allofthemoriginatedby hybrid-isationbetweentwoancestralspecies,H.annuusandH.petiolaris

Fig.5. ExamplesofhybridisationpatternsoflabelledgenomicDNAfromdifferent

speciesto36clonesofthesunflowersmall-insertlibrary,spottedinanon-regular

duplicatearrangement.Forfourclones,theputativeannotationisreported:forthree

ofthese,hybridisationisobservedintheDNAofthetwoHelianthusspeciesandin

Viguieramultiflora;rDNAcontainingcloneislabelledalsoinXanthiumstrumarium

DNA.Forthetechnicalproceduresee[30].

[25]andhavethesamechromosomenumber(n=17)andgenome sizesatleast50%largerthantheirparentalspecies.Suchgenome sizeincreaseispartiallyexplainedbyproliferationofGypsyand,to alesserextent,ofCopiaLTR-REsinhybrids[10,11].

In particular,Gypsy sequenceswerefirst shown tobemuch moreredundantinthethreehybrids[10].Ungereretal.[79]later demonstratedthatGypsyREsexistasmultiple,well-supported sub-lineagesinboththeparentalandhybridderivativespeciesandthat thesesequencesunderwentproliferationineachhybridspecies’ genome,occurringapproximately0.5–1millionyearsago.

In contrastto Gypsy,theburst of transpositionof CopiaREs variedamonghybridspeciesandwasmostpronouncedinH. para-doxus,aspeciesadaptedtosalineenvironments(H.anomalusand H.deserticolaarefoundindesert-likehabitats).Althoughexternal stressfactorsmaycontributetode-repressionoftransposable ele-ments[80],theassociationbetweenhabitatandREfrequencymay bepurelycoincidental.CopiaRElineagesunderlyingtheburstare ancientandpredatetheoriginofthesunflowergroup.However, themajority(70%)ofsequenceswerederivedfromasinglelineage ofelements,whichimplicatesarecentproliferationevent[79].

5. Retrotransposonsasmolecularmarkersinsunflower

TheLTR-REsinplantgenomeshavebeenemployedto gener-atemolecularmarkers [81,82].In fact,theubiquity,abundance, dispersion,anddynamismof theseelementsmakethem excel-lenttoolstoexploregeneticvariabilityevenwithinspecies[83]. ThemethodsgenerallyrelyonPCRamplificationbetweena con-served RE feature, most often the LTR, and another abundant,

Fig.6. IRAPfingerprintsobtainedwithLTR-Copiaspecificprimers[86]ineight

individuals(A–H)belongingtoawildaccession(USDA-PI597907)ofH.annuus.

Molecularweightmarker(M,GeneRulerDNALadderMix,Fermentas)wasalso

(8)

dispersed,conservedfeatureinthegenome.Thissecondsitemaybe arestrictionsiteadapterinsequence-specificamplified polymor-phism(SSAP)[84],amicrosatelliteinRE-microsatelliteamplified polymorphism(REMAP)[85],oranotherREininter-REamplified polymorphism(IRAP)[85].Thesemethodsidentifygeneticvariants relatedtotheinsertion/lossofaretroelementortoDNAsequence variations(nucleotidesubstitutionsorindels),whicharecommon withinREsbecauseoftheerror-pronemodeofretrotranscription usedbytheseelementsand extensiveDNA methylationwithin RE-richgenomeregions.

TheIRAPprotocolwasappliedwithinthegenusHelianthusto assessintraspecificvariabilitybasedonREsequencesamong 36 wildaccessionsand 26 cultivars of H.annuus and interspecific variability among 39 species of Helianthus [86]. Two groups of LTRs,onebelongingtoaCopiaretroelementandtheothertoan REofunknownnature,wereisolatedandsequenced,andprimers weredesignedtoobtainIRAPfingerprints.AnexampleofIRAP fin-gerprintsin plants ofa wildaccessionof H.annuus isreported in Fig.6. Thenumber ofpolymorphic bands and RE variability amongH.annuuswildaccessionsareashighasamongdifferent Helianthusspecies.Conversely,RE-relatedvariabilitywasreduced amongdomesticatedH.annuus.

LargeRE-relatedvariability wasalsofoundamongsunflower inbredlines[87].Itwasobservedthatbetween-linegenetic dis-tance correlated to heterosis in hybrids between those lines, suggesting that variations in the repetitive component of the genome,especiallyLTR-REs,affectthedisplayofheterosis.

6. Conclusionsandperspectives

Repetitive DNA and especially transposons apparently have a central role in the biology and evolution of plants. These sequencescanalsobeemployedtogeneratemolecularmarkers that have proved efficient in distinguishingeven similar geno-types.

TherepetitivecomponentoftheH.annuusgenomehasbeen studiedatthebiochemical, cytological,molecular,and genomic levels.Data are now availablethat indicate a genomemade of alargenumberof LTR-REs,especiallyof theGypsy superfamily. TheLTR-REs areapparently expressed, and theREburstseems tobe unexhausted as shown by therelatively recent insertion timesofmany REs.It isalsoworthnoting thelargenumber of LTR-REsofunknownnature,whichhavebeen(andpresumably are) active because of enzymes produced by intact retroele-ments.

Theconsequencesof suchREmobilisationareevident when observing theevolution of Helianthus interspecific hybrids that probablyhavecompletedtheirspeciationbecauseofchromosomal differentiationfromparentalspeciesduetoinsertionsof transpos-ableelements.

Manydataarealsoavailableonotherrepeatedsequences,such ashelitrons,whoseredundancyisrelativelyhighcomparedtothat foundinotherspecies.Allthesedatacanbecombinedtoproduce acollectionofsequencesthatwillbeusefulintheannotationof thesunflowergenomesequencewhenitiscomplete.Untilthen, theenormousmassofavailabledatawillbeusefulforcomparative studiesongenomeevolutioninagenus(Helianthus)thathasbeen studiedattheevolutionaryandecologicallevelsandespeciallyfor itsprotein-codingcomponents.ThecompletionoftheH.annuus wholegenomesequenceinconjunctionwiththeavailabilityofnew sequencingtechniquesallowingtheproductionofverylargeDNA sequences(i.e.,Pac-Biotechnology)willbeusefulforcomparative studiesamongHelianthusspeciesandaccessionsandforclarifying manyaspectsofgenomeevolutioninthisgenus.

Acknowledgements

ThisworkwassupportedbyPRIN-MIUR,Italy,Project “SUN-REP:caratterizzazionemolecolaredellacomponenteripetitivadel genomadigirasole”.

References

[1]J.Greilhuber,T.Borsch,K.Müller,A.Worberg,S.Porembski,W.Barthlott, SmallestangiospermgenomesfoundinLentibulariaceae,withchromosomes ofbacterialsize,PlantBiol.8(2006)770–777.

[2]J.Pellicer,M.F.Fay,I.J.Leitch,Thelargesteukaryoticgenomeofthemall?Bot. J.LinneanSoc.164(2010)10–15.

[3]R.J.Britten,Transposableelementinsertionshavestronglyaffectedhuman evolution,Proc.Natl.Acad.Sci.U.S.A.107(2010)19945–19948.

[4]M.Morgante,E.DePaoli,S.Radovic,Transposableelementsandtheplant pan-genomes,Curr.Opin.PlantBiol.10(2007)149–155.

[5]M.Morgante,S.Brunner,G.Pea,K.Fengler,A.Zuccolo,A.Rafalski,Gene dupli-cationandexonshufflingbyhelitron-liketransposonsgenerateintraspecies diversityinmaize,Nat.Genet.37(2005)997–1002.

[6]R.K.Slotkin,R.Martienssen,Transposableelementsandtheepigenetic regula-tionofthegenome,Nat.Rev.Genet.8(2007)272–285.

[7]D.A.Rasmussen,M.A.F.Noor,Whatcanyoudowith0.1×genomecoverage? AcasestudybasedonagenomesurveyofthescuttleflyMegaseliascalaris (Phoridae),BMCGenomics10(2009)382.

[8]R.M. Lee, J. Thimmapuram, K.A. Thinglum, G. Gong, A.G. Hernandez, C.L. Wright, et al., Sampling the waterhemp (Amaranthus tubercula-tus) genome using pyrosequencing technology, Weed Sci. 57 (2009) 463–469.

[9]E.J.Baack,K.D.Whitney,L.H.Rieseberg,Hybridizationandgenomesize evo-lution:timingandmagnitudeofnuclearDNAcontentincreasesinHelianthus homoploidhybridspecies,NewPhytol.167(2005)623–630.

[10]M.C.Ungerer,S.C.Strakosh,Y.Zhen,Genomeexpansioninthreehybrid sun-flowerspeciesisassociatedwithretrotransposonproliferation,Curr.Biol.16 (2006)R872–R873.

[11]T.Kawakami,S.C.Strakosh,Y.Zhen,M.C.Ungerer,DifferentscalesofTy1/copia likeretrotransposonproliferationinthegenomesofthreediploidhybrid sun-flowerspecies,Heredity104(2010)341–350.

[12]P.Stevens,AngiospermPhylogeny,2010,Availablefromhttp://www.Mobot.

Org/mobot/research/apweb/

[13]V.Funk,A.Susanna,T.Stuessy,R.Bayer,Systematics,Evolutionand Biogeog-raphyoftheCompositae,InternationalAssociationofPlantTaxonomy,Vienna, Austria,2009.

[14]H.Dempewolf,L.H.Rieseberg,Q.C.Cronk,Cropdomesticationinthe Com-positae:afamily-widetraitassessment,Genet.Resour.CropEvol.55(2008) 1141–1157.

[15]C.B.Heiser,D.M.Smith,S.Clegenger,W.C.Martin,TheNorthAmerican sun-flowers(Helianthus),Mem.TorreyBot.Club22(1969)1–218.

[16]B.T.Moyers,L.H.Rieseberg,Divergenceingeneexpressionisuncoupledfrom divergenceincodingsequenceinasecondarilywoodysunflower,Int.J.Plant Sci.174(2013)1079–1089.

[17]D.M. Rosenthal,A.E.Schwarzbach,L.A. Donovan,O. Raymond,L.H. Riese-berg,Phenotypicdifferentiationbetweenthreeancienthybridtaxaandtheir parentalspecies,Int.J.PlantSci.163(2002)387–398.

[18]D.M. Rosenthal, L.H.Rieseberg, L.A. Donovan, Re-creatingancient hybrid species’complexphenotypesfromearly-generationsynthetichybrids:three examplesusingwildsunflowers,Am.Nat.166(2005)26–41.

[19]L.H.Rieseberg,S.J.E.Baird,A.M.Desrochers,Patternsofmatinginwild sun-flowerhybridzones,Evolution52(1998)713–726.

[20]J.M.Burke,Z.Lai,M.Salmaso,T.Nakazato,S.Tang,A.Heesacker,etal., Compar-ativemappingandrapidkaryotypicevolutioninthegenusHelianthus,Genetics 167(2004)449–457.

[21]Z.Lai,T.Nakazato,M.Salmaso,J.M.Burke,S.Tang,S.J.Knapp,etal., Exten-sivechromosomalrepatterningandtheevolutionofsterilitybarriersinhybrid sunflowerspecies,Genetics171(2005)291–303.

[22]L.H.Rieseberg,M.J.Kim,G.J.Seiler,Introgressionbetweenthecultivated sun-flowerandasympatricwildrelative,Helianthuspetiolaris(Asteraceae),Int.J. PlantSci.160(1999)102–108.

[23]R.E.Timme,B.B.Simpson,R.C.Linder,High-resolutionphylogenyforHelianthus (Asteraceae)usingthe18S-26SribosomalDNAexternaltranscribedspacer,Am. J.Bot.94(2007)1837–1852.

[24]J.M.Chandler,C.C.Jan,B.H.Beard,Chromosomaldifferentiationamongthe annualHelianthusspecies,Syst.Bot.11(1986)354–371.

[25]L.H.Rieseberg,HomoploidreticulateevolutioninHelianthus(Asteraceae): evi-dencefromribosomalgenes,Am.J.Bot.78(1991)1218–1237.

[26]L.H.Rieseberg,C.R.Linder,G.J.Seiler,Chromosomalandgenicbarriersto intro-gressioninHelianthus,Genetics141(1995)1163–1171.

[27]N.C.Kane,J.M.Burke,L.Marek,G.Seiler,F.Vear,G.Baute,S.J.Knapp,etal., Sunflowergenetic,genomicandecologicalresources,Mol.Ecol.Res.13(2013) 10–20.

[28]A.Cavallini,C.Zolfino,G.Cionini,R.Cremonini,L.Natali,O.Sassoli,etal.,Nuclear DNAchangeswithinHelianthusannuusL.:cytophotometric,karyologicaland biochemicalanalyses,Theor.Appl.Genet.73(1986)20–26.

(9)

[29]L.Natali,A.Cavallini,G.Cionini,O.Sassoli,P.G.Cionini,M.Durante,Nuclear DNAchangeswithinHelianthusannuusL.:changeswithinsingleprogenies andtheirrelationshipswithplantdevelopment,Theor.Appl.Genet.85(1993) 506–512.

[30]A.Cavallini,L.Natali,A.Zuccolo,T.Giordani,I.Jurman,V.Ferrillo,etal.,Analysis oftransposonsandrepeatcompositionofthesunflower(HelianthusannuusL.) genome,Theor.Appl.Genet.120(2010)491–508.

[31]B.C.Meyers,S.V.Tingey,M.Morgante,Abundance,distribution,and transcrip-tionalactivityofrepetitiveelementsinthemaizegenome,GenomeRes.11 (2001)1660–1676.

[32]C.M. Vicient,R. Kalendar, A.H. Schulman,Variability, recombination,and mosaicevolutionofthebarleyBARE-1retrotransposon,J.Mol.Evol.61(2005) 275–291.

[33]P.Neumann,A.Koblizkova,A.Navratilova,J.Macas,Significantexpansionof Viciapannonicagenomesizemediatedbyamplificationofasingletypeofgiant retroelement,Genetics173(2006)1047–1056.

[34]C.Vitte,J.L.Bennetzen,Analysisofretrotransposonstructuraldiversity uncov-erspropertiesandpropensitiesinangiospermgenomeevolution,Proc.Natl. Acad.Sci.U.S.A.103(2006)17638–17643.

[35]E.R.Mardis,Theimpactofnext-generationsequencingtechnologyongenetics, TrendsGenet.24(2008)133–141.

[36]N.C. Kane, N. Gill, M.G. King, J.E. Bowers, H. Berges, J. Gouzy, et al., Progress towards a reference genome for sunflower, Botany 89 (2011) 429–437.

[37]S.E.Staton,B.H.Bakken,B.K.Blackman,M.A.Chapman,N.C.Kane,S.Tang, etal.,Thesunflower(HelianthusannuusL.)genomereflectsarecent his-tory ofbiasedaccumulation oftransposableelements, PlantJ. 72(2012) 142–153.

[38]D.Kordis,Agenomicperspectiveonthechromodomain-containing retrotrans-posons:chromoviruses,Gene347(2005)161–173.

[39]R.M.Cossu,L.Natali,E.Barghini,T.Giordani,M.Buti,F.Mascagni,etal.,Using differentproceduresforassemblingnextgenerationsequencingreadsallows toobtainacompletedescriptionoftherepetitivecomponentofthesunflower genome,in:PlantGenomeEvolution2013–ACurrentOpinionConference, Amsterdam,2013,AbstractBookP040.

[40]L.Natali,R.M.Cossu,E.Barghini,T.Giordani,M.Buti,F.Mascagni,M. Mor-gante,etal.,Therepetitivecomponentofthesunflowergenomeasrevealedby differentproceduresforassemblingnextgenerationsequencingreads,BMC Genomics14(2013)686.

[41]R.Ming,S.Hou,Y.Feng,Q.Yu,A.Dionne-Laporte,H.Albert,etal.,Thedraft genomeofthetransgenictropicalfruittreepapaya(CaricapapayaLinnaeus), Nature452(2008)991–997.

[42]A.H.Paterson,J.E.Bowers,R.Bruggmann,I.Dubchak,J.Grimwood,H.Gundlach, etal.,TheSorghumbicolorgenomeandthediversificationofgrasses,Nature457 (2009)551–556.

[43]TheInternationalRiceGenomeSequencingProject,Themapbasedsequence ofthericegenome,Nature436(2005)793–800.

[44]E.Barghini,L.Natali,R.M.Cossu,T.Giordani,M.Pindo,F.Cattonaro,etal., Thepeculiarlandscapeofrepetitivesequencesintheolive(OleaeuropaeaL.) genome,GenomeBiol.Evol.6(2014)776–791.

[45]O.Jaillon,J.M.Aury,B.Noel,A.Policriti,C.Clepet,A.Casagrande,etal.,The grapevine genomesequencesuggestsancestralhexaploidizationinmajor angiospermphyla,Nature449(2007)463–467.

[46]D.F.Voytas,M.P.Cummings,A.Konieczny,F.M.Ausubel,S.R.Rodermel, Copia-likeretrotransposonsareubiquitousamongplants,Proc.Natl.Acad.Sci.U.S. A.89(1992)7124–7128.

[47]S.Santini,A.Cavallini,L.Natali,S.Minelli,F.Maggini,P.G.Cionini, Ty1/copia-andTy3/gypsy-likeDNAsequencesinHelianthusspecies,Chromosoma111 (2002)192–200.

[48]L.Natali,S.Santini,T.Giordani,S.Minelli,P.Maestrini,P.G.Cionini,etal., Distri-butionofTy3-gypsy-andTy1-copia-likeDNAsequencesinthegenusHelianthus andotherAsteraceae,Genome49(2006)64–72.

[49]M.Buti,T.Giordani,F.Cattonaro,R.M.Cossu,L.Pistelli,M.Vukich,etal., Temporaldynamicsintheevolutionofthesunflowergenomeasrevealedby sequencingandannotationofthreelargegenomicregions,Theor.Appl.Genet. 123(2011)779–791.

[50]C.P.Witte,Q.H.Le,T.Bureau,A.Kumar,Terminal-repeatretrotransposonsin miniature(TRIM)areinvolvedinrestructuringplantgenomes,Proc.Natl.Acad. Sci.U.S.A.98(2001)13778–13783.

[51]R.Kalendar,C.M.Vicient,O.Peleg,K.Anamthawat-Jonsson,A.Bolshoyb,A.H. Schulman,Largeretrotransposonderivatives:abundant,conservedbut nonau-tonomousretroelementsofbarleyandrelatedgenomes,Genetics166(2004) 1437–1450.

[52]A.Kumar,J.L.Bennetzen,Plantretrotransposons,Annu.Rev.Genet.33(1999) 479–532.

[53]P.SanMiguel,A.Tikhonov,Y.K.Jin,N.Motchoulskaia,D.Zakharov,A. Melake-Berhan,etal.,Nestedretrotransposonsintheintergenicregionsofthemaize genome,Science274(1996)765–768.

[54]P.SanMiguel,J.L.Bennetzen,Evidencethatarecentincreaseinmaizegenome sizewascausedbythemassiveamplificationofintergeneretrotransposons, Ann.Bot.82(1998)37–44.

[55]M. Buti, T. Giordani, M. Vukich, L. Gentzbittel, L. Pistelli, F. Cattonaro, etal.,HACRE1,arecentlyinsertedcopia-likeretrotransposonofsunflower (HelianthusannuusL.),Genome11(2009)904–911.

[56]J. Ma,J.L.Bennetzen,Rapidrecentgrowthanddivergenceofricenuclear genomes,Proc.Natl.Acad.Sci.U.S.A.101(2004)12404–12410.

[57]M.Vukich,T.Giordani,L.Natali,A.Cavallini,CopiaandGypsy retrotrans-posonsactivityinsunflower(HelianthusannuusL.),BMCPlantBiol.9(2009) 150.

[58]T.Kawakami,P.Dhakal,A.N.Katterhenry,C.A.Heatherington,M.C.Ungerer, Transposableelementproliferationandgenomeexpansionarerarein con-temporarysunflowerhybridpopulationsdespitewidespreadtranscriptional activityofLTRretrotransposons,GenomeBiol.Evol.3(2011)156–167.

[59]D.Lisch,Epigeneticregulationoftransposableelementsinplants,Ann.Rev. PlantBiol.60(2009)43–66.

[60]S.Tang,C.G.Hass,S.J.Knapp,Ty3/gypsy-likeretrotransposonknockoutofa 2-methyl-6-phytyl-1,4-benzoquinonemethyltransferaseisnon-lethal, uncov-ersacrypticparalogousmutation,andproducesnoveltocopherol(vitaminE) profilesinsunflower,Theor.Appl.Genet.113(2006)783–799.

[61]K.M.Devos,J.K.M.Brown,J.L.Bennetzen,Genomesizereductionthrough illegit-imaterecombinationcounteractsgenomeexpansioninArabidopsis,Genome Res.12(2002)1075–1079.

[62]J.Ma,K.M.Devos,J.L.Bennetzen,AnalysesofLTRretrotransposonstructures revealrecentandrapidgenomicDNAlossinrice,GenomeRes.14(2004) 860–869.

[63]C.Grover,J.Hawkins,J.Wendel,Phylogeneticinsightsintothepaceandpattern ofplantgenomesizeevolution,in:J.N.Volff(Ed.),PlantGenomes.Genome Dynamics,vol.4,Karger,Basel,CH,2008,pp.57–68.

[64]R.Kalendar, J. Tanskanen, S.Immonen,E.Nevo,A.H.Schulman,Genome evolutionofwildbarley(Hordeumspontaneum)byBARE-1retrotransposon dynamicsinresponsetosharpmicroclimaticdivergence,Proc.Natl.Acad.Sci. U.S.A.97(2000)6603–6607.

[65]J.S.Ammiraju,A.Zuccolo,Y.Yu,X.Song,P.Piegu,F.Chevalier,etal.,Evolutionary dynamicsofanancientretrotransposonfamilyprovidesinsightsintoevolution ofgenomesizeinthegenusOryza,PlantJ.52(2007)342–351.

[66]J.S.Hawkins,G.Hu,R.A.Rapp,J.L.Grafenberg,J.F.Wendel,Phylogenetic deter-minationofthepaceoftransposableelementproliferationinplants:Copiaand LINE-likeelementsinGossypium,Genome51(2008)11–18.

[67]A.M.Morse,D.G.Peterson,M.N.Islam-Faridi,K.E.Smith,Z.Magbanua,etal., Evolution of genomesize and complexity in Pinus, PLoS ONE 4 (2009) e4332.

[68]M.Ceccarelli,V.Sarri,L.Natali,T.Giordani,A.Cavallini,A.Zuccolo,etal., CharacterizationofthechromosomecomplementofHelianthusannuusby insituhybridizationofatandemlyrepeatedDNAsequence,Genome50(2007) 429–434.

[69]O.Schrader,R.Ahne,J.Fuchs,I.Schubert,KaryotypeanalysisofHelianthus annuususingGiemsabandingandfluorescenceinsituhybridization, Chromo-someRes.5(1997)451–456.

[70]J.Macas,T.Meszaros,M.Nouzova,PlantSat:aspecializeddatabaseforplant satelliterepeats,Bioinformatics18(2002)28–35.

[71]R.Appels,L.B.Moran,J.P.Gustafson,Ryeheterochromatin:studiesonclustersof majorrepeatingsequencesandtheidentificationofanewdispersedrepetitive sequenceelement,Can.J.Genet.Cytol.28(1986)3389–3402.

[72]A.Katsiotis,M.Hagidimitriov,A.Douka,P.Hatzopolus,Genomicorganization, sequenceinterrelationshipandphysicallocalizationusinginsituhybridization oftandemlyrepeatedDNAsequencesinthegenusOlea,Genome41(1998) 527–534.

[73]L.Natali,M.Ceccarelli,T.Giordani,V.Sarri,A.Zuccolo,I.Jurman,etal., Phy-logeneticrelationshipsbetweenannualandperennialspeciesofHelianthus: evolutionofatandemrepeatedDNAsequenceandcytologicalhybridization experiments,Genome51(2008)1047–1053.

[74]K.Sossey-Alaoui,H.Serieys,M.Tersac,P.Lambert,E.E.Schilling,Y.Griveau, etal.,EvidenceforseveralgenomesinHelianthus,Theor.Appl.Genet.97(1998) 422–430.

[75]S.R.Wessler,T.E.Bureau,S.E.White,LTR-retrotransposonsandMITEs: impor-tantplayersintheevolutionofplantgenomes,Curr.Opin.Genet.Dev.5(1995) 814–821.

[76]L.McHale,X.Tan,P.Koehl,R.W.Michelmore,PlantNBS-LRRproteins:adaptable guards,GenomeBiol.7(2006)212.

[77]G.Frugis,G.Mele,D.Giannino,D.Mariotti,MsJ1,analfalfaDnaJ-likegene,is tissue-specificandtranscriptionallyregulatedduringcellcycle,PlantMol.Biol. 40(1999)397–408.

[78]J.Jin,T.Cardozo,R.C.Lovering,S.J.Elledge,M.Pagano,J.W.Harper,Systematic analysisandnomenclatureofmammalianF-boxproteins,GenesDev.18(2004) 2573–2580.

[79]M.C.Ungerer, S.C.Strakosh,K.M.Stimpson,ProliferationofTy3/gypsy-like retrotransposonsinhybridsunflowertaxainferredfromphylogeneticdata, BMCBiol.7(2009)40.

[80]M.A.Grandbastien,Activationofplantretrotransposonsunderstress condi-tions,TrendsPlantSci.3(1998)181–187.

[81]A.H.Schulman,A.J.Flavell,T.H.N.Ellis, Theapplication ofLTR retrotrans-posons as molecular markers in plants, Methods Mol. Biol. 260 (2004) 145–173.

[82]R.Kalendar,A.H.Schulman,IRAPandREMAPforretrotransposonbased geno-typingandfingerprinting,Nat.Protoc.1(2006)2478–2484.

[83]C.D’Onofrio,G.DeLorenzis,T.Giordani,L.Natali,A.Cavallini,G.Scalabrelli, Retrotransposon-basedmolecularmarkersforgrapevinespeciesandcultivars identification,TreeGenet.Genomes6(2010)451–466.

[84]R.Waugh,K.McLean,A.J.Flavell,S.R.Pearce,A.Kumar,W.T.B.Thomas,etal., GeneticdistributionofBARE-1-likeretrotransposableelementsinthebarley genomerevealedbysequence-specificamplificationpolymorphisms(S-SAP), Mol.Gen.Genet.253(1997)687–694.

(10)

[85]R.Kalendar,T.Grob,M.Regina,A.Suoniemi,A.H.Schulman,IRAPandREMAP: twonewretrotransposon-basedDNAfingerprintingtechniques,Theor.Appl. Genet.98(1999)704–711.

[86]M.Vukich,A.H.Schulman,T.Giordani,L.Natali,R.Kalendar,A.Cavallini,Genetic variabilityinsunflower(HelianthusannuusL.)andintheHelianthusgenusas assessedbyretrotransposonbasedmolecularmarkers,Theor.Appl.Genet.119 (2009)1027–1038.

[87]M. Buti, T. Giordani, M. Vukich, C. Pugliesi, L. Natali, A. Cavallini, Retrotransposon-related geneticdistanceand hybridperformancein sun-flower(HelianthusannuusL.),Euphytica192(2013)289–303.

[88]P.Raicu,V.Vranceanu,A.Mihailescu,C.Popescu,M.KirillovaMotz,Research ofthechromosomecomplementinHelianthusL.genus,Caryologia29(1976) 307–316.

Riferimenti

Documenti correlati

For each imaging session, the following parameters were calculated: spine density (number of spines for dendritic length), fraction of gained and lost spines (Gain and Loss)

Results: FUP caused a significant increase in microcirculatory flux in the recovery period in PAD patients (*p<0,05 vs rest - figure) while it caused no significant changes

Since any interaction among systems implies a restriction of their global cartesian state automaton, interactions represent a valuable information in order to

The proposed numerical optimizer using the information of a DT + CR (both in case of known FRA or in the case of approximated value with average error of 0.5 ◦ ) is compared with

Children aged between 1 and 4 years, who had historically been affected by varicella diseases and were enrolled in the current uni- versal programme of varicella vaccination

Si è rilevato altresì che si deve scorgere un rapporto di discendenza diretta fra i visconti attestati agli inizi del secolo XII a Goito con il gruppo parentale che via via

• Experimental modal analysis and comparison with the FEM modal analysis • Experimental test on Noise Reduction assessment by using a sound intensity probe • Boundary

In particular discrete gradient structure have been prepared stacking two different homogeneous layers (see Material and Methods section). Samples have been mechanically