• Non ci sono risultati.

Prompt and nonprompt J/psi production and nuclear modification in pPb collisions at root s(NN)=8.16 TeV

N/A
N/A
Protected

Academic year: 2021

Condividi "Prompt and nonprompt J/psi production and nuclear modification in pPb collisions at root s(NN)=8.16 TeV"

Copied!
20
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Prompt

and

nonprompt

J

production

and

nuclear

modification

in

pPb

collisions

at

s

N N

=

8

.

16 TeV

.

LHCb

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received22June2017

Receivedinrevisedform19September 2017

Accepted19September2017 Availableonline22September2017 Editor: L.Rolandi

The productionof J/ψ mesonsis studied inproton-lead collisions atthe centre-of-mass energyper nucleonpair√sN N=8.16 TeV withtheLHCbdetectorattheLHC.Thedoubledifferentialcross-sections

ofpromptandnonprompt J/ψproductionaremeasuredasafunctionofthe J/ψtransversemomentum and rapidity in the nucleon–nucleon centre-of-mass frame. Forward-to-backward ratios and nuclear modification factors are determined. The results are comparedwith theoretical calculations basedon collinearfactorisationusingnuclearpartondistributionfunctions,onthecolourglasscondensateoron coherentenergylossmodels.

©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Theproductionof J

mesons,andmoregenerallyof quarko-nium states, has been considered as a sensitive probe of colour screeningina hotanddense mediumsincetheproposalby Mat-sui and Satz in 1986 [1] of the suppression of the J

meson productioninheavy-ioncollisionsasasignofdeconfinement.The theoreticalunderstandingofthebound-statedynamicsof quarko-nium by means of lattice QCD and effective field theories has progressed substantially in the last 30 years. In heavy-ion colli-sions, the emerging picture indicates strong modifications of the quarkonium bound-state characteristics [2]. Experimentally, mea-surements at the SPS, RHIC and LHC revealed interesting pat-terns [3]. In particular, an additional low transverse momentum (pT) component of J

production was observed in PbPb colli-sionsatthe LHC[4–8].Thisobservation hadbeenpredictedasa signofcharmoniumoriginatingfromunboundcharmquarks, gen-eratedeitherduringthelifetimeofthedeconfinedmedium[9]or atthephaseboundary[10].

Thelimitedunderstandingofnuclear phenomena unrelatedto deconfinement, commonly called cold nuclear matter (CNM) ef-fects,restrictstheabilityofphenomenologicalmodels todescribe theexperimental dataon J

productioninPbPb collisions. The sizeofCNMeffectscanbequantifiedbymeasurementsin proton-nucleusordeuteron-nucleus collisions, whichhavebeen pursued atfixed target experiments aswell asat RHIC andLHC [3]. The featureofCNMdrawingthehighestattentionforproton-lead col-lisionsattheLHCisthemodificationofthegluonfluxcouplingto thecharm quark pair.This modificationis oftentreatedwithin a collinearpartondistributionframework employingnuclearparton distribution functions (nPDFs) [11–15]. At low longitudinal

mo-mentumfractions x carriedbytheparton, calculationswithin the colourglasscondensate(CGC)effectivefieldtheory,describingthe saturationregimeofQCD[16,17],arefrequentlyemployed.Several calculationshave beenpursued to quantifynuclear modifications of J

productionin the collinear framework [18–21] or in the CGCframework [22–24].It hasto benoted that thelow-x gluon content of the nucleus is largely unconstrained by experimental dataatperturbativescales.Inaddition,small-anglegluonradiation takingintoaccountinterferencebetweeninitialandfinal state ra-diation,calledcoherentenergyloss,wasproposedasthedominant nuclearmodificationofquarkoniumproductioninproton-lead col-lisions [25]. The discrimination between these phenomena is a strong motivationforthe studyofthe productionofquarkonium asahard-scaleprobeofQCDathighdensity.

Theexperimentalresultson J

productioninproton-lead col-lisionsbasedonthe2013datasamplesat

sN N

=

5 TeV published

bytheLHCexperimentsALICE,ATLAS,CMSandLHCb[26–31]can be qualitatively described by implementations of the approaches described aboveinthekinematicapplicabilityrangeofthe calcu-lations[18–21,23–25].Noconclusiononthedominantmechanism fornuclearmodificationof J

productioncouldbedrawn.

The measurement of an additional suppression of the excited state

ψ(

2S

)

by ALICE[32,33]andLHCb [34] inproton-lead colli-sionsat

sN N

=

5 TeV and byPHENIXatRHIC[35,36]invarious

collision systems at

sN N

=

0

.

2 TeV cannot be explainedby the

modificationofthegluon fluxorbycoherentenergylossbecause it would affect the J

and the

ψ(

2S

)

states in a similar way. These measurements motivated calculations involving hadronic andpartonic interactions influencingthe evolutionof thecc pair

¯

afterthefirstinteraction[37,38]forproton(deuteron)-nucleus col-lisions.Althoughtheimpacton J

productionisgenerallysmall

https://doi.org/10.1016/j.physletb.2017.09.058

0370-2693/©2017TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

inthesemodels,itcanbesignificantinrapidityrangeswithlarge particledensities.

The measurementofthe nonprompt J

productionprovides access to the production of beautyhadrons. The modification of their kinematic distributions in nucleus–nucleus collisions car-ries valuable information about the created matter [3]. Simi-larly to direct charmonium production,the production of beauty hadronscanbe subjecttoCNM effectsalteringtheinterpretation of nucleus–nucleus collision data. Such effects can be precisely measuredinproton-leadcollisions.

Themeasurementsoftheproductionofprompt J

and non-prompt J

mesons,called J

-from-b-hadronsinthefollowing, presented in thisletter are important ingredients forthe under-standingoftheimprintsofdeconfinementinnucleus–nucleus col-lisions. They are based on larger integrated luminosities and on higher collision energies than the initial measurements withthe 2013proton-leaddatasamplebytheLHCbexperimentat

sN N

=

5 TeV[27].

2. Detector,datasampleandobservables

TheLHCb detector [39,40]is asingle-armforward spectrome-tercoveringthepseudorapidity range2

<

η

<

5,designedforthe studyofparticlescontaining b orc quarks. Thedetectorincludes a high-precision trackingsystem consistingof a silicon-strip ver-tex detectorsurrounding theinteraction region [41], a large-area silicon-strip detector located upstream of a dipole magnet with a bending power of about 4 Tm, and three stations of silicon-strip detectors andstraw drift tubes [42] placed downstream of themagnet. Thetrackingsystemprovides ameasurement of mo-mentumofchargedparticleswitharelativeuncertaintythatvaries from0.5%atlowmomentumto1.0%at200 GeV

/

c.Theminimum distanceofa trackto a primary vertex(PV), theimpact parame-ter,ismeasured witharesolutionof

(

15

+

29

/

pT

)

μm,where pT isthetransversemomentumintheLHCbframe,inGeV

/

c. Differ-enttypesofchargedhadronsare distinguishedusinginformation from two ring-imaging Cherenkov detectors [43]. Photons, elec-tronsandhadronsareidentifiedbyacalorimetersystemconsisting of scintillating-pad and preshower detectors, an electromagnetic calorimeterandahadroniccalorimeter.Muonsareidentifiedbya systemcomposedofalternatinglayers ofironandmultiwire pro-portionalchambers[44].

This analysis is based on data acquired during the 2016 LHC heavy-ionrun, where protons and208Pbions were collidingata centre-of-massenergypernucleonpairof

sN N

=

8

.

16 TeV.Since

theenergy per nucleonin theproton beamis largerthan inthe lead beam,the nucleon–nucleoncentre-of-mass systemhas a ra-pidityinthelaboratoryframeof0.465(

0

.

465),whentheproton (lead) beam travels from the vertex detector towards the muon chambers. Consequently, the LHCb detector covers two different acceptanceregions:

1. 1

.

5

<

y

<

4

.

0 whentheprotonbeamtravelsfromthevertex

detectortowardsthemuonchambers,

2.

5

.

0

<

y

<

2

.

5 when the proton beam travels from the

muonchamberstowardsthevertexdetector,

where y∗ is the rapidity inthe centre-of-mass frame of the col-liding nucleons, with respect to the proton beam direction. In thisletter, thefirst configuration isdenoted pPb andthe second onePbp.Thedatasamplescorrespondtoanintegratedluminosity of 13

.

6

±

0

.

3nb−1 of pPb collisions and 20

.

8

±

0

.

5nb−1 of Pbp collisions. The instantaneous luminosity for the majority of the recordedeventsranges between0.5and1

.

0

×

1029cm−2s−1.This

luminositycorrespondsonaveragetoabout0.1orfewercollisions perbunchcrossing.

In this letter, we describe the measurement of the double-differentialproductioncross-sectionsof J

mesonsasafunction of pT and y∗ intheranges0

<

pT

<

14 GeV

/

c and 1

.

5

<

y

<

4

.

0

for pPband

5

.

0

<

y

<

2

.

5 forPbp.The measurementis

per-formed separately forprompt J

mesons,i.e. produced directly intheinitialhardscatteringorfromthedecayofanexcited char-moniumstateproduceddirectly,andfor J

mesonscomingfrom thedecayofalong-livedb-hadron,eitherdirectlyorviaanexcited charmoniumstate.

Nucleareffectsarequantifiedbythenuclearmodificationfactor,

RpPb, RpPb(pT

,

y

)

1 A d2

σ

pPb

(

pT

,

y

)/

dpTd y∗ d2

σ

pp(p T

,

y

)/

dpTd y

,

(1)

where A

=

208 isthemassnumberofthePbion,d2

σpPb

(

p T

,

y

)/

dpTd y∗ the J

productioncross-sectioninpPborPbp collisions and d2

σpp

(

pT

,

y

)/

dpTd y∗ the J

reference production cross-section in pp collisions at the same nucleon–nucleon centre-of-mass energy. The determination of the reference cross-section is describedinSec.5.1.Intheabsenceofnucleareffects,thenuclear modificationfactorisequaltounity.

In addition to the nuclear modification factor, the observable

RFB quantifies the relative forward-to-backward productionrates. The forward-to-backward ratiois measuredas theratio of cross-sectionsin thepositiveandnegative y∗ acceptancesevaluated in thesameabsolute y∗ valueranges,

RFB

(

pT

,

y

)

d2

σ

pPb(p T

,

+

y

)/

dpTd y∗ d2

σ

pPb

(

pT

,

y

)/

dpTd y

.

(2)

3. Eventselectionandcross-sectiondetermination

The J

productioncross-sectionmeasurementfollowsthe ap-proachdescribedinRef.[45].Thedoubledifferential J

produc-tioncross-sectionineachkinematicbinofpTandy∗ iscomputed as d2

σ

dpTd y

=

N

(

J

μ

+

μ

)

L

×



tot

×

B

(

J

μ

+

μ

)

× 

pT

× 

y

,

(3)

where N

(

J

μ

+

μ

)

isthe number ofreconstructed prompt

J

or J

-from-b-hadrons signal mesons,



tot is the total de-tection efficiencyinthegivenkinematicbin,

B(

J

μ

+

μ

)

=

(

5

.

961

±

0

.

033

)

% [46] is the branching fraction of the decay

J

μ

+

μ

−,



pT

=

1 GeV

/

c and



y

=

0

.

5 arethebinwidths and

L

is theintegratedluminosity.The luminosityis determined with a van der Meerscan, which was performed forboth beam configurations. The luminosity determination follows closely the approachdescribedinRef.[47].

3.1. Selection

Anonlineeventselectionisperformedbyatriggersystem con-sistingofahardware stage,which,forthisanalysis,selectsevents containingatleastonemuonwithpTlargerthan500 MeV

/

c, fol-lowedbyasoftwarestage.Inthefirststageofthesoftwaretrigger, twomuontrackswithpT

>

500 MeV

/

c arerequiredtoforma J

candidatewithinvariantmass+μ

>

2

.

5 GeV

/

c2.Inthesecond stage, J

candidateswithaninvariantmasswithin 120 MeV

/

c2 oftheknownvalueofthe J

mass[46]areselected.

In between the two software stages, the alignment and cali-bration of the detector is performed in near real-time [48]. The

(3)

samealignmentandcalibrationispropagatedtotheoffline recon-struction,ensuring consistent andhigh-qualityparticle identifica-tion(PID)informationbetweentheonlineandofflineprocessings. Theidenticalperformanceoftheonlineandofflinereconstructions offers theopportunity toperform physics analyses directlyusing candidatesreconstructed in thetrigger [49,50] aswell as storing allreconstructed particles inthe event[51]. Thepresentanalysis exploitsthisfeatureforthefirsttimeinproton-leadcollisionsand isusingtheonlinereconstruction.

At the analysis stage, each event is required to have at least one PV reconstructed from at least four tracks measured in the vertexdetector.ForeventswithmultiplePVs,thePVthathasthe smallest

χ

2

IP with respect to the J

candidate is chosen. Here,

χ

2

IP is defined as the difference between the vertex-fit

χ

2 cal-culated with the J

meson candidate included in or excluded from the PV fit. Each identified muon track is required to have

pT

>

750 MeV

/

c,2

<

η

<

5 and to havea good-quality trackfit. The two muon tracks of the J

candidate must form a good-quality vertex, representing a tighter selection compared to the softwaretriggerrequirement.

3.2.Determinationofsignalyields

Thereconstructed vertexof the J

mesonsoriginating from

b-hadron decays tends tobe separated fromthePVs. These J

mesons can thus be distinguished from prompt J

mesons by exploitingthepseudopropertimedefinedas

tz

(

zJ/ψ

zPV

)

×

MJ/ψ pz

,

(4)

where zJ/ψ and zPV are the coordinates along the beamaxis of the J

decay vertexposition andof the PVposition, pz is the z component ofthe J

momentum and MJ/ψ the known J

mass. The yields of J

signal candidates, for the prompt and

J

-from-b-hadrons categories, are determined from a simulta-neoustwo-dimensional unbinnedmaximumlikelihoodfittotheir invariant mass and pseudo proper time distributions, performed independentlyforeach

(

pT

,

y

)

bin.

Inthefitfunction,theinvariant-massdistributionofthesignal is described by a Crystal Ball function [52], andthe combinato-rialbackgroundbyan exponentialfunction. Thetz distributionof

prompt J

is described bya Dirac

δ

-function

δ(

tz

)

,andthatof J

-from-b-hadrons by an exponential function fortz

>

0. Both

ofthemare convolvedwithatriple-Gaussian resolutionfunction, modelled fromsimulation samples to take into account the ver-texresolution. The backgroundtz distribution isdescribed by an

empirical function derived from the shape observed in the J

uppermasssideband, 3200

<

+μ

<

3250 MeV

/

c2.This back-groundcomesfrommuonsofsemileptonicb- andc-hadrondecays andfrompions andkaons decayinginthe detector.The distribu-tion isparameterised asa sumof a Dirac

δ

-function and offive exponentialfunctions,threeforpositivetzvaluesandtwofor

neg-ativetz values,convolvedwiththesumoftwoGaussianfunctions.

An example of the invariant mass and the pseudo proper time distributions forone

(

pT

,

y

)

binis shown inFig. 1 forthe pPb andPbp samples, where the one-dimensional projections of the fitresultare drawn on thedistributions. The widthof the Gaus-sian part of the Crystal Ball function varies as a function of pT between10 MeV

/

c2 (15 MeV

/

c2)and15 MeV

/

c2 (33 MeV

/

c2)in thelowest(highest) rapiditybins inthelaboratoryframe inboth beamconfigurations.Duetothe rapidityshiftsbetweenthe labo-ratoryframe andthenucleon–nucleoncentre-of-massframes, the twoexamplesdonotcorrespondtothesamerapidityrangeinthe laboratorywhiletheyareinthesame

|

y

|

rangeand,inthis

exam-ple,themassresolutioninthePbp configurationisdifferentfrom theoneinthepPbconfiguration.

3.3. Efficiencies

The total detectionefficiency,



tot, is the product of the geo-metricalacceptance, andtheefficiencies forcharged track recon-struction, particle identification, candidate and trigger selections. Samples of simulatedevents are used to evaluate these efficien-ciesexceptfortheparticleidentification,whichisdeterminedina data-driven approach.Inthe simulation, pPbandPbp minimum-biascollisionsaregeneratedusingthe Epos eventgeneratortuned withtheLHCmodel[53].The J

μ

+

μ

−signalcandidatesare generated separately,with the Pythia8 generator [54] in pp

col-lisions with beams having momenta equal to the momenta per nucleon ofthe p and Pbbeams. Theyare then mergedwiththe Epos minimumbias collisions to build thesamples out ofwhich the efficiencies are computed. The decays of hadrons are gener-atedbyEvtGen[55],inwhichfinal-stateelectromagneticradiation isgeneratedwithPhotos[56].Theinteractionoftheparticleswith thedetector,andthedetectorresponse,areimplementedusingthe Geant4 toolkit[57]asdescribedinRef.[58].

Thecharged-trackreconstructionefficiencyisfirstevaluated in simulationandiscorrectedusingadata-driventag-and-probe ap-proach. For this purpose, J

candidates are formed with one fully-reconstructed“tag”trackandone“probe”trackreconstructed partiallywithasubsetofthetrackingsub-detectorsandboth iden-tified as muons [59] in data and in simulation.The ratio ofthe single trackefficienciesfromthistag-and-probe approachisused asa correction factor. These correction factors foreach trackare then applied tothe signal candidatesin thesimulation toobtain theintegratedefficiencyineverykinematicbin.Thetag-and-probe correctionevaluationisrelyingonthepPbandthePbp data sam-ples,since thelargertrackingcalibration samplesin pp collisions

arelimitedindetectoroccupancybyanadditionalselection crite-rionontriggerlevel.

Themuonidentificationefficiencyisdeterminedforeachtrack indatawithatag-and-probemethod[60] takingintoaccountthe efficiencyvariationsasfunctionoftrackmomentum, pseudorapid-ity and detector occupancy. Calibration samples of J

mesons areselectedapplyingatightidentificationcriteriononone ofthe muons and no identification requirements to the second muon. However,thesizesofthecalibrationsamplescollectedin pPband Pbp collisions are limited. The efficiencyis thus evaluated using the calibrationsamples collected in pp collisions, takinginto ac-countthedifferentdetectoroccupanciesbetweenpp,pPbandPbp collisions,sincethisparameteraffectsthemuonidentification per-formance. The J

simulation is weighted with the efficiencies determinedpertrackindatainordertocomputethemuon iden-tificationefficiencyinbinsof J

pTand y∗.

The hardware and software trigger efficiencies obtained from thesimulationarevalidatedbycomparingthemwiththe efficien-cies measured in control data samples recorded with minimum andunbiasedtriggerrequirements,andcontaining J

candidates. The total efficiency in each

(

pT

,

y

)

bin,



tot, is found to be thesameforprompt J

and J

-from-b-hadronswithin uncer-tainties and is takento be identical forthe two components. It is shown inFig. 2 for pPb andPbp collision data, asa function ofthe J

pT inthedifferentrapiditybins.Theuncertaintiesare the quadraticsumsof thestatisticaluncertainties andthe uncer-tainties associated tothe data-driven correctionsandvalidations, describedinthefollowingsection.

(4)

Fig. 1. (left)Invariantmassand(right)pseudopropertimedistributionsfor J/ψcandidatesinthebin6<pT<7 GeV/c and3.5<|y∗|<4.0 forthe(top)pPband(bottom)

Pbp samplesrespectively.TheblackcircleswitherrorbarsrepresenttheLHCbdata.Theprojectionoftheresultofthefitdescribedinthetextisdrawnoneachdistribution: theredsolidlineisthetotalfitfunction,thebluedashedlineisthepromptJ/ψsignalcomponent,thepurplesolidlineisthe J/ψ-from-b-hadronssignalcomponentand thegreendashedlineisthecombinatorialbackgroundcomponent.

Fig. 2. Total J detection efficiency,tot, as a function of the J/ψ pTin different ybins for (left) pPb and (right) Pbp.

4. Systematicuncertainties

The systematic uncertainties on the cross-section of prompt

J

and J

-from-b-hadrons are summarised in Table 1 and described in the following. The total detection efficiency



tot for prompt J

and J

-from-b is found to be equal within the

statisticalprecisionofthesimulationandallsystematic uncertain-tiesapplyboth forprompt J

and J

-from-b.Acceptanceand reconstruction efficiencies of the J

vector meson depend on its polarisation atproduction. The ALICEandthe LHCb measure-ments in pp collisions [61,62] indicate a polarisation consistent with zero in most of the kinematic region of the analysis

(5)

pre-Fig. 3. Production cross-sectionfor (top left) prompt J/ψ in pPb, (top right) J/ψ-from-b-hadrons in pPb, (bottom left) prompt J/ψ in Pbp and (bottom right)

J/ψ-from-b-hadronsinPbp.Thedatapointsareplacedatthecentreofthe pTbins,thehorizontalerrorbarsindicatethebinwidthsand theverticalerrorbarsthe

totaluncertainties,calculatedasquadraticsumsofthestatisticalandsystematicuncertainties.

Table 1

SummaryofrelativesystematicuncertaintiesinpPbandPbp onthecross-sectionof prompt J/ψand J/ψ-from-b-hadrons.Uncertaintiesthatarecomputedbin-by-bin areexpressedasrangesgivingtheminimumtomaximumvalues.Thelastcolumn indicatesthecorrelationbetweenbinswithinthesamebeamconfiguration.

Source pPb Pbp Comment

Signal model 1.3% 1.3% correlated

Muon identification 2.0%–11.0% 2.1%–15.3% correlated

Tracking 3.0%–8.0% 5.9%–26.5% correlated

Hardware trigger 1.0%–10.9% 1.0%–7.4% correlated

Software trigger 2.0% 2.0% correlated

Simulation statistics 0.4%–7.0% 0.4%–26.2% uncorrelated

B(J/ψμ+μ) 0.05% 0.05% correlated

Luminosity 2.6% 2.5% correlated

Polarisation – – not considered

sentedinthis letter.In thisanalysis, it isassumedthat the J

mesonsare produced withno polarisationin pPb andPbp colli-sions at

sN N

=

8

.

16 TeV. No systematicuncertainty isassigned

fortheeffectsofpolarisation.

Theuncertaintyonthe J

-mesonyields,relatedtothe mod-ellingofthesignalmassshapeinthesimultaneousmassandtzfit,

isstudied usingan alternativefitmodel.Inthismodel,thesignal massshapeisdescribedbythesumofaCrystalBallfunctionand ofa Gaussianfunction.The relativedifferenceofthesignal yields betweenthenominalandalternative fitsamounts to 1.3%,which istakenasafullycorrelatedsystematicuncertaintybetweenbins. The uncertainty associated to the shape of the tz distribution is

negligible.

Theuncertainty on the muon identificationhas multiple con-tributions.The statisticaluncertaintyofthe efficienciesisderived fromthe calibration sample. The impact of the finite binning in muonmomentum,pseudorapidity anddetectoroccupancy onthe

efficienciesisestimatedbyvaryingthebinningscheme.Finally,an uncertaintyduetothemethodtodeterminethenumberofsignal candidatesinthecalibrationsamplesisalsoconsidered.Thetotal systematicuncertaintyduetothesethree sourcesvariesbetween 2%and15%.Itisassumedtobefullycorrelatedbetweenbins.This assumptionis validforneighbouring binsinacceptance.Thebias introduced by thisassumption inthe evaluationofthe total sys-tematicuncertaintyonintegratedquantitiesisnegligible.

The data-driven corrections to the track reconstruction effi-ciency carry uncertainties related to the statistical uncertainties of the data, dominating in most bins. In addition, a systematic uncertainty is relatedto a potential biasof the selection criteria which arenecessary toobtain a goodsignal over background ra-tioforthedeterminationoftheefficiencycorrections.Asystematic uncertaintyrelatedtothemethodisappliedsimilarlyto pp

colli-sions and amounts to 0.8% per track [59]. The total uncertainty related to charged track reconstruction varies from 3.0% to 8.0% for pPb and5.9% to 26.5%forPbp, correlated betweenbins.The uncertainty in the Pbp case is larger due to the smaller signal over background ratio for the partially reconstructed candidates used in the data-driven tag-and-probe method compared to the

pPb case. The assumption on the correlation is valid for neigh-bouring bins. The introduced bias in the evaluation of the total systematic uncertainty on integratedquantities is negligible. The largestuncertaintiesappearatlow trackmomentaandhencelow

J

pT.

The triggerefficiency isdetermined indata andin simulation bythedata-drivenmethoddescribedintheprevioussectionandin Ref.[49].Theuncertainties relatedtothetriggerareestimatedby comparing theresults insimulation andin data.The uncertainty on the hardware trigger efficiency is found to vary between 1% and11%,andtheuncertaintyonthesoftwaretriggerefficiencyis

(6)

estimatedtoamountto2%.Thetriggeruncertainties areassumed tobefullycorrelatedbetweenbins.

Thefinitesizeofthesimulationeventsampleusedforthe ef-ficiencydeterminationintroduces asystematicuncertainty,which variesbetween0.4%and26.2%betweenthekinematicbinsofthe

pPb and the Pbp simulation. The largest relative values appear at high pT and large rapidities and do not dominate the over-all uncertainties. Theydiffer betweenthe pPb andPbp case due to the different rapidity coverage in the centre-of-mass system. Thebranchingfractioncontributestothecross-sectionuncertainty with0.05%.The luminosity measurementuncertaintyamounts to 2.6%in pPbandto 2.5%inPbp collisions. Theuncertainty onall otherappliedselectionsisfoundtobenegligiblebasedon compar-isonsbetweendataandsimulationsignaldistributionsofselection andkinematicsvariables.

5. Results

5.1. Cross-sections

Themeasureddouble-differentialcross-sectionsofprompt J

and J

-from-b-hadrons in the pPb and Pbp data samples are showninFig. 3,asafunctionofpTfortheconsidered y∗bins.The numerical values are presented in Appendices A.1–A.4. The total cross-sections,integratedoverthemeasurementranges,amountto

σ

prompt J/ψ

(

1

.

5

<

y

<

4

.

0

,

pT

<

14 GeV

/

c

)

=

1625

±

4

±

117

μ

b

,

σ

J/ψ-from-b-hadrons

(

1

.

5

<

y

<

4

.

0

,

pT

<

14 GeV

/

c

)

=

276

±

2

±

20

μ

b

,

σ

prompt J/ψ

(

5

.

0

<

y

<

2

.

5

,

pT

<

14 GeV

/

c

)

=

1692

±

4

±

182

μ

b

,

σ

J/ψ-from-b-hadrons

(

5

.

0

<

y

<

2

.

5

,

pT

<

14 GeV

/

c

)

=

209

±

1

±

22

μ

b

,

wherethefirstuncertaintiesarestatisticalandthesecond system-atic.

The fraction of J

-from-b-hadrons, fb, is derived from the

cross-sectionmeasurements.Thefraction fb isdefinedas

fb

(

pT

,

y

)

(5)

d2

σ

J/ψ-from-b-hadrons

/

dpTd y

d2

σ

prompt J/ψ

/

dpTd y

+

d2

σ

J/ψ-from-b-hadrons

/

dpTd y

.

Mostof the systematicuncertainties cancel in thedetermination of fb,whichcanthusbemeasuredprecisely.Thevaluesof fbasa

functionofpT inthedifferent y∗ binsareshowninFig. 4forpPb andPbp and listed in AppendicesA.5 andA.6. The values of fb

measuredinpp collisionsatacentre-of-massenergyof8 TeV[63], areshownonthesamefigureforcomparison.Thedifferencesthat appearbetweenthemeasurementsperformedinthetwocollision systemsindicate, particularlyatlow pT, differentnuclear modifi-cationsforprompt J

andb-quarkproduction.

Thefocusofthispublicationisthequantificationofthenuclear effects,comparinginparticularthe J

productioninproton-lead collisions with that in pp collisions at the same energy. Follow-ing the same approach as in the previous LHCb publication on

J

production in pPb collisions at

sN N

=

5 TeV [27], a pp

referencecross-sectionat

s

=

8

.

16 TeV isdeterminedfroman in-terpolationoftheLHCbcross-sectionmeasurementsat7 TeV[64], 8 TeV[63]and13 TeV[45].Theextractedreferencecross-sectionis inagreementwiththemeasured cross-sectionat

s

=

8 TeV.For

Fig. 4. Fraction of J/ψ-from-b-hadrons, fb, as a function of pT for (fromtop

tobottom)1.5<|y∗|<2.0,2.0<|y∗|<2.5, 2.5<|y∗|<3.0,3.0<|y∗|<3.5, 3.5<|y∗|<4.0,4.0<|y∗|<4.5 and4.5<|y∗|<5.0.Thedatapointsareplacedat thecentreofthepTbins,thehorizontalerrorbarsindicatethebinwidthsandthe

verticalerrorbarsthetotaluncertainties,calculatedasquadraticsumsofthe statis-ticalandsystematicuncertainties.BluecirclesareforpPbcollisions,redsquaresfor Pbp collisionsandblacktrianglesforpp collisionsat8 TeV takenfromRef.[63].

the edgesof therapidity rangein pPbcollisions (1

.

5

<

y

<

2

.

0) andin Pbp collisions (4

.

5

<

y

<

5

.

0),which are not covered by themeasurementsin pp collisions,anextrapolationisusedbased ontheexperimentalmeasurements.Theinterpolationandthe ex-trapolationmethodswerevalidatedwithALICEandLHCbdataand aredescribedinRef.[65].

Thecross-sectionasafunctionofy∗,integratedover pT inthe range 0

<

pT

<

14 GeV

/

c in pPb andPbp collisions,is shownin Fig. 5. The cross-section is compared with the reference cross-section for prompt J

and J

-from-b-hadrons production in

pp collisionsat

s

=

8

.

16 TeV,multipliedbythePbmassnumber

A

=

208. The total relative uncertainties on the pp cross-section

rangebetween3%and11%andarelargestinthebinsbasedon ex-trapolations.Thecross-sectionsasafunctionofpT,integratedover the range1

.

5

<

y

<

4

.

0 for pPband

5

.

0

<

y

<

2

.

5 forPbp, andthecorrespondingscaled pp cross-sections arerepresentedin Fig. 6.Inthiscase,thetotalrelativeuncertaintiesonthe pp

(7)

Fig. 5. Absoluteproductioncross-sectionsof(left)promptJ/ψand(right) J/ψ-from-b-hadrons,asafunctionofy∗,integratedovertherange0<pT<14 GeV/c.Theblack

circlesarethe pPbandPbp valuesandtheredopensquaresthevaluesforpp collisionsatthesameenergy,multipliedbythePbmassnumberA=208.Thehorizontal errorbarsarethebinwidthsandverticalerrorbarsthetotaluncertainties.

Fig. 6. Absoluteproductioncross-sectionsof(topleft)prompt J/ψ inpPb,(topright)prompt J/ψ inPbp,(bottomleft) J/ψ-from-b-hadronsinPbp and(bottomleft)

J/ψ-from-b-hadronsinPbp,asafunctionofpTandintegratedovertherapidityrangeoftheanalysis.Theblackcirclesarethe pPbandPbp valuesandtheredopen

squaresthevaluesforpp collisionsatthesameenergy,multipliedbythePbmassnumberA=208,integratedoverthesamerapidityranges.Thehorizontalerrorbarsare thebinwidthsandverticalerrorbarsthetotaluncertainties.

5.2.Nuclearmodificationfactors

ThenuclearmodificationfactorRpPbdefinedinEq.(1)is

com-putedfromtheprompt J

and J

-from-b-hadronsproduction cross-sections in pp and pPb or Pbp collisions. The systematic uncertainties are assumedto be uncorrelated betweenthe mea-surementsinproton-leadandin pp collisions.Thenuclear modi-ficationfactorsforprompt J

and J

-from-b-hadrons produc-tionasfunctionsof pT or y∗,integratingoverthe othervariable, areshowninFigs. 7 and8,respectively.Thenumericalvaluesare

availableinAppendix B.Theresultsat

sN N

=

5 TeV[27]arealso

depictedon Fig. 8 andare ingood agreementwiththe newand morepreciseresultsat

sN N

=

8

.

16 TeV.

At forward rapidity, 1

.

5

<

y

<

4

.

0, a strong suppression of up to 50% is observed in the case of prompt J

production at low pT (Fig. 7). This behaviour results in a strong suppres-sion in the nuclear modification factor as a function of rapidity shown in Fig. 8.With increasing pT, RpPb approaches unity and

the suppression is stronger at more forward rapidities. The pro-duction of J

-from-b-hadrons is also suppressed compared to

(8)

Fig. 7. Jnuclearmodificationfactor,RpPb,integratedovery∗intheanalysisrange,asafunctionofpTfor(topleft)promptJ/ψinpPb,(bottomleft) J/ψ-from-b-hadrons

inpPb,(topright)prompt J/ψinPbp and(bottomright) J/ψ-from-b-hadronsinPbp.Horizontalerrorbarsarethebinwidths,verticalerrorbarsthetotaluncertainties. Theblackcirclesarethevaluesmeasuredinthisletterandthecolouredareasthetheoreticalpredictionsfromthemodelsdetailedinthetextwiththeiruncertainties.

Fig. 8. Jnuclearmodificationfactor,RpPb,integratedoverpTintherange0<pT<14 GeV/c,asafunctionofy∗for(left)prompt J/ψand(right) J/ψ-from-b-hadrons.

Thehorizontalerrorbarsarethebinwidthsandverticalerrorbarsthetotaluncertainties.Theblackcirclesarethevaluesmeasuredinthisletter,theredsquaresthevalues measuredat√sN N=5 TeV fromRef.[27]andthecolouredareasthetheoreticalcomputationsfromthemodelsdetailedinthetext,withtheiruncertainties.

thatinpp collisionsatforwardrapidities,althoughtoalesser de-gree,asshowninFig. 8.No dependenceasa functionofrapidity canbeobservedwithintheexperimentaluncertainties.The depen-dence as a function of the transverse momentum is weaker for

J

-from-b-hadrons compared to prompt J

, but the nuclear modification factor is also approaching unity at high transverse momentum.

Atbackwardrapidity,

5

.

0

<

y

<

2

.

5,aweakersuppression of prompt J

productionat low pT isobserved, of up to 25%. Similarlytothe forward-rapidityregion,thesuppression is

weak-ening and the nuclear modification factor is approaching values consistent withunity athightransversemomentum. The nuclear modificationfactorasafunctionofrapidityshowsaweak suppres-sionwithnovisiblerapiditydependencewithinexperimental un-certainties.Thenuclearmodificationfactorof J

-from-b-hadrons at backward rapidity is consistent with unity over the full kine-maticregion.

Themeasurementsofprompt J

nuclearmodificationfactors arecomparedinFigs. 7 and8withthreegroupsofcalculations:

(9)

1. collinear factorisation using differentnPDFs [66,67] (labelled “HELAC-OniawithEPS09LO”,“HELAC-OniawithnCTEQ15”and “HELAC-OniawithEPS09NLO”onthefigures),

2. CGCeffective field theory in the dilute-dense approximation taking into account the dense nature ofthe Pb nucleus, but approximatingtheprotonasadilutepartonsource[24,68] (la-belled“CGC”),

3. coherent energyloss calculatingthe impact oflow angle co-herentgluonradiationduringthecrossingofthenucleus[25] (labelled“EnergyLoss”).

TheCGCcalculations[24,68]describewellthebehaviourofthe prompt J

data at forwardrapidity. At backward rapidity,this approachisnot available duetothebreakdown ofthedilute ap-proximationforthepartons intheproton.The uncertainties take intoaccount the variation ofthe charm-quark massand the fac-torisationscale. Theseuncertainties largelycancel inthisratioof cross-sections.Thecollinearcalculationsare basedonthe HELAC-Onia event generator [66,67], tuned to reproduce prompt J

cross-section measurements in pp collision [21] and combined withdifferentsets ofnPDFs:nCTEQ15 [14] andEPS09at leading (LO) andat next-to-leadingorder (NLO) [12]. However, the large uncertainties reveal the missing experimental constraints on the gluondensityinthenucleusatlowx probedbythemeasurements intheLHCbdetectoracceptance.Atbackwardrapidities,the exper-imentalpointsarefoundatthelowerboundorslightlybelowthe theoreticaluncertaintybandsandexhibitadifferentrapidityshape fromthecalculations.Thecoherentenergylossmodel[25] isable toprovidetheoverallshapeofthesuppression,butoverestimates theexperimentaldataatforwardrapidities.Theuncertaintyofthis calculationreflectstheallowedvariationoftheparameterisationof

pp data used inthemodelandtheallowed variation oftheonly freemodelparameterfromfitstoothermeasurements.

The measurements of J

-from-b-hadrons nuclear modifica-tionfactorsarecomparedinFigs. 7 and8withaperturbativeQCD calculationat fixed-ordernext-to-leading-logarithms (FONLL) [69, 70]coupledwiththeEPS09nPDFsetatnext-to-leadingorder[12] (labelled “FONLL with EPS09NLO” on the figures). The displayed uncertaintiescorrespondtotheuncertaintiesfromthenPDF,which areofsimilarsizetoorsmallerthanthetotalexperimental uncer-tainties.The pT dependenceoftheexperimentaldataisdescribed withinuncertaintiesbythemodel.However,thecalculationtends to show larger nuclear modification factors than the data. This tendencyisconfirmedbythenuclearmodificationfactorasa func-tionofrapidity,wherethemostpreciseexperimentaldata points arebelowthemodeluncertaintyband. Furthermore,atbackward rapidity,theslope ofthe theoretical curve isnot seen inthe ex-perimentaldata.

Finally,recentmeasurements haveshownthat long-range col-lectiveeffects, whichhave previously been observedin relatively large nucleus–nucleus collision systems, may also be present in smaller collision systems at large charged-particle multiplicites [71–74]. If these effects have a hydrodynamic origin, momen-tum anisotropies at the quark level can arise and may mod-ify the distribution of observed heavy-quark hadrons [75]. How-ever, the expected magnitude of these effects on prompt J

or J

-from-b-hadrons production has not yet been calculated. Sincethemeasurementsinthisletterareintegratedover charged-particle multiplicity, potential modifications in high-multiplicity eventsarediluted.

5.3.Forward-to-backwardratios

Figs. 9 and 10 show the forward-to-backward ratio, RFB, of the production of prompt J

and J

-from-b-hadrons, in the

overlapping acceptancebetween thetwo beamconfigurations, as functionsoftransversemomentum andrapidity,respectively.The numericalresultsare listedinAppendix C.Inthe RFB ratio,most of the systematicuncertainties cancel. The measurements of RFB at

sN N

=

5 TeV [27] are compared with the measurements at

8

.

16 TeV andare found to be in agreement. Theyare compared withthetheoreticalcomputationsbasedoncollinearfactorisation withdifferentnPDFsdescribedintheprevioussection.

ThecalculationswithdifferentnPDFsdonotfullycoverthe ex-perimentalpointswithinuncertaintiesinparticularatlow pTwith the exception of the EPS09LO combination, which has consider-ablylargeruncertainties.However,adetailedanalysisoftheoretical correlations in the pT-dependent RFB may be interesting for fu-turestudiesinordertoquantifymorepreciselythediscrepancies. The coherentenergylosscalculationiscompared withthe rapid-itydependenceoftheexperimentaldatapointsinFig. 10.Itshows within its small uncertainties a slightly different slope fromthe experimental datapoints and predicts largervalues inthebin at smallest

|

y

|

.

The RFB ratio of J

-from-b-hadronsin Fig. 9 showsarising trendasafunctionoftransversemomentumstartingfromavalue 0.7atlow pTtowardsvaluesconsistentwithunityathighpT.The rapiditydependenceof RFB inFig. 10isconsistentwithaflat be-haviourwithacentralvalueof0.8.

6. Conclusions

The differential production cross-sectionsof prompt J

and

J

-from-b-hadronsinpPbandPbp collisionsat

sN N

=

8

.

16 TeV

are measuredin therange0

<

pT

<

14 GeV

/

c.Thenuclear mod-ification factors are similar to the findings at a collision energy of

sN N

=

5 TeV,but withincreasedprecision thanks to 10and

40 timeslarger datasets in pPb andPbp collisions,respectively. A suppression of prompt J

production compared to pp

colli-sions of up to 50% (25%) in pPb (Pbp) at the lowest transverse momentum isobserved.Inboth configurations,thenuclear mod-ificationfactorapproachesunityasymptotically atthehighest pT. Theoretical calculations forthe nuclear modification factor based on collinear factorisation with different nuclear parton distribu-tion functions, coherent energy loss as well as the colour glass condensate model can account for the majority of the observed dependences.Forthefirsttime,beauty-hadronproductionis mea-sured precisely down to pT

=

0 at the LHC in pPb and Pbp collisions. In pPb, a weak suppression at the lowest transverse momenta is observed, whereas in Pbp no significant deviation fromunityinthe nuclearmodificationfactor isfound.Thisweak modification of beauty production in proton-ion collisions is an important ingredient for the investigation of the modifications of beauty production in heavy-ion collisions. Although the pre-sented measurements haveimproved precision, it is not possible to single out the main nuclear modification mechanismbetween different phenomenological approaches for charmonium produc-tion in proton-lead collisions at the TeV scale. This measure-ment of J

productionis the first step towards measurements of other charmonium states as well as complementary observ-ables like Drell–Yanproduction,to improvethe understanding of quantumchromodynamicsatlowx andindensenuclear environ-ments.

Acknowledgements

We thank G. Bruno, B. Ducloué, H. Shao, J.-Ph. Lansberg and F. Arléo for providing theoretical predictions of J

production in pPbandPbp collisions inthe LHCb acceptancerange.We ex-pressourgratitude to ourcolleaguesin theCERNaccelerator

(10)

de-Fig. 9. Forward-to-backwardratios,RFB,integratedoverthecommonrapidityrange2.5<|y∗|<4.0 asafunctionofpTfor(left)promptJ/ψand(right) J/ψ-from-b-hadrons.

Thehorizontalerrorbarsarethebinwidthsandtheverticalerrorbarsthetotaluncertainties.Theblackcirclesarethevaluesmeasuredinthisletter,theredsquaresthe valuesmeasuredat√sN N=5 TeV fromRef.[27]andthecolouredareasthetheoreticalcomputationsfromthemodelsdetailedinthetext,withtheiruncertainties.

Fig. 10. Forward-to-backwardratios,RFB,integratedoverpTintherange0<pT<14 GeV/c asafunctionof|y∗|for(left)prompt J/ψand(right) J/ψ-from-b-hadrons.The

horizontalerrorbarsarethebinwidthsandtheverticalerrorbarsthetotaluncertainties.Theblackcirclesarethevaluesmeasuredinthisletter,theredsquaresthevalues measuredat√sN N=5 TeV fromRef.[27]andthecolouredareasthetheoreticalcomputationsfromthemodelsdetailedinthetext,withtheiruncertainties.

partments for the excellent performance of the LHC. We thank the technical andadministrative staff atthe LHCb institutes. We acknowledge support from CERN and from the national agen-cies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy);NWO (The Netherlands);MNiSW andNCN(Poland); MEN/IFA (Romania); MinES and FASO (Russia); MinECo (Spain); SNSF andSER (Switzerland);NASU (Ukraine); STFC(United King-dom);NSF (USA). We acknowledgethe computingresources that are provided by CERN, IN2P3 (France),KIT and DESY (Germany), INFN (Italy), SURF (The Netherlands), PIC (Spain), GridPP(United Kingdom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH(Romania),CBPF(Brazil),PL-GRID(Poland)andOSC(USA). We are indebted to the communities behind the multiple open sourcesoftwarepackagesonwhichwe depend.Individual groups or members have received support from AvH Foundation (Ger-many),EPLANET,Marie Skłodowska-Curie ActionsandERC (Euro-pean Union), Conseil Général de Haute-Savoie, Labex ENIGMASS andOCEVU,RégionAuvergne(France),RFBRandYandexLLC (Rus-sia),GVA,XuntaGalandGENCAT(Spain),HerchelSmithFund,The RoyalSociety,RoyalCommissionfortheExhibitionof1851andthe LeverhulmeTrust(UnitedKingdom).

Appendix A. Cross-sectionnumericalresults

A.1. dpd2σ

Td yforprompt J

inpPb

Table 2

Prompt J/ψ absoluteproductioncross-sectioninpPb,asafunctionofpTandy∗.

Thequoteduncertaintiesarethetotaluncertainties,andthebreakdowninto statis-ticaluncertainties,andcorrelatedanduncorrelatedsystematicuncertainties.

pTbin

(GeV/c)

y∗bin d2σ

dpTd y

[nb/(GeV/c)]

stat. corr. uncorr.

0<pT<1 1.5<y<2.0 108 700±16 000 2 700 15 700 1 700 0<pT<1 2.0<y<2.5 94 300±8 900 1 400 8 800 700 0<pT<1 2.5<y<3.0 79 700±5 400 1 100 5 200 500 0<pT<1 3.0<y<3.5 69 800±4 300 1 000 4 200 400 0<pT<1 3.5<y<4.0 64 000±4 100 1 100 3 900 500 1<pT<2 1.5<y<2.0 212 200±18 100 3 300 17 700 2 000 1<pT<2 2.0<y<2.5 194 000±12 000 2 000 12 000 1 000 1<pT<2 2.5<y<3.0 166 400±14 300 1 500 14 200 700 1<pT<2 3.0<y<3.5 144 800±7 900 1 400 7 700 600 1<pT<2 3.5<y<4.0 126 100±8 800 1 500 8 700 700 2<pT<3 1.5<y<2.0 192 600±14 800 2 800 14 400 1 900 2<pT<3 2.0<y<2.5 180 000±11 000 2 000 11 000 1 000 2<pT<3 2.5<y<3.0 157 800±8 900 1 400 8 800 800 2<pT<3 3.0<y<3.5 131 400±7 300 1 300 7 100 700 2<pT<3 3.5<y<4.0 107 500±7 600 1 400 7 400 800

(11)

Table 2 (Continued)

pTbin

(GeV/c)

y∗bin dpdT2d yσ

[nb/(GeV/c)]

stat. corr. uncorr.

3<pT<4 1.5<y<2.0 133 100±12 200 2 100 11 900 1 500 3<pT<4 2.0<y<2.5 123 800±8 700 1 200 8 600 800 3<pT<4 2.5<y<3.0 108 500±7 300 1 000 7 200 600 3<pT<4 3.0<y<3.5 88 200±5 700 900 5 600 500 3<pT<4 3.5<y<4.0 67 900±5 300 900 5 200 600 4<pT<5 1.5<y<2.0 78 800±6 700 1 400 6 500 1 000 4<pT<5 2.0<y<2.5 74 600±4 800 800 4 700 500 4<pT<5 2.5<y<3.0 64 400±3 900 700 3 800 400 4<pT<5 3.0<y<3.5 52 500±3 200 600 3 200 400 4<pT<5 3.5<y<4.0 37 700±2 800 700 2 700 400 5<pT<6 1.5<y<2.0 45 600±3 700 900 3 500 700 5<pT<6 2.0<y<2.5 42 500±2 700 500 2 600 400 5<pT<6 2.5<y<3.0 34 750±2 080 460 2 010 280 5<pT<6 3.0<y<3.5 29 790±1 940 440 1 870 260 5<pT<6 3.5<y<4.0 21 100±1 680 460 1 600 250 6<pT<7 1.5<y<2.0 25 200±2 100 600 2 000 400 6<pT<7 2.0<y<2.5 23 940±1 680 380 1 620 250 6<pT<7 2.5<y<3.0 19 050±1 350 320 1 300 190 6<pT<7 3.0<y<3.5 15 500±1 110 300 1 050 170 6<pT<7 3.5<y<4.0 12 230±1 090 340 1 020 190 Table 3

Prompt J/ψ absoluteproductioncross-sectioninpPb,asafunctionofpTandy∗.

Thequoteduncertaintiesarethetotaluncertainties,andthebreakdowninto statis-ticaluncertainties,andcorrelatedanduncorrelatedsystematicuncertainties.

pTbin

(GeV/c)

y∗bin d2σ

dpTd y

[nb/(GeV/c)]

stat. corr. uncorr.

7<pT<8 1.5<y<2.0 14 410±1 170 440 1 030 330 7<pT<8 2.0<y<2.5 12 660±800 260 740 160 7<pT<8 2.5<y<3.0 10 260±680 230 630 130 7<pT<8 3.0<y<3.5 8 870±660 230 600 130 7<pT<8 3.5<y<4.0 6 310±660 240 600 120 8<pT<9 1.5<y<2.0 7 700±620 290 500 210 8<pT<9 2.0<y<2.5 7 440±490 190 430 120 8<pT<9 2.5<y<3.0 6 060±410 170 360 100 8<pT<9 3.0<y<3.5 4 640±360 160 310 90 8<pT<9 3.5<y<4.0 3 700±400 200 400 100 9<pT<10 1.5<y<2.0 4 810±420 220 320 160 9<pT<10 2.0<y<2.5 4 270±300 140 240 90 9<pT<10 2.5<y<3.0 3 360±260 130 210 70 9<pT<10 3.0<y<3.5 2 680±240 120 190 70 9<pT<10 3.5<y<4.0 2 200±280 130 230 70 10<pT<11 1.5<y<2.0 2 630±240 160 150 100 10<pT<11 2.0<y<2.5 2 620±200 110 150 60 10<pT<11 2.5<y<3.0 2 230±180 100 130 60 10<pT<11 3.0<y<3.5 1 490±150 80 110 40 10<pT<11 3.5<y<4.0 1 130±170 90 140 40 11<pT<12 1.5<y<2.0 1 840±190 120 110 90 11<pT<12 2.0<y<2.5 1 600±130 90 90 50 11<pT<12 2.5<y<3.0 1 300±120 80 80 50 11<pT<12 3.0<y<3.5 1 000±110 70 80 40 11<pT<12 3.5<y<4.0 750±110 80 70 40 12<pT<13 1.5<y<2.0 1 190±140 100 80 70 12<pT<13 2.0<y<2.5 958±94 64 59 33 12<pT<13 2.5<y<3.0 779±82 58 49 31 12<pT<13 3.0<y<3.5 531±71 51 41 26 12<pT<13 3.5<y<4.0 436±80 47 61 21 13<pT<14 1.5<y<2.0 740±100 70 40 50 13<pT<14 2.0<y<2.5 596±65 49 34 25 13<pT<14 2.5<y<3.0 476±59 45 27 24 13<pT<14 3.0<y<3.5 349±47 35 27 15 13<pT<14 3.5<y<4.0 241±47 38 21 16 A.2. dpdσ Td yfor J

-from-b-hadronsinpPb Table 4

J/ψ-from-b-hadronsabsoluteproductioncross-sectioninpPb,asafunctionofpT

andy∗.Thequoteduncertaintiesarethetotaluncertainties,andthebreakdowninto statisticaluncertainties,andcorrelatedanduncorrelatedsystematicuncertainties.

pTbin

(GeV/c)

y∗bin d2σ

dpTd y

[nb/(GeV/c)]

stat. corr. uncorr.

0<pT<1 1.5<y<2.0 15 580±2 480 .1 020 2 250 240 0<pT<1 2.0<y<2.5 13 400±1 300 . 500 1 300 100 0<pT<1 2.5<y<3.0 10 320±780 . 370 680 60 0<pT<1 3.0<y<3.5 8 940±640 . 350 540 50 0<pT<1 3.5<y<4.0 7 330±600 . 400 440 60 1<pT<2 1.5<y<2.0 32 950±3 050 .1 290 2 740 320 1<pT<2 2.0<y<2.5 29 550±1 980 . 670 1 850 150 1<pT<2 2.5<y<3.0 24 530±2 170 . 540 2 100 110 1<pT<2 3.0<y<3.5 20 390±1 200 . 510 1 090 90 1<pT<2 3.5<y<4.0 17 180±1 330 . 600 1 180 100 2<pT<3 1.5<y<2.0 32 980±2 740 .1 160 2 460 320 2<pT<3 2.0<y<2.5 30 480±2 010 . 650 1 900 170 2<pT<3 2.5<y<3.0 25 420±1 520 . 530 1 420 120 2<pT<3 3.0<y<3.5 21 100±1 260 . 500 1 150 110 2<pT<3 3.5<y<4.0 14 440±1 140 . 550 1 000 100 3<pT<4 1.5<y<2.0 24 320±2 370 . 900 2 180 280 3<pT<4 2.0<y<2.5 23 150±1 690 . 510 1 600 140 3<pT<4 2.5<y<3.0 18 590±1 300 . 410 1 230 100 3<pT<4 3.0<y<3.5 14 810±1 030 . 390 940 90 3<pT<4 3.5<y<4.0 10 030±860 . 390 760 80 4<pT<5 1.5<y<2.0 14 650±1 370 . 620 1 210 190 4<pT<5 2.0<y<2.5 15 480±1 050 . 380 970 110 4<pT<5 2.5<y<3.0 12 160±790 . 300 720 80 4<pT<5 3.0<y<3.5 9 410±640 . 290 570 70 4<pT<5 3.5<y<4.0 6 250±540 . 310 440 60 5<pT<6 1.5<y<2.0 10 090±910 . 460 770 150 5<pT<6 2.0<y<2.5 9 270±630 . 270 560 80 5<pT<6 2.5<y<3.0 7 560±500 . 220 440 60 5<pT<6 3.0<y<3.5 6 080±440 . 210 380 50 5<pT<6 3.5<y<4.0 3 710±350 . 210 280 40 6<pT<7 1.5<y<2.0 6 560±630 . 330 520 120 6<pT<7 2.0<y<2.5 5 600±430 . 190 380 60 6<pT<7 2.5<y<3.0 4 630±360 . 160 320 50 6<pT<7 3.0<y<3.5 3 620±290 . 160 250 40 6<pT<7 3.5<y<4.0 2 114±240 . 161 176 32 Table 5

J/ψ-from-b-hadronsabsoluteproductioncross-sectioninpPb,asafunctionofpT

andy∗.Thequoteduncertaintiesarethetotaluncertainties,andthebreakdowninto statisticaluncertainties,andcorrelatedanduncorrelatedsystematicuncertainties.

pTbin

(GeV/c)

y∗bin d2σ

dpTd y

[nb/(GeV/c)]

stat. corr. uncorr.

7<pT<8 1.5<y<2.0 4 610±430 250 330 100 7<pT<8 2.0<y<2.5 3 650±260 140 210 50 7<pT<8 2.5<y<3.0 3 010±230 130 180 40 7<pT<8 3.0<y<3.5 2 327±203 123 157 34 7<pT<8 3.5<y<4.0 1 432±183 120 135 28 8<pT<9 1.5<y<2.0 2 590±260 180 170 70 8<pT<9 2.0<y<2.5 2 300±180 110 130 40 8<pT<9 2.5<y<3.0 1 859±152 99 110 31 8<pT<9 3.0<y<3.5 1 273±126 89 85 24 8<pT<9 3.5<y<4.0 1 002±139 92 100 26 9<pT<10 1.5<y<2.0 1 770±190 140 120 60 9<pT<10 2.0<y<2.5 1 529±127 87 87 30 9<pT<10 2.5<y<3.0 1 142±107 75 72 23 9<pT<10 3.0<y<3.5 864±95 69 61 21 9<pT<10 3.5<y<4.0 544±90 67 57 17 10<pT<11 1.5<y<2.0 1 070±130 100 60 40 10<pT<11 2.0<y<2.5 917±88 66 52 22 10<pT<11 2.5<y<3.0 804±83 64 47 21 10<pT<11 3.0<y<3.5 477±63 51 35 14 10<pT<11 3.5<y<4.0 397±73 51 50 15 11<pT<12 1.5<y<2.0 800±100 80 50 40 11<pT<12 2.0<y<2.5 678±72 57 38 21 11<pT<12 2.5<y<3.0 446±60 50 27 15

Figura

Fig. 2. Total J /ψ detection efficiency,  tot , as a function of the J /ψ p T in different y ∗ bins for (left) pPb and (right) Pbp.
Fig. 3. Production cross-section for (top left) prompt J /ψ in pPb, (top right) J /ψ -from-b-hadrons in pPb, (bottom left) prompt J /ψ in Pbp and (bottom right)
Fig. 4. Fraction of J /ψ -from-b-hadrons, f b , as a function of p T for (from top
Fig. 5. Absolute production cross-sections of (left) prompt J /ψ and (right) J /ψ -from-b-hadrons, as a function of y ∗ , integrated over the range 0 &lt; p T &lt; 14 GeV / c
+3

Riferimenti

Documenti correlati

1 Il riferimento è alla ricerca, finanziata dal Ministero dell’Università e della Ricerca, dal ti- tolo «Le nuove frontiere del diritto penale della medicina», condotta negli

One of the most critical issues in handling digital files for long-term preservation purposes lies in the preservation, at the most detailed level of

The effect on the viscosity of two consistency factors and three different vegetable waxes was also studied and compared to a basic emulsion (E9) not containing any of them

Ma, come sappiamo, anche l’esercizio della forza fisica può avere una funzione simbolica, ad esempio nelle cosiddette azioni dimostrative, che tendono ad offrire solo

Pica Alfieri Division of Plastic and Reconstructive Surgery Department of Medicine, Surgery, and Neuroscience University Hospital “Santa Maria alle Scotte” University of Siena

In untreated patients, the expression of the protein, evaluated by RT-qPCR and immunohistochemistry, was significantly higher in tumor specimens than in non-neoplastic

Coming back home: recolonisation of abandoned dens by crested porcupines Hystrix cristata and European badgers Meles meles after wood-cutting and riparian vegetation mowing

E d’altra parte, Rosenzweig è uomo d’equilibrio anche dall’altra parte, perché avendo rinunciato alla presunzione della sistematicità del filosofo in virtù