• Non ci sono risultati.

Measurement of the υ(1S), υ(2S), and υ(3S) polarizations in pp collisions at √s=7 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of the υ(1S), υ(2S), and υ(3S) polarizations in pp collisions at √s=7 TeV"

Copied!
15
0
0

Testo completo

(1)

Measurement of the ð1SÞ, ð2SÞ, and ð3SÞ Polarizations in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

S. Chatrchyan et al.*

(CMS Collaboration)

(Received 13 September 2012; published 20 February 2013)

The polarizations of theð1SÞ, ð2SÞ, and ð3SÞ mesons are measured in proton-proton collisions at ffiffiffi

s p

¼ 7 TeV, using a data sample of ðnSÞ ! þ decays collected by the CMS experiment,

corresponding to an integrated luminosity of 4:9 fb1. The dimuon decay angular distributions are analyzed in three different polarization frames. The polarization parameters#,, and#’, as well as the frame-invariant quantity ~, are presented as a function of the ðnSÞ transverse momentum between 10 and 50 GeV, in the rapidity rangesjyj < 0:6 and 0:6 < jyj < 1:2. No evidence of large transverse or longitudinal polarizations is seen in the explored kinematic region.

DOI:10.1103/PhysRevLett.110.081802 PACS numbers: 13.20.Gd, 13.85.Qk, 13.88.+e

Studies of heavy-quarkonium production play a crucial role in the detailed investigation of quantum chromody-namics (QCD), from the hard region, where an expansion in the coupling constant is possible, to the soft region, dominated by nonperturbative effects [1]. Given their high mass, heavy-quarkonium states are approximately nonrelativistic systems, allowing the application of theo-retical tools that simplify and constrain the analyses of nonperturbative effects [2]. The differential cross sections ofJ=cand mesons produced at Tevatron [3–5] and LHC [6–8] energies can be reproduced by calculations based on nonrelativistic QCD (NRQCD) [9], dominated by ‘‘color octet’’ production. However, the corresponding predictions [10] of strong transverse polarizations (dominant angular momentum componentJz¼ 1 with respect to the quark-onium momentum direction) are in stark disagreement with the negligible polarizations measured for the J=c [11]. The  satisfies the nonrelativistic approximation much better than the J=c, making the  polarization a more decisive test of NRQCD, especially at asymptotically large transverse momentum, pT. The existing measure-ments, however, are inconclusive, with the CDF [12] and D0 [13] results in mutual contradiction.

The polarization of the (JPC ¼ 1)  states can be measured through the study of the angular distribution of the leptons produced in the ! þdecay [14], Wðcos#; ’j ~Þ / 1

ð3 þ #Þð1 þ #cos 2#

þ ’sin2# cos2’ þ #’sin2# cos’Þ;

(1)

where# and ’ are the polar and azimuthal angles, respec-tively, of the þ with respect to thez axis of the chosen polarization frame. As pointed out in Refs. [14–18], improved experimental measurements of quarkonium po-larization require measuring all the angular distribution parameters, ~ ¼ ð#; ; #’Þ, in different polarization frames, as well as a frame-invariant polarization parameter, ~ ¼ ð# þ 3’Þ=ð1  ’Þ. This approach has already

been followed in the ðnSÞ polarization analysis of CDF [12], and in some recent theory calculations [19].

This Letter presents the measurement of the polariza-tions of theðnSÞ mesons produced in pp collisions at a center-of-mass energy of 7 TeV. The analysis is based on a dimuon sample collected by the CMS experiment at the LHC, corresponding to an integrated luminosity of 4:9 fb1 and containing 252 000 ð1SÞ, 94 000 ð2SÞ,

and 58 000ð3SÞ mesons (after all selection criteria). The analysis uses an unbinned likelihood approach, independent of assumptions on the production kinematics. The results are obtained in three frames, with different directions of the quantization axis: the center-of-mass helicity (HX) frame, where the polar axis coincides with the direction of the momentum; the Collins-Soper (CS) frame [20], whose axis is the average of the two beam directions in the  rest frame; and the perpendicular helicity (PX) frame [21], orthogonal to the CS frame. The y axis of the polarization frame is taken, in all cases, to be in the direction of the vector product of the two beam directions, ~P1 ~P2 and ~P2 ~P1for positive and negative rapidity, respectively.

The central feature of the CMS apparatus [22] is a superconducting solenoid of 6 m internal diameter, provid-ing a 3.8 T field. The main subdetectors used in this analysis are the silicon tracker and the muon system. The silicon tracker, composed of pixel and strip detector mod-ules, is immersed in the magnetic field and enables the measurement of charged-particle momenta over the pseu-dorapidity range jj < 2:5. Muons are measured in the

*Full author list given at the end of the article.

Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

range jj < 2:4 using gas-ionization detectors embedded in the steel return yoke of the magnet and made using three technologies: drift tubes, cathode strip chambers, and resis-tive plate chambers. The events were collected using a two-level trigger system. The first level consists of custom hardware processors and uses information from the muon system to select events with two muons. The ‘‘high-level trigger’’ requires an opposite-sign muon pair with invariant mass 8:5 < M < 11:5 GeV, jyj < 1:25, pT> 5 or 7 GeV (depending on the instantaneous luminosity), and vertex fit 2 probability greater than 0.5%.

In the offline analysis, dimuons are formed by combining pairs of opposite-sign muons (tracks in the silicon tracker matched to tracks in the muon detectors) that satisfy several quality criteria, including the number of tracker hits, the muon-track fit quality, and the vicinity of the track to the closest primary vertex along the beam line. The selected muons are required to satisfy jj < 1:6 and to have pT above 4.5, 3.5, and 3.0 GeV for jj < 1:2, 1:2 < jj < 1:4, and 1:4 < jj < 1:6, respectively, to ensure accurately measured muon detection efficiencies. Subsequent to the offline trigger confirmation, the combinatorial background from uncorrelated muons is reduced by requiring a dimuon vertex fit 2 probability larger than 1.0% and a distance between the dimuon vertex and the closest primary vertex less than twice its uncertainty. The analysis is performed in five dimuonpTbins, of edges 10, 12, 16, 20, 30, and 50 GeV, and twojyj ranges, 0.0–0.6 and 0.6–1.2.

The dimuon mass distribution, shown in Fig.1, is well described by three Crystal-Ball functions [23] representing the peaks, and by a second-degree polynomial function determined from the low- and high-mass sidebands, located below theð1SÞ and above the ð3SÞ, respectively. The dimuon mass resolution is better than 70 MeV for jyj < 0:6, increasing to 95 MeV in the 0:6 < jyj < 1:2 range, where theð2SÞ and ð3SÞ peaks partially overlap.

Within a 1 standard deviation () window around the ðnSÞ masses, the cross feed between the ð2SÞ and ð3SÞ is below 4%, and the background fractions are 4%–8%, 9%–18%, and 12%–28% (increasing with decreasingpT), for theð1SÞ, ð2SÞ, and ð3SÞ, respectively.

The single-muon detection efficiencies are measured with a ‘‘tag-and-probe’’ technique [24] using event samples collected with dedicated triggers enriched in dimuons from J=c decays. The trigger and reconstruction efficiencies must be accurately determined to avoid biases on the angu-lar distributions, which could mimic poangu-larization effects. The technique has been validated in the fiducial region of the analysis with detailed Monte Carlo (MC) simulation studies. The single-muon efficiencies are measured and parametrized as a function of pT in eight  bins. Their uncertainties, reflecting the statistical precision of the cali-bration samples and possible imperfections of the parame-trization, contribute to the systematic uncertainty on the final results. The dimuon trigger and the selection criteria applied at the dimuon level could potentially introduce muon-pair correlations, making the dimuon detection effi-ciencies different from the product of the effieffi-ciencies of the two single muons. Detailed MC simulations show that such correlations are essentially independent ofcos# and ’, in the phase space selected for the measurement. Residual effects are incorporated into the systematic uncertainty.

A fit to the dimuon mass distribution provides the frac-tion of background events,fB, under each of the three mass peaks, for a given definition of the signal region. The angular distributions of these background events are mod-eled as weighted sums of the distributions measured in the mass sidebands (defined with negligible signal contamina-tion), with weights derived under the assumption that they change monotonically with dimuon mass. The background dimuons are subtracted on an event-by-event basis using the likelihood ratioLB=LðSþBÞ, where both likelihoods are functions of the variablespT,jyj, M, cos#, and ’. LBis the likelihood of an event to be background, reflecting the background model, andLðSþBÞis its likelihood to be either signal or background, reflecting the distribution of the measured events. A fraction fB of events distributed according to the (pT,jyj, M, cos#, ’) distribution of the background model is removed from the data sample.

The posterior probability distribution (PPD) for the av-erage values of the polarization parameters ( ~) inside a particular kinematic cell is then defined as a product over the remaining (‘‘signal-like’’) events (i),

P ð ~Þ ¼Y

i Eð ~p ðiÞ

1 ; ~pðiÞ2 Þ; (2)

where E represents the event probability distribution as a function of the muon momenta ~p1;2in eventi. The priors are assumed to be uniform in the full parameter space. Unlike most polarization analyses, we do not use simulated (cos#, ’) acceptance and efficiency maps, averaged over

Dimuon mass [GeV] 9 9.5 10 10.5 11

Counts per 40 MeV

0 10 20 30 40 50 | < 0.6 y | | < 1.2 y 0.6 < | CMS -1 L = 4.9 fb = 7 TeV s pp 3 x 10

FIG. 1 (color online). Dimuon mass distributions in the  region forjyj < 0:6 (open squares) and 0:6 < jyj < 1:2 (closed circles).

(3)

all events in the considered kinematic cell. Instead, the procedure exploits the efficiency measurement as a func-tion of muon momenta, attributing to each event a proba-bility dependent on the full event kinematics (not only cos# and ’) and on the values of the polarization parame-ters. The event probability is defined as

Eð ~p1; ~p2Þ ¼ 1

N ð ~ÞWðcos#; ’j ~Þð ~p1; ~p2Þ; (3) where ð ~p1; ~p2Þ is the detection efficiency. The normali-zation factorN ð ~Þ is calculated by integrating W   over cos# and ’ uniformly, using (pT, jyj, M) distributions

determined from the background-subtracted data.

The background subtraction procedure is repeated 50 times to evaluate the statistical fluctuations associated with its random nature and the final PPD is obtained as the average of the 50 individual PPDs.

The analysis framework, including the effects of the detection efficiencies, has been tested with pseudoexperi-ments based on simulated samples. Each test involves 50 pseudoexperiments and evaluates a specific systematic uncertainty. The pseudosamples are individually generated and reconstructed, leading to statistically independent determinations of the polarization parameters. The differ-ence between the median of the 50 results and the injected polarization parameters provides the systematic uncertainty corresponding to the effect under study. The reliability of the method to extract the signal polarization is evaluated for several signal and background polarization scenarios. The influence of a possible residual bias from muon or dimuon efficiencies, stemming from the tag-and-probe measure-ment precision or from the efficiency parametrization, is evaluated by applying uncertainty-based changes to the efficiencies used in the extraction of the polarization para-meters. The monotonicity hypothesis in the data-driven modeling of the background angular distribution under the ðnSÞ peaks has been tested by varying the signal region from3 to 1 around the ðnSÞ masses (with corre-sponding corrections determined from a simple simulation of two-body decay kinematics). Despite significant changes infB[from 40% to 28% for theð3SÞ at low pTandjyj < 0:6, for instance], the results remain essentially identical for all three states. Larger variations are observed by modifying the relative weights of the low- and high-mass sidebands in the background model composition. A conservative range of hypotheses is considered, such as assuming that the background under theð1SÞ [ð3SÞ] peak resembles exclu-sively the low-mass [high-mass] sideband, or assuming that it is reproduced by an equal mixture of the two sideband distributions. While there is no dominant source of system-atic uncertainty in the ð1SÞ case, the total systematic uncertainty of theð2SÞ and ð3SÞ states is dominated by the background model uncertainty, especially at lowpT. At highpT, the statistical uncertainties dominate. For example, the statistical uncertainties in# (PX) atjyj < 0:6 for the ð1SÞ [ð3SÞ] are of order 0.1 [0.2] at both low and high pT;

the corresponding systematic uncertainties have a similar magnitude at lowpT and are two [three] times smaller at highpT.

Each PPD is broadened by the effects of systematic uncertainties, which are included by convolution. One-and two-dimensional projections of each final PPD are calculated by numerical integration. The highest posterior probability in each one-dimensional projection is used to estimate the best value of the associated polarization para-meter. Intervals [1, 2] corresponding to a given confi-dence level (CL), are calculated by identifying two regions of the parameter space, [ 1, 1] and [2,1], each

con-taining0:5ð1  CLÞ% of the one-dimensional projection of the PPD. Figure2shows two projections of the final PPD for theð1SÞ at jyj < 0:6 and 30 < pT< 50 GeV, display-ing the 68.3% and 99.7% CL contours for the CS and HX frames. ϑ λ -1 -0.5 0 0.5 1 ϕ λ -1 -0.5 0 0.5 1 CS, 68.3% CL CS, 99.7% CL HX, 68.3% CL HX, 99.7% CL (a) CMS -1 L = 4.9 fb = 7 TeV s pp ϕ λ -1 -0.5 0 0.5 1 ϕϑ λ -1 -0.5 0 0.5 1 CS, 68.3% CL CS, 99.7% CL HX, 68.3% CL HX, 99.7% CL (b) CS, 68.3% CL CS, 99.7% CL HX, 68.3% CL HX, 99.7% CL CMS -1 L = 4.9 fb = 7 TeV s pp

FIG. 2 (color online). Two-dimensional projections of the PPD in thevs# (a) and#’ vs (b) planes, forð1SÞ with jyj < 0:6 and 30 < pT< 50 GeV. The 68.3% and 99.7% CL

contours are shown for the CS and HX frames. The shaded areas represent physically forbidden regions of parameter space [18].

(4)

Figure 3 shows, for the rapidity range 0.0–0.6, one-dimensional profiles (68.3%, 95.5%, and 99.7% CL inter-vals) of the PPDs of the parameters#,, and#’, for the ð1SÞ, ð2SÞ, and ð3SÞ states, in the HX frame. Similar values are obtained in the 0.6–1.2 rapidity range (see the Supplemental Material [25]). Figure4displays the corre-sponding results for the frame-invariant parameter ~, including also the CS and PX values. The results obtained in the three frames are in good agreement, as required in the

absence of unaccounted for systematic effects. Complete tables of results for#,,#’, and ~, for the three  states and in the three frames considered in this analysis, are available in the Supplemental Material [25].

All the polarization parameters are compatible with zero or small values in the three polarization frames, excluding that a significant polarization could remain undetected because of smearing effects induced by unfortunate frame choices. The indication that the ðnSÞ resonances are

[GeV] T p -1 -0.5 0 0.5 1 ϑ λ (1S) Υ -1 = 7 TeV L = 4.9 fb s CMS pp (2S) Υ | < 0.6 y HX frame, | (3S) Υ [GeV] T p -0.4 -0.2 0 0.2 0.4 ϕ λ (1S) Υ Stat. uncert., 68.3 % CL Tot. uncert., 68.3 % CL Tot. uncert., 95.5 % CL Tot. uncert., 99.7 % CL (2S) Υ Υ(3S) [GeV] T p -0.4 -0.2 0 0.2 0.4 10 15 20 25 30 35 40 45 ϕ ϑ λ (1S) Υ [GeV] T p 10 15 20 25 30 35 40 45 (2S) Υ [GeV] T p 10 15 20 25 30 35 40 45 (3S) Υ

FIG. 3 (color online). Values of the# (top),(middle), and#’ (bottom) parameters for theð1SÞ (left), ð2SÞ (middle), and ð3SÞ (right), in the HX frame, as a function of the  pTforjyj < 0:6. The error bars indicate the 68.3% CL interval when neglecting

the systematic uncertainties. The three bands represent the 68.3%, 95.5%, and 99.7% CL intervals of the total uncertainties. The points are placed at the averagepT of each bin.

[GeV] T p -0.5 0 0.5 1 1.5 λ∼ | < 0.6 y (1S), | Υ -1 = 7 TeV L = 4.9 fb s CMS pp | < 0.6 y (2S), | Υ [GeV] T p | < 0.6 y (3S), | Υ [GeV] T p -0.5 0 0.5 1 1.5 10 15 20 25 30 35 40 45 λ∼ | < 1.2 y (1S), 0.6 < | Υ CS HX PX Stat. uncert., 68.3 % CL Tot. uncert., 68.3 % CL Tot. uncert., 95.5 % CL Tot. uncert., 99.7 % CL [GeV] T p 10 15 20 25 30 35 40 45 | < 1.2 y (2S), 0.6 < | Υ [GeV] T p 10 15 20 25 30 35 40 45 | < 1.2 y (3S), 0.6 < | Υ

FIG. 4 (color online). Values of ~ for the ð1SÞ, ð2SÞ, and ð3SÞ states (left to right), in the HX, CS, and PX frames, for the jyj < 0:6 (top) and 0:6 < jyj < 1:2 (bottom) ranges. The bands and error bars have the same meaning as in the previous figure.

(5)

produced as an unpolarized mixture might be related to the fact that the measurements do not distinguish directly produced  mesons from those produced in the decays of heavier (P-wave) bottomonium states.

In summary, the polarizations of theðnSÞ mesons pro-duced inpp collisions atpffiffiffis¼ 7 TeV have been determined as a function of the pTin two rapidity ranges and in three different polarization frames, using both frame-dependent and frame-independent parameters. The results exclude large transverse or longitudinalðnSÞ polarizations, beyond the pTandy ranges probed by previous experiments, especially

for theð3SÞ state, less affected by feeddown decays, and are in disagreement with theoretical expectations for high-energy hadron collisions [10,26].

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge sup-port from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); MoER, SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, and Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); and DOE and NSF (USA).

[1] N. Brambilla et al. (Quarkonium Working Group),arXiv: hep-ph/0412158.

[2] N. Brambilla et al.,Eur. Phys. J. C 71, 1534 (2011). [3] D. Acosta et al. (CDF Collaboration),Phys. Rev. D 71,

032001 (2005).

[4] D. Acosta et al. (CDF Collaboration)Phys. Rev. Lett. 88, 161802 (2002).

[5] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 94, 232001 (2005).

[6] S. Chatrchyan et al. (CMS Collaboration),J. High Energy Phys. 02 (2012) 011.

[7] R. Aaij et al. (LHCb Collaboration),Eur. Phys. J. C 72, 2025 (2012).

[8] V. Khachatryan et al. (CMS Collaboration),Phys. Rev. D 83, 112004 (2011).

[9] G. T. Bodwin, E. Braaten, and G. P. Lepage,Phys. Rev. D 51, 1125 (1995).

[10] B. Gong, J.-X. Wang, and H.-F. Zhang,Phys. Rev. D 83, 114021 (2011).

[11] A. Abulencia et al. (CDF Collaboration),Phys. Rev. Lett. 99, 132001 (2007).

[12] T. Aaltonen et al. (CDF Collaboration),Phys. Rev. Lett. 108, 151802 (2012).

[13] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 101, 182004 (2008).

[14] P. Faccioli, C. Lourenc¸o, J. Seixas, and H. K. Wo¨hri,Eur. Phys. J. C 69, 657 (2010).

[15] P. Faccioli, C. Lourenc¸o, J. Seixas, and H. K. Wo¨hri,Phys. Rev. Lett. 102, 151802 (2009).

[16] P. Faccioli, C. Lourenc¸o, and J. Seixas,Phys. Rev. Lett. 105, 061601 (2010).

[17] P. Faccioli, C. Lourenc¸o, and J. Seixas,Phys. Rev. D 81, 111502(R) (2010).

[18] P. Faccioli, C. Lourenc¸o, J. Seixas, and H. K. Wo¨hri,Phys. Rev. D 83, 056008 (2011).

[19] S. P. Baranov, A. V. Lipatov, and N. P. Zotov,Phys. Rev. D 85, 014034 (2012).

[20] J. C. Collins and D. E. Soper,Phys. Rev. D 16, 2219 (1977). [21] E. Braaten, D. Kang, J. Lee, and C. Yu,Phys. Rev. D 79,

014025 (2009).

[22] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[23] M. J. Oreglia, Ph.D. thesis, Stanford University, 1980, SLAC Report SLACR-236.

[24] V. Khachatryan et al. (CMS Collaboration), J. High Energy Phys. 01 (2011) 080.

[25] See Supplemental Material at http://link.aps.org/

supplemental/10.1103/PhysRevLett.110.081802 for the

numerical values corresponding to the results presented in this Letter.

[26] P. Artoisenet, J. Campbell, J. P. Lansberg, F. Maltoni, and F. Tramontano,Phys. Rev. Lett. 101, 152001 (2008).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2 W. Waltenberger,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3M. Bansal,4S. Bansal,4 T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4

M. Selvaggi,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4A. Van Spilbeeck,4F. Blekman,5 S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5A. Olbrechts,5W. Van Doninck,5 P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6T. Hreus,6

(6)

A. Le´onard,6P. E. Marage,6A. Mohammadi,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wang,6 V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7 A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7S. Walsh,7 E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8T. du Pree,8D. Favart,8 L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8C. Nuttens,8D. Pagano,8A. Pin,8

K. Piotrzkowski,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9E. Daubie,9G. H. Hammad,9G. A. Alves,10 M. Correa Martins Junior,10T. Martins,10M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11

A. Custo´dio,11E. M. Da Costa,11D. De Jesus Damiao,11C. De Oliveira Martins,11S. Fonseca De Souza,11 H. Malbouisson,11M. Malek,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11W. L. Prado Da Silva,11 A. Santoro,11L. Soares Jorge,11A. Sznajder,11A. Vilela Pereira,11T. S. Anjos,12,dC. A. Bernardes,12,dF. A. Dias,12,e T. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12P. G. Mercadante,12,dS. F. Novaes,12

Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13S. Stoykova,13G. Sultanov,13 V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14L. Litov,14B. Pavlov,14

P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15X. Meng,15J. Tao,15 J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15C. Asawatangtrakuldee,16Y. Ban,16

Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16D. Wang,16L. Zhang,16W. Zou,16C. Avila,17 J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18D. Lelas,18 R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19V. Brigljevic,20S. Duric,20K. Kadija,20

J. Luetic,20D. Mekterovic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21J. Mousa,21 C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,i A. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Raidal,24 L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26

R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26 T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26 K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,nP. Busson,29 C. Charlot,29N. Daci,29T. Dahms,29M. Dalchenko,29L. Dobrzynski,29A. Florent,29R. Granier de Cassagnac,29 M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29

R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30D. Bodin,30 J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,oJ.-C. Fontaine,30,oD. Gele´,30 U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32N. Beaupere,32 O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,fD. Contardo,32P. Depasse,32H. El Mamouni,32J. Fay,32 S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32S. Perries,32L. Sgandurra,32 V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,pC. Autermann,34S. Beranek,34B. Calpas,34

M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,q M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35

C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35M. Merschmeyer,35A. Meyer,35M. Olschewski,35 P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35D. Teyssier,35S. Thu¨er,35

M. Weber,35M. Bontenackels,36V. Cherepanov,36Y. Erdogan,36G. Flu¨gge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36J. Lingemann,36,fA. Nowack,36L. Perchalla,36

O. Pooth,36P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37 M. Bergholz,37,rA. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37

F. Costanza,37D. Dammann,37C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37 I. Glushkov,37P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37 C. Kleinwort,37H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37J. Leonard,37

W. Lohmann,37,rB. Lutz,37R. Mankel,37I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37 J. Mnich,37A. Mussgiller,37S. Naumann-Emme,37O. Novgorodova,37J. Olzem,37H. Perrey,37A. Petrukhin,37

(7)

R. Schmidt,37,rT. Schoerner-Sadenius,37N. Sen,37A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37 V. Blobel,38H. Enderle,38J. Erfle,38U. Gebbert,38M. Go¨rner,38M. Gosselink,38J. Haller,38T. Hermanns,38 R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38H. Kirschenmann,38R. Klanner,38J. Lange,38F. Nowak,38T. Peiffer,38 N. Pietsch,38D. Rathjens,38C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38

T. Schum,38M. Seidel,38J. Sibille,38,sV. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38 C. Barth,39J. Berger,39C. Bo¨ser,39T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39 M. Guthoff,39,fC. Hackstein,39F. Hartmann,39,fT. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39 U. Husemann,39I. Katkov,39,qJ. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39

M. Niegel,39A. Nu¨rnberg,39O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39 N. Ratnikova,39S. Ro¨cker,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39

J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Anagnostou,40G. Daskalakis,40T. Geralis,40 S. Kesisoglou,40A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40 E. Ntomari,40L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42 P. Kokkas,42N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43P. Hidas,43D. Horvath,43,t F. Sikler,43V. Veszpremi,43G. Vesztergombi,43,uN. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44

J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46 M. Kaur,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. B. Singh,46Ashok Kumar,47Arun Kumar,47

S. Ahuja,47A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47V. Sharma,47 R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48R. Khurana,48 S. Sarkar,48M. Sharan,48A. Abdulsalam,49D. Dutta,49S. Kailas,49V. Kumar,49A. K. Mohanty,49,fL. M. Pant,49 P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,vA. Gurtu,50,wM. Maity,50,xG. Majumder,50K. Mazumdar,50

G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51H. Arfaei,52,y H. Bakhshiansohi,52S. M. Etesami,52,zA. Fahim,52,yM. Hashemi,52,aaH. Hesari,52A. Jafari,52M. Khakzad,52 M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,bbM. Zeinali,52M. Abbrescia,53a,53b L. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53aD. Creanza,53a,53cN. De Filippis,53a,53c,f

M. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cG. Maggi,53a,53cM. Maggi,53aB. Marangelli,53a,53bS. My,53a,53c S. Nuzzo,53a,53bN. Pacifico,53aA. Pompili,53a,53bG. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53a

G. Singh,53a,53bR. Venditti,53a,53bP. Verwilligen,53aG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54a D. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54bA. Castro,54a,54b

F. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54a,54b P. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54aM. Meneghelli,54a,54b,f A. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54bA. M. Rossi,54a,54b

T. Rovelli,54a,54bG. P. Siroli,54a,54bN. Tosi,54aR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55b M. Chiorboli,55a,55bS. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56a V. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56b M. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,56bL. Benussi,57S. Bianco,57S. Colafranceschi,57,cc

F. Fabbri,57D. Piccolo,57P. Fabbricatore,58aR. Musenich,58aS. Tosi,58a,58bA. Benaglia,59aF. De Guio,59a,59b L. Di Matteo,59a,59b,fS. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59b

A. Martelli,59a,59bA. Massironi,59a,59bD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59a S. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a

N. Cavallo,60a,ddA. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,ddA. O. M. Iorio,60a,60bL. Lista,60a S. Meola,60a,eeM. Merola,60aP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fP. Bellan,61a,61bD. Bisello,61a,61b A. Branca,61a,fR. Carlin,61a,61bP. Checchia,61aT. Dorigo,61aU. Dosselli,61aF. Gasparini,61a,61bU. Gasparini,61a,61b

A. Gozzelino,61aK. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61b

A. T. Meneguzzo,61a,61bM. Nespolo,61a,fJ. Pazzini,61a,61bP. Ronchese,61a,61bF. Simonetto,61a,61bE. Torassa,61a S. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62b P. Torre,62a,62bP. Vitulo,62a,62bM. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bG. Mantovani,63a,63b

M. Menichelli,63aA. Nappi,63a,63b,aF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63bA. Spiezia,63a,63b S. Taroni,63a,63bP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a

R. T. D’Agnolo,64a,64c,fR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c T. Lomtadze,64aL. Martini,64a,ffA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,ggP. Spagnolo,64a

(8)

P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64bA. Venturi,64aP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a D. Del Re,65a,65bM. Diemoz,65aC. Fanelli,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b

S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a S. Casasso,66a,66bM. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66b

M. Musich,66a,fM. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66b M. Ruspa,66a,66cR. Sacchi,66a,66bA. Solano,66a,66bA. Staiano,66aS. Belforte,67aV. Candelise,67a,67bM. Casarsa,67a

F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67a A. Schizzi,67a,67bT. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69D. J. Kong,69H. Park,69 D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71M. Jo,71H. Kim,71

T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72I. C. Park,72S. Park,72 G. Ryu,72Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73

M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74H. Castilla-Valdez,75E. De La Cruz-Burelo,75 I. Heredia-de La Cruz,75R. Lopez-Fernandez,75J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75

L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76F. Vazquez Valencia,76H. A. Salazar Ibarguen,77 E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78D. Krofcheck,79A. J. Bell,80P. H. Butler,80 R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81M. I. Asghar,81J. Butt,81H. R. Hoorani,81S. Khalid,81 W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81M. Shoaib,81H. Bialkowska,82B. Boimska,82T. Frueboes,82 M. Go´rski,82M. Kazana,82K. Nawrocki,82K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82

G. Brona,83K. Bunkowski,83M. Cwiok,83W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83 J. Krolikowski,83M. Misiura,83N. Almeida,84P. Bargassa,84A. David,84P. Faccioli,84P. G. Ferreira Parracho,84

M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85 I. Gorbunov,85A. Kamenev,85V. Karjavin,85G. Kozlov,85A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85

V. Perelygin,85S. Shmatov,85V. Smirnov,85A. Volodko,85A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86 Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86

S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87A. Dermenev,87S. Gninenko,87N. Golubev,87 M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87D. Tlisov,87A. Toropin,87V. Epshteyn,88 M. Erofeeva,88V. Gavrilov,88M. Kossov,88N. Lychkovskaya,88V. Popov,88G. Safronov,88S. Semenov,88 I. Shreyber,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89E. Boos,89M. Dubinin,89,eL. Dudko,89 A. Ershov,89A. Gribushin,89V. Klyukhin,89O. Kodolova,89I. Lokhtin,89A. Markina,89S. Obraztsov,89M. Perfilov,89 S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90I. Dremin,90

M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91I. Bayshev,91 S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91V. Krychkine,91V. Petrov,91R. Ryutin,91

A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,hh M. Djordjevic,92M. Ekmedzic,92D. Krpic,92,hhJ. Milosevic,92M. Aguilar-Benitez,93J. Alcaraz Maestre,93

P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93 A. Delgado Peris,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93 J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93 G. Merino,93J. Puerta Pelayo,93A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93 C. Willmott,93C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95

S. Folgueras,95I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95J. A. Brochero Cifuentes,96 I. J. Cabrillo,96A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,iiM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96 F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96 I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97M. Bachtis,97P. Baillon,97A. H. Ball,97

D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97 H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97D. D’Enterria,97 A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97 W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97D. Giordano,97M. Girone,97M. Giunta,97F. Glege,97

R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97S. Gundacker,97M. Hansen,97P. Harris,97 C. Hartl,97J. Harvey,97B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97

(9)

K. Kousouris,97P. Lecoq,97Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97N. Magini,97T. Ma¨ki,97M. Malberti,97 L. Malgeri,97M. Mannelli,97L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97

M. Mulders,97P. Musella,97E. Nesvold,97T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97E. Perez,97 L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97D. Piparo,97G. Polese,97L. Quertenmont,97

A. Racz,97W. Reece,97J. Rodrigues Antunes,97G. Rolandi,97,jjC. Rovelli,97,kkM. Rovere,97H. Sakulin,97 F. Santanastasio,97C. Scha¨fer,97C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97P. Silva,97 M. Simon,97P. Sphicas,97,llD. Spiga,97A. Tsirou,97G. I. Veres,97,uJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,mm

W. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98 H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98L. Ba¨ni,99

P. Bortignon,99M. A. Buchmann,99B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99 M. Donega`,99M. Du¨nser,99J. Eugster,99K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99 A. C. Marini,99P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99C. Na¨geli,99,nnP. Nef,99F. Nessi-Tedaldi,99

F. Pandolfi,99L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99 A. Starodumov,99,ooB. Stieger,99M. Takahashi,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99 C. Urscheler,99R. Wallny,99H. A. Weber,99L. Wehrli,99C. Amsler,100,ppV. Chiochia,100S. De Visscher,100 C. Favaro,100M. Ivova Rikova,100B. Kilminster,100B. Millan Mejias,100P. Otiougova,100P. Robmann,100 H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101K. H. Chen,101C. Ferro,101C. M. Kuo,101S. W. Li,101

W. Lin,101Y. J. Lu,101A. P. Singh,101R. Volpe,101S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102 Y. W. Chang,102Y. Chao,102K. F. Chen,102C. Dietz,102U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102

Y. J. Lei,102R.-S. Lu,102D. Majumder,102E. Petrakou,102X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102 M. Wang,102B. Asavapibhop,103N. Srimanobhas,103A. Adiguzel,104M. N. Bakirci,104,qqS. Cerci,104,rrC. Dozen,104 I. Dumanoglu,104E. Eskut,104S. Girgis,104G. Gokbulut,104E. Gurpinar,104I. Hos,104E. E. Kangal,104T. Karaman,104 G. Karapinar,104,ssA. Kayis Topaksu,104G. Onengut,104K. Ozdemir,104S. Ozturk,104,ttA. Polatoz,104K. Sogut,104,uu

D. Sunar Cerci,104,rrB. Tali,104,rrH. Topakli,104,qqL. N. Vergili,104M. Vergili,104I. V. Akin,105T. Aliev,105 B. Bilin,105S. Bilmis,105M. Deniz,105H. Gamsizkan,105A. M. Guler,105K. Ocalan,105A. Ozpineci,105M. Serin,105

R. Sever,105U. E. Surat,105M. Yalvac,105E. Yildirim,105M. Zeyrek,105E. Gu¨lmez,106B. Isildak,106,vv M. Kaya,106,wwO. Kaya,106,wwS. Ozkorucuklu,106,xxN. Sonmez,106,yyK. Cankocak,107L. Levchuk,108 J. J. Brooke,109E. Clement,109D. Cussans,109H. Flacher,109R. Frazier,109J. Goldstein,109M. Grimes,109 G. P. Heath,109H. F. Heath,109L. Kreczko,109S. Metson,109D. M. Newbold,109,mmK. Nirunpong,109A. Poll,109

S. Senkin,109V. J. Smith,109T. Williams,109L. Basso,110,zzK. W. Bell,110A. Belyaev,110,zzC. Brew,110 R. M. Brown,110D. J. A. Cockerill,110J. A. Coughlan,110K. Harder,110S. Harper,110J. Jackson,110B. W. Kennedy,110

E. Olaiya,110D. Petyt,110B. C. Radburn-Smith,110C. H. Shepherd-Themistocleous,110I. R. Tomalin,110 W. J. Womersley,110R. Bainbridge,111G. Ball,111R. Beuselinck,111O. Buchmuller,111D. Colling,111N. Cripps,111

M. Cutajar,111P. Dauncey,111G. Davies,111M. Della Negra,111W. Ferguson,111J. Fulcher,111D. Futyan,111 A. Gilbert,111A. Guneratne Bryer,111G. Hall,111Z. Hatherell,111J. Hays,111G. Iles,111M. Jarvis,111 G. Karapostoli,111L. Lyons,111A.-M. Magnan,111J. Marrouche,111B. Mathias,111R. Nandi,111J. Nash,111

A. Nikitenko,111,ooA. Papageorgiou,111J. Pela,111M. Pesaresi,111K. Petridis,111M. Pioppi,111,aaa

D. M. Raymond,111S. Rogerson,111A. Rose,111M. J. Ryan,111C. Seez,111P. Sharp,111,aA. Sparrow,111M. Stoye,111 A. Tapper,111M. Vazquez Acosta,111T. Virdee,111S. Wakefield,111N. Wardle,111T. Whyntie,111M. Chadwick,112 J. E. Cole,112P. R. Hobson,112A. Khan,112P. Kyberd,112D. Leggat,112D. Leslie,112W. Martin,112I. D. Reid,112

P. Symonds,112L. Teodorescu,112M. Turner,112K. Hatakeyama,113H. Liu,113T. Scarborough,113O. Charaf,114 C. Henderson,114P. Rumerio,114A. Avetisyan,115T. Bose,115C. Fantasia,115A. Heister,115J. St. John,115

P. Lawson,115D. Lazic,115J. Rohlf,115D. Sperka,115L. Sulak,115J. Alimena,116S. Bhattacharya,116 G. Christopher,116D. Cutts,116Z. Demiragli,116A. Ferapontov,116A. Garabedian,116U. Heintz,116S. Jabeen,116

G. Kukartsev,116E. Laird,116G. Landsberg,116M. Luk,116M. Narain,116D. Nguyen,116M. Segala,116 T. Sinthuprasith,116T. Speer,116R. Breedon,117G. Breto,117M. Calderon De La Barca Sanchez,117S. Chauhan,117 M. Chertok,117J. Conway,117R. Conway,117P. T. Cox,117J. Dolen,117R. Erbacher,117M. Gardner,117R. Houtz,117 W. Ko,117A. Kopecky,117R. Lander,117O. Mall,117T. Miceli,117D. Pellett,117F. Ricci-tam,117B. Rutherford,117

M. Searle,117J. Smith,117M. Squires,117M. Tripathi,117R. Vasquez Sierra,117R. Yohay,117V. Andreev,118 D. Cline,118R. Cousins,118J. Duris,118S. Erhan,118P. Everaerts,118C. Farrell,118J. Hauser,118M. Ignatenko,118

(10)

M. E. Dinardo,119J. Ellison,119J. W. Gary,119F. Giordano,119G. Hanson,119H. Liu,119O. R. Long,119A. Luthra,119 H. Nguyen,119S. Paramesvaran,119J. Sturdy,119S. Sumowidagdo,119R. Wilken,119S. Wimpenny,119W. Andrews,120

J. G. Branson,120G. B. Cerati,120S. Cittolin,120D. Evans,120A. Holzner,120R. Kelley,120M. Lebourgeois,120 J. Letts,120I. Macneill,120B. Mangano,120S. Padhi,120C. Palmer,120G. Petrucciani,120M. Pieri,120M. Sani,120

V. Sharma,120S. Simon,120E. Sudano,120M. Tadel,120Y. Tu,120A. Vartak,120S. Wasserbaech,120,bbb F. Wu¨rthwein,120A. Yagil,120J. Yoo,120D. Barge,121R. Bellan,121C. Campagnari,121M. D’Alfonso,121

T. Danielson,121K. Flowers,121P. Geffert,121F. Golf,121J. Incandela,121C. Justus,121P. Kalavase,121 D. Kovalskyi,121V. Krutelyov,121S. Lowette,121R. Magan˜a Villalba,121N. Mccoll,121V. Pavlunin,121J. Ribnik,121

J. Richman,121R. Rossin,121D. Stuart,121W. To,121C. West,121A. Apresyan,122A. Bornheim,122Y. Chen,122 E. Di Marco,122J. Duarte,122M. Gataullin,122Y. Ma,122A. Mott,122H. B. Newman,122C. Rogan,122M. Spiropulu,122

V. Timciuc,122J. Veverka,122R. Wilkinson,122S. Xie,122Y. Yang,122R. Y. Zhu,122V. Azzolini,123A. Calamba,123 R. Carroll,123T. Ferguson,123Y. Iiyama,123D. W. Jang,123Y. F. Liu,123M. Paulini,123H. Vogel,123I. Vorobiev,123

J. P. Cumalat,124B. R. Drell,124W. T. Ford,124A. Gaz,124E. Luiggi Lopez,124J. G. Smith,124K. Stenson,124 K. A. Ulmer,124S. R. Wagner,124J. Alexander,125A. Chatterjee,125N. Eggert,125L. K. Gibbons,125B. Heltsley,125

A. Khukhunaishvili,125B. Kreis,125N. Mirman,125G. Nicolas Kaufman,125J. R. Patterson,125A. Ryd,125 E. Salvati,125W. Sun,125W. D. Teo,125J. Thom,125J. Thompson,125J. Tucker,125J. Vaughan,125Y. Weng,125 L. Winstrom,125P. Wittich,125D. Winn,126S. Abdullin,127M. Albrow,127J. Anderson,127L. A. T. Bauerdick,127

A. Beretvas,127J. Berryhill,127P. C. Bhat,127K. Burkett,127J. N. Butler,127V. Chetluru,127H. W. K. Cheung,127 F. Chlebana,127V. D. Elvira,127I. Fisk,127J. Freeman,127Y. Gao,127D. Green,127O. Gutsche,127J. Hanlon,127 R. M. Harris,127J. Hirschauer,127B. Hooberman,127S. Jindariani,127M. Johnson,127U. Joshi,127B. Klima,127 S. Kunori,127S. Kwan,127C. Leonidopoulos,127,cccJ. Linacre,127D. Lincoln,127R. Lipton,127J. Lykken,127 K. Maeshima,127J. M. Marraffino,127S. Maruyama,127D. Mason,127P. McBride,127K. Mishra,127S. Mrenna,127 Y. Musienko,127,dddC. Newman-Holmes,127V. O’Dell,127O. Prokofyev,127E. Sexton-Kennedy,127S. Sharma,127 W. J. Spalding,127L. Spiegel,127L. Taylor,127S. Tkaczyk,127N. V. Tran,127L. Uplegger,127E. W. Vaandering,127

R. Vidal,127J. Whitmore,127W. Wu,127F. Yang,127J. C. Yun,127D. Acosta,128P. Avery,128D. Bourilkov,128 M. Chen,128T. Cheng,128S. Das,128M. De Gruttola,128G. P. Di Giovanni,128D. Dobur,128A. Drozdetskiy,128

R. D. Field,128M. Fisher,128Y. Fu,128I. K. Furic,128J. Gartner,128J. Hugon,128B. Kim,128J. Konigsberg,128 A. Korytov,128A. Kropivnitskaya,128T. Kypreos,128J. F. Low,128K. Matchev,128P. Milenovic,128,eee G. Mitselmakher,128L. Muniz,128M. Park,128R. Remington,128A. Rinkevicius,128P. Sellers,128N. Skhirtladze,128

M. Snowball,128J. Yelton,128M. Zakaria,128V. Gaultney,129S. Hewamanage,129L. M. Lebolo,129S. Linn,129 P. Markowitz,129G. Martinez,129J. L. Rodriguez,129T. Adams,130A. Askew,130J. Bochenek,130J. Chen,130 B. Diamond,130S. V. Gleyzer,130J. Haas,130S. Hagopian,130V. Hagopian,130M. Jenkins,130K. F. Johnson,130

H. Prosper,130V. Veeraraghavan,130M. Weinberg,130M. M. Baarmand,131B. Dorney,131M. Hohlmann,131 H. Kalakhety,131I. Vodopiyanov,131F. Yumiceva,131M. R. Adams,132I. M. Anghel,132L. Apanasevich,132Y. Bai,132 V. E. Bazterra,132R. R. Betts,132I. Bucinskaite,132J. Callner,132R. Cavanaugh,132O. Evdokimov,132L. Gauthier,132

C. E. Gerber,132D. J. Hofman,132S. Khalatyan,132F. Lacroix,132C. O’Brien,132C. Silkworth,132D. Strom,132 P. Turner,132N. Varelas,132U. Akgun,133E. A. Albayrak,133B. Bilki,133,fffW. Clarida,133F. Duru,133J.-P. Merlo,133

H. Mermerkaya,133,gggA. Mestvirishvili,133A. Moeller,133J. Nachtman,133C. R. Newsom,133E. Norbeck,133 Y. Onel,133F. Ozok,133,hhhS. Sen,133P. Tan,133E. Tiras,133J. Wetzel,133T. Yetkin,133K. Yi,133B. A. Barnett,134

B. Blumenfeld,134S. Bolognesi,134D. Fehling,134G. Giurgiu,134A. V. Gritsan,134Z. J. Guo,134G. Hu,134 P. Maksimovic,134M. Swartz,134A. Whitbeck,134P. Baringer,135A. Bean,135G. Benelli,135R. P. Kenny III,135 M. Murray,135D. Noonan,135S. Sanders,135R. Stringer,135G. Tinti,135J. S. Wood,135A. F. Barfuss,136T. Bolton,136

I. Chakaberia,136A. Ivanov,136S. Khalil,136M. Makouski,136Y. Maravin,136S. Shrestha,136I. Svintradze,136 J. Gronberg,137D. Lange,137F. Rebassoo,137D. Wright,137A. Baden,138B. Calvert,138S. C. Eno,138J. A. Gomez,138

N. J. Hadley,138R. G. Kellogg,138M. Kirn,138T. Kolberg,138Y. Lu,138M. Marionneau,138A. C. Mignerey,138 K. Pedro,138A. Skuja,138J. Temple,138M. B. Tonjes,138S. C. Tonwar,138A. Apyan,139G. Bauer,139J. Bendavid,139 W. Busza,139E. Butz,139I. A. Cali,139M. Chan,139V. Dutta,139G. Gomez Ceballos,139M. Goncharov,139Y. Kim,139

M. Klute,139K. Krajczar,139,iiiA. Levin,139P. D. Luckey,139T. Ma,139S. Nahn,139C. Paus,139D. Ralph,139 C. Roland,139G. Roland,139M. Rudolph,139G. S. F. Stephans,139F. Sto¨ckli,139K. Sumorok,139K. Sung,139 D. Velicanu,139E. A. Wenger,139R. Wolf,139B. Wyslouch,139M. Yang,139Y. Yilmaz,139A. S. Yoon,139M. Zanetti,139

(11)

K. Klapoetke,140Y. Kubota,140J. Mans,140N. Pastika,140R. Rusack,140M. Sasseville,140A. Singovsky,140 N. Tambe,140J. Turkewitz,140L. M. Cremaldi,141R. Kroeger,141L. Perera,141R. Rahmat,141D. A. Sanders,141 E. Avdeeva,142K. Bloom,142S. Bose,142D. R. Claes,142A. Dominguez,142M. Eads,142J. Keller,142I. Kravchenko,142

J. Lazo-Flores,142S. Malik,142G. R. Snow,142A. Godshalk,143I. Iashvili,143S. Jain,143A. Kharchilava,143 A. Kumar,143S. Rappoccio,143G. Alverson,144E. Barberis,144D. Baumgartel,144M. Chasco,144J. Haley,144 D. Nash,144D. Trocino,144D. Wood,144J. Zhang,144A. Anastassov,145K. A. Hahn,145A. Kubik,145L. Lusito,145

N. Mucia,145N. Odell,145R. A. Ofierzynski,145B. Pollack,145A. Pozdnyakov,145M. Schmitt,145S. Stoynev,145 M. Velasco,145S. Won,145L. Antonelli,146D. Berry,146A. Brinkerhoff,146K. M. Chan,146M. Hildreth,146 C. Jessop,146D. J. Karmgard,146J. Kolb,146K. Lannon,146W. Luo,146S. Lynch,146N. Marinelli,146D. M. Morse,146

T. Pearson,146M. Planer,146R. Ruchti,146J. Slaunwhite,146N. Valls,146M. Wayne,146M. Wolf,146B. Bylsma,147 L. S. Durkin,147C. Hill,147R. Hughes,147K. Kotov,147T. Y. Ling,147D. Puigh,147M. Rodenburg,147C. Vuosalo,147

G. Williams,147B. L. Winer,147E. Berry,148P. Elmer,148V. Halyo,148P. Hebda,148J. Hegeman,148A. Hunt,148 P. Jindal,148S. A. Koay,148D. Lopes Pegna,148P. Lujan,148D. Marlow,148T. Medvedeva,148M. Mooney,148

J. Olsen,148P. Piroue´,148X. Quan,148A. Raval,148H. Saka,148D. Stickland,148C. Tully,148J. S. Werner,148 A. Zuranski,148E. Brownson,149A. Lopez,149H. Mendez,149J. E. Ramirez Vargas,149E. Alagoz,150V. E. Barnes,150 D. Benedetti,150G. Bolla,150D. Bortoletto,150M. De Mattia,150A. Everett,150Z. Hu,150M. Jones,150O. Koybasi,150 M. Kress,150A. T. Laasanen,150N. Leonardo,150V. Maroussov,150P. Merkel,150D. H. Miller,150N. Neumeister,150 I. Shipsey,150D. Silvers,150A. Svyatkovskiy,150M. Vidal Marono,150H. D. Yoo,150J. Zablocki,150Y. Zheng,150 S. Guragain,151N. Parashar,151A. Adair,152B. Akgun,152C. Boulahouache,152K. M. Ecklund,152F. J. M. Geurts,152

W. Li,152B. P. Padley,152R. Redjimi,152J. Roberts,152J. Zabel,152B. Betchart,153A. Bodek,153Y. S. Chung,153 R. Covarelli,153P. de Barbaro,153R. Demina,153Y. Eshaq,153T. Ferbel,153A. Garcia-Bellido,153P. Goldenzweig,153

J. Han,153A. Harel,153D. C. Miner,153D. Vishnevskiy,153M. Zielinski,153A. Bhatti,154R. Ciesielski,154 L. Demortier,154K. Goulianos,154G. Lungu,154S. Malik,154C. Mesropian,154S. Arora,155A. Barker,155 J. P. Chou,155C. Contreras-Campana,155E. Contreras-Campana,155D. Duggan,155D. Ferencek,155Y. Gershtein,155

R. Gray,155E. Halkiadakis,155D. Hidas,155A. Lath,155S. Panwalkar,155M. Park,155R. Patel,155V. Rekovic,155 J. Robles,155K. Rose,155S. Salur,155S. Schnetzer,155C. Seitz,155S. Somalwar,155R. Stone,155S. Thomas,155

M. Walker,155G. Cerizza,156M. Hollingsworth,156S. Spanier,156Z. C. Yang,156A. York,156R. Eusebi,157 W. Flanagan,157J. Gilmore,157T. Kamon,157,jjjV. Khotilovich,157R. Montalvo,157I. Osipenkov,157Y. Pakhotin,157

A. Perloff,157J. Roe,157A. Safonov,157T. Sakuma,157S. Sengupta,157I. Suarez,157A. Tatarinov,157D. Toback,157 N. Akchurin,158J. Damgov,158C. Dragoiu,158P. R. Dudero,158C. Jeong,158K. Kovitanggoon,158S. W. Lee,158 T. Libeiro,158Y. Roh,158I. Volobouev,158E. Appelt,159A. G. Delannoy,159C. Florez,159S. Greene,159A. Gurrola,159

W. Johns,159P. Kurt,159C. Maguire,159A. Melo,159M. Sharma,159P. Sheldon,159B. Snook,159S. Tuo,159 J. Velkovska,159M. W. Arenton,160M. Balazs,160S. Boutle,160B. Cox,160B. Francis,160J. Goodell,160R. Hirosky,160

A. Ledovskoy,160C. Lin,160C. Neu,160J. Wood,160S. Gollapinni,161R. Harr,161P. E. Karchin,161 C. Kottachchi Kankanamge Don,161P. Lamichhane,161A. Sakharov,161M. Anderson,162D. Belknap,162 L. Borrello,162D. Carlsmith,162M. Cepeda,162S. Dasu,162E. Friis,162L. Gray,162K. S. Grogg,162M. Grothe,162

R. Hall-Wilton,162M. Herndon,162A. Herve´,162P. Klabbers,162J. Klukas,162A. Lanaro,162C. Lazaridis,162 R. Loveless,162A. Mohapatra,162I. Ojalvo,162F. Palmonari,162G. A. Pierro,162I. Ross,162A. Savin,162

W. H. Smith,162and J. Swanson162

(CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6

Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil

(12)

12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20

Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt,

Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse,

CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia 34

RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany

35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research-EHEP, Mumbai, India 51Tata Institute of Fundamental Research-HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54b

Universita` di Bologna, Bologna, Italy

55aINFN Sezione di Catania, Catania, Italy 55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy 59aINFN Sezione di Milano-Bicocca, Milano, Italy

59b

Universita` di Milano-Bicocca, Milano, Italy

60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy

(13)

61cUniversita` di Trento (Trento), Padova, Italy 62aINFN Sezione di Pavia, Pavia, Italy

62bUniversita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65a

INFN Sezione di Roma, Roma, Italy

65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy 66aINFN Sezione di Torino, Torino, Italy

66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico

78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico 79University of Auckland, Auckland, New Zealand

80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100

Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Chulalongkorn University, Bangkok, Thailand 104Cukurova University, Adana, Turkey

105Middle East Technical University, Physics Department, Ankara, Turkey 106Bogazici University, Istanbul, Turkey

107Istanbul Technical University, Istanbul, Turkey

108National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 109

University of Bristol, Bristol, United Kingdom

110Rutherford Appleton Laboratory, Didcot, United Kingdom 111Imperial College, London, United Kingdom 112Brunel University, Uxbridge, United Kingdom

(14)

114The University of Alabama, Tuscaloosa, Alabama, USA 115Boston University, Boston, Massachusetts, USA 116Brown University, Providence, Rhode Island, USA 117University of California, Davis, Davis, California, USA 118University of California, Los Angeles, Los Angeles, California, USA

119University of California, Riverside, Riverside, California, USA 120University of California, San Diego, La Jolla, California, USA 121University of California, Santa Barbara, Santa Barbara, California, USA

122

California Institute of Technology, Pasadena, California, USA

123Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 124University of Colorado at Boulder, Boulder, Colorado, USA

125Cornell University, Ithaca, New York, USA 126Fairfield University, Fairfield, Connecticut, USA 127Fermi National Accelerator Laboratory, Batavia, Illinois, USA

128University of Florida, Gainesville, Florida, USA 129Florida International University, Miami, Florida, USA

130Florida State University, Tallahassee, Florida, USA 131Florida Institute of Technology, Melbourne, Florida, USA 132University of Illinois at Chicago (UIC), Chicago, Illinois, USA

133The University of Iowa, Iowa City, Iowa, USA 134Johns Hopkins University, Baltimore, Maryland, USA

135The University of Kansas, Lawrence, Kansas, USA 136Kansas State University, Manhattan, Kansas, USA

137Lawrence Livermore National Laboratory, Livermore, California, USA 138

University of Maryland, College Park, Maryland, USA

139Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 140University of Minnesota, Minneapolis, Minnesota, USA

141University of Mississippi, Oxford, Mississippi, USA 142University of Nebraska-Lincoln, Lincoln, Nebraska, USA 143State University of New York at Buffalo, Buffalo, New York, USA

144Northeastern University, Boston, Massachusetts, USA 145Northwestern University, Evanston, Illinois, USA 146University of Notre Dame, Notre Dame, Indiana, USA

147The Ohio State University, Columbus, Ohio, USA 148Princeton University, Princeton, New Jersey, USA 149University of Puerto Rico, Mayaguez, Puerto Rico, USA

150Purdue University, West Lafayette, Indiana, USA 151Purdue University Calumet, Hammond, Indiana, USA

152Rice University, Houston, Texas, USA 153University of Rochester, Rochester, New York, USA 154The Rockefeller University, New York, New York, USA

155Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 156University of Tennessee, Knoxville, Tennessee, USA

157Texas A&M University, College Station, Texas, USA 158Texas Tech University, Lubbock, Texas, USA 159Vanderbilt University, Nashville, Tennessee, USA 160University of Virginia, Charlottesville, Virginia, USA

161

Wayne State University, Detroit, Michigan, USA

162University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, CA, USA. f

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland. g

Also at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

(15)

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at British University, Cairo, Egypt. mNow at Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. oAlso at Universite´ de Haute-Alsace, Mulhouse, France. pAlso at Joint Institute for Nuclear Research, Dubna, Russia. qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at The University of Kansas, Lawrence, KS, USA.

tAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. uAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

vAlso at Tata Institute of Fundamental Research-HECR, Mumbai, India. wNow at King Abdulaziz University, Jeddah, Saudi Arabia.

xAlso at University of Visva-Bharati, Santiniketan, India. y

Also at Sharif University of Technology, Tehran, Iran. zAlso at Isfahan University of Technology, Isfahan, Iran. aaAlso at Shiraz University, Shiraz, Iran.

bbAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran, Iran. ccAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

ddAlso at Universita` della Basilicata, Potenza, Italy.

eeAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ffAlso at Universita` degli Studi di Siena, Siena, Italy.

ggAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. hhAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

iiAlso at University of California, Los Angeles, Los Angeles, CA, USA. jjAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

kkAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy. llAlso at University of Athens, Athens, Greece.

mmAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. nn

Also at Paul Scherrer Institut, Villigen, Switzerland.

ooAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ppAlso at Albert Einstein Center for Fundamental Physics, Bern, Switzerland. qqAlso at Gaziosmanpasa University, Tokat, Turkey.

rrAlso at Adiyaman University, Adiyaman, Turkey. ssAlso at Izmir Institute of Technology, Izmir, Turkey.

ttAlso at The University of Iowa, Iowa City, IA, USA. uuAlso at Mersin University, Mersin, Turkey.

vvAlso at Ozyegin University, Istanbul, Turkey. wwAlso at Kafkas University, Kars, Turkey.

xxAlso at Suleyman Demirel University, Isparta, Turkey. yyAlso at Ege University, Izmir, Turkey.

zzAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. aaaAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

bbb

Also at Utah Valley University, Orem, UT, USA.

cccNow at University of Edinburgh, Scotland, Edinburgh, United Kingdom. dddAlso at Institute for Nuclear Research, Moscow, Russia.

eeeAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. fffAlso at Argonne National Laboratory, Argonne, IL, USA.

gggAlso at Erzincan University, Erzincan, Turkey.

hhhAlso at Mimar Sinan University, Istanbul, Istanbul, Turkey.

iiiAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. jjjAlso at Kyungpook National University, Daegu, Korea.

Figura

FIG. 2 (color online). Two-dimensional projections of the PPD in the  ’ vs  # (a) and  #’ vs  ’ (b) planes, for ð1SÞ with jyj &lt; 0:6 and 30 &lt; p T &lt; 50 GeV
Figure 3 shows, for the rapidity range 0.0–0.6, one- one-dimensional profiles (68.3%, 95.5%, and 99.7% CL  inter-vals) of the PPDs of the parameters  # ,  ’ , and  #’ , for the ð1SÞ, ð2SÞ, and ð3SÞ states, in the HX frame

Riferimenti

Documenti correlati

Forse serve immaginare un futuro dell’insegnamento che sia mi- sto, o per meglio dire blended, sviluppando un modello di scuola ed università nel quale si mantenga la possibilità

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture