• Non ci sono risultati.

Inclusive search for supersymmetry using razor variables in pp collisions at √s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Inclusive search for supersymmetry using razor variables in pp collisions at √s=7 TeV"

Copied!
17
0
0

Testo completo

(1)

Inclusive Search for Supersymmetry Using Razor Variables in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.* (CMS Collaboration)

(Received 8 January 2013; published 23 August 2013)

An inclusive search is presented for new heavy particle pairs produced inpffiffiffis¼ 7 TeV proton-proton collisions at the LHC using 4:7  0:1 fb1of integrated luminosity. The selected events are analyzed in the 2D razor space of MR, an event-by-event indicator of the heavy particle mass scale, and R, a dimensionless variable related to the missing transverse energy. The third-generation sector is probed using the event heavy-flavor content. The search is sensitive to generic supersymmetry models with minimal assumptions about the superpartner decay chains. No excess is observed in the number of events beyond that predicted by the standard model. Exclusion limits are derived in the CMSSM framework as well as for simplified models. Within the CMSSM parameter space considered, gluino masses up to 800 GeV and squark masses up to 1.35 TeV are excluded at 95% confidence level depending on the model parameters. The direct production of pairs of top or bottom squarks is excluded for masses as high as 400 GeV.

DOI:10.1103/PhysRevLett.111.081802 PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm

Models with softly broken supersymmetry (SUSY) [1] predict heavy superpartners of the standard model (SM) particles. Experimental searches forR-parity [2] conserv-ing SUSY have focused on signatures combinconserv-ing energetic hadronic jets and leptons or photons from the decays of pair-produced squarks and gluinos, with large missing transverse energy (Emiss

T ) from the two weakly interacting

lightest neutral superpartners (LSPs) produced in separate decay chains. Recent publications include results from both the Tevatron [3,4] and the Large Hadron Collider (LHC) [5–26].

In SUSY models, the scale of soft SUSY breaking is related to the scale of electroweak symmetry breaking. This implies either that the soft-breaking mass parameters cannot be too large, or that the smallness of the electro-weak scale is explained by large cancellations arising from relations among these parameters in the high-energy the-ory. The latter possibility is complicated by large radiative corrections, particularly those induced by the soft-breaking parameters that are responsible for the masses of the top and bottom squarks, the superpartners of the third-generation quarks. It is thus of special importance to search for the lightest allowed top and bottom squarks, whose decays will be enriched in heavy-flavor quarks.

In this Letter we present results of an inclusive search for new heavy particles. The analysis is designed to be largely independent of the details of the decay chains and mea-sures deviations from the characteristic distributions of the

relevant SM processes in the razor variable plane [27,28]. It is generically sensitive to the production of pairs of heavy particles, provided that the decays of these particles produce significant EmissT , that these particles are substan-tially heavier than any SM particle, and that they are strongly produced in high-energy proton-proton collisions. The selection requires only two or more energetic recon-structed calorimeter objects [29]. The selected events are sorted hierarchically into exclusive data samples, catego-rized according to the lepton multiplicity in the event. The analysis is repeated with the requirement of the presence of a bottom-quark jet (b-jet) to search for third-generation-enhanced SUSY signatures. The major backgrounds are top production and vector boson production in association with jets. Using Monte Carlo simulation, we verified that the contribution from other SM processes (e.g., single top production or the pair production of electroweak vector bosons) is negligible.

The razor kinematic variables are based on the generic process of the pair production of two heavy particles, each decaying to an undetected particle plus visible decay prod-ucts. The razor kinematic variables are used to test, event by event, the hypothesis that the reconstructed particles in the events represent the visible portion of the decays of two heavy particles, each producing also an invisible particle. Regardless of its complexity, each event is treated as a dijetlike event by grouping all the physics objects detect-able in the calorimeters (hadronic jet candidates and isolated electrons) into two megajets [28]. Muons are considered invisible objects, in order to minimize the differences between the razor variables computed after the event reconstruction and the corresponding values derived from the calorimetric jets at the trigger level. Assuming the pair of megajets accurately reconstructs the visible portion of the parent particle decays, the signal

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

kinematics is equivalent, for example, to pair production of heavy squarks ~q1, ~q2, with ~qi! ji~0, where the ~0 are LSPs andjidenotes the visible products of the decays.

TheMR razor kinematic variable is defined in terms of the momentum of the two megajets as MR ½ðj ~pj1j þ

j ~pj2jÞ2 ðpj1

z þ pjz2Þ21=2and is, by construction, invariant under longitudinal boosts. In the approximation of mass-less megajets and negligible initial-state pT, MR equals M, where M  ðM2~q M2~Þ=M~qis twice the

magni-tude of the momentum of either megajet in the respective squark rest frame, and  is the boost factor from the center-of-mass frame to the squark rest frames. Note that this definition ofMRis amended from that in [28] to avoid configurations where the razor variable is ill defined due to unphysical Lorentz transformations.

The razor observable MRT is defined as MRT  ½ð1=2ÞðEmiss

T ðpj1T þ pj2TÞ  ~EmissT  ð ~pj1T þ ~pj2TÞÞ1=2, where

~pj1;2T are the transverse momentum vectors of the two megajets and ~EmissT is the missing transverse momentum vector (also referred to as missing tranverse energy). The razor dimensionless ratio is defined asR  ðMRT=MRÞ. For signal events MRT has a maximum value (a kinematic endpoint) ofM, soR has a maximum value of approxi-mately one. Thus signal events are characterized by a distribution inMRthat peaks aroundM, and a distribution in R that peaks around 0.5, in stark contrast with, for example, QCD multijet background events, whose distri-bution in eitherR or MRis exponentially suppressed away from zero [28,29]. These properties determine a region of the 2D razor space where the standard model background is reduced while the signal is retained.

A detailed description of the CMS detector can be found elsewhere [30]. A superconducting solenoid provides an axial magnetic field of 3.8 T. The silicon pixel and strip tracker, the high-resolution crystal electromagnetic calo-rimeter (ECAL), and the brass and scintillator hadron calorimeter (HCAL) are contained within the solenoid. Muons are detected in gas-ionization chambers embedded in the steel return yoke. The HCAL, combined with the ECAL, measures the jet energy with a resolution E=E  100%=pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiE=GeV 5%. CMS uses a coordinate system with the origin located at the nominal collision point, and the pseudorapidity is defined as  ¼  ln½tanð=2Þ, where the polar angle  is defined with respect to the counterclockwise beam direction.

The analysis uses a set of dedicated triggers that apply lower thresholds on the values of R and MR computed online from the reconstructed jets andEmissT . Three trigger categories are used: (i) hadronic razor triggers applying threshold requirements [29] onR and MRin events with at least two jets ofpT> 56 GeV; (ii) muon razor triggers that have looser R and MR requirements than the hadronic triggers and combined with at least one muon in the central part of the detector (barrel) withpT> 10 GeV; (iii) elec-tron razor triggers with similarR and MR requirements to

those used for muons and with at least one electron ofpT> 12 GeV satisfying loose isolation criteria. In addition, a set of nonrazor triggers is used to define control data samples. Events, after detector- and beam-related noise cleaning, are required to have at least one high-quality reconstructed interaction vertex [31]. When multiple vertices are found, the one with the highest associated Ptrackp2T is selected. The electron and muon candidate reconstruction and iden-tification criteria are described in Ref. [32]. Electrons and muons are required to lie withinjj < 2:5 and 2.1, respec-tively, and to satisfy the identification and selection requirements from [32]. Jets are reconstructed from calo-rimeter energy deposits using the infrared-safe anti-kT algorithm [33] with radius parameter 0.5. Jets are corrected for nonuniformities of the calorimeter response using en-ergy- and-dependent correction factors. Only jet candi-dates with pT> 40 GeV within jj < 3:0 are retained. The jet energy scale uncertainty for these corrected jets is 5% [34]. To match the trigger requirements, thepTof the two leading jets is required to be greater than 60 GeV. The transverse momentum imbalance in the event, ~EmissT , is reconstructed using the particle flow algorithm [35].

The reconstructed jets are grouped into two megajets [29]. The megajets are constructed as a sum of the four-momenta of their constituent objects. After the baseline selection and calculation of the variables R and MR, the events are assigned to one of six final-state boxes according to whether the event has zero, one, or two isolated leptons, divided according to lepton flavor (electrons and muons) as shown in TableI.

The requirements given in TableIdefine the full analysis regions of the R2-MR plane, where the analysis is per-formed for each box. They are the loosest possible require-ments that allow for the valid background description, while at the same time maintaining fully efficient triggers. To prevent ambiguities for events satisfying the selection requirements of more than one box [29], the boxes are arranged in a predefined hierarchy, as given in Table I. Each event is uniquely assigned to the first box whose criteria are satisfied by the event.

Six additional boxes are formed for events with at least one b-jet tagged using the track-counting high-efficiency (TCHE) b-tagging algorithm with 1% misidentification

TABLE I. Razor boxes definition. The variables and require-ments are explained in the text.

Lepton boxesMR> 300 GeV, 0:11 < R2< 0:5 ELE-MU peT> 20 GeV, pT> 15 GeV MU-MU p1T > 15 GeV, p2T > 10 GeV ELE-ELE pe1T > 20 GeV, pe2T > 10 GeV

MU pT> 12 GeV

ELE peT> 20 GeV

HAD boxMR> 400 GeV, 0:18 < R2< 0:5

(3)

rate [36,37]. These six boxes define the razor inclusive analysis of data samples with enhanced heavy-flavor con-tent. The typicalb-tagging efficiency is 65% [38].

The razor analysis is guided by studies of simulated events generated with the PYTHIA6 [39] and MADGRAPH [40] Monte Carlo programs, implemented using the CMS GEANT4-based [41] detector simulation, and then processed by the same software as that used to reconstruct data. Events with QCD multijets, top quarks, and electroweak (V) vector bosons are generated with MADGRAPH interfaced with PYTHIAfor parton showering, hadronization, and the under-lying event description.V þ jets events are generated with up to four additional tree-level strong emissions andtt þ jets with up to three. To generate Monte Carlo samples for SUSY, the mass spectrum is first calculated withSOFTSUSY [42] and the decays withSUSYHIT[43]. The PYTHIA6 pro-gram is used with the SUSY Les Houches Accord (SLHA) interface [44] to generate the events. Next-to-leading order (NLO) plus next-to-leading-logarithm (NLL) cross section calculations are used [45–50].

For each of the main SM backgrounds, a control data sample is defined from a subset of the data dominated by this particular background. It is used to obtain a description of the shapes of the background components from data. In both simulation and control data samples, the distributions of the major SM background events (QCD multijets, tt þ jets, Z þ jets, and W þ jets) are found to have a simple exponential dependence on the razor variablesR2 andMRover a large part of theR2-MRplane. A full 2D SM background representation is built using statistically inde-pendent data samples. This representation is used as input to the final fit performed in each fit region (FR) defined by an L-shaped area in the R2-MR plane such as shown in Fig.2. The fit region is dominated by SM processes. Signal contamination has only a small impact on the determina-tion of the background shape in the fit region, as demon-strated through studies based on simulation. The 2D background model obtained in the fit region is extrapolated to the rest of the R2-MR plane where the analysis is sensitive to a potential SUSY signal.

The fit function has parameters describing the shapes and normalization of theR2andMRdistributions of the SM backgrounds. The two-dimensional probability density function (pdf) PjðMR; R2Þ describing the R2 versus MR distribution of each considered SM processj is found to be well approximated by instances of the same function FjðMR; R2Þ:

FjðMR; R2Þ ¼ ½kjðMR M0R;jÞðR2 R20;jÞ  1

 ekjðMRM0R;jÞðR2R20;jÞ: (1)

The scaling of the exponent as a function of the thresholds on MR and R2 is described by the kj parameters of the function. When integrated over MR (R2), this function recovers the exponential dependence onR2 (MR).

Each SM process in a given final-state box is well described by a pdfPjthat is the sum of a first and a second component of the functional form Eq. (1) with separate normalizations. Studies of simulated events and fits to control data samples with either a b-jet requirement or a b-jet veto indicate that the parameters corresponding to the first components of these backgrounds (with steeper slopes at low MR and R2) are box dependent. The parameters describing the second component are box independent, and at the current precision of the background model, they are identical among the dominant backgrounds considered in these final states.

These sets of independent data control samples are used to derive a priori the background shape parameters. The results are incorporated in the final fits as a set of Gaussian penalty terms [51,52] for the parameterskj,M0R;j, andR20;j multiplying the final likelihood [Eq. (2)]. The rms values of the penalty terms for thekjparameters are typically 30%. An extended and unbinned maximum likelihood (ML) fit is performed in each box using ROOFIT [52]. The fit performed in the fit region of theR2-MRplane provides the description of the SM background in the full plane. The likelihood function for a given box is written as [53]

Lb ¼e Pj2SMNj  N! YN i¼1  X j2SM NjPjðMR;i; R2iÞ  ; (2) where N is the total event yield in the box, the sum runs over all the SM processes relevant for that box, andNj is the yield of a given fit sample in the box.

The values of the shape parameters that maximize the likelihood in these fits, along with the corresponding co-variance matrix, are used to define the background model and the uncertainty associated with it. Additional back-ground shape uncertainties due to the choice of the func-tional form were found to be negligible [29].

The result of the ML fit projected onMRandR2is shown in Fig. 1 for the HAD box. No significant discrepancy is observed between the data and the fit model in any of the six boxes [29].

To establish the compatibility of the background model with the observed data set, we define six signal regions (SRi) in the tail of the background distribution. Using the background model returned by the ML fit, we derive the distribution of the expected yield in each SRi using pseu-doexperiments accounting for correlations and uncertain-ties on the parameters describing the background model. For each of the SRi the distribution of the number of events derived by the pseudoexperiments is used to calculate a two-sidedp value (as shown for the HAD box in Fig.2), corresponding to the probability of observing an equal or less probable outcome for a counting experiment in each signal region. The p values test the compatibility of the observed number of events in data with the SM expectation obtained from the background parametrization. We quote

(4)

the median and the mode of the yield distribution for each SR, together with the observed yield.

For each box we consider the test statistic given by the logarithm of the likelihood ratio lnQ ¼ lnðLðs þ bjHÞ=LðbjHÞÞ, where H is the hypothesis under test: H1

(signal plus background) or the null hypothesisH0 (back-ground only). Given the distribution of lnQ for background-only and signal-plus-background pseudoex-periments, and the value of lnQ observed in the data, we calculate CLsþb and 1 CLb [54,55]. From these values the CLs¼ CLsþb=CLb is computed for that model point. A point in the constrained minimal supersymmetric stan-dard model (CMSSM) plane is excluded at 95% confidence level (C.L.) if CLs< 0:05. The result is shown in Fig. 3. The shape of the observed exclusion curves reflect the changing relevant SUSY strong production processes across the parameter space with squark-squark and gluino-gluino production dominating at low and highm0, respectively. The observed limit is less constraining than the median-expected limit at lowerm0due to an excess of

observed events in the HAD box at largeR2, where squark-pair production dominates over gluino-squark-pair production.

Cascading decays of gluinos yield more leptons than decays of squarks. Thus, relative to hadronic boxes, the contribution of lepton boxes increases withm0.

We estimate the systematic uncertainty on the signal shape model due to parton density functions (point by point up to 30%), jet energy scale (point by point up to 1%), and lepton identification (using Z ! ‘þ‘ data, 1% per lep-ton), as well as on the signal yield due to the luminosity uncertainty (2.2%) [56], the theoretical cross section (point by point up to 15%), razor trigger efficiency uncertainty

Events 1 10 2 10 3 10 4 10 Data SM Total V+jets 1st +jets 1st + effective 2nd t t = 7 TeV s CMS -1 L = 4.7 fb Had Box [GeV] R M 500 1000 1500 2000 2500 Data/SM 0.51 1.5 Events 2 10 3 10 4 10 Data SM Total V+jets 1st +jets 1st + effective 2nd t t = 7 TeV s CMS -1 L = 4.7 fb Had Box 2 R 0.2 0.25 0.3 0.35 0.4 0.45 0.5 Data/SM 0.51 1.5

FIG. 1 (color online). Projection of the 2D fit result on MR (left) andR2(right) for the HAD box. The blue histogram is the total standard model prediction. The red and green histograms represent a steep-slope component denoted as V þ jets first component, and a component that encapsulates both the steep-slope first component in tt þ jets and the effective second component, which is indistinguishable for the different SM background processes. The fit is performed in the R2-MR fit region (FR as shown in Fig. 2) and projected into the full analysis region. The full error on the total background prediction is drawn in these projections, including the one due to variation of the nuisance parameters.

[GeV] R M 500 1000 1500 2000 2500 3000 3500 2 R 0.2 0.25 0.3 0.35 0.4 0.45 0.5 p-value -3 10 -2 10 -1 10 1 SR1 SR2 SR3 SR4 SR5 SR6 -1 Ldt = 4.7 fb = 7 TeV s CMS Preliminary HAD box SR p-values

FR

FIG. 2 (color online). The p values corresponding to the observed number of events in the HAD box signal regions (SRi). The green region indicates the fit region in the HAD box. Similar results are obtained for the other boxes.

FIG. 3 (color online). Observed (solid blue curve) and median-expected (dashed curve, shown with its 1 standard deviation uncertainty band) 95% C.L. limits in the (m0, m1=2) CMSSM plane (drawn according to [61]) with tan ¼ 10, A0¼ 0 GeV, and sgnðÞ ¼ þ1. Shown separately are the observed HAD-only (solid crimson) and leptonic-HAD-only (solid green) 95% C.L. limits.

(5)

(2%), and lepton trigger efficiency uncertainty (3%). In the b-tag analysis path an additional systematic is considered for theb-tagging efficiency (between 6% and 20% in pT bins [36]). We consider variations of the function modeling the signal uncertainty (log-normal versus Gaussian) as well as theR2andMRbinning choice, finding negligible devia-tions in the result.

The results are also interpreted as cross section limits on a number of simplified models [57], where a limited set of hypothetical particles and decay chains are introduced to produce a given topological signature. Specific applica-tions of these ideas have appeared in Refs. [58–60]. For each model studied, the excluded cross section at 95% C.L. is derived as a function of the mass of the produced particles (gluinos or squarks, depending on the model) and the LSP mass, as well as the exclusion curve corre-sponding to the NLL-NLO cross section. Exclusion curves for a factor of 3 cross section enhancement or reduction are also produced as well as for1 standard deviation varia-tions in the NLL-NLO cross section [29]. Figure4shows the 95% C.L. excluded largest parent mass as a function of the LSP mass in each of the simplified model studies, for both the inclusive andb-jet versions of the analysis.

In summary, we performed a search for squarks and gluinos using a data sample of 4ffiffiffi :7 fb1 of CMS data at

s p

¼ 7 TeV proton-proton collisions in the razor variable space using a 2D shape description of the relevant standard model processes.

No significant excess over the background expectations is observed, and the results are presented as a 95% C.L. limit in the (m0, m1=2) CMSSM parameter space. For mð~qÞ mð~qÞ we exclude squarks and gluinos up to 1.35 TeV, and formð~qÞ > mð~qÞ we exclude gluinos up to 800 GeV. For simplified models we exclude up to 1 TeV for

the gluino mass and up to 800 GeV for the first and second generation squark masses. For direct production of pairs of top and bottom squarks we exclude top and bottom squark masses up to 400 GeV depending on the LSP mass.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MEYS (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Republic of Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); ThEPCenter, IPST, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council (European Union); the Leventis Foundation; the A. P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation a` la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the Ministry of Education, Youth and Sports (MEYS) of Czech Republic; the Council of Science and Industrial Research, India; the Compagnia di San Paolo (Torino); the Weston Havens Foundation (US) and the HOMING PLUS program of Foundation for Polish Science, cofinanced from European Union, Regional Development Fund.

[1] P. Ramond,Phys. Rev. D 3, 2415 (1971); Y. A. Golfand and E. P. Likhtman, JETP Lett. 13, 323 (1971); D. V. Volkov and V. P. Akulov, JETP Lett. 16, 438 (1972); J. Wess and B. Zumino, Nucl. Phys. B70, 39 (1974); P. Fayet,Nucl. Phys. B90, 104 (1975).

FIG. 4 (color online). Summary of the 95% CL excluded largest parent mass as a function of the LSP mass in each of the simplified models studied. Results from the inclusive razor analysis (upper bars) and theb-jet razor analysis (lower bars) are shown.

(6)

[2] G. R. Farrar and P. Fayet,Phys. Lett. 76B, 575 (1978). [3] V. M. Abazov et al. (D0 Collaboration),Phys. Lett. B 660,

449 (2008).

[4] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 102, 121801 (2009).

[5] CMS Collaboration,Phys. Rev. Lett. 109, 171803 (2012). [6] CMS Collaboration,Phys. Rev. D 86, 072010 (2012). [7] ATLAS Collaboration,Eur. Phys. J. C 71, 1647 (2011). [8] ATLAS Collaboration,Phys. Lett. B 701, 186 (2011). [9] ATLAS Collaboration,Phys. Rev. Lett. 106, 131802 (2011). [10] ATLAS Collaboration,Eur. Phys. J. C 71, 1682 (2011). [11] CMS Collaboration,J. High Energy Phys. 08, (2011) 155. [12] CMS Collaboration,Phys. Lett. B 698, 196 (2011). [13] CMS Collaboration,J. High Energy Phys. 06 (2011) 077. [14] CMS Collaboration,J. High Energy Phys. 06 (2011) 026. [15] CMS Collaboration,Phys. Lett. B 716, 260 (2012). [16] CMS Collaboration,J. High Energy Phys. 06 (2012) 169. [17] CMS Collaboration,J. High Energy Phys. 08 (2012) 110. [18] CMS Collaboration,Phys. Rev. Lett. 109, 071803 (2012). [19] CMS Collaboration,J. High Energy Phys. 10 (2012) 018. [20] ATLAS Collaboration, Phys. Rev. Lett. 108, 241802

(2012).

[21] ATLAS Collaboration,Phys. Rev. D 85, 112006 (2012). [22] ATLAS Collaboration,Phys. Lett. B 714, 180 (2012). [23] ATLAS Collaboration,Phys. Lett. B 714, 197 (2012). [24] ATLAS Collaboration, Phys. Rev. Lett. 108, 261804

(2012).

[25] ATLAS Collaboration,Phys. Lett. B 715, 44 (2012). [26] ATLAS Collaboration,Eur. Phys. J. C 73, 2362 (2013). [27] C. Rogan,arXiv:1006.2727.

[28] CMS Collaboration,Phys. Rev. D 85, 012004 (2012). [29] CMS Collaboration, ‘‘Inclusive search for pair production

of new heavy particles at CMS using the razor variables’’ (unpublished). See Supplemental Material on the razor variables and their modeling at http://link.aps.org/ supplemental/10.1103/PhysRevLett.111.081802.

[30] CMS Collaboration,JINST 3, S08004 (2008).

[31] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-TKR-10-005, 2012, http:// cds.cern.ch/record/1427247.

[32] CMS Collaboration,J. High Energy Phys. 10, (2011) 132. [33] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy

Phys. 04 (2008) 063.

[34] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-JME-10-010, 2010, http:// cds.cern.ch/record/1308178.

[35] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-PFT-09-001, 2009, http:// cds.cern.ch/record/1194487.

[36] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-BTV-10-001, 2010, http:// cds.cern.ch/record/1279144.

[37] CMS Collaboration, CMS Physics Analysis Summary Report No. CMS-PAS-BTV-11-004, 2012, http:// cds.cern.ch/record/1427247.

[38] CMS Collaboration,JINST 8, P04013 (2013).

[39] T. Sjo¨strand, S. Mrenna, and P. Skands,J. High Energy Phys. 05 (2006) 026.

[40] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, and T. Stelzer,J. High Energy Phys. 06 (2011) 128.

[41] S. Agostinelli et al. (GEANT4 Collaboration), Nucl. Instrum. Methods Phys. Res., Sect. A 506, 250 (2003). [42] B. C. Allanach, Comput. Phys. Commun. 143, 305

(2002).

[43] M. M. Mu¨hlleitner, A. Djouadi, and M. Spira, Acta Phys. Pol. B 38, 635 (2007).

[44] P. Z. Skands et al.,J. High Energy Phys. 07 (2004) 036. [45] W. Beenakker, R. Ho¨pker, M. Spira, and P. M. Zerwas,

Nucl. Phys. B492, 51 (1997).

[46] A. Kulesza and L. Motyka,Phys. Rev. Lett. 102, 111802 (2009).

[47] A. Kulesza and L. Motyka, Phys. Rev. D 80, 095004 (2009).

[48] W. Beenakker, S. Brensing, M. Kra¨mer, A. Kulesza, E. Laenen, and I. Niessen,J. High Energy Phys. 12 (2009) 041.

[49] W. Beenakker, S. Brensing, M. Kra¨mer, A. Kulesza, E. Laenen, L. Motyka, and I. Niessen, Int. J. Mod. Phys. A 26, 2637 (2011).

[50] M. Kra¨mer, A. Kulesza, R. van der Leeuw, M. Mangano, S. Padhi, T. Plehn, and X. Portell,arXiv:1206.2892. [51] G. F. de Montricher, R. A. Tapia, and J. R. Thompson,

Ann. Stat. 3, 1329 (1975).

[52] W. Verkerke and D. P. Kirkby,arXiv:physics/0306116. [53] R. J. Barlow,Nucl. Instrum. Methods Phys. Res., Sect. A

297, 496 (1990).

[54] A. L. Read,J. Phys. G 28, 2693 (2002).

[55] T. Junk,Nucl. Instrum. Methods Phys. Res., Sect. A 434, 435 (1999).

[56] CMS Collaboration (CMS), CMS Physics Analysis Summary Report No. CMS-PAS-SMP-12-008, 2012, http://cds.cern.ch/record/1434360.

[57] N. Arkani-Hamed, B. Knuteson, S. Mrenna, P. Schuster, J. Thaler, N. Toro, and L.-T. Wang,arXiv:hep-ph/0703088. [58] J. Alwall, P. C. Schuster, and N. Toro, Phys. Rev. D 79,

075020 (2009).

[59] J. Alwall, M.-P. Le, M. Lisanti, and J. G. Wacker,Phys. Rev. D 79, 015005 (2009).

[60] D. Alves et al. (LHC New Physics Working Group), J. Phys. G 39, 105005 (2012).

[61] K. Matchev and R. Remington,arXiv:1202.6580.

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2 W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3

(7)

M. Bansal,4S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4 B. Roland,4R. Rougny,4M. Selvaggi,4Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5 A. Olbrechts,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6

V. Dero,6A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6A. Mohammadi,6T. Reis,6L. Thomas,6 G. Vander Marcken,6C. Vander Velde,6P. Vanlaer,6J. Wang,6V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7 G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7

N. Strobbe,7F. Thyssen,7M. Tytgat,7P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8 G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8

V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8 J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10 T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11 D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11 H. Nogima,11V. Oguri,11W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11T. S. Anjos,12b C. A. Bernardes,12bF. A. Dias,12a,dT. R. Fernandez Perez Tomei,12aE. M. Gregores,12bC. Lagana,12aF. Marinho,12a P. G. Mercadante,12bS. F. Novaes,12aSandra S. Padula,12aV. Genchev,13,eP. Iaydjiev,13,eS. Piperov,13M. Rodozov,13

S. Stoykova,13G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14 V. Kozhuharov,14L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15 D. Liang,15S. Liang,15X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15 Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16 D. Wang,16L. Zhang,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17 J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,fD. Polic,18I. Puljak,18,eZ. Antunovic,19M. Kovac,19 V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,gS. Elgammal,23,h

A. Ellithi Kamel,23,iM. A. Mahmoud,23,jA. Radi,23,k,lM. Kadastik,24M. Mu¨ntel,24M. Raidal,24L. Rebane,24 A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26R. Kinnunen,26

M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26T. Ma¨enpa¨a¨,26 T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26K. Banzuzi,27 A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28D. Denegri,28 B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28G. Hamel de Monchenault,28P. Jarry,28

E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28A. Rosowsky,28I. Shreyber,28M. Titov,28 S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,mC. Broutin,29P. Busson,29C. Charlot,29 N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29R. Granier de Cassagnac,29M. Haguenauer,29P. Mine´,29

C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29 C. Veelken,29A. Zabi,29J.-L. Agram,30,nJ. Andrea,30D. Bloch,30D. Bodin,30J.-M. Brom,30M. Cardaci,30 E. C. Chabert,30C. Collard,30E. Conte,30,nF. Drouhin,30,nC. Ferro,30J.-C. Fontaine,30,nD. Gele´,30U. Goerlach,30 P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32N. Beaupere,32O. Bondu,32 G. Boudoul,32J. Chasserat,32R. Chierici,32,eD. Contardo,32P. Depasse,32H. El Mamouni,32J. Fay,32S. Gascon,32 M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32S. Perries,32L. Sgandurra,32V. Sordini,32

Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,oG. Anagnostou,34C. Autermann,34S. Beranek,34 M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,p M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35

C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35 P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35

M. Weber,35M. Bontenackels,36V. Cherepanov,36Y. Erdogan,36G. Flu¨gge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36J. Lingemann,36,eA. Nowack,36L. Perchalla,36

O. Pooth,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37,qA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37

F. Costanza,37D. Dammann,37C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37 I. Glushkov,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37

(8)

C. Kleinwort,37H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37 W. Lohmann,37,qB. Lutz,37R. Mankel,37I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37

J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37J. Olzem,37H. Perrey,37A. Petrukhin,37 D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37

R. Schmidt,37,qT. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37 V. Blobel,38J. Draeger,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38 K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38 N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38

T. Schum,38M. Seidel,38J. Sibille,38,rV. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38 C. Barth,39J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39

M. Guthoff,39,eC. Hackstein,39F. Hartmann,39T. Hauth,39,eM. Heinrich,39H. Held,39K. H. Hoffmann,39 U. Husemann,39I. Katkov,39,pJ. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39

M. Niegel,39A. Nu¨rnberg,39O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39 N. Ratnikova,39S. Ro¨cker,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39

J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42P. Kokkas,42

N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,sF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,tN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44J. Karancsi,45

P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46M. Kaur,46 M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. B. Singh,46Ashok Kumar,47Arun Kumar,47S. Ahuja,47

A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47V. Sharma,47R. K. Shivpuri,47 S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48S. Sarkar,48

M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49P. Mehta,49 A. K. Mohanty,49,eL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,uM. Maity,50,vG. Majumder,50

K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51 H. Arfaei,52,wH. Bakhshiansohi,52S. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52H. Hesari,52A. Jafari,52 M. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,yM. Zeinali,52 M. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,eS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53c

N. De Filippis,53a,53c,eM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cG. Maggi,53a,53cM. Maggi,53a B. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53bG. Pugliese,53a,53c G. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53a,53bG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a

D. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54bA. Castro,54a,54b F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b,e P. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,e A. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54b T. Rovelli,54a,54bG. P. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55bM. Chiorboli,55a,55b S. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56bM. Meschini,56aS. Paoletti,56a

G. Sguazzoni,56aA. Tropiano,56a,56bL. Benussi,57S. Bianco,57S. Colafranceschi,57,zF. Fabbri,57D. Piccolo,57 P. Fabbricatore,58aR. Musenich,58aS. Tosi,58a,58bA. Benaglia,59a,59bF. De Guio,59a,59bL. Di Matteo,59a,59b,e

S. Fiorendi,59a,59bS. Gennai,59a,eA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59bA. Martelli,59a,59b A. Massironi,59a,59b,eD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59b N. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60aN. Cavallo,60a,60c

A. De Cosa,60a,60b,eO. Dogangun,60a,60bF. Fabozzi,60a,60cA. O. M. Iorio,60a,60bL. Lista,60aS. Meola,60a,60d,aa M. Merola,60aP. Paolucci,60a,eP. Azzi,61aN. Bacchetta,61a,eD. Bisello,61a,61bA. Branca,61a,61b,eR. Carlin,61a,61b

P. Checchia,61aT. Dorigo,61aF. Gasparini,61a,61bU. Gasparini,61a,61bA. Gozzelino,61aK. Kanishchev,61a,61c S. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bA. T. Meneguzzo,61a,61bJ. Pazzini,61a,61bN. Pozzobon,61a,61b

P. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61bS. Vanini,61a,61bP. Zotto,61a,61b A. Zucchetta,61a,61bG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62bP. Torre,62a,62b

P. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bG. Mantovani,63a,63b

(9)

M. Menichelli,63aA. Nappi,63a,63b,aF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63bA. Spiezia,63a,63b S. Taroni,63a,63bP. Azzurri,64a,64cG. Bagliesi,64aJ. Bernardini,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a R. T. D’Agnolo,64a,64c,eR. Dell’Orso,64aF. Fiori,64a,64b,eL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,bbA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,ccP. Spagnolo,64a P. Squillacioti,64a,eR. Tenchini,64aG. Tonelli,64a,64bA. Venturi,64aP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a

D. Del Re,65a,65bM. Diemoz,65aC. Fanelli,65a,65bM. Grassi,65a,65b,eE. Longo,65a,65bP. Meridiani,65a,e F. Micheli,65a,65bS. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65a

L. Soffi,65a,65bN. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66a N. Cartiglia,66aM. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,eS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66b

M. Musich,66a,eM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66b M. Ruspa,66a,66cR. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aA. Vilela Pereira,66aS. Belforte,67a V. Candelise,67a,67bM. Casarsa,67aF. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,e D. Montanino,67a,67b,eA. Penzo,67aA. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69

G. N. Kim,69D. J. Kong,69H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70 S. Choi,71D. Gyun,71B. Hong,71M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72

J. H. Kim,72C. Park,72I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73 E. Kwon,73B. Lee,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74 A. Juodagalvis,74H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75R. Lopez-Fernandez,75

R. Magan˜a Villalba,75J. Martı´nez-Ortega,75A. Sanchez-Hernandez,75L. M. Villasenor-Cendejas,75 S. Carrillo Moreno,76F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78

M. A. Reyes-Santos,78D. Krofcheck,79A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80 M. Ahmad,81M. H. Ansari,81M. I. Asghar,81J. Butt,81H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81 S. Qazi,81M. A. Shah,81M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82R. Gokieli,82M. Go´rski,82 M. Kazana,82K. Nawrocki,82K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82G. Brona,83

K. Bunkowski,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83 N. Almeida,84P. Bargassa,84A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84 J. Varela,84P. Vischia,84I. Belotelov,85P. Bunin,85I. Golutvin,85I. Gorbunov,85A. Kamenev,85V. Karjavin,85 G. Kozlov,85A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85M. Savina,85S. Shmatov,85 V. Smirnov,85A. Volodko,85A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86 V. Murzin,86V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86

Yu. Andreev,87A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87 A. Pashenkov,87D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88 N. Lychkovskaya,88V. Popov,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89

E. Boos,89M. Dubinin,89,dL. Dudko,89A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89 A. Markina,89S. Obraztsov,89M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89

A. Snigirev,89V. Andreev,90M. Azarkin,90I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90 S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91I. Bayshev,91S. Bitioukov,91V. Grishin,91,eV. Kachanov,91 D. Konstantinov,91V. Krychkine,91V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91 N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,ddM. Djordjevic,92M. Ekmedzic,92D. Krpic,92,ddJ. Milosevic,92

M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93 M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93 C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93

O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93J. Puerta Pelayo,93 A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93C. Willmott,93C. Albajar,94

G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95S. Folgueras,95 I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95J. A. Brochero Cifuentes,96I. J. Cabrillo,96

A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,eeM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96 F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96 I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97M. Bachtis,97P. Baillon,97A. H. Ball,97

(10)

H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97D. D’Enterria,97 A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97 W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97D. Giordano,97M. Girone,97M. Giunta,97F. Glege,97 R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97 B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97

Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97N. Magini,97T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97 L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97P. Musella,97 E. Nesvold,97T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97

M. Pierini,97M. Pimia¨,97D. Piparo,97G. Polese,97L. Quertenmont,97A. Racz,97W. Reece,97

J. Rodrigues Antunes,97G. Rolandi,97,ffC. Rovelli,97,ggM. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97 C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,hh D. Spiga,97A. Tsirou,97G. I. Veres,97,tJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,iiW. D. Zeuner,97W. Bertl,98

K. Deiters,98W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98 D. Kotlinski,98U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98L. Ba¨ni,99P. Bortignon,99M. A. Buchmann,99

B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99M. Donega`,99M. Du¨nser,99J. Eugster,99 K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99A. C. Marini,99

P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99C. Na¨geli,99,jjP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99 L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,kk B. Stieger,99M. Takahashi,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99

H. A. Weber,99L. Wehrli,99C. Amsler,100,llV. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100 B. Millan Mejias,100P. Otiougova,100P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101 K. H. Chen,101C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101 R. Volpe,101S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102 C. Dietz,102U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102

E. Petrakou,102X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102M. Wang,102B. Asavapibhop,103 N. Srimanobhas,103A. Adiguzel,104M. N. Bakirci,104,mmS. Cerci,104,nnC. Dozen,104I. Dumanoglu,104E. Eskut,104

S. Girgis,104G. Gokbulut,104E. Gurpinar,104I. Hos,104E. E. Kangal,104T. Karaman,104G. Karapinar,104,oo A. Kayis Topaksu,104G. Onengut,104K. Ozdemir,104S. Ozturk,104,ppA. Polatoz,104K. Sogut,104,qq D. Sunar Cerci,104,nnB. Tali,104,nnH. Topakli,104,mmL. N. Vergili,104M. Vergili,104I. V. Akin,105T. Aliev,105 B. Bilin,105S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105 R. Sever,105U. E. Surat,105M. Yalvac,105E. Yildirim,105M. Zeyrek,105E. Gu¨lmez,106B. Isildak,106,rrM. Kaya,106,ss O. Kaya,106,ssS. Ozkorucuklu,106,ttN. Sonmez,106,uuK. Cankocak,107L. Levchuk,108J. J. Brooke,109E. Clement,109

D. Cussans,109H. Flacher,109R. Frazier,109J. Goldstein,109M. Grimes,109G. P. Heath,109H. F. Heath,109 L. Kreczko,109S. Metson,109D. M. Newbold,109,iiK. Nirunpong,109A. Poll,109S. Senkin,109V. J. Smith,109 T. Williams,109L. Basso,110,vvK. W. Bell,110A. Belyaev,110,vvC. Brew,110R. M. Brown,110D. J. A. Cockerill,110

J. A. Coughlan,110K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110E. Olaiya,110D. Petyt,110 B. C. Radburn-Smith,110C. H. Shepherd-Themistocleous,110I. R. Tomalin,110W. J. Womersley,110R. Bainbridge,111

G. Ball,111R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111M. Cutajar,111P. Dauncey,111 G. Davies,111M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111A. Gilbert,111A. Guneratne Bryer,111

G. Hall,111Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111G. Karapostoli,111L. Lyons,111A.-M. Magnan,111 J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111A. Nikitenko,111,kkA. Papageorgiou,111J. Pela,111 M. Pesaresi,111K. Petridis,111M. Pioppi,111,wwD. M. Raymond,111S. Rogerson,111A. Rose,111M. J. Ryan,111

C. Seez,111P. Sharp,111,aA. Sparrow,111M. Stoye,111A. Tapper,111M. Vazquez Acosta,111T. Virdee,111 S. Wakefield,111N. Wardle,111T. Whyntie,111M. Chadwick,112J. E. Cole,112P. R. Hobson,112A. Khan,112 P. Kyberd,112D. Leggat,112D. Leslie,112W. Martin,112I. D. Reid,112P. Symonds,112L. Teodorescu,112M. Turner,112

K. Hatakeyama,113H. Liu,113T. Scarborough,113O. Charaf,114C. Henderson,114P. Rumerio,114A. Avetisyan,115 T. Bose,115C. Fantasia,115A. Heister,115J. St. John,115P. Lawson,115D. Lazic,115J. Rohlf,115D. Sperka,115 L. Sulak,115J. Alimena,116S. Bhattacharya,116D. Cutts,116Z. Demiragli,116A. Ferapontov,116A. Garabedian,116 U. Heintz,116S. Jabeen,116G. Kukartsev,116E. Laird,116G. Landsberg,116M. Luk,116M. Narain,116D. Nguyen,116

M. Segala,116T. Sinthuprasith,116T. Speer,116K. V. Tsang,116R. Breedon,117G. Breto,117

M. Calderon De La Barca Sanchez,117S. Chauhan,117M. Chertok,117J. Conway,117R. Conway,117P. T. Cox,117

(11)

J. Dolen,117R. Erbacher,117M. Gardner,117R. Houtz,117W. Ko,117A. Kopecky,117R. Lander,117O. Mall,117 T. Miceli,117D. Pellett,117F. Ricci-Tam,117B. Rutherford,117M. Searle,117J. Smith,117M. Squires,117M. Tripathi,117 R. Vasquez Sierra,117R. Yohay,117V. Andreev,118D. Cline,118R. Cousins,118J. Duris,118S. Erhan,118P. Everaerts,118 C. Farrell,118J. Hauser,118M. Ignatenko,118C. Jarvis,118C. Plager,118G. Rakness,118P. Schlein,118,aP. Traczyk,118 V. Valuev,118M. Weber,118J. Babb,119R. Clare,119M. E. Dinardo,119J. Ellison,119J. W. Gary,119F. Giordano,119

G. Hanson,119G. Y. Jeng,119,xxH. Liu,119O. R. Long,119A. Luthra,119H. Nguyen,119S. Paramesvaran,119 J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119W. Andrews,120J. G. Branson,120G. B. Cerati,120

S. Cittolin,120D. Evans,120F. Golf,120A. Holzner,120R. Kelley,120M. Lebourgeois,120J. Letts,120I. Macneill,120 B. Mangano,120S. Padhi,120C. Palmer,120G. Petrucciani,120M. Pieri,120M. Sani,120V. Sharma,120S. Simon,120 E. Sudano,120M. Tadel,120Y. Tu,120A. Vartak,120S. Wasserbaech,120,yyF. Wu¨rthwein,120A. Yagil,120J. Yoo,120 D. Barge,121R. Bellan,121C. Campagnari,121M. D’Alfonso,121T. Danielson,121K. Flowers,121P. Geffert,121

J. Incandela,121C. Justus,121P. Kalavase,121S. A. Koay,121D. Kovalskyi,121V. Krutelyov,121S. Lowette,121 N. Mccoll,121V. Pavlunin,121F. Rebassoo,121J. Ribnik,121J. Richman,121R. Rossin,121D. Stuart,121W. To,121 C. West,121A. Apresyan,122A. Bornheim,122Y. Chen,122E. Di Marco,122J. Duarte,122M. Gataullin,122Y. Ma,122

A. Mott,122H. B. Newman,122C. Rogan,122M. Spiropulu,122V. Timciuc,122J. Veverka,122R. Wilkinson,122 S. Xie,122Y. Yang,122R. Y. Zhu,122B. Akgun,123V. Azzolini,123A. Calamba,123R. Carroll,123T. Ferguson,123 Y. Iiyama,123D. W. Jang,123Y. F. Liu,123M. Paulini,123H. Vogel,123I. Vorobiev,123J. P. Cumalat,124B. R. Drell,124

W. T. Ford,124A. Gaz,124E. Luiggi Lopez,124J. G. Smith,124K. Stenson,124K. A. Ulmer,124S. R. Wagner,124 J. Alexander,125A. Chatterjee,125N. Eggert,125L. K. Gibbons,125B. Heltsley,125A. Khukhunaishvili,125B. Kreis,125

N. Mirman,125G. Nicolas Kaufman,125J. R. Patterson,125A. Ryd,125E. Salvati,125W. Sun,125W. D. Teo,125 J. Thom,125J. Thompson,125J. Tucker,125J. Vaughan,125Y. Weng,125L. Winstrom,125P. Wittich,125D. Winn,126 S. Abdullin,127M. Albrow,127J. Anderson,127L. A. T. Bauerdick,127A. Beretvas,127J. Berryhill,127P. C. Bhat,127 I. Bloch,127K. Burkett,127J. N. Butler,127V. Chetluru,127H. W. K. Cheung,127F. Chlebana,127V. D. Elvira,127 I. Fisk,127J. Freeman,127Y. Gao,127D. Green,127O. Gutsche,127J. Hanlon,127R. M. Harris,127J. Hirschauer,127

B. Hooberman,127S. Jindariani,127M. Johnson,127U. Joshi,127B. Kilminster,127B. Klima,127S. Kunori,127 S. Kwan,127C. Leonidopoulos,127J. Linacre,127D. Lincoln,127R. Lipton,127J. Lykken,127K. Maeshima,127 J. M. Marraffino,127S. Maruyama,127D. Mason,127P. McBride,127K. Mishra,127S. Mrenna,127Y. Musienko,127,zz

C. Newman-Holmes,127V. O’Dell,127O. Prokofyev,127E. Sexton-Kennedy,127S. Sharma,127W. J. Spalding,127 L. Spiegel,127L. Taylor,127S. Tkaczyk,127N. V. Tran,127L. Uplegger,127E. W. Vaandering,127R. Vidal,127 J. Whitmore,127W. Wu,127F. Yang,127F. Yumiceva,127J. C. Yun,127D. Acosta,128P. Avery,128D. Bourilkov,128

M. Chen,128T. Cheng,128S. Das,128M. De Gruttola,128G. P. Di Giovanni,128D. Dobur,128A. Drozdetskiy,128 R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128J. Gartner,128J. Hugon,128B. Kim,128J. Konigsberg,128

A. Korytov,128A. Kropivnitskaya,128T. Kypreos,128J. F. Low,128K. Matchev,128P. Milenovic,128,aaa G. Mitselmakher,128L. Muniz,128M. Park,128R. Remington,128A. Rinkevicius,128P. Sellers,128N. Skhirtladze,128

M. Snowball,128J. Yelton,128M. Zakaria,128V. Gaultney,129S. Hewamanage,129L. M. Lebolo,129S. Linn,129 P. Markowitz,129G. Martinez,129J. L. Rodriguez,129T. Adams,130A. Askew,130J. Bochenek,130J. Chen,130 B. Diamond,130S. V. Gleyzer,130J. Haas,130S. Hagopian,130V. Hagopian,130M. Jenkins,130K. F. Johnson,130

H. Prosper,130V. Veeraraghavan,130M. Weinberg,130M. M. Baarmand,131B. Dorney,131M. Hohlmann,131 H. Kalakhety,131I. Vodopiyanov,131M. R. Adams,132I. M. Anghel,132L. Apanasevich,132Y. Bai,132 V. E. Bazterra,132R. R. Betts,132I. Bucinskaite,132J. Callner,132R. Cavanaugh,132O. Evdokimov,132L. Gauthier,132

C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132F. Lacroix,132M. Malek,132C. O’Brien,132C. Silkworth,132 D. Strom,132P. Turner,132N. Varelas,132U. Akgun,133E. A. Albayrak,133B. Bilki,133,bbbW. Clarida,133F. Duru,133

J.-P. Merlo,133H. Mermerkaya,133,cccA. Mestvirishvili,133A. Moeller,133J. Nachtman,133C. R. Newsom,133 E. Norbeck,133Y. Onel,133F. Ozok,133,dddS. Sen,133P. Tan,133E. Tiras,133J. Wetzel,133T. Yetkin,133K. Yi,133 B. A. Barnett,134B. Blumenfeld,134S. Bolognesi,134D. Fehling,134G. Giurgiu,134A. V. Gritsan,134Z. J. Guo,134

G. Hu,134P. Maksimovic,134S. Rappoccio,134M. Swartz,134A. Whitbeck,134P. Baringer,135A. Bean,135 G. Benelli,135R. P. Kenny III,135M. Murray,135D. Noonan,135S. Sanders,135R. Stringer,135G. Tinti,135 J. S. Wood,135V. Zhukova,135A. F. Barfuss,136T. Bolton,136I. Chakaberia,136A. Ivanov,136S. Khalil,136 M. Makouski,136Y. Maravin,136S. Shrestha,136I. Svintradze,136J. Gronberg,137D. Lange,137D. Wright,137 A. Baden,138M. Boutemeur,138B. Calvert,138S. C. Eno,138J. A. Gomez,138N. J. Hadley,138R. G. Kellogg,138 M. Kirn,138T. Kolberg,138Y. Lu,138M. Marionneau,138A. C. Mignerey,138K. Pedro,138A. Skuja,138J. Temple,138

(12)

M. B. Tonjes,138S. C. Tonwar,138E. Twedt,138A. Apyan,139G. Bauer,139J. Bendavid,139W. Busza,139E. Butz,139 I. A. Cali,139M. Chan,139V. Dutta,139G. Gomez Ceballos,139M. Goncharov,139K. A. Hahn,139Y. Kim,139 M. Klute,139K. Krajczar,139,eeeP. D. Luckey,139T. Ma,139S. Nahn,139C. Paus,139D. Ralph,139C. Roland,139 G. Roland,139M. Rudolph,139G. S. F. Stephans,139F. Sto¨ckli,139K. Sumorok,139K. Sung,139D. Velicanu,139 E. A. Wenger,139R. Wolf,139B. Wyslouch,139M. Yang,139Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139S. I. Cooper,140

B. Dahmes,140A. De Benedetti,140G. Franzoni,140A. Gude,140S. C. Kao,140K. Klapoetke,140Y. Kubota,140 J. Mans,140N. Pastika,140R. Rusack,140M. Sasseville,140A. Singovsky,140N. Tambe,140J. Turkewitz,140 L. M. Cremaldi,141R. Kroeger,141L. Perera,141R. Rahmat,141D. A. Sanders,141E. Avdeeva,142K. Bloom,142

S. Bose,142D. R. Claes,142A. Dominguez,142M. Eads,142J. Keller,142I. Kravchenko,142J. Lazo-Flores,142 H. Malbouisson,142S. Malik,142G. R. Snow,142A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143

A. Kumar,143G. Alverson,144E. Barberis,144D. Baumgartel,144M. Chasco,144J. Haley,144D. Nash,144 D. Trocino,144D. Wood,144J. Zhang,144A. Anastassov,145A. Kubik,145L. Lusito,145N. Mucia,145N. Odell,145 R. A. Ofierzynski,145B. Pollack,145A. Pozdnyakov,145M. Schmitt,145S. Stoynev,145M. Velasco,145S. Won,145 L. Antonelli,146D. Berry,146A. Brinkerhoff,146K. M. Chan,146M. Hildreth,146C. Jessop,146D. J. Karmgard,146 J. Kolb,146K. Lannon,146W. Luo,146S. Lynch,146N. Marinelli,146D. M. Morse,146T. Pearson,146M. Planer,146 R. Ruchti,146J. Slaunwhite,146N. Valls,146M. Wayne,146M. Wolf,146B. Bylsma,147L. S. Durkin,147C. Hill,147

R. Hughes,147K. Kotov,147T. Y. Ling,147D. Puigh,147M. Rodenburg,147C. Vuosalo,147G. Williams,147 B. L. Winer,147N. Adam,148E. Berry,148P. Elmer,148D. Gerbaudo,148V. Halyo,148P. Hebda,148J. Hegeman,148 A. Hunt,148P. Jindal,148D. Lopes Pegna,148P. Lujan,148D. Marlow,148T. Medvedeva,148M. Mooney,148J. Olsen,148

P. Piroue´,148X. Quan,148A. Raval,148B. Safdi,148H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148 A. Zuranski,148E. Brownson,149A. Lopez,149H. Mendez,149J. E. Ramirez Vargas,149E. Alagoz,150V. E. Barnes,150 D. Benedetti,150G. Bolla,150D. Bortoletto,150M. De Mattia,150A. Everett,150Z. Hu,150M. Jones,150O. Koybasi,150 M. Kress,150A. T. Laasanen,150N. Leonardo,150V. Maroussov,150P. Merkel,150D. H. Miller,150N. Neumeister,150 I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150 S. Guragain,151N. Parashar,151A. Adair,152C. Boulahouache,152K. M. Ecklund,152F. J. M. Geurts,152W. Li,152 B. P. Padley,152R. Redjimi,152J. Roberts,152J. Zabel,152B. Betchart,153A. Bodek,153Y. S. Chung,153R. Covarelli,153

P. de Barbaro,153R. Demina,153Y. Eshaq,153T. Ferbel,153A. Garcia-Bellido,153P. Goldenzweig,153J. Han,153 A. Harel,153D. C. Miner,153D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154L. Demortier,154

K. Goulianos,154G. Lungu,154S. Malik,154C. Mesropian,154S. Arora,155A. Barker,155J. P. Chou,155 C. Contreras-Campana,155E. Contreras-Campana,155D. Duggan,155D. Ferencek,155Y. Gershtein,155R. Gray,155 E. Halkiadakis,155D. Hidas,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155V. Rekovic,155J. Robles,155 K. Rose,155S. Salur,155S. Schnetzer,155C. Seitz,155S. Somalwar,155R. Stone,155S. Thomas,155M. Walker,155

G. Cerizza,156M. Hollingsworth,156S. Spanier,156Z. C. Yang,156A. York,156R. Eusebi,157W. Flanagan,157 J. Gilmore,157T. Kamon,157,fffV. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157A. Perloff,157 J. Roe,157A. Safonov,157T. Sakuma,157S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157N. Akchurin,158

J. Damgov,158C. Dragoiu,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158T. Libeiro,158 Y. Roh,158I. Volobouev,158E. Appelt,159A. G. Delannoy,159C. Florez,159S. Greene,159A. Gurrola,159W. Johns,159

P. Kurt,159C. Maguire,159A. Melo,159M. Sharma,159P. Sheldon,159B. Snook,159S. Tuo,159J. Velkovska,159 M. W. Arenton,160M. Balazs,160S. Boutle,160B. Cox,160B. Francis,160J. Goodell,160R. Hirosky,160

A. Ledovskoy,160C. Lin,160C. Neu,160J. Wood,160S. Gollapinni,161R. Harr,161P. E. Karchin,161 C. Kottachchi Kankanamge Don,161P. Lamichhane,161A. Sakharov,161M. Anderson,162D. A. Belknap,162 L. Borrello,162D. Carlsmith,162M. Cepeda,162S. Dasu,162E. Friis,162L. Gray,162K. S. Grogg,162M. Grothe,162

R. Hall-Wilton,162M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162A. Lanaro,162C. Lazaridis,162 J. Leonard,162R. Loveless,162A. Mohapatra,162I. Ojalvo,162F. Palmonari,162G. A. Pierro,162I. Ross,162A. Savin,162

W. H. Smith,162and J. Swanson162 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium

(13)

5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

12aUniversidade Estadual Paulista, Sa˜o Paulo, Brazil 12b

Universidade Federal do ABC, Sa˜o Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39

Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53c

Politecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

(14)

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy 60c

Universita` della Basilicata (Potenza), Napoli, Italy 60dUniversita` G. Marconi (Roma), Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma, Roma, Italy 66aINFN Sezione di Torino, Torino, Italy

66bUniversita` di Torino, Torino, Italy 66c

Universita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88

Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97

CERN, European Organization for Nuclear Research, Geneva, Switzerland 98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan

(15)

102National Taiwan University (NTU), Taipei, Taiwan 103Chulalongkorn University, Bangkok, Thailand

104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey

107Istanbul Technical University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109University of Bristol, Bristol, United Kingdom

110

Rutherford Appleton Laboratory, Didcot, United Kingdom 111Imperial College, London, United Kingdom 112Brunel University, Uxbridge, United Kingdom

113Baylor University, Waco, Texas, USA

114The University of Alabama, Tuscaloosa, Alabama, USA 115Boston University, Boston, Massachusetts, USA 116Brown University, Providence, Rhode Island, USA 117University of California, Davis, Davis, California, USA 118University of California, Los Angeles, Los Angeles, California, USA

119University of California, Riverside, Riverside, California, USA 120University of California, San Diego, La Jolla, California, USA 121University of California, Santa Barbara, Santa Barbara, California, USA

122California Institute of Technology, Pasadena, California, USA 123Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 124University of Colorado at Boulder, Boulder, Colorado, USA

125Cornell University, Ithaca, New York, USA 126

Fairfield University, Fairfield, Connecticut, USA 127Fermi National Accelerator Laboratory, Batavia, Illinois, USA

128University of Florida, Gainesville, Florida, USA 129Florida International University, Miami, Florida, USA

130Florida State University, Tallahassee, Florida, USA 131Florida Institute of Technology, Melbourne, Florida, USA 132University of Illinois at Chicago (UIC), Chicago, Illinois, USA

133The University of Iowa, Iowa City, Iowa, USA 134Johns Hopkins University, Baltimore, Maryland, USA

135The University of Kansas, Lawrence, Kansas, USA 136Kansas State University, Manhattan, Kansas, USA

137Lawrence Livermore National Laboratory, Livermore, California, USA 138University of Maryland, College Park, Maryland, USA 139Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

140University of Minnesota, Minneapolis, Minnesota, USA 141University of Mississippi, Oxford, Mississippi, USA 142University of Nebraska-Lincoln, Lincoln, Nebraska, USA 143State University of New York at Buffalo, Buffalo, New York, USA

144Northeastern University, Boston, Massachusetts, USA 145Northwestern University, Evanston, Illinois, USA 146University of Notre Dame, Notre Dame, Indiana, USA

147The Ohio State University, Columbus, Ohio, USA 148Princeton University, Princeton, New Jersey, USA 149

University of Puerto Rico, Mayaguez, Puerto Rico 150Purdue University, West Lafayette, Indiana, USA 151Purdue University Calumet, Hammond, Indiana, USA

152Rice University, Houston, Texas, USA 153University of Rochester, Rochester, New York, USA 154The Rockefeller University, New York, New York, USA

155Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 156University of Tennessee, Knoxville, Tennessee, USA

157Texas A&M University, College Station, Texas, USA 158

Texas Tech University, Lubbock, Texas, USA 159Vanderbilt University, Nashville, Tennessee, USA 160University of Virginia, Charlottesville, Virginia, USA

161Wayne State University, Detroit, Michigan, USA 162University of Wisconsin, Madison, Wisconsin, USA

Figura

TABLE I. Razor boxes definition. The variables and require- require-ments are explained in the text.
FIG. 2 (color online). The p values corresponding to the observed number of events in the HAD box signal regions (SRi)
FIG. 4 (color online). Summary of the 95% CL excluded largest parent mass as a function of the LSP mass in each of the simplified models studied

Riferimenti

Documenti correlati

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture