• Non ci sono risultati.

Measurement of quarkonium production cross sections in pp collisions at √s = 13TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Measurement of quarkonium production cross sections in pp collisions at √s = 13TeV"

Copied!
22
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

quarkonium

production

cross

sections

in

pp

collisions

at

s

=

13 TeV

.TheCMS Collaboration CERN,Switzerland a r t i c l e i n f o a b s t ra c t Articlehistory: Received30October2017

Receivedinrevisedform27December2017 Accepted15February2018

Availableonline1March2018 Editor: M.Doser

Keywords:

CMS Quarkonium Crosssections

Differential production cross sections of promptJ and ψ(2S) charmonium and ϒ(nS) (n=1,2,3) bottomonium statesare measuredinproton–proton collisionsat√s=13 TeV, withdata collectedby the CMS detectoratthe LHC, corresponding toan integratedluminosity of 2.3 fb−1 forthe J and 2.7 fb−1fortheothermesons.Thefivequarkoniumstatesarereconstructedinthedimuondecaychannel, for dimuonrapidity|y|<1.2. Thedouble-differentialcross sectionsfor eachstateare measuredas a functionof y andtransverse momentum,andcomparedtotheoreticalexpectations. Inaddition,ratios arepresentedofcrosssectionsforpromptψ(2S)toJ,ϒ(2S)toϒ(1S),andϒ(3S)toϒ(1S)production. ©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Since the discovery of heavy-quark bound states, quarkonium production in hadronic collisions has been the subject of many theoreticalandexperimental studies. Awell established theoreti-calframeworktodescribequarkoniumproductionisnonrelativistic quantumchromodynamics(NRQCD) [1–3],aneffectivetheorythat assumes that the mechanism can be factorized in two steps. In thefirststep,aheavyquark–antiquarkpairisproducedinagiven spinandorbitalangularmomentumstate,eitherinacolor-singlet orcolor-octet configuration.The corresponding parton-level cross sections,usuallycalledshort-distancecoefficients(SDCs),are func-tionsofthekinematics ofthe stateandcanbe calculated pertur-batively,presently uptonext-to-leadingorder(NLO) [4–7].Inthe secondstep,thequark–antiquarkpairsbindintothefinal quarko-niumstatesthroughanonperturbativehadronizationprocess,with transitionprobabilities determined by process-independent long-distance matrix elements (LDMEs). Unlike the SDCs, the LDMEs are presently not calculable and must be obtained through fits to experimental data [4–9]. Until recently, for directly produced S-wavequarkonia,the color-octet 3S

1 termwas thought to

dom-inate, which would result in a strong transverse polarization of the mesons relative to their direction of motion (helicity frame) atlargetransversemomentum, pT.

Experiments at the CERN LHC have provided measurements of the production of the S-wave quarkonium states ηc(1S), J,

 E-mailaddress:cms-publication-committee-chair@cern.ch.

ψ(2S),andϒ(nS)(n=1,2,3),andoftheP-wavestates, χc1,2 and

χb1,2(1P) [10–14],atcenter-of-massenergiesof2.76,7and8 TeV.

These measurements of the S-wave states include both the dif-ferentialcrosssections [15–29] andpolarizations [30–34],and of-ferstrongindicationthat,contrarytoprevious expectations,these mesonsare producedunpolarized.Furthertheoreticaland experi-mentalworkcanprovidedeeperinsightsonhowtointerpretthese observations. Inparticular, additional datacan help in improving the fitsanddetermine morepreciselythe relative weightsof the LDMEs.

We report the measurement of double-differential cross sec-tions offive S-wavequarkonium statesJ,ψ(2S),and ϒ(nS) in pp collisions at √s=13 TeV by the CMS detector at the LHC. Theincreasedcenter-of-massenergyandproductioncrosssections provideanextendedreachinpTandimprovedstatisticalprecision

relative to similar measurements at 7 TeV [24–27,35]. The mea-surements performed at 13 TeV also provide the opportunity to test the √s dependence of the cross sections and to check the validityofthefactorizationhypothesisandLDME universality im-pliedinNRQCD.

The product of the branching fraction of quarkonia to muon pairs,B(Qμμ+),andthedouble-differentialproductioncross section,d2σ/(dpTd y),inbinsofpTandrapidity,y,isgivenby

B(Qμμ+) d 2σ dpTd y = N(pT,y) LypT  1 (pT,y)A(pT,y)  , (1)

whereN(pT,y)isthenumberofpromptsignaleventsinthebin,

L isthe integratedluminosity, y and pT are thebin widths,

https://doi.org/10.1016/j.physletb.2018.02.033

0370-2693/©2018TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

and1/( (pT,y)A(pT,y)) representsthe averageof theproduct

ofthe inverseacceptance andefficiencyfor all theevents inthe bin. Only prompt signal events are considered. The nonprompt components of the J and ψ(2S) mesons, i.e. originating from decaysofbhadrons,areseparatedusingthedecaylengthdefined as=Lxy·m/pT,whereLxyisthedistancemeasuredinthe trans-verseplane betweenthe averagelocation ofthe luminousregion andthefittedpositionofthedimuonvertex,m isthemassofthe J (ψ(2S)) fromRef. [36], and pT thetransverse momentum of

thedimuoncandidate.Forthepromptsignalevents,wedonot dis-tinguishbetweenfeed-downdecaysofheavierquarkonium states anddirectlyproducedquarkonia.

2. The CMS detector, data set, and event selection

The analysis uses dimuon events collected in pp collisions at √

s=13 TeV with the CMS detector. The central feature of the CMSapparatusis asuperconducting solenoidof 6 minternal di-ameter, providing a magnetic field of 3.8 T. Within the solenoid volumeareasiliconpixelandstriptracker,aleadtungstate crys-talelectromagneticcalorimeter,andabrassandscintillatorhadron calorimeter,each composed ofa barrelandtwo endcap sections. Forwardcalorimetersextendthepseudorapidity(η) coverage pro-videdby thebarrelandendcap detectors.Muonsare detected in gas-ionization chambers embedded in the steel flux-return yoke outsidethesolenoid [37].AmoredetaileddescriptionoftheCMS detector,togetherwitha definitionofthecoordinatesystemused andtherelevantkinematicvariables,canbefoundinRef. [38].

Thedatawerecollected usinga multileveltriggersystem [39]. The firstlevel (L1),madeof custom hardware processors provid-ing coarse momentum information, requires two muons within the range |η|<1.6 without requesting an explicit pT threshold

on the individual muons. Second (L2) andthird (L3) levels, col-lectivelyknownastheHLT(High-LevelTrigger),areimplemented in software. At theselevels, the muon selection is refined, then opposite-chargemuoncandidatesarepairedandrequiredtohave aninvariantmassintheregions2.9–3.3,3.35–4.05,or8.5–11 GeV fortheJ, ψ(2S),andϒ(nS), respectively.Thedimuon pT is

re-quired to be above 9.9 GeV for the J and above 7.9 GeV for theremainingstates.Forallfivestates,thedimuonrapidityis re-strictedto |y|<1.25. A fit of thepositions andmomenta ofthe twomuoncandidatestoacommonvertexisperformed,andthefit

χ2 probability isrequiredtobeabove 0.5%.Thesample collected

withthese triggers has a total integratedluminosity of 2.3 fb−1 forthe J and2.7 fb−1 for theother mesons. The lower value fortheJ isthe consequenceofthetrigger prescalingthat was appliedtolimittherateduringpartofthedatataking,whenthe instantaneousluminosityincreased.

When reconstructing the five states offline, further require-ments are applied: only muons with T >4.5 GeV in the range |ημ|< 0.3, or pμ

T >4.0 GeV in the range 0.3 <|ημ|< 1.4 are

selected.Themuonshavetomatchthetriggeredpairandbe iden-tified asreconstructed tracks withat leastfive measurements in thesilicontrackerandatleastoneinthepixeldetector.Thetrack is required to matchat least one muon segment identified by a muondetectorplane.Loosecriteriaareappliedonthelongitudinal and transverse impact parameters to reject cosmic rays and in-flighthadrondecays.Thedimuonvertex χ2 probabilityisrequired

tobe greaterthan1%. IntheCMSmagneticfield,thetwo muons canbendtowardsorawayfromeachother;onlythesecond type ofeventisconsideredinthisanalysissincethefirsttype exhibits high trigger inefficiencies. It was verified that this requirement doesnot introduce anybias inthe determination of the prompt componentfortheJ andψ(2S)mesons.Thedimuonrapidityis

restrictedto|y|<1.2.Triggerbandwidthlimitationspreventedthe extensionofthemeasurementtothefullCMSacceptance.

The double-differential cross sections are presented in four (two) rapidity bins for the prompt J and ψ(2S) (ϒ(nS)), and in several bins of pT, covering a pT range between 20 and 120

(100) GeVforJ(ψ(2S),ϒ(nS)),extendingupto150(130) GeV formeasurementsintegratedinrapidity.

3. Acceptance and efficiencies

The acceptance iscalculated using simulatedevents produced witha single-particle eventgenerator.The quarkoniumstates are generatedwithaflat y distributionandarealistic pT distribution

derived fromdata [25,26], coveringtheanalysisphase space. The pythia8.205 [40] MonteCarloeventgeneratorisusedtoproduce anunpolarizeddimuondecay(correspondingtoaflatdimuon an-gulardistribution),alsoaccountingforfinal-statephotonradiation. The simulatedeventsincludemultipleproton–protoninteractions inthesameornearbybeamcrossings(pileup),withthe distribu-tionmatchingthat observedindata,withanaverage ofabout11 collisionsperbunchcrossing.Theacceptanceforeventsinagiven (pT,|y|)rangeisdefinedastheratioofthenumberofgenerated

eventsthatpassthekinematicselectioncriteriadescribedaboveto thetotalnumberofsimulatedeventsinthatpTand|y|range.The

acceptancedependsonthe quarkoniumpolarization. Itisderived fortheunpolarizedscenario,whichiscompatiblewith experimen-tal measurements within uncertainties. We also calculate multi-plicative correction factorsthat allow, fromthe unpolarizedcase, to infertheacceptance thatcorresponds tothree differentvalues ofthe polaranisotropy parameter,λHXθ , inthehelicity frame: −1 (fully longitudinal),+1 (fullytransverse),andk, withk reflecting

theCMSmeasuredvalueofλHXθ foreachquarkoniumstate [31,32], also used in Refs. [26,27]. The multiplicative factors to convert thecrosssectionscalculatedusingtheunpolarizedscenariotothe ones calculated employing one of the polarization scenarios de-scribed above are provided. It was verified that the use of only events withtwo muons bendingaway from each other doesnot introduceanybiasinthedeterminationoftheacceptance.

Thesingle-muontrigger,reconstruction,andidentification effi-cienciesaremeasuredindividuallyfromdataasafunctionofmuon

pTand|η|,applyingatag-and-probe [24,35] techniqueonJand

ϒ(1S)candidatesacquiredwithtriggersthatareindependentfrom thoseused forthemeasurements oftheyields. Theindividual ef-ficiencies are multipliedandthen parameterized usinga sigmoid function. Thedimuonefficiencyisobtainedastheproduct ofthe efficienciesofthetwomuons,multipliedbyacorrectionfactor, ρ, that takes into account the correlation between the two muons. The ρ factor is derived from data, using a trigger, independent fromtheonesusedforthemeasurementoftheyield,requiringa single muonatL1. ρ becomesincreasingly importantwithhigher dimuon pT,whenthetwomuonsareclosetoeachotherinspace,

causingtheefficiencytodecrease.Dimuonefficienciesare around 85%fortheJ andψ(2S)uptoadimuon pT of50 GeVand

de-creaseslowlyforhigher pT duetothe ρ factor.Inthecaseofthe

ϒ(nS) states, the dimuon efficiencies are nearly constant around 90%. TheacceptanceandefficiencyterminEq. (1) isobtainedby averaging the values of the inverseof the acceptance times effi-ciencyforalltheindividualdimuoncandidatesineach pT and|y|

range.

4. Determination of the yields

The signalandbackgroundyields areobtainedthroughan ex-tended unbinned maximum-likelihood fit to the dimuon invari-ant massdistribution in thecaseof theϒ(nS) states,andto the

(3)

dimuoninvariant massanddecaylengthdistributionsfortheJ andψ(2S)mesons.Inbothcases,thenumberofsignaland back-groundcandidatesarefreeparametersinthefit.

Thethreeϒ(nS)signalpeaksaremodeledwithCrystalBall(CB) functions [41], composed of a Gaussian core, characterized by a meanm, awidth σm,andatailcharacterizedby twoparameters,

n and α.The CB function is used toaccount forthe energyloss duetothefinal-stateradiationofthemuons.Themeanmass val-uesarefixed to thoseofthe ParticleData Group [36],multiplied by acommon factorthat calibrates themass scale,left as a free parameter in the fit.The widthof the CB function is a free pa-rameteronly inthe caseoftheϒ(1S),whilethewidthoftheCB functionsdescribing the ϒ(2S) andϒ(3S) peaksare fixed to the widthoftheϒ(1S),scaledbytheratiooftheirmassestothemass oftheϒ(1S).The ϒ(nS)dimuonmassresolution σm isafunction ofrapidity andspanstherange60to90 MeVfor|y|<1.2 inthe caseoftheϒ(1S).Thetailparametersn and αarethesameforall threeCB functions;n isfixed and α isconstrainedtoa Gaussian probabilitydistribution.Both constraintsare derived fromafitof the ϒ(1S) dimuoninvariant mass shape, usingthe pT-integrated

distributionto reduce thestatisticalfluctuations. The background ismodeledusinganexponentialfunction.

FortheJandψ(2S)mesons,anadditionalnonprompt com-ponentoriginatingfromthedecayofbhadronsmustbetakeninto account.Thepromptandnonpromptyieldsaremeasuredbyfitting thedimuoninvariantmassanddecaylengthdistributions.TheJ dimuon invariant mass distribution is modeled by the sum of a CBanda Gaussianfunctionwithcommonmean,whilethe corre-spondingψ(2S)distributionisdescribedusingonlyaCBfunction. ThewidthsoftheCBandGaussianfunctions, aswell asthe αof theCB functions,arefreeparameters.The σmvariesasafunction ofrapiditybetween20and50(40) MeVfortheJ(ψ(2S))state. Them andn parametersarefixedtovaluesderivedfromfitstothe invariantmassdistributionofthe pT-integrateddata.An

exponen-tialis used to describe thedimuon mass background.The decay lengthdistributionismodeledbyapromptsignalcomponent rep-resentedbya resolutionfunction,a nonprompttermgivenby an exponentialfunctionconvolvedwiththeresolutionfunction,anda backgroundtermrepresentedbythesumofaresolutionfunction plus an exponential decay function to take into account prompt andnonpromptbackgroundcomponents.Theresolutionfunctionis modeledbythesumoftwoGaussian functionswhosewidthsare takenas the event-by-event decaylength uncertainty, multiplied byglobalscalefactors.Thetwoscalefactorsarefreeparametersin thefitandareconstrainedwithGaussianprobability distributions thatare derived fromfits to the pT-integrateddata,lessaffected

bystatisticalfluctuations.Theeffectivewidthofthetwo Gaussian functionsisapproximately25 μm.

To verify that the fits to the quarkonium states are unbi-ased and the uncertainties are correctly modeled, 1000 pseudo-experimentswere produced fromsimulation. Similarly,simulated eventswereusedto testthehypotheses madeontheconstraints of the parameters. Differences in the event-by-event uncertainty informationbetweensignal and backgroundcandidates could in-troducebiasesinthefittingofthedecaylengthusingthe simpli-fiedmodeldescribed above,butwe verifiedthattheseeffectsare negligible.Examplesoffitstotheinvariantmassanddecaylength distributionsare providedinFigs.1–2ofthe supplemental mate-rialhttps://doi.org/10.1016/j.physletb.2018.02.033.

5. Systematic uncertainties

Systematic uncertainties are due to the measurement of the integratedluminosity (2.3%) [42], thedetermination ofthe signal yields,andthe dimuonefficienciesandacceptances.Uncertainties

intheestimationoftheyieldsareevaluated bychangingthe sig-nalandbackgroundmodels usedinthemaximum-likelihoodfits. Toassessthesystematicuncertaintyinthemodelingofthesignal invariant massdistributionofeachstate, then and αparameters oftheCBfunctionarevariedbyupto±5 standarddeviations,one at a time, while the mean, which is constrained in the nominal fit,isallowedtofloat.Thehalf-differencesbetweenthelargest re-sultingdeviationsofthesignalyieldsmeasuredinthefitfromthe nominal yields are addedin quadrature to obtainan uncertainty in the modeling of the signal. The systematic uncertainty origi-natingfromapossiblyimperfect descriptionofthebackgroundis evaluatedbychangingthebackgroundmodelfromanexponential to a linear function. The observed differencesfrom the nominal signal yields are taken asa systematicuncertainty. Thetotal un-certaintyinthedeterminationoftheyieldsisobtainedasthesum inquadratureoftheuncertaintiesinsignalandbackground,andis about2.0%forallquarkoniumstates.

Uncertaintiesinthediscriminationbetweencharmoniathatare promptly producedrather thanoriginatingfromb hadron decays arise fromthe determination ofthe primary vertex position(the productionpointofthemesons,whichentersinthecalculationof thedecaylength)andfromthe modelingofthesignal and back-groundinthedecaylengthdistributions.Weassesstheuncertainty originatingfromthechoiceoftheprimaryvertexbyusingan alter-nativetotheaveragepositionoftheluminousregion,theposition of the collision vertexclosest to the dimuon vertexextrapolated towards thebeam line. Thesystematicuncertainty relatedto the descriptionofthebackgroundisevaluatedbymeasuringthe differ-encebetweenthepromptfractionsusingthenominalfitandafit modelingthebackgroundbythesumoffourexponentialfunctions anda simplifiedresolutionfunction composed ofonlyone single Gaussian function. Tostudy theimpact of imperfect modeling of theresolutionfunction,thescaleparametersoftheGaussian func-tionsthathadGaussianconstraintsinthenominalfitarevariedby ±1 standarddeviation.Similarly,weassesstheimpactofmodeling thenonpromptsignal byfixing theparameterizationofthe expo-nentialdecayfunction.Thesystematicuncertaintystemmingfrom thechoice oftheprimary vertexis addedinquadraturewiththe uncertaintyderivedfromthefitstrategy.Thelatteriscalculatedas halfofthe differencebetweenthemaximumdeviationsobserved from the nominalfit when the above variations are applied one by one. The total systematicuncertainty in the determination of thenonpromptyieldislessthan3%inalmost allthe(pT,y) bins

fortheJmeson,withoutadominantcontributionfromanyone ofthesources describedabove.Thelargestsystematicuncertainty intheψ(2S)measurementscanreachamaximumof16%,mostly owing to theuncertainty inthe modeling ofthe background de-caylengthdistribution.Theeffectofpileupontheanalysisresults hasbeenstudiedusingbothdataandsimulation,andfoundtobe negligible.

Uncertainties in the single-muon efficiencies, reflecting their statistical precision as well as possible imperfections of the parametrization, are evaluated by varying the three parameters of the sigmoid function used to parameterize the single-muon efficiencieswithintheiruncertainties.Theresultingsystematic un-certaintiesarenearlyconstant asafunctionof pT andarearound

2.5% for the J andψ(2S), and1.8% for the ϒ(nS) inthe cen-tral regions |y|<0.6 and around 1% in the remaining rapidity regions. The L3single-muonefficiencies are calculatedfrom sim-ulationsbecauseofthelow numberofcollectedeventsusefulfor their measurements. The corresponding uncertainty is estimated tobe3%.

Systematic uncertainties related to the ρ factor are of three kinds.The firstoriginatesfromthenumberofeventsavailable in thecontrolsamplecollectedwiththeindependenttriggerusedto

(4)

evaluatethe ρfactor.Therelativeuncertaintyisabout1%from20 to50 GeVandincreasestoabout5%near100 GeV,withno depen-denceonrapidity.Themeasurementofthe ρ factoralsorequires the evaluation of an additional single-muon efficiency using the tag-and-probe method,which introduces an uncertaintyof about 1%atlow pT (below50 GeV)andup to4%athighpT.Moreover,

we assignthe fractional difference inthe ρ factor obtainedfrom dataandsimulationasa systematicuncertainty. Thedifferenceis intherange2–5%upto60 GeVandincreasesslowlyforhigherpT,

reachingavalueofupto15%,intheworstcase.Thisisthe domi-nantuncertaintyforallthequarkoniumstatesexcepttheψ(2S).

The finitenumberofevents generatedforthe acceptance cal-culationimposes a systematic uncertaintyof 0.5%at low pT and

up to 6% at high pT. Other sources of systematic uncertainties,

likethekinematicmodelingofsimulatedevents,arefoundtohave anegligible influenceonthe acceptancecalculation.Theeffect of the quarkonium polarization on the acceptance is not treated as a systematic uncertainty; instead correction factors are provided inhttps://doi.org/10.1016/j.physletb.2018.02.033to recalculatethe crosssectionsaccordingtodifferentpolarizationscenarios.

Forthecrosssectionsmeasuredintherapidity-integratedrange |y|<1.2,we conservativelyassignthetotalsystematic uncertain-tiesofthemost-forwardrapidityrange,whicharelargerthanthe uncertainties forcentral rapidities.Takingadvantage ofthelarger yields in the integrated-rapidity range, an additional pT bin was

added for each state. The systematic uncertainty in the yields forthisbin was evaluated asdescribed above fortheother bins, whileforotheruncertaintiesthesamevalueasintheneighboring lower-pT binwas used.It wasverified that systematic

uncertain-ties extrapolated to the additional pT bin have either negligible

pT dependenceinthatregionorarenegligiblysmallcomparedto

othersystematicorstatisticaluncertainties.

Forthemeasurementoftheratiosofthe crosssectionsofthe prompt ψ(2S), ϒ(2S), and ϒ(3S) states relative to their ground states,thesystematicuncertaintiesintheyields,the ρ factor,the single-muon efficiencies, and the acceptance are the only ones considered.Uncertaintiesin theyields fortheratioof ψ(2S) and J crosssections aretreated asuncorrelated,because their cor-responding yields are determined from independent fits. In con-trast,yield uncertainties aretreatedascorrelated fortheratio of the ϒ(nS) to ϒ(1S) cross sections, as they are extractedfrom a combined fit to the three states, as shown in Fig. 2 of https:// doi.org/10.1016/j.physletb.2018.02.033.

Thecorrelationfactorsarefoundtobeapproximately5%, caus-ing no significant effect on the final systematic uncertainty. The samesingle-muonefficienciesare usedforallthemeasuredcross sections,thereforetheir uncertainties are treatedascorrelated in all the ratios. The systematic uncertainties in the ratios are de-terminedbyconsistentlyvaryingtheefficienciesinthenumerator andthe denominator bytheir uncertainties andrecalculatingthe ratios.Theresultingeffectislessthan0.4%.Theuncertaintyinthe integratedluminosityisfullycorrelated,andisnotincludedinthe ratios.Uncertaintiesin the ρ correction factorare treatedas un-correlated.

Thestatisticaluncertaintyintheψ(2S)toJcrosssection ra-tiois moreimportantthan anysystematicuncertainty exceptfor the high-pT region, where the ρ factor uncertainty is the

dom-inant one, reaching 28%. For the ϒ(2S) to ϒ(1S) and ϒ(3S) to ϒ(1S) crosssection ratios,the uncertaintyin the ρ factor domi-natesacrosstheentirepT region,rangingfrom3%to12%.

6. Results

The measured double-differential cross sections times the dimuon branching fractionsare presented in Fig.1 asa function

Fig. 1. The product of the measured double-differential cross sectionsand the dimuonbranchingfractionsforpromptJ andψ(2S)(left)andtheϒ(nS)(right) mesonsasafunctionofpT,infourandtworapidityregions,respectively,

assum-ingunpolarizeddimuondecays.Forpresentationpurposes,theindividualpointsin themeasurementsarescaledbythefactorsgiveninthelegends.Theinnervertical barsonthedatapointsrepresentthestatisticaluncertainty,whiletheouterbars showthestatisticalandsystematicuncertainties,notincludingthe2.3%uncertainty intheintegratedluminosity,addedinquadrature.Formostofthedatapoints,the uncertaintiesarecomparabletothesizeofthesymbols.Thedatapointsareshown attheaveragepTineachbin.

of pT,forfourrapidity rangesinthecaseofthepromptJ and

ψ(2S)states,andtworapidityrangesfortheϒ(nS).Thetop pan-els of Fig. 2 show the measured cross sections times branching fractionsfortherapidity-integratedrange|y|<1.2.Thepresented resultsareobtainedundertheassumptionofunpolarized produc-tion, which is very close to the polarization that was measured by CMS [31,32]. Ifthe quarkonium statesare fully polarized, the cross sections can change by up to 25%. The numerical values of the cross sections for all five quarkonium states in the cho-sen bins of pT and |y| in the unpolarized scenario are reported

inTables 1–5ofhttps://doi.org/10.1016/j.physletb.2018.02.033. Ta-bles 6–10listthemultiplicativescalefactorsneededtorecalculate thecrosssectionsinthethreedifferentpolarizationscenarios de-scribedinSection3.Theconversiontoanewpolarizationscenario is achievedbymultiplying theunpolarizedcrosssection resultin each(pT,|y|)binbythecorrespondingscalefactor.

TheNLONRQCDpredictions [43,44] areinagreementwiththe measured cross sections times branching fractions within uncer-tainties,asshowninthetoppanelsofFig.2.Theratiosofthe

(5)

mea-Fig. 2. Themeasureddouble-differentialcrosssectionstimesbranchingfractionsofthepromptJ andψ(2S)(left)andtheϒ(nS)(right)mesons(markers),assuming unpolarizeddimuondecays,asafunctionof pT,for |y|<1.2,comparedtoNLONRQCDpredictions [43,44] (shadedbands).Theinnerverticalbarsonthedatapoints

representthestatisticaluncertainty,whiletheouterbarsshowthestatisticalandsystematicuncertainties,includingtheintegratedluminosityuncertaintyof2.3%,addedin quadrature.Themiddlepanelsshowtheratiosofmeasurementtotheory,wheretheverticalbarsdepictthetotaluncertaintiesinthemeasurement.Thewidthsofthebands representthetheoreticaluncertainty,addedinquadraturewiththeuncertaintiesinthedimuonbranchingfractions [36].Thelowerpanelsshowtheratiosofcrosssections measuredat√s=13 TeV tothosemeasuredat7 TeV [26,27].Alluncertaintiesinthe7and13 TeVresultsaretreatedasuncorrelated.Thedatapointsareshownatthe averagepTineachbin.

suredtopredictedvaluesareplottedinthemiddlepanelsofFig.2, wherethe vertical bars representthe experimental uncertainties. The shaded bands show the theoretical uncertainties stemming fromtheextractionoftheLDMEs,renormalizationscales, andthe choice of c and b quark masses, added in quadrature with the uncertainties in the dimuonbranching fractions [36]. The theory tends to underestimate (overestimate) the cross section for the J (ψ(2S)),whilestaying withinthe one-standard-deviation un-certaintyband.ThebottompanelsofFig.2showtheratiosofthe

pT differential cross sectionstimes branching fractions measured

at√s=13 TeV and7 TeV [26,27] for|y|<1.2.The13 TeVcross sectionsofallfivequarkoniumstatesarefactorsof1.5to3larger thanthecorresponding 7 TeVcrosssections,changingslowly asa functionofdimuon pT.Anincreaseofthisorderisexpectedfrom

theevolutionofthepartondistributionfunctions.

Fig. 3 shows the production cross sections times dimuon branchingfractionsoftheradialexcitationsrelativetotheground stateinthecharmoniumandbottomoniumsystemsfor|y|<1.2. The prompt ψ(2S) to J meson cross section ratio is constant as a function of pT, while the cross sections of the excited ϒ

statesrelativetotheϒ(1S)showaslightincreasewithpT.The

nu-mericalvaluesoftheseratios arereportedinTable 11 ofhttps:// doi.org/10.1016/j.physletb.2018.02.033.

7. Summary

The double-differential production cross sections of the J, ψ(2S), and ϒ(nS) (n= 1,2,3) quarkonium states have been measured, using their dimuon decay mode, in pp collisions at √

s=13 TeV with the CMS detector at the LHC. The production cross sectionsof all five S-wavestates are presented in a single analysis. The measurement has beenperformed as a function of

Fig. 3. Ratiosofthe pT differentialcrosssectionstimesdimuonbranching

frac-tionsofthepromptψ(2S)toJ,ϒ(2S)toϒ(1S),and ϒ(3S)toϒ(1S)mesons for|y| <1.2.Theinnerverticalbarsrepresentthestatisticaluncertainty,whilethe outerbarsshowthestatisticalandsystematicuncertaintiesaddedinquadrature. Theratiooftheψ(2S)toJ mesoncrosssectionsismultipliedbyafactor5for bettervisibility.

transversemomentum(pT)inseveralbinsofrapidity( y),covering

apTrange20–120 GeVfortheJmesonand20–100 GeVforthe

remaining states.The crosssections integratedover|y|<1.2 are alsopresented,andextendthe pT reachto 150and130 GeV,

re-spectively.Alsopresentedaretheratiosofcrosssectionsmeasured at√s=13 (thisanalysis)and7 TeV(fromRefs. [26,27]),aswellas thecrosssectionsofthepromptψ(2S),ϒ(2S),andϒ(3S)mesons relative to their ground states. Theseresults will help in testing the underlying hypotheses of nonrelativistic quantum

(6)

chromody-namicsandinprovidingfurtherinput toconstrainthetheoretical parameters.

Acknowledgements

TheauthorswouldliketothankYan-QingMaforproviding the-oreticalcalculationsofthecrosssectionsshowninFig.2.

We congratulate our colleagues in the CERN accelerator de-partments for the excellent performance of the LHC and thank thetechnicalandadministrativestaffs atCERN andatother CMS institutes for their contributions to the success of the CMS ef-fort.Inaddition,wegratefullyacknowledgethecomputingcenters and personnel of the Worldwide LHC Computing Grid for deliv-eringso effectively the computinginfrastructure essential to our analyses. Finally, we acknowledge the enduring support for the constructionandoperationoftheLHCandtheCMSdetector pro-videdby thefollowingfundingagencies: BMWFWandFWF (Aus-tria);FNRSandFWO(Belgium);CNPq,CAPES,FAPERJ,andFAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSESand CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NIH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); MSIP and NRF (Republic of Korea); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI(Mexico);MBIE(New Zealand);PAEC(Pakistan);MSHE andNSC(Poland);FCT(Portugal);JINR(Dubna);MON, ROSATOM, RAS, RFBR andRAEP (Russia);MESTD (Serbia); SEIDI, CPAN,PCTI and FEDER (Spain); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand);TUBITAK andTAEK(Turkey);NASUandSFFR(Ukraine); STFC(United King-dom);DOEandNSF(USA).

Rachada-pisek Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, contract No. 675440 (EuropeanUnion); the Leventis Foundation; the AlfredP. Sloan Foundation; the Alexan-dervon HumboldtFoundation;the BelgianFederal SciencePolicy Office; the Fonds pour la Formation à la Recherche dans l’In-dustrieetdansl’Agriculture (FRIA-Belgium); theAgentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the MinistryofEducation,Youth andSports(MEYS) oftheCzech Re-public; the Council ofScience andIndustrial Research, India;the HOMING PLUSprogram ofthe Foundation for PolishScience, co-financed from European Union, Regional Development Fund, the MobilityPlusprogram of theMinistry ofScience andHigher Ed-ucation,theNationalScienceCenter(Poland), contractsHarmonia 2014/14/M/ST2/00428,Opus2014/13/B/ST2/02543,2014/15/B/ST2/ 03998,and2015/19/B/ST2/02861,Sonata-bis2012/07/E/ST2/01406; the National Priorities Research Program by Qatar National Re-search Fund; the Programa Severo Ochoa del Principado de As-turias; the Thalis and Aristeia programs cofinanced by EU-ESF andtheGreekNSRF;the RachadapisekSompotFund for Postdoc-toralFellowship,ChulalongkornUniversity andtheChulalongkorn AcademicintoIts 2ndCenturyProjectAdvancementProject (Thai-land); the Welch Foundation, contract C-1845; and the Weston HavensFoundation(USA).

Appendix A. Supplementary material

Supplementarymaterialrelatedtothisarticlecanbefound on-lineathttps://doi.org/10.1016/j.physletb.2018.02.033.

References

[1] G.T.Bodwin,E.Braaten,G.P.Lepage,RigorousQCDanalysisofinclusive anni-hilationandproductionofheavyquarkonium,Phys. Rev.D51(1995)1125,

https://doi.org/10.1103/PhysRevD.51.1125, Erratum: Phys. Rev. D 55 (1995) 5853,https://doi.org/10.1103/PhysRevD.55.5853.

[2] P.Cho,A.K.Leibovich,Color-octetquarkoniaproduction,Phys.Rev.D53(1996) 150,https://doi.org/10.1103/PhysRevD.53.150.

[3] P.Cho,A.K. Leibovich,Color-octetquarkoniaproduction.II,Phys. Rev.D53 (1996)6203,https://doi.org/10.1103/PhysRevD.53.6203.

[4] B.Gong, L.-P.Wan, J.-X.Wang,H.-F.Zhang, Completenext-to-leading-order studyontheyieldandpolarizationofϒ(1S,2S,3S)attheTevatronandLHC, Phys. Rev. Lett. 112(2014) 032001, https://doi.org/10.1103/PhysRevLett.112. 032001,arXiv:1305.0748.

[5] Z.-B. Kang, Y.-Q. Ma, J.-W. Qiu,G. Sterman, Heavy quarkoniumproduction atcolliderenergies:partoniccrosssection andpolarization,Phys.Rev.D91 (2015)014030,https://doi.org/10.1103/PhysRevD.91.014030,arXiv:1411.2456. [6] M. Butenschön, B.A. Kniehl, J polarization at Tevatron and LHC:

nonrelativistic-QCDfactorizationatthecrossroads,Phys.Rev.Lett.108(2012) 172002,https://doi.org/10.1103/PhysRevLett.108.172002,arXiv:1201.1872. [7] K.-T.Chao,Y.-Q.Ma,H.-S.Shao,K.Wang,Y.-J.Zhang,Jpolarizationathadron

collidersinnonrelativisticQCD,Phys.Rev.Lett.108(2012)242004,https:// doi.org/10.1103/PhysRevLett.108.242004,arXiv:1201.2675.

[8] P.Faccioli,V.Knünz,C.Lourenço,J.Seixas,H.K.Wöhri,Quarkoniumproduction intheLHCera:apolarizedperspective,Phys.Lett.B736(2014)98,https:// doi.org/10.1016/j.physletb.2014.07.006,arXiv:1403.3970.

[9] G.T.Bodwin,H.S.Chung,U.-R.Kim,J.Lee,FragmentationcontributionstoJ

productionattheTevatronandtheLHC,Phys.Rev.Lett.113(2014)022001,

https://doi.org/10.1103/PhysRevLett.113.022001,arXiv:1403.3612.

[10] LHCbCollaboration,Measurementofthecross-sectionratioσ(χc2)/σ(χc1)for promptχc production at√s=7 TeV,Phys.Lett.B714(2012)215,https:// doi.org/10.1016/j.physletb.2012.06.077,arXiv:1202.1080.

[11] LHCbCollaboration,Measurementoftheχb(3P)massandoftherelativerate

ofχb2(1P)andχb2(1P)production,J. HighEnergyPhys.10(2014)88,https:// doi.org/10.1007/JHEP10(2014)088,arXiv:1409.1408.

[12] ATLASCollaboration,Measurementofχc1andχc2productionwith√s=7 TeV

ppcollisionsatATLAS,J. HighEnergyPhys.07(2014)154,https://doi.org/10. 1007/JHEP07(2014)154,arXiv:1404.7035.

[13] CMS Collaboration, Measurement of the production cross section ratio

σ(χb2(1P))/σ(χb1(1P))inppcollisionsat√s=8 TeV,Phys.Lett.B743(2015) 383,https://doi.org/10.1016/j.physletb.2015.02.048,arXiv:1409.5761. [14] CMSCollaboration,Measurementoftherelativepromptproductionrateofχc2

andχc1inppcollisionsat√s=7 TeV,Eur.Phys.J.C72(2012)2251,https:// doi.org/10.1140/epjc/s10052-012-2251-3,arXiv:1210.0875.

[15] LHCbCollaboration, Measurementofthe ηc(1S) productioncross-sectionin proton–protoncollisionsviathedecayηc(1S)→pp,Eur.Phys.J.C75(2015) 311,https://doi.org/10.1140/epjc/s10052-015-3502-x,arXiv:1409.3612. [16] ATLASCollaboration,Measurementofthedifferentialcross-sectionsof

inclu-sive,prompt and non-promptJψ production inproton–proton collisionsat

s=7 TeV,Nucl.Phys.B850(2011)387,https://doi.org/10.1016/j.nuclphysb. 2011.05.015,arXiv:1104.3038.

[17] ATLASCollaboration,Measurementoftheproductioncross-sectionofψ(2S)

J/ψ(μ+μ+π− inpp collisionsat √s=7 TeV at ATLAS,J. High En-ergyPhys.09(2014)079,https://doi.org/10.1007/JHEP09(2014)079,arXiv:1407. 5532.

[18] ATLASCollaboration,MeasurementofUpsilonproductionin7TeVppcollisions atATLAS,Phys.Rev.D87(2013)052004,https://doi.org/10.1103/PhysRevD.87. 052004,arXiv:1211.7255.

[19] ATLASCollaboration,Measurementofthedifferentialcross-sectionsofprompt andnon-promptproductionofJ andψ(2S)inppcollisionsat√s=7 and 8 TeVwiththeATLASdetector,Eur.Phys.J.C76(2016)283,https://doi.org/10. 1140/epjc/s10052-016-4050-8,arXiv:1512.03657.

[20] LHCbCollaboration,MeasurementofJ productioninppcollisionsat√s=

7 TeV,Eur.Phys.J.C71(2011)1645,https://doi.org/10.1140/epjc/s10052-011 -1645-y,arXiv:1103.0423.

[21] LHCbCollaboration,Measurementofψ(2S)mesonproductioninppcollisions at √s=7 TeV, Eur.Phys.J. C72(2012)2100, https://doi.org/10.1140/epjc/ s10052-012-2100-4,arXiv:1204.1258.

[22] LHCb Collaboration, MeasurementofUpsilon production inpp collisionsat

s=7 TeV, Eur. Phys. J. C 72 (2012) 2025, https://doi.org/10.1140/epjc/ s10052-012-2025-y,arXiv:1202.6579.

[23] ALICECollaboration,MeasurementofpromptJandbeautyhadron produc-tioncross sectionsat mid-rapidityinpp collisions at √s=7 TeV, J. High EnergyPhys. 11(2012)065,https://doi.org/10.1007/JHEP11(2012)065,arXiv: 1205.5880.

[24] CMSCollaboration,Measurementoftheinclusiveϒproductioncrosssection inppcollisionsat√s=7 TeV,Phys.Rev.D83(2011)112004,https://doi.org/ 10.1103/PhysRevD.83.112004,arXiv:1012.5545.

(7)

[25] CMSCollaboration,Measurementoftheϒ(1S),ϒ(2S),andϒ(3S)crosssections inppcollisionsat√s=7 TeV,Phys.Lett.B727(2013)101,https://doi.org/10. 1016/j.physletb.2013.10.033,arXiv:1303.5900.

[26] CMSCollaboration,MeasurementofJandψ(2S)promptdouble-differential cross sectionsin pp collisions at √s=7 TeV, Phys. Rev.Lett. 114(2015) 191802,https://doi.org/10.1103/PhysRevLett.114.191802,arXiv:1502.04155. [27] CMSCollaboration,Measurementsofthe ϒ(1S), ϒ(2S),and ϒ(3S)

differen-tialcrosssectionsinppcollisionsat√s=7 TeV,Phys.Lett.B749(2015)14,

https://doi.org/10.1016/j.physletb.2015.07.037,arXiv:1501.07750.

[28] CMSCollaboration,Suppressionofnon-promptJ,promptJ,andϒ(1S)in PbPbcollisionsat√sNN=2.76 TeV,J. HighEnergyPhys.5(2012)63,https:// doi.org/10.1007/JHEP05(2012)063.

[29] CMSCollaboration,Suppressionofϒ(1S),ϒ(2S)andϒ(3S)productioninPbPb collisionsat√sNN=2.76 TeV,Phys.Lett.B770(2017)357,https://doi.org/10. 1016/j.physletb.2017.04.031,arXiv:1611.01510.

[30] ALICECollaboration, J polarizationin pp collisionsat √s=7 TeV, Phys. Rev.Lett.108(2012)082001,https://doi.org/10.1103/PhysRevLett.108.082001, arXiv:1111.1630.

[31] CMSCollaboration,MeasurementofthepromptJ andψ(2S)polarizations inppcollisionsat√s=7 TeV,Phys.Lett.B727(2013)381,https://doi.org/10. 1016/j.physletb.2013.10.055,arXiv:1307.6070.

[32] CMSCollaboration,Measurementoftheϒ(1S),ϒ(2S),andϒ(3S)polarizations inpp collisions at√s=7 TeV,Phys.Rev.Lett. 110(2013)081802,https:// doi.org/10.1103/PhysRevLett.110.081802,arXiv:1209.2922.

[33] LHCbCollaboration,MeasurementofJpolarizationinppcollisionsat√s=

7 TeV,Eur.Phys.J.C73(2013)2631,https://doi.org/10.1140/epjc/s10052-013 -2631-3,arXiv:1307.6379.

[34] LHCb Collaboration, Measurementof ψ(2S)polarisation inpp collisions at

s=7 TeV, Eur. Phys. J. C 74 (2014) 2872, https://doi.org/10.1140/epjc/ s10052-014-2872-9,arXiv:1403.1339.

[35] CMS Collaboration,Prompt and non-prompt Jψ production inpp collisions at √s=7 TeV,Eur.Phys. J. C71(2011)1575, https://doi.org/10.1140/epjc/ s10052-011-1575-8,arXiv:1011.4193.

[36] ParticleDataGroup,C.Patrignani,etal.,Reviewofparticlephysics,Chin.Phys. C40(2016)100001,https://doi.org/10.1088/1674-1137/40/10/100001. [37] CMSCollaboration,PerformanceofCMSmuonreconstructioninppcollision

eventsat √s=7 TeV, J. Instrum.7(2012) P10002,https://doi.org/10.1088/ 1748-0221/7/10/P10002,arXiv:1206.4071.

[38] CMSCollaboration,TheCMSexperimentattheCERNLHC,J. Instrum.3(2008) S08004,https://doi.org/10.1088/1748-0221/3/08/S08004.

[39] CMS Collaboration, The CMStrigger system, J. Instrum. 12 (2017) P01020,

https://doi.org/10.1088/1748-0221/12/01/P01020,arXiv:1609.02366. [40] T.Sjöstrand, S.Mrenna,P.Skands,AbriefintroductiontoPYTHIA8.1,

Com-put.Phys.Commun.178(2008)852,https://doi.org/10.1016/j.cpc.2008.01.036, arXiv:0710.3820.

[41] M.J.Oreglia,A StudyoftheReactionsψ→γ γψ,Ph.D.thesis,Stanford Univer-sity,1980,http://www.slac.stanford.edu/pubs/slacreports/slac-r-236.html,SLAC ReportSLAC-R-236,seeAppendixD.

[42] CMS Collaboration, PreliminaryCMSluminosity measurement for the 2015 data taking period, CMS Phys. Anal. Summ. (2017) CMS-PAS-LUM-15-001,

https://cds.cern.ch/record/2138682.

[43] Y.-Q.Ma,K.Wang,K.-T.Chao,Jψ (ψ)productionattheTevatronandLHCat

O(α4

sv4)innonrelativisticQCD,Phys.Rev.Lett.106(2011)042002,https://

doi.org/10.1103/PhysRevLett.106.042002,arXiv:1009.3655.

[44] H.Han,Y.-Q.Ma,C.Meng,H.-S.Shao,Y.-J.Zhang,K.-T.Chao,ϒ(nS)andχb(nP)

productionathadroncollidersinnonrelativisticQCD,Phys.Rev.D94(2016) 014028,https://doi.org/10.1103/PhysRevD.94.014028,arXiv:1410.8537.

The CMS Collaboration

A.M. Sirunyan,A. Tumasyan

YerevanPhysicsInstitute,Yerevan,Armenia

W. Adam, F. Ambrogi, E. Asilar,T. Bergauer, J. Brandstetter, E. Brondolin, M. Dragicevic, J. Erö,M. Flechl,

M. Friedl,R. Frühwirth1,V.M. Ghete, J. Grossmann, J. Hrubec, M. Jeitler1, A. König,N. Krammer,

I. Krätschmer,D. Liko,T. Madlener, I. Mikulec, E. Pree,D. Rabady, N. Rad, H. Rohringer, J. Schieck1,

R. Schöfbeck, M. Spanring, D. Spitzbart,W. Waltenberger, J. Wittmann, C.-E. Wulz1, M. Zarucki

InstitutfürHochenergiephysik,Wien,Austria

V. Chekhovsky, V. Mossolov,J. Suarez Gonzalez

InstituteforNuclearProblems,Minsk,Belarus

E.A. De Wolf,D. Di Croce, X. Janssen,J. Lauwers, M. Van De Klundert, H. Van Haevermaet,

P. Van Mechelen,N. Van Remortel

UniversiteitAntwerpen,Antwerpen,Belgium

S. Abu Zeid,F. Blekman, J. D’Hondt, I. De Bruyn, J. De Clercq, K. Deroover, G. Flouris, D. Lontkovskyi,

S. Lowette,S. Moortgat, L. Moreels,Q. Python, K. Skovpen, S. Tavernier, W. Van Doninck, P. Van Mulders,

I. Van Parijs

VrijeUniversiteitBrussel,Brussel,Belgium

H. Brun, B. Clerbaux, G. De Lentdecker, H. Delannoy, G. Fasanella,L. Favart, R. Goldouzian, A. Grebenyuk,

G. Karapostoli,T. Lenzi,J. Luetic, T. Maerschalk, A. Marinov, A. Randle-conde,T. Seva, C. Vander Velde,

P. Vanlaer,D. Vannerom, R. Yonamine,F. Zenoni, F. Zhang2

UniversitéLibredeBruxelles,Bruxelles,Belgium

A. Cimmino,T. Cornelis, D. Dobur,A. Fagot, M. Gul, I. Khvastunov,D. Poyraz, C. Roskas, S. Salva,

M. Tytgat,W. Verbeke, N. Zaganidis

(8)

H. Bakhshiansohi,O. Bondu, S. Brochet,G. Bruno, C. Caputo, A. Caudron, S. De Visscher, C. Delaere,

M. Delcourt, B. Francois,A. Giammanco, A. Jafari,M. Komm, G. Krintiras, V. Lemaitre,A. Magitteri,

A. Mertens, M. Musich, K. Piotrzkowski,L. Quertenmont, M. Vidal Marono, S. Wertz

UniversitéCatholiquedeLouvain,Louvain-la-Neuve,Belgium

N. Beliy

UniversitédeMons,Mons,Belgium

W.L. Aldá Júnior, F.L. Alves,G.A. Alves, L. Brito,M. Correa Martins Junior,C. Hensel, A. Moraes,M.E. Pol,

P. Rebello Teles

CentroBrasileirodePesquisasFisicas,RiodeJaneiro,Brazil

E. Belchior Batista Das Chagas, W. Carvalho,J. Chinellato3,A. Custódio, E.M. Da Costa, G.G. Da Silveira4,

D. De Jesus Damiao,S. Fonseca De Souza, L.M. Huertas Guativa, H. Malbouisson,M. Melo De Almeida,

C. Mora Herrera,L. Mundim, H. Nogima,A. Santoro, A. Sznajder,E.J. Tonelli Manganote3,

F. Torres Da Silva De Araujo,A. Vilela Pereira

UniversidadedoEstadodoRiodeJaneiro,RiodeJaneiro,Brazil

S. Ahujaa, C.A. Bernardesa, T.R. Fernandez Perez Tomeia, E.M. Gregoresb,P.G. Mercadanteb,

S.F. Novaesa, Sandra S. Padulaa, D. Romero Abadb,J.C. Ruiz Vargasa

aUniversidadeEstadualPaulista,SãoPaulo,Brazil bUniversidadeFederaldoABC,SãoPaulo,Brazil

A. Aleksandrov, R. Hadjiiska, P. Iaydjiev,M. Misheva, M. Rodozov, M. Shopova,S. Stoykova, G. Sultanov

InstituteforNuclearResearchandNuclearEnergy,BulgarianAcademyof Sciences,Sofia,Bulgaria

A. Dimitrov, I. Glushkov,L. Litov, B. Pavlov,P. Petkov

UniversityofSofia,Sofia,Bulgaria

W. Fang5, X. Gao5

BeihangUniversity,Beijing,China

M. Ahmad, J.G. Bian, G.M. Chen, H.S. Chen,M. Chen, Y. Chen, C.H. Jiang, D. Leggat, H. Liao,Z. Liu,

F. Romeo,S.M. Shaheen, A. Spiezia, J. Tao, C. Wang,Z. Wang, E. Yazgan, H. Zhang, S. Zhang, J. Zhao

InstituteofHighEnergyPhysics,Beijing,China

Y. Ban, G. Chen, Q. Li, S. Liu,Y. Mao, S.J. Qian, D. Wang,Z. Xu

StateKeyLaboratoryofNuclearPhysicsandTechnology,PekingUniversity,Beijing,China

C. Avila,A. Cabrera, L.F. Chaparro Sierra, C. Florez, C.F. González Hernández,J.D. Ruiz Alvarez

UniversidaddeLosAndes,Bogota,Colombia

B. Courbon, N. Godinovic, D. Lelas,I. Puljak, P.M. Ribeiro Cipriano, T. Sculac

UniversityofSplit,FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,Split,Croatia

Z. Antunovic, M. Kovac

UniversityofSplit,FacultyofScience,Split,Croatia

V. Brigljevic,D. Ferencek, K. Kadija,B. Mesic, A. Starodumov6, T. Susa

InstituteRudjerBoskovic,Zagreb,Croatia

M.W. Ather,A. Attikis, G. Mavromanolakis, J. Mousa,C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski

(9)

M. Finger7,M. Finger Jr.7

CharlesUniversity,Prague,CzechRepublic

E. Carrera Jarrin

UniversidadSanFranciscodeQuito,Quito,Ecuador

Y. Assran8,9, S. Elgammal9,A. Mahrous10

AcademyofScientificResearchandTechnologyoftheArabRepublicofEgypt,EgyptianNetworkofHighEnergyPhysics,Cairo,Egypt

R.K. Dewanjee,M. Kadastik, L. Perrini, M. Raidal, A. Tiko,C. Veelken

NationalInstituteofChemicalPhysicsandBiophysics,Tallinn,Estonia

P. Eerola,J. Pekkanen, M. Voutilainen

DepartmentofPhysics,UniversityofHelsinki,Helsinki,Finland

J. Härkönen,T. Järvinen, V. Karimäki,R. Kinnunen, T. Lampén, K. Lassila-Perini, S. Lehti,T. Lindén,

P. Luukka, E. Tuominen, J. Tuominiemi,E. Tuovinen

HelsinkiInstituteofPhysics,Helsinki,Finland

J. Talvitie,T. Tuuva

LappeenrantaUniversityofTechnology,Lappeenranta,Finland

M. Besancon,F. Couderc, M. Dejardin, D. Denegri,J.L. Faure, F. Ferri, S. Ganjour, S. Ghosh,A. Givernaud,

P. Gras, G. Hamel de Monchenault,P. Jarry, I. Kucher, E. Locci,M. Machet, J. Malcles, G. Negro,J. Rander,

A. Rosowsky,M.Ö. Sahin, M. Titov

IRFU,CEA,UniversitéParis-Saclay,Gif-sur-Yvette,France

A. Abdulsalam,I. Antropov, S. Baffioni, F. Beaudette, P. Busson, L. Cadamuro, C. Charlot,

R. Granier de Cassagnac,M. Jo, S. Lisniak,A. Lobanov, J. Martin Blanco, M. Nguyen, C. Ochando,

G. Ortona,P. Paganini, P. Pigard,S. Regnard, R. Salerno, J.B. Sauvan, Y. Sirois, A.G. Stahl Leiton, T. Strebler,

Y. Yilmaz,A. Zabi, A. Zghiche

LaboratoireLeprince-Ringuet,Ecolepolytechnique,CNRS/IN2P3,UniversitéParis-Saclay,Palaiseau,France

J.-L. Agram11,J. Andrea, D. Bloch,J.-M. Brom, M. Buttignol,E.C. Chabert, N. Chanon, C. Collard,

E. Conte11,X. Coubez, J.-C. Fontaine11, D. Gelé, U. Goerlach,M. Jansová, A.-C. Le Bihan, N. Tonon,

P. Van Hove

UniversitédeStrasbourg,CNRS,IPHCUMR7178,F-67000Strasbourg,France

S. Gadrat

CentredeCalculdel’InstitutNationaldePhysiqueNucleaireetdePhysiquedesParticules,CNRS/IN2P3,Villeurbanne,France

S. Beauceron,C. Bernet, G. Boudoul,R. Chierici, D. Contardo, P. Depasse,H. El Mamouni, J. Fay, L. Finco,

S. Gascon,M. Gouzevitch, G. Grenier, B. Ille, F. Lagarde, I.B. Laktineh, M. Lethuillier,L. Mirabito,

A.L. Pequegnot, S. Perries,A. Popov12,V. Sordini, M. Vander Donckt, S. Viret

UniversitédeLyon,UniversitéClaudeBernardLyon1,CNRS-IN2P3,InstitutdePhysiqueNucléairedeLyon,Villeurbanne,France

A. Khvedelidze7

GeorgianTechnicalUniversity,Tbilisi,Georgia

I. Bagaturia13

(10)

C. Autermann, S. Beranek,L. Feld, M.K. Kiesel, K. Klein, M. Lipinski, M. Preuten, C. Schomakers, J. Schulz,

T. Verlage,V. Zhukov12

RWTHAachenUniversity,I.PhysikalischesInstitut,Aachen,Germany

A. Albert, E. Dietz-Laursonn, D. Duchardt, M. Endres,M. Erdmann, S. Erdweg, T. Esch,R. Fischer, A. Güth,

M. Hamer,T. Hebbeker,C. Heidemann, K. Hoepfner,S. Knutzen, M. Merschmeyer,A. Meyer, P. Millet,

S. Mukherjee,M. Olschewski, K. Padeken, T. Pook,M. Radziej, H. Reithler, M. Rieger,F. Scheuch,

D. Teyssier,S. Thüer

RWTHAachenUniversity,III.PhysikalischesInstitutA,Aachen,Germany

G. Flügge, B. Kargoll, T. Kress, A. Künsken, J. Lingemann, T. Müller,A. Nehrkorn, A. Nowack, C. Pistone,

O. Pooth,A. Stahl14

RWTHAachenUniversity,III.PhysikalischesInstitutB,Aachen,Germany

M. Aldaya Martin,T. Arndt, C. Asawatangtrakuldee, K. Beernaert,O. Behnke, U. Behrens,

A. Bermúdez Martínez, A.A. Bin Anuar, K. Borras15,V. Botta, A. Campbell, P. Connor,

C. Contreras-Campana, F. Costanza, C. Diez Pardos,G. Eckerlin, D. Eckstein, T. Eichhorn, E. Eren,

E. Gallo16,J. Garay Garcia, A. Geiser, A. Gizhko, J.M. Grados Luyando, A. Grohsjean, P. Gunnellini,

M. Guthoff,A. Harb, J. Hauk, M. Hempel17, H. Jung,A. Kalogeropoulos, M. Kasemann,J. Keaveney,

C. Kleinwort,I. Korol, D. Krücker,W. Lange, A. Lelek, T. Lenz, J. Leonard,K. Lipka, W. Lohmann17,

R. Mankel, I.-A. Melzer-Pellmann, A.B. Meyer, G. Mittag, J. Mnich, A. Mussgiller, E. Ntomari,D. Pitzl,

A. Raspereza,B. Roland, M. Savitskyi, P. Saxena,R. Shevchenko, S. Spannagel, N. Stefaniuk,

G.P. Van Onsem,R. Walsh, Y. Wen, K. Wichmann,C. Wissing, O. Zenaiev

DeutschesElektronen-Synchrotron,Hamburg,Germany

S. Bein,V. Blobel, M. Centis Vignali, T. Dreyer, E. Garutti, D. Gonzalez, J. Haller, A. Hinzmann,

M. Hoffmann,A. Karavdina, R. Klanner, R. Kogler, N. Kovalchuk,S. Kurz, T. Lapsien, I. Marchesini,

D. Marconi,M. Meyer, M. Niedziela, D. Nowatschin, F. Pantaleo14, T. Peiffer, A. Perieanu,C. Scharf,

P. Schleper, A. Schmidt, S. Schumann,J. Schwandt, J. Sonneveld,H. Stadie,G. Steinbrück, F.M. Stober,

M. Stöver, H. Tholen, D. Troendle,E. Usai, L. Vanelderen,A. Vanhoefer, B. Vormwald

UniversityofHamburg,Hamburg,Germany

M. Akbiyik, C. Barth,S. Baur, E. Butz, R. Caspart, T. Chwalek, F. Colombo, W. De Boer,A. Dierlamm,

B. Freund, R. Friese,M. Giffels, A. Gilbert, D. Haitz,F. Hartmann14,S.M. Heindl, U. Husemann, F. Kassel14,

S. Kudella, H. Mildner, M.U. Mozer,Th. Müller, M. Plagge, G. Quast, K. Rabbertz, M. Schröder,I. Shvetsov,

G. Sieber, H.J. Simonis,R. Ulrich, S. Wayand, M. Weber, T. Weiler, S. Williamson,C. Wöhrmann, R. Wolf

InstitutfürExperimentelleKernphysik,Karlsruhe,Germany

G. Anagnostou, G. Daskalakis,T. Geralis,V.A. Giakoumopoulou, A. Kyriakis, D. Loukas, I. Topsis-Giotis

InstituteofNuclearandParticlePhysics(INPP),NCSRDemokritos,AghiaParaskevi,Greece

G. Karathanasis,S. Kesisoglou, A. Panagiotou, N. Saoulidou

NationalandKapodistrianUniversityofAthens,Athens,Greece

K. Kousouris

NationalTechnicalUniversityofAthens,Athens,Greece

I. Evangelou, C. Foudas,P. Kokkas, S. Mallios, N. Manthos, I. Papadopoulos,E. Paradas, J. Strologas,

F.A. Triantis

UniversityofIoánnina,Ioánnina,Greece

M. Csanad, N. Filipovic,G. Pasztor, G.I. Veres18

(11)

G. Bencze,C. Hajdu, D. Horvath19, Á. Hunyadi, F. Sikler,V. Veszpremi, A.J. Zsigmond

WignerResearchCentreforPhysics,Budapest,Hungary

N. Beni,S. Czellar, J. Karancsi20,A. Makovec,J. Molnar, Z. Szillasi

InstituteofNuclearResearchATOMKI,Debrecen,Hungary

M. Bartók18,P. Raics, Z.L. Trocsanyi, B. Ujvari

InstituteofPhysics,UniversityofDebrecen,Debrecen,Hungary

S. Choudhury,J.R. Komaragiri

IndianInstituteofScience(IISc),Bangalore,India

S. Bahinipati21,S. Bhowmik, P. Mal, K. Mandal, A. Nayak22, D.K. Sahoo21, N. Sahoo,S.K. Swain

NationalInstituteofScienceEducationandResearch,Bhubaneswar,India

S. Bansal,S.B. Beri, V. Bhatnagar,R. Chawla, N. Dhingra, A.K. Kalsi,A. Kaur, M. Kaur, R. Kumar, P. Kumari,

A. Mehta,J.B. Singh, G. Walia

PanjabUniversity,Chandigarh,India

Ashok Kumar,Aashaq Shah, A. Bhardwaj, S. Chauhan,B.C. Choudhary, R.B. Garg,S. Keshri, A. Kumar,

S. Malhotra,M. Naimuddin, K. Ranjan,R. Sharma

UniversityofDelhi,Delhi,India

R. Bhardwaj,R. Bhattacharya, S. Bhattacharya, U. Bhawandeep, S. Dey,S. Dutt, S. Dutta, S. Ghosh,

N. Majumdar, A. Modak, K. Mondal, S. Mukhopadhyay, S. Nandan,A. Purohit, A. Roy, D. Roy,

S. Roy Chowdhury, S. Sarkar,M. Sharan, S. Thakur

SahaInstituteofNuclearPhysics,HBNI,Kolkata,India

P.K. Behera

IndianInstituteofTechnologyMadras,Madras,India

R. Chudasama,D. Dutta, V. Jha, V. Kumar, A.K. Mohanty14, P.K. Netrakanti,L.M. Pant, P. Shukla,A. Topkar

BhabhaAtomicResearchCentre,Mumbai,India

T. Aziz,S. Dugad, B. Mahakud, S. Mitra, G.B. Mohanty, N. Sur, B. Sutar

TataInstituteofFundamentalResearch-A,Mumbai,India

S. Banerjee, S. Bhattacharya, S. Chatterjee,P. Das, M. Guchait,Sa. Jain, S. Kumar, M. Maity23,

G. Majumder,K. Mazumdar, T. Sarkar23, N. Wickramage24

TataInstituteofFundamentalResearch-B,Mumbai,India

S. Chauhan,S. Dube, V. Hegde, A. Kapoor, K. Kothekar, S. Pandey, A. Rane, S. Sharma

IndianInstituteofScienceEducationandResearch(IISER),Pune,India

S. Chenarani25, E. Eskandari Tadavani,S.M. Etesami25, M. Khakzad, M. Mohammadi Najafabadi,

M. Naseri, S. Paktinat Mehdiabadi26,F. Rezaei Hosseinabadi, B. Safarzadeh27,M. Zeinali

InstituteforResearchinFundamentalSciences(IPM),Tehran,Iran

M. Felcini,M. Grunewald

(12)

M. Abbresciaa,b, C. Calabriaa,b,A. Colaleoa,D. Creanzaa,c, L. Cristellaa,b,N. De Filippisa,c,

M. De Palmaa,b, F. Erricoa,b, L. Fiorea, G. Iasellia,c, S. Lezkia,b, G. Maggia,c,M. Maggia, G. Minielloa,b, S. Mya,b, S. Nuzzoa,b,A. Pompilia,b,G. Pugliesea,c, R. Radognaa,A. Ranieria, G. Selvaggia,b, A. Sharmaa, L. Silvestrisa,14,R. Vendittia,P. Verwilligena

aINFNSezionediBari,Bari,Italy bUniversitàdiBari,Bari,Italy cPolitecnicodiBari,Bari,Italy

G. Abbiendia,C. Battilanaa,b,D. Bonacorsia,b,S. Braibant-Giacomellia,b, R. Campaninia,b, P. Capiluppia,b, A. Castroa,b, F.R. Cavalloa,S.S. Chhibraa, G. Codispotia,b, M. Cuffiania,b,G.M. Dallavallea,F. Fabbria, A. Fanfania,b, D. Fasanellaa,b,P. Giacomellia,C. Grandia,L. Guiduccia,b, S. Marcellinia, G. Masettia, A. Montanaria, F.L. Navarriaa,b, A. Perrottaa, A.M. Rossia,b, T. Rovellia,b, G.P. Sirolia,b,N. Tosia aINFNSezionediBologna,Bologna,Italy

bUniversitàdiBologna,Bologna,Italy

S. Albergoa,b,S. Costaa,b,A. Di Mattiaa,F. Giordanoa,b,R. Potenzaa,b,A. Tricomia,b,C. Tuvea,b aINFNSezionediCatania,Catania,Italy

bUniversitàdiCatania,Catania,Italy

G. Barbaglia, K. Chatterjeea,b,V. Ciullia,b,C. Civininia, R. D’Alessandroa,b, E. Focardia,b,P. Lenzia,b, M. Meschinia, S. Paolettia,L. Russoa,28, G. Sguazzonia, D. Stroma, L. Viliania,b,14

aINFNSezionediFirenze,Firenze,Italy bUniversitàdiFirenze,Firenze,Italy

L. Benussi, S. Bianco, F. Fabbri,D. Piccolo, F. Primavera14

INFNLaboratoriNazionalidiFrascati,Frascati,Italy

V. Calvellia,b, F. Ferroa, E. Robuttia,S. Tosia,b aINFNSezionediGenova,Genova,Italy

bUniversitàdiGenova,Genova,Italy

A. Benagliaa, L. Brianzaa,b,F. Brivioa,b, V. Cirioloa,b, M.E. Dinardoa,b, S. Fiorendia,b, S. Gennaia, A. Ghezzia,b, P. Govonia,b, M. Malbertia,b,S. Malvezzia,R.A. Manzonia,b, D. Menascea, L. Moronia, M. Paganonia,b,K. Pauwelsa,b, D. Pedrinia,S. Pigazzinia,b,29,S. Ragazzia,b,T. Tabarelli de Fatisa,b aINFNSezionediMilano-Bicocca,Milano,Italy

bUniversitàdiMilano-Bicocca,Milano,Italy

S. Buontempoa, N. Cavalloa,c, S. Di Guidaa,d,14, F. Fabozzia,c,F. Fiengaa,b, A.O.M. Iorioa,b, W.A. Khana, L. Listaa,S. Meolaa,d,14,P. Paoluccia,14,C. Sciaccaa,b,F. Thyssena

aINFNSezionediNapoli,Napoli,Italy bUniversitàdiNapoli‘FedericoII’,Napoli,Italy cUniversitàdellaBasilicata,Potenza,Italy dUniversitàG.Marconi,Roma,Italy

P. Azzia,14, N. Bacchettaa, L. Benatoa,b,D. Biselloa,b, A. Bolettia,b,R. Carlina,b,

A. Carvalho Antunes De Oliveiraa,b, P. Checchiaa,M. Dall’Ossoa,b,P. De Castro Manzanoa,T. Dorigoa,

U. Dossellia,F. Gasparinia,b,U. Gasparinia,b,A. Gozzelinoa,S. Lacapraraa, P. Lujan,M. Margonia,b, A.T. Meneguzzoa,b,N. Pozzobona,b, P. Ronchesea,b,R. Rossina,b,F. Simonettoa,b, E. Torassaa, S. Venturaa,P. Zottoa,b

aINFNSezionediPadova,Padova,Italy bUniversitàdiPadova,Padova,Italy cUniversitàdiTrento,Trento,Italy

A. Braghieria,A. Magnania,b, P. Montagnaa,b,S.P. Rattia,b, V. Rea, M. Ressegotti, C. Riccardia,b, P. Salvinia, I. Vaia,b, P. Vituloa,b

(13)

aINFNSezionediPavia,Pavia,Italy bUniversitàdiPavia,Pavia,Italy

L. Alunni Solestizia,b, M. Biasinia,b, G.M. Bileia,C. Cecchia,b,D. Ciangottinia,b, L. Fanòa,b,P. Laricciaa,b, R. Leonardia,b,E. Manonia, G. Mantovania,b,V. Mariania,b, M. Menichellia,A. Rossia,b, A. Santocchiaa,b,

D. Spigaa

aINFNSezionediPerugia,Perugia,Italy bUniversitàdiPerugia,Perugia,Italy

K. Androsova, P. Azzurria,14,G. Bagliesia,T. Boccalia,L. Borrello, R. Castaldia, M.A. Cioccia,b, R. Dell’Orsoa,G. Fedia, L. Gianninia,c, A. Giassia, M.T. Grippoa,28,F. Ligabuea,c, T. Lomtadzea,

E. Mancaa,c,G. Mandorlia,c, L. Martinia,b, A. Messineoa,b, F. Pallaa,A. Rizzia,b,A. Savoy-Navarroa,30, P. Spagnoloa, R. Tenchinia,G. Tonellia,b, A. Venturia, P.G. Verdinia

aINFNSezionediPisa,Pisa,Italy bUniversitàdiPisa,Pisa,Italy

cScuolaNormaleSuperiorediPisa,Pisa,Italy

L. Baronea,b, F. Cavallaria,M. Cipriania,b, N. Dacia,D. Del Rea,b,14,E. Di Marcoa,b,M. Diemoza,

S. Gellia,b, E. Longoa,b, F. Margarolia,b,B. Marzocchia,b, P. Meridiania,G. Organtinia,b,R. Paramattia,b, F. Preiatoa,b,S. Rahatloua,b, C. Rovellia,F. Santanastasioa,b

aINFNSezionediRoma,Rome,Italy bSapienzaUniversitàdiRoma,Rome,Italy

N. Amapanea,b,R. Arcidiaconoa,c, S. Argiroa,b, M. Arneodoa,c,N. Bartosika,R. Bellana,b,C. Biinoa,

N. Cartigliaa,M. Costaa,b, R. Covarellia,b,P. De Remigisa, A. Deganoa,b, N. Demariaa,B. Kiania,b, C. Mariottia, S. Masellia,E. Migliorea,b, V. Monacoa,b, E. Monteila,b, M. Montenoa,M.M. Obertinoa,b, L. Pachera,b,N. Pastronea, M. Pelliccionia, G.L. Pinna Angionia,b,F. Raveraa,b,A. Romeroa,b, M. Ruspaa,c, R. Sacchia,b, K. Shchelinaa,b, V. Solaa,A. Solanoa,b,A. Staianoa,P. Traczyka,b

aINFNSezionediTorino,Torino,Italy bUniversitàdiTorino,Torino,Italy

cUniversitàdelPiemonteOrientale,Novara,Italy

S. Belfortea,M. Casarsaa, F. Cossuttia,G. Della Riccaa,b, A. Zanettia aINFNSezionediTrieste,Trieste,Italy

bUniversitàdiTrieste,Trieste,Italy

D.H. Kim,G.N. Kim, M.S. Kim, J. Lee,S. Lee, S.W. Lee, C.S. Moon, Y.D. Oh, S. Sekmen,D.C. Son,Y.C. Yang

KyungpookNationalUniversity,Daegu,RepublicofKorea

A. Lee

ChonbukNationalUniversity,Jeonju,RepublicofKorea

H. Kim,D.H. Moon,G. Oh

ChonnamNationalUniversity,InstituteforUniverseandElementaryParticles,Kwangju,RepublicofKorea

J.A. Brochero Cifuentes,J. Goh, T.J. Kim

HanyangUniversity,Seoul,RepublicofKorea

S. Cho,S. Choi, Y. Go,D. Gyun, S. Ha,B. Hong, Y. Jo, Y. Kim, K. Lee,K.S. Lee,S. Lee,J. Lim, S.K. Park, Y. Roh

KoreaUniversity,Seoul,RepublicofKorea

J. Almond,J. Kim, J.S. Kim, H. Lee,K. Lee, K. Nam,S.B. Oh, B.C. Radburn-Smith, S.h. Seo, U.K. Yang,

H.D. Yoo,G.B. Yu

(14)

M. Choi,H. Kim, J.H. Kim, J.S.H. Lee, I.C. Park

UniversityofSeoul,Seoul,RepublicofKorea

Y. Choi,C. Hwang, J. Lee, I. Yu

SungkyunkwanUniversity,Suwon,RepublicofKorea

V. Dudenas, A. Juodagalvis,J. Vaitkus

VilniusUniversity,Vilnius,Lithuania

I. Ahmed,Z.A. Ibrahim, M.A.B. Md Ali31,F. Mohamad Idris32,W.A.T. Wan Abdullah, M.N. Yusli,

Z. Zolkapli

NationalCentreforParticlePhysics,UniversitiMalaya,KualaLumpur,Malaysia

R. Reyes-Almanza,G. Ramirez-Sanchez, M.C. Duran-Osuna, H. Castilla-Valdez, E. De La Cruz-Burelo,

I. Heredia-De La Cruz33, R.I. Rabadan-Trejo, R. Lopez-Fernandez,J. Mejia Guisao, A. Sanchez-Hernandez,

C.H. Zepeda Fernandez

CentrodeInvestigacionydeEstudiosAvanzadosdelIPN,MexicoCity,Mexico

S. Carrillo Moreno, C. Oropeza Barrera, F. Vazquez Valencia

UniversidadIberoamericana,MexicoCity,Mexico

I. Pedraza, H.A. Salazar Ibarguen, C. Uribe Estrada

BenemeritaUniversidadAutonomadePuebla,Puebla,Mexico

A. Morelos Pineda

UniversidadAutónomadeSanLuisPotosí,SanLuisPotosí,Mexico

D. Krofcheck

UniversityofAuckland,Auckland,NewZealand

P.H. Butler

UniversityofCanterbury,Christchurch,NewZealand

A. Ahmad, M. Ahmad, Q. Hassan,H.R. Hoorani, A. Saddique, M.A. Shah, M. Shoaib, M. Waqas

NationalCentreforPhysics,Quaid-I-AzamUniversity,Islamabad,Pakistan

H. Bialkowska, M. Bluj,B. Boimska, T. Frueboes,M. Górski, M. Kazana, K. Nawrocki, M. Szleper,

P. Zalewski

NationalCentreforNuclearResearch,Swierk,Poland

K. Bunkowski,A. Byszuk34, K. Doroba,A. Kalinowski, M. Konecki,J. Krolikowski, M. Misiura,

M. Olszewski, A. Pyskir,M. Walczak

InstituteofExperimentalPhysics,FacultyofPhysics,UniversityofWarsaw,Warsaw,Poland

P. Bargassa,C. Beirão Da Cruz E Silva, A. Di Francesco, P. Faccioli, B. Galinhas, M. Gallinaro,J. Hollar,

N. Leonardo,L. Lloret Iglesias,M.V. Nemallapudi, J. Seixas,G. Strong, O. Toldaiev, D. Vadruccio,J. Varela

LaboratóriodeInstrumentaçãoeFísicaExperimentaldePartículas,Lisboa,Portugal

A. Baginyan, A. Golunov, I. Golutvin, A. Kamenev, V. Karjavin, I. Kashunin,V. Korenkov,G. Kozlov,

A. Lanev,A. Malakhov,V. Matveev35,36,V. Palichik, V. Perelygin, S. Shmatov, V. Smirnov, V. Trofimov,

B.S. Yuldashev37, A. Zarubin

(15)

Y. Ivanov,V. Kim38,E. Kuznetsova39, P. Levchenko,V. Murzin, V. Oreshkin, I. Smirnov, V. Sulimov,

L. Uvarov, S. Vavilov, A. Vorobyev

PetersburgNuclearPhysicsInstitute,Gatchina(St.Petersburg),Russia

Yu. Andreev,A. Dermenev,S. Gninenko, N. Golubev, A. Karneyeu, M. Kirsanov,N. Krasnikov,

A. Pashenkov,D. Tlisov, A. Toropin

InstituteforNuclearResearch,Moscow,Russia

V. Epshteyn,V. Gavrilov, N. Lychkovskaya,V. Popov, I. Pozdnyakov,G. Safronov, A. Spiridonov,

A. Stepennov, M. Toms,E. Vlasov, A. Zhokin

InstituteforTheoreticalandExperimentalPhysics,Moscow,Russia

T. Aushev,A. Bylinkin36

MoscowInstituteofPhysicsandTechnology,Moscow,Russia

R. Chistov40, M. Danilov40,P. Parygin,D. Philippov, S. Polikarpov,E. Tarkovskii

NationalResearchNuclearUniversity‘MoscowEngineeringPhysicsInstitute’(MEPhI),Moscow,Russia

V. Andreev,M. Azarkin36,I. Dremin36, M. Kirakosyan36,A. Terkulov

P.N.LebedevPhysicalInstitute,Moscow,Russia

A. Baskakov,A. Belyaev, E. Boos,M. Dubinin41,L. Dudko, A. Ershov, A. Gribushin, V. Klyukhin,

O. Kodolova,I. Lokhtin,I. Miagkov, S. Obraztsov, S. Petrushanko,V. Savrin, A. Snigirev

SkobeltsynInstituteofNuclearPhysics,LomonosovMoscowStateUniversity,Moscow,Russia

V. Blinov42, Y. Skovpen42,D. Shtol42

NovosibirskStateUniversity(NSU),Novosibirsk,Russia

I. Azhgirey,I. Bayshev,S. Bitioukov, D. Elumakhov, V. Kachanov, A. Kalinin, D. Konstantinov,

V. Krychkine, V. Petrov, R. Ryutin, A. Sobol,S. Troshin, N. Tyurin,A. Uzunian, A. Volkov

StateResearchCenterofRussianFederation,InstituteforHighEnergyPhysics,Protvino,Russia

P. Adzic43,P. Cirkovic, D. Devetak,M. Dordevic, J. Milosevic,V. Rekovic

UniversityofBelgrade,FacultyofPhysicsandVincaInstituteofNuclearSciences,Belgrade,Serbia

J. Alcaraz Maestre,M. Barrio Luna, M. Cerrada,N. Colino, B. De La Cruz,A. Delgado Peris,

A. Escalante Del Valle,C. Fernandez Bedoya, J.P. Fernández Ramos,J. Flix, M.C. Fouz,P. Garcia-Abia,

O. Gonzalez Lopez,S. Goy Lopez, J.M. Hernandez, M.I. Josa, A. Pérez-Calero Yzquierdo, J. Puerta Pelayo,

A. Quintario Olmeda,I. Redondo, L. Romero,M.S. Soares, A. Álvarez Fernández

CentrodeInvestigacionesEnergéticasMedioambientalesyTecnológicas(CIEMAT),Madrid,Spain

C. Albajar, J.F. de Trocóniz,M. Missiroli, D. Moran

UniversidadAutónomadeMadrid,Madrid,Spain

J. Cuevas,C. Erice, J. Fernandez Menendez, I. Gonzalez Caballero,J.R. González Fernández,

E. Palencia Cortezon,S. Sanchez Cruz, P. Vischia, J.M. Vizan Garcia

UniversidaddeOviedo,Oviedo,Spain

I.J. Cabrillo, A. Calderon, B. Chazin Quero,E. Curras, J. Duarte Campderros, M. Fernandez,

(16)

F. Matorras, J. Piedra Gomez,T. Rodrigo, A. Ruiz-Jimeno, L. Scodellaro,N. Trevisani, I. Vila, R. Vilar Cortabitarte

InstitutodeFísicadeCantabria(IFCA),CSIC-UniversidaddeCantabria,Santander,Spain

D. Abbaneo, E. Auffray, P. Baillon, A.H. Ball, D. Barney, M. Bianco,P. Bloch, A. Bocci, C. Botta,

T. Camporesi, R. Castello, M. Cepeda, G. Cerminara, E. Chapon, Y. Chen, D. d’Enterria, A. Dabrowski,

V. Daponte, A. David, M. De Gruttola, A. De Roeck, M. Dobson,B. Dorney, T. du Pree, M. Dünser,

N. Dupont,A. Elliott-Peisert, P. Everaerts,F. Fallavollita, G. Franzoni, J. Fulcher, W. Funk, D. Gigi,K. Gill,

F. Glege, D. Gulhan, P. Harris,J. Hegeman, V. Innocente, P. Janot,O. Karacheban17, J. Kieseler,

H. Kirschenmann,V. Knünz, A. Kornmayer14, M.J. Kortelainen, M. Krammer1,C. Lange, P. Lecoq,

C. Lourenço,M.T. Lucchini, L. Malgeri,M. Mannelli, A. Martelli,F. Meijers, J.A. Merlin, S. Mersi, E. Meschi,

P. Milenovic44, F. Moortgat, M. Mulders, H. Neugebauer,S. Orfanelli, L. Orsini,L. Pape, E. Perez,

M. Peruzzi,A. Petrilli, G. Petrucciani, A. Pfeiffer,M. Pierini, A. Racz,T. Reis,G. Rolandi45,M. Rovere,

H. Sakulin, C. Schäfer, C. Schwick,M. Seidel, M. Selvaggi,A. Sharma,P. Silva, P. Sphicas46, A. Stakia,

J. Steggemann,M. Stoye, M. Tosi,D. Treille, A. Triossi, A. Tsirou,V. Veckalns47, M. Verweij, W.D. Zeuner

CERN,EuropeanOrganizationforNuclearResearch,Geneva,Switzerland

W. Bertl†, L. Caminada48, K. Deiters,W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,

U. Langenegger, T. Rohe, S.A. Wiederkehr

PaulScherrerInstitut,Villigen,Switzerland

F. Bachmair, L. Bäni, P. Berger, L. Bianchini, B. Casal, G. Dissertori,M. Dittmar, M. Donegà, C. Grab,

C. Heidegger, D. Hits, J. Hoss,G. Kasieczka, T. Klijnsma,W. Lustermann,B. Mangano, M. Marionneau,

M.T. Meinhard,D. Meister, F. Micheli,P. Musella, F. Nessi-Tedaldi, F. Pandolfi, J. Pata, F. Pauss,G. Perrin,

L. Perrozzi,M. Quittnat, M. Reichmann, M. Schönenberger,L. Shchutska, V.R. Tavolaro, K. Theofilatos,

M.L. Vesterbacka Olsson, R. Wallny, D.H. Zhu

ETHZurich–InstituteforParticlePhysicsandAstrophysics(IPA),Zurich,Switzerland

T.K. Aarrestad, C. Amsler49, M.F. Canelli,A. De Cosa, R. Del Burgo, S. Donato, C. Galloni, T. Hreus,

B. Kilminster, J. Ngadiuba,D. Pinna,G. Rauco, P. Robmann, D. Salerno, C. Seitz,Y. Takahashi, A. Zucchetta

UniversitätZürich,Zurich,Switzerland

V. Candelise,T.H. Doan, Sh. Jain,R. Khurana, C.M. Kuo,W. Lin, A. Pozdnyakov,S.S. Yu

NationalCentralUniversity,Chung-Li,Taiwan

Arun Kumar, P. Chang, Y. Chao, K.F. Chen, P.H. Chen, F. Fiori, W.-S. Hou,Y. Hsiung, Y.F. Liu,R.-S. Lu,

E. Paganis, A. Psallidas, A. Steen,J.f. Tsai

NationalTaiwanUniversity(NTU),Taipei,Taiwan

B. Asavapibhop, K. Kovitanggoon, G. Singh, N. Srimanobhas

ChulalongkornUniversity,FacultyofScience,DepartmentofPhysics,Bangkok,Thailand

M.N. Bakirci50,F. Boran, S. Damarseckin, Z.S. Demiroglu, C. Dozen,I. Dumanoglu, E. Eskut, S. Girgis,

G. Gokbulut, Y. Guler, I. Hos51, E.E. Kangal52, O. Kara, U. Kiminsu,M. Oglakci, G. Onengut53,

K. Ozdemir54, S. Ozturk50,H. Topakli50,S. Turkcapar, I.S. Zorbakir, C. Zorbilmez

ÇukurovaUniversity,PhysicsDepartment,ScienceandArtFaculty,Adana,Turkey

B. Bilin, G. Karapinar55, K. Ocalan56,M. Yalvac, M. Zeyrek

MiddleEastTechnicalUniversity,PhysicsDepartment,Ankara,Turkey

E. Gülmez,M. Kaya57,O. Kaya58, S. Tekten, E.A. Yetkin59

Riferimenti

Documenti correlati

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-2/W11, 2019 GEORES 2019 – 2nd International Conference of Geomatics

In this section we focus on the time evolution of the one-body density matrix and the momentum distribution function: these are the most suitable quantities to investigate the

Our results showed that the “pizza marinara TSG” had polyphenols concentration, lycopene level, antioxidant activity, and bioaccessibility of phenolic compounds and

FSRQs (red circles in Figure 9 ) mostly cluster in the soft spectral index region, while BL Lacs (blue circles) primarily occupy the hard spectral index region, confirming the

b) Per quanto riguarda le differenze tra figure professionali notiamo che tra i rischi ritenuti come più rilevanti gli unici due aspetti che risaltano sono che gli

In conventional multi-processor embedded systems with high level of computational parallelism, data throughput becomes a significant issue on the path to achieving

In short, four classes of micro- instabilities can be distinguished: (a) the ”unmagnetized flow instabilities” (UFI) mainly analyzed for relativistic shocks; three other ones

In what follows, I will compare Angelina Buracci’s reflections on the cinema with the basic assumptions underlying the Italian male discourse on film and film spectatorship