• Non ci sono risultati.

Observation of sequential Υ suppression in PbPb collisions

N/A
N/A
Protected

Academic year: 2021

Condividi "Observation of sequential Υ suppression in PbPb collisions"

Copied!
15
0
0

Testo completo

(1)

Observation of Sequential  Suppression in PbPb Collisions

S. Chatrchyan et al.* (CMS Collaboration)

(Received 13 August 2012; published 26 November 2012)

The suppression of the individualðnSÞ states in PbPb collisions with respect to their yields in pp data has been measured. The PbPb andpp data sets used in the analysis correspond to integrated luminosities of150 b1 and230 nb1, respectively, collected in 2011 by the CMS experiment at the LHC, at a center-of-mass energy per nucleon pair of 2.76 TeV. TheðnSÞ yields are measured from the dimuon invariant mass spectra. The suppression of theðnSÞ yields in PbPb relative to the yields in pp, scaled by the number of nucleon-nucleon collisions,RAA, is measured as a function of the collision centrality. Integrated over centrality, the RAA values are 0:56  0:08ðstatÞ  0:07ðsystÞ, 0:12  0:04ðstatÞ  0:02ðsystÞ, and lower than 0.10 (at 95% confidence level), for the ð1SÞ, ð2SÞ, and ð3SÞ states, respectively. The results demonstrate the sequential suppression of theðnSÞ states in PbPb collisions at LHC energies.

DOI:10.1103/PhysRevLett.109.222301 PACS numbers: 25.75.Nq, 14.40.Pq

Suppression of heavy quarkonium states has been pro-posed as a probe of the properties of the hot and dense medium created in high-energy heavy-ion collisions [1]. If a deconfined state, often referred to as the quark-gluon plasma (QGP), is formed, the confining potential of heavy quark-antiquark pairs is expected to be screened because of interactions with quarks and gluons in the medium. The resulting dissociation of the quarkonium states depends on the temperature of the medium, and is expected to occur sequentially, reflecting the increasing values of their bind-ing energies [2]. The ð1SÞ is the most tightly bound quarkonium state, and is hence expected to be the one with the highest dissociation temperature.

The prediction of the suppression pattern is complicated by various factors. These include feed-down contributions from higher-mass resonances into the observed quark-onium yields, as well as several competing nuclear and medium effects. These factors have played an important role in the interpretation of the charmonium measurements [3]. The bottomonium family is expected to provide addi-tional and theoretically cleaner probes of the deconfined medium. The threeðnSÞ states, characterized by similar decay kinematics but distinct binding energies, further enable the measurement of relative state suppression, where common experimental and theoretical factors, and respective uncertainties, cancel.

Measurements of the absolute ð1SÞ suppression [4] and of the relative suppression of ð2SÞ þ ð3SÞ with respect toð1SÞ [5] were recently reported. These analyses

used PbPb (pp) data corresponding to an integrated lumi-nosity of7:3 b (230 nb1) collected in 2010 (2011) at the same center-of-mass energy per nucleon pair of pffiffiffiffiffiffiffiffisNN¼ 2:76 TeV, with the Compact Muon Solenoid (CMS) detec-tor at the Large Hadron Collider (LHC). The total yields in PbPb (pp) collisions are denoted by jPbPb (jpp).

Selecting reconstructed muons with pseudorapidityjj< 2:4 and transverse momentum pT>4 GeV=c, the ð1SÞ

nuclear modification factor RAA [defined in Eq. (3)] was measured to be0:63  0:11ðstatÞ  0:10ðsystÞ. The double ratio ð2Sþ3SÞ=ð1SÞjPbPb

ð2Sþ3SÞ=ð1SÞjpp was measured in the same muon

kinematic region to be 0:31þ0:190:15ðstatÞ  0:03ðsystÞ, indi-cating that the excited ðnSÞ states are suppressed with respect to the ð1SÞ, at a significance of 2.4 standard deviations (). In this Letter, an update of these measure-ments is reported, utilizing a PbPb data sample correspond-ing to an integrated luminosity of 150 b1 collected in 2011 by CMS, at pffiffiffiffiffiffiffiffisNN¼ 2:76 TeV as in the previous study. This larger PbPb data set together with the excellent momentum resolution of the CMS detector enables the separation of all three states below open-bottom thresh-old in the heavy-ion environment and the measurement of the centrality dependence of their yields.

A detailed description of the CMS detector can be found elsewhere [6]. Its central feature is a superconducting sole-noid of 6 m internal diameter, providing a magnetic field of 3.8 T. Within the field volume are the silicon pixel and strip tracker, the crystal electromagnetic calorimeter, and the brass-scintillator hadron calorimeter. The silicon pixel and strip tracker measures charged-particle trajectories in the range jj < 2:5. The tracker consists of 66 M pixel and 10 M strip sensor elements. Muons are detected in the range jj < 2:4, with detection planes based on three technolo-gies: drift tubes, cathode strip chambers, and resistive plate chambers. Because of the strong magnetic field and the fine *Full author list given at the end of the article.

Published by the American Physical Society under the terms of

the Creative Commons Attribution 3.0 License. Further

distri-bution of this work must maintain attridistri-bution to the author(s) and the published article’s title, journal citation, and DOI.

(2)

granularity of the tracker, the muonpTmeasurement based on information from the tracker alone has a resolution between 1 and 2% for a typical muon in this analysis.

The CMS apparatus also has extensive forward calorimetry, including two steel–quartz-fiber Cˇ erenkov hadron forward calorimeters (HF), which cover the range 2:9 < jj < 5:2. These detectors are used for event selec-tion and centrality determinaselec-tion in PbPb collisions. The event centrality observable corresponds to the fraction of the total inelastic cross section, starting at 0% for the most central collisions and evaluated as percentiles of the dis-tribution of the energy deposited in the HF [7,8]. The centrality classes used in this analysis are 50–100%, 40– 50%, 30–40%, 20–30%, 10–20%, 5–10%, and 0–5%, ordered from the lowest to the highest HF energy deposit. Using a Glauber-model calculation as described in Ref. [7], the average number of nucleons participating in the colli-sions (Npart) and the average nuclear overlap function (TAA) have been estimated for each centrality class. TheTAAfactor is equal to the number of elementary nucleon-nucleon (NN) binary collisions divided by the elementary NN cross section and can be interpreted as theNN-equivalent inte-grated luminosity per heavy-ion collision, at a given event centrality [9].

The states are identified through their dimuon decay. The events are selected online with a hardware-based trigger requiring two muon candidates in the muon detec-tors. More stringent muon quality requirements are imposed in the PbPb case relative to thepp online selec-tion. No explicit momentum or rapidity thresholds are applied at trigger level. For the PbPb data, events are preselected offline if they contain a reconstructed primary vertex comprising at least two tracks, and the presence of energy deposits larger than 3 GeV in at least three towers in each of the two HF calorimeters. These criteria reduce contributions from single-beam interactions, ultraperiph-eral electromagnetic interactions, and cosmic-ray muons.

Muons are reconstructed by matching tracks in the muon detectors and silicon tracker. The same offline reconstruc-tion algorithm and selecreconstruc-tion criteria are applied to the PbPb andpp data samples. The muon candidates are required to have a transverse (longitudinal) distance of closest approach to the event vertex smaller than 3 (15) cm. Muons are only kept if the part of their trajectory in the tracker has 11 or more hits and the 2 per degree of freedom of the combined and tracker-only fits is lower than 20 and 4, respectively. Pairs of oppositely charged muons are considered dimuon candidates if the 2 fit probability of the tracks originating from a common vertex exceeds 5%. This removes background arising primarily from the displaced, semileptonic decays of charm and bottom hadrons. Only muons withpT> 4 GeV=c are con-sidered, as in Ref. [5]. The dimuonpT distribution of the selected candidates extends down to zero and has a mean of about6 GeV=c, covering a dimuon rapidity range of jyj <

2:4. The resultant dimuon invariant mass spectra are shown in Fig. 1for the PbPb and pp data sets. The three ðnSÞ peaks are clearly observed in thepp case; the ð3SÞ state is not prominent above the dimuon continuum in PbPb collisions.

Simulated Monte Carlo (MC) events are used to opti-mize muon selection cuts and to evaluate efficiencies. Signal ðnSÞ events are generated using PYTHIA 6.424 [10], with nonrelativistic quantum chromodynamics matrix elements tuned by comparison with CDF data [11]. Underlying heavy-ion events are produced with the

] 2 ) [GeV/c -µ + µ Mass( 7 8 9 10 11 12 13 14 ) 2 Events / ( 0.1 GeV/c 0 100 200 300 400 500 600 700 800 = 2.76 TeV NN s CMS PbPb Cent. 0-100%, |y| < 2.4 > 4 GeV/c µ T p -1 b µ = 150 int L data total fit background ] 2 ) [GeV/c -µ + µ Mass( 7 8 9 10 11 12 13 14 ) 2 Events / ( 0.1 GeV/c 0 10 20 30 40 50 = 2.76 TeV s CMS pp |y| < 2.4 > 4 GeV/c µ T p -1 = 230 nb int L data total fit background

FIG. 1 (color online). Dimuon invariant-mass distributions in PbPb (top) and pp (bottom) data at ffiffiffiffiffiffiffiffipsNN¼ 2:76 TeV. The same reconstruction algorithm and analysis selection are applied to both data sets, including a transverse momentum requirement on single muons of pT> 4 GeV=c. The solid (signal þ background) and dashed (background-only) curves show the results of the simultaneous fit to the two data sets.

(3)

HYDJET 1.6[12] event generator. The detector response is simulated with GEANT4 [13]. The signal candidates are embedded in the underlying PbPb events, at the level of detector hits and with matching vertices. The resulting embedded events are then processed through the trigger emulation and the full event reconstruction chain.

An extended unbinned maximum likelihood fit to the two invariant mass spectra shown in Fig.1is performed to extract theðnSÞ yields, following the method described in Refs. [5,14]. The measured mass line shape of eachðnSÞ state is parametrized by a ‘‘crystal ball’’ (CB) function, i.e., a Gaussian resolution function with the low-side tail replaced by a power law describing final-state radiation. The mass differences between the states are fixed to their world average values [15] and the mass resolution is forced to scale with the resonance mass. In our previous measure-ment [5], the signal shape parameters were fixed from MC simulation, including the mass resolution and CB tail parameters. The current 20-fold larger PbPb data set allows these constraints to be released, but the shape parameters are treated as common for both PbPb andpp data sets via a simultaneous fit.

The background model for thepp data set consists of a second-order polynomial, as was used in Ref. [5], while the larger PbPb data set requires a more detailed background model. The pT> 4 GeV=c muon selection threshold causes a depletion of dimuon candidates in the lower part of the 7–14 GeV=c2 mass fitting range. The PbPb background model consists of an exponential function multiplied by an error function describing the low-mass turn-on. The background parameters are determined from the fit. This nominal model accurately describes the mass sidebands in the opposite-sign muon signal sam-ple, shown in Fig. 1 (top), as well as the alternative estimates of the shape of the combinatorial background obtained from like-sign muon pairs or via a ‘‘track-rotation’’ method. In the latter method [16], the azimuthal angular coordinate of one of the muon tracks is rotated by 180 degrees.

The ratios of the observed yields, not corrected for differences in acceptance and efficiency, of the ð2SÞ andð3SÞ states to the ð1SÞ state, in the PbPb and pp data, are ð2SÞ=ð1SÞjpp¼ 0:56  0:13ðstatÞ  0:02ðsystÞ; ð2SÞ=ð1SÞjPbPb¼ 0:12  0:03ðstatÞ  0:02ðsystÞ; ð3SÞ=ð1SÞjpp¼ 0:41  0:11ðstatÞ  0:04ðsystÞ; ð3SÞ=ð1SÞjPbPb¼ 0:02  0:02ðstatÞ  0:02ðsystÞ < 0:07ð95% confidence levelÞ; (1) where the systematic uncertainty arises from the fitting procedure, as described below. For the ð3SÞ to ð1SÞ ratio in PbPb, a 95% confidence level (CL) limit is set, based on the Feldman-Cousins statistical method [17].

The measurement of the ratio of theðnSÞ=ð1SÞ ratios in PbPb and pp collisions benefits from an almost com-plete cancellation of possible acceptance or efficiency differences among the reconstructed resonances. The simultaneous fit to the PbPb and pp mass spectra gives the double ratios

ð2SÞ=ð1SÞjPbPb

ð2SÞ=ð1SÞjpp ¼ 0:21  0:07ðstatÞ  0:02ðsystÞ;

ð3SÞ=ð1SÞjPbPb

ð3SÞ=ð1SÞjpp ¼ 0:06  0:06ðstatÞ  0:06ðsystÞ

< 0:17ð95%CLÞ: (2)

The systematic uncertainties from the fitting procedure are evaluated by varying the fit function as follows: fixing the CB tail and resolution parameters to MC expectations, allowing for differences in these parameters between PbPb andpp, and constraining the background parameters with the like-sign and track-rotated spectra. An additional systematic uncertainty (1%), estimated from MC simula-tion, is included to account for possible imperfect cancel-lations of acceptance and efficiency.

The double ratios, defined in Eq. (2), are expected to be compatible with unity in the absence of suppression of the excited states relative to the ð1SÞ state. The mea-sured values are, instead, considerably smaller than unity. The significance of the observed suppression exceeds5. In order to investigate the dependence of the suppression on the centrality of the collision, the double ratio

ð2SÞ=ð1SÞjPbPb

ð2SÞ=ð1SÞjpp is displayed as a function ofNpart in Fig.2

(top) (see the Supplemental Material [18]). The results are constructed from the single ratio ð2SÞ=ð1SÞjPbPb mea-sured in bins of PbPb centrality, using the pp ratio as normalization. The dependence on centrality is not pro-nounced. More data, in particular morepp collisions, are needed to establish possible dependences on dimuon kine-matic variables.

Absolute suppressions of the individual  states and their dependence on the collision centrality are studied using the nuclear modification factor,RAA, defined as the yield per nucleon-nucleon collision in PbPb relative to that inpp. The RAAobservable, RAA¼TLpp AANMB ðnSÞjPbPb ðnSÞjpp "pp "PbPb; (3)

is evaluated from the ratio of total ðnSÞ yields in PbPb andpp collisions corrected for the difference in efficien-cies "pp="PbPb, with the average nuclear overlap function TAA, number of minimum-bias (MB) events sampled by

the event selection NMB, and integrated luminosity of the pp data set Lpp accounting for the normalization. The

(4)

centrality-integrated (0–100%)RAAvalues for the individ-ual states are

RAAðð1SÞÞ ¼ 0:56  0:08ðstatÞ  0:07ðsystÞ;

RAAðð2SÞÞ ¼ 0:12  0:04ðstatÞ  0:02ðsystÞ;

RAAðð3SÞÞ ¼ 0:03  0:04ðstatÞ  0:01ðsystÞ

< 0:10ð95%CLÞ: (4)

As the ð3SÞ peak is not prominent above the dimuon continuum (statistical significance less than 1 standard deviation), an upper limit is also presented. The results for the ð1SÞ and ð2SÞ obtained by performing the measurement in ranges of centrality are displayed in Fig.2(bottom).

Each factor entering in Eq. (3) contributes to the RAA uncertainty, including Lpp (6%) and TAA (4–15%, from central to peripheral collisions). The systematic uncertain-ties from the fitting procedure, used in the determination of the ð1SÞ (4–9%), ð2SÞ (10–40%), and ð3SÞ (14%) signal yields, are estimated as previously described for the double-ratio measurement. The ratio of efficiencies in Eq. (3) is estimated from MC simulation to deviate by less than 7% from unity for the centrality bins considered. Systematic uncertainties on the efficiency ratio are esti-mated by considering variations of simulated kinematic distributions (5–7%) and from differences in the efficiency ratio estimations from data and MC simulations (3%). For the former source, uncertainties are estimated by applying a weight to the generated  pT andjyj distributions that increases linearly from 0.7 to 1.3 over the ranges0 < pT< 20 GeV=c. For the latter source, reconstruction and trigger selection efficiencies are estimated employing a tag-and-probe method [4,14], using muons from J=c decays in PbPb andpp simulations as well as in collision data.

The results indicate a significant suppression of the ðnSÞ states in heavy-ion collisions compared to pp col-lisions at the same per-nucleon-pair energy. The data support the hypothesis of increased suppression of less strongly bound states: the ð1SÞ is the least suppressed and the ð3SÞ is the most suppressed of the three states. The ð1SÞ and ð2SÞ suppressions are observed to increase with collision centrality. The suppression of ð2SÞ is stronger than that of ð1SÞ in all centrality ranges, including the most peripheral bin. It should be noted that this bin (50–100%) is rather wide and mostly populated by more central events (closer to 50%). For this most peripheral bin the ð1SÞ nuclear modification factor is 1:01  0:12ðstatÞ  0:22ðsystÞ, while for the most central bin (0–5%) RAA is 0:41  0:04ðstatÞ  0:07ðsystÞ indicat-ing a significant suppression. The observed ðnSÞ yields contain contributions from decays of heavier bottomonium states and, thus, the measured suppression is affected by the dissociation of these states. This feed-down contribution to the ð1SÞ state was measured to be of the order of 50% [19,20], albeit in different kinematic ranges than used here. These results indi-cate that the directly produced ð1SÞ state is not significantly suppressed, however quantitative conclusions will require precise estimations of the feed-down contri-bution matching the phase space of the suppression measurement.

In addition to QGP formation, differences between quarkonium production yields in PbPb and pp collisions

part N 0 50 100 150 200 250 300 350 400 pp (1S)]ϒ (2S)/ϒ / [ PbPb (1S)]ϒ (2S)/ϒ[ 0 0.2 0.4 0.6 0.8 1 1.2 1.4 CMS PbPb sNN = 2.76 TeV -1 b µ = 150 int L |y| < 2.4 > 4 GeV/c µ T p 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-100% stat. unc. syst. unc. pp unc. part N 0 50 100 150 200 250 300 350 400 AA R 0 0.2 0.4 0.6 0.8 1 1.2 1.4 CMS PbPb sNN = 2.76 TeV -1 b µ = 150 int L |y| < 2.4 > 4 GeV/c µ T p 0-5% 5-10% 10-20% 20-30% 30-40% 40-50% 50-100% (1S), stat. unc. ϒ (1S), syst. unc. ϒ (2S), stat. unc. ϒ (2S), syst. unc. ϒ

FIG. 2 (color online). Centrality dependence of the double ratio (top) and of the nuclear modification factors (bottom) for the ð1SÞ and ð2SÞ states. The relative uncertainties from Npart-independent quantities (pp yields and, for the RAA, also integrated luminosity) are represented by the boxes at unity, and are not included in the data points as these uncertainties do not affect the point-to-point trend. The event centrality bins used are indicated by percentage intervals. The results are available in tabulated form in the Supplemental Material [18].

(5)

can also arise from cold-nuclear-matter effects [21]. However, such effects should have a small impact on the double ratios reported here. Initial-state nuclear effects are expected to affect similarly each of the three  states, thereby canceling out in the ratio. Final-state ‘‘nuclear absorption’’ becomes weaker with increasing energy [22] and is expected to be negligible at the LHC [23]. Future high-statistics heavy-ion, proton, and proton-nucleus runs at the LHC will provide further quarkonium measurements, which will help to disentangle cold-nuclear from hot-medium effects and to attain a more thorough characterization of the properties of the produced medium.

In conclusion, the observation of sequential suppression of the ðnSÞ states in heavy-ion collisions has been reported, in pffiffiffiffiffiffiffiffisNN ¼ 2:76 TeV PbPb collisions by the CMS experiment at the LHC, extending the previous CMS bottomonium measurements [4,5]. The ð2SÞ and ð3SÞ resonances are suppressed with respect to the ð1SÞ state, with a significance exceeding5. The nuclear modi-fication factors for theðnSÞ states were also measured, with the individualð1SÞ, ð2SÞ, and ð3SÞ states sup-pressed by factors of about 2, 8, and larger than 10, respectively.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC machine. We thank the technical and administrative staff at CERN and other CMS institutes, and acknowledge sup-port from: BMWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF

(Cyprus); MEYS (Czech Republic); MoER,

SF0690030s09 and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); MSI (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, and Uzbekistan); MON, RosAtom, RAS, and RFBR (Russia); MSTD (Serbia); SEIDI and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and

TAEK (Turkey); NASU (Ukraine); STFC (United Kingdom); DOE and NSF (USA).

[1] T. Matsui and H. Satz,Phys. Lett. B178, 416 (1986). [2] S. Digal, P. Petreczky, and H. Satz, Phys. Rev. D 64,

094015 (2001).

[3] X. Zhao and R. Rapp,Nucl. Phys.A859, 114 (2011). [4] S. Chatrchyan et al. (CMS Collaboration),J. High Energy

Phys. 05 (2012) 063.

[5] S. Chatrchyan et al. (CMS Collaboration),Phys. Rev. Lett.

107, 052302 (2011).

[6] S. Chatrchyan et al. (CMS Collaboration), JINST 03,

S08004 (2008).

[7] S. Chatrchyan et al. (CMS Collaboration), Phys. Rev. C

84, 024906 (2011).

[8] D. D’Enterria et al. (CMS Collaboration),J. Phys. G34,

2307 (2007).

[9] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,

Annu. Rev. Nucl. Part. Sci.57, 205 (2007).

[10] T. Sjo¨strand, S. Mrenna, and P. Z. Skands,J. High Energy

Phys. 05 (2006) 026.

[11] D. Acosta et al. (CDF Collaboration),Phys. Rev. D71,

032001 (2005).

[12] I. P. Lokhtin and A. M. Snigirev,Eur. Phys. J. C45, 211

(2006).

[13] S. Agostinelli et al. (GEANT4 Collaboration), Nucl.

Instrum. Methods Phys. Res., Sect. A506, 250 (2003).

[14] V. Khachatryan et al. (CMS Collaboration),Phys. Rev. D

83, 112004 (2011).

[15] J. Beringer et al. (Particle Data Group),Phys. Rev. D86,

010001 (2012).

[16] L. Adamczyk et al. (STAR Collaboration),Phys. Rev. D

86, 072013 (2012).

[17] G. J. Feldman and R. D. Cousins,Phys. Rev. D57, 3873

(1998).

[18] See Supplemental Material http://link.aps.org/

supplemental/10.1103/PhysRevLett.109.222301 for the

centrality-dependent results represented in Fig.2. [19] T. Affolder et al. (CDF Collaboration),Phys. Rev. Lett.84,

2094 (2000).

[20] R. Aaij et al. (LHCb Collaboration),J. High Energy Phys.

11 (2012) 031.

[21] R. Vogt,Phys. Rev. C81, 044903 (2010).

[22] C. Lourenco, R. Vogt, and H. K. Woehri,J. High Energy

Phys. 02 (2009) 014.

[23] Z.-W. Lin and C. M. Ko, Phys. Lett. B 503, 104

(2001).

S. Chatrchyan,1V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2E. Aguilo,2T. Bergauer,2 M. Dragicevic,2J. Ero¨,2C. Fabjan,2,bM. Friedl,2R. Fru¨hwirth,2,bV. M. Ghete,2J. Hammer,2N. Ho¨rmann,2 J. Hrubec,2M. Jeitler,2,bW. Kiesenhofer,2V. Knu¨nz,2M. Krammer,2,bI. Kra¨tschmer,2D. Liko,2I. Mikulec,2

M. Pernicka,2,aB. Rahbaran,2C. Rohringer,2H. Rohringer,2R. Scho¨fbeck,2J. Strauss,2A. Taurok,2 W. Waltenberger,2G. Walzel,2E. Widl,2C.-E. Wulz,2,bV. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3 S. Bansal,4T. Cornelis,4E. A. De Wolf,4X. Janssen,4S. Luyckx,4L. Mucibello,4S. Ochesanu,4B. Roland,4

R. Rougny,4M. Selvaggi,4Z. Staykova,4H. Van Haevermaet,4P. Van Mechelen,4N. Van Remortel,4 A. Van Spilbeeck,4F. Blekman,5S. Blyweert,5J. D’Hondt,5R. Gonzalez Suarez,5A. Kalogeropoulos,5M. Maes,5

(6)

A. Olbrechts,5W. Van Doninck,5P. Van Mulders,5G. P. Van Onsem,5I. Villella,5B. Clerbaux,6G. De Lentdecker,6 V. Dero,6A. P. R. Gay,6T. Hreus,6A. Le´onard,6P. E. Marage,6T. Reis,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6 J. Wang,6V. Adler,7K. Beernaert,7A. Cimmino,7S. Costantini,7G. Garcia,7M. Grunewald,7B. Klein,7J. Lellouch,7

A. Marinov,7J. Mccartin,7A. A. Ocampo Rios,7D. Ryckbosch,7N. Strobbe,7F. Thyssen,7M. Tytgat,7 P. Verwilligen,7S. Walsh,7E. Yazgan,7N. Zaganidis,7S. Basegmez,8G. Bruno,8R. Castello,8L. Ceard,8C. Delaere,8

T. du Pree,8D. Favart,8L. Forthomme,8A. Giammanco,8,cJ. Hollar,8V. Lemaitre,8J. Liao,8O. Militaru,8 C. Nuttens,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8J. M. Vizan Garcia,8N. Beliy,9T. Caebergs,9 E. Daubie,9G. H. Hammad,9G. A. Alves,10M. Correa Martins Junior,10D. De Jesus Damiao,10T. Martins,10

M. E. Pol,10M. H. G. Souza,10W. L. Alda´ Ju´nior,11W. Carvalho,11A. Custo´dio,11E. M. Da Costa,11 C. De Oliveira Martins,11S. Fonseca De Souza,11D. Matos Figueiredo,11L. Mundim,11H. Nogima,11V. Oguri,11

W. L. Prado Da Silva,11A. Santoro,11L. Soares Jorge,11A. Sznajder,11T. S. Anjos,12,dC. A. Bernardes,12,d F. A. Dias,12,eT. R. Fernandez Perez Tomei,12E. M. Gregores,12,dC. Lagana,12F. Marinho,12P. G. Mercadante,12,d

S. F. Novaes,12Sandra S. Padula,12V. Genchev,13,fP. Iaydjiev,13,fS. Piperov,13M. Rodozov,13S. Stoykova,13 G. Sultanov,13V. Tcholakov,13R. Trayanov,13M. Vutova,13A. Dimitrov,14R. Hadjiiska,14V. Kozhuharov,14 L. Litov,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15C. H. Jiang,15D. Liang,15S. Liang,15

X. Meng,15J. Tao,15J. Wang,15X. Wang,15Z. Wang,15H. Xiao,15M. Xu,15J. Zang,15Z. Zhang,15 C. Asawatangtrakuldee,16Y. Ban,16S. Guo,16Y. Guo,16W. Li,16S. Liu,16Y. Mao,16S. J. Qian,16H. Teng,16 D. Wang,16L. Zhang,16B. Zhu,16W. Zou,16C. Avila,17J. P. Gomez,17B. Gomez Moreno,17A. F. Osorio Oliveros,17

J. C. Sanabria,17N. Godinovic,18D. Lelas,18R. Plestina,18,gD. Polic,18I. Puljak,18,fZ. Antunovic,19M. Kovac,19 V. Brigljevic,20S. Duric,20K. Kadija,20J. Luetic,20S. Morovic,20A. Attikis,21M. Galanti,21G. Mavromanolakis,21 J. Mousa,21C. Nicolaou,21F. Ptochos,21P. A. Razis,21M. Finger,22M. Finger, Jr.,22Y. Assran,23,hS. Elgammal,23,i A. Ellithi Kamel,23,jS. Khalil,23,iM. A. Mahmoud,23,kA. Radi,23,l,mM. Kadastik,24M. Mu¨ntel,24M. Raidal,24 L. Rebane,24A. Tiko,24P. Eerola,25G. Fedi,25M. Voutilainen,25J. Ha¨rko¨nen,26A. Heikkinen,26V. Karima¨ki,26

R. Kinnunen,26M. J. Kortelainen,26T. Lampe´n,26K. Lassila-Perini,26S. Lehti,26T. Linde´n,26P. Luukka,26 T. Ma¨enpa¨a¨,26T. Peltola,26E. Tuominen,26J. Tuominiemi,26E. Tuovinen,26D. Ungaro,26L. Wendland,26 K. Banzuzi,27A. Karjalainen,27A. Korpela,27T. Tuuva,27M. Besancon,28S. Choudhury,28M. Dejardin,28

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28L. Millischer,28A. Nayak,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28S. Baffioni,29F. Beaudette,29L. Benhabib,29L. Bianchini,29M. Bluj,29,n

C. Broutin,29P. Busson,29C. Charlot,29N. Daci,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29 M. Haguenauer,29P. Mine´,29C. Mironov,29I. N. Naranjo,29M. Nguyen,29C. Ochando,29P. Paganini,29D. Sabes,29

R. Salerno,29Y. Sirois,29C. Veelken,29A. Zabi,29J.-L. Agram,30,oJ. Andrea,30D. Bloch,30D. Bodin,30 J.-M. Brom,30M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,oF. Drouhin,30,oC. Ferro,30J.-C. Fontaine,30,o

D. Gele´,30U. Goerlach,30P. Juillot,30A.-C. Le Bihan,30P. Van Hove,30F. Fassi,31D. Mercier,31S. Beauceron,32 N. Beaupere,32O. Bondu,32G. Boudoul,32J. Chasserat,32R. Chierici,32,fD. Contardo,32P. Depasse,32 H. El Mamouni,32J. Fay,32S. Gascon,32M. Gouzevitch,32B. Ille,32T. Kurca,32M. Lethuillier,32L. Mirabito,32 S. Perries,32V. Sordini,32Y. Tschudi,32P. Verdier,32S. Viret,32Z. Tsamalaidze,33,pG. Anagnostou,34S. Beranek,34

M. Edelhoff,34L. Feld,34N. Heracleous,34O. Hindrichs,34R. Jussen,34K. Klein,34J. Merz,34A. Ostapchuk,34 A. Perieanu,34F. Raupach,34J. Sammet,34S. Schael,34D. Sprenger,34H. Weber,34B. Wittmer,34V. Zhukov,34,q M. Ata,35J. Caudron,35E. Dietz-Laursonn,35D. Duchardt,35M. Erdmann,35R. Fischer,35A. Gu¨th,35T. Hebbeker,35

C. Heidemann,35K. Hoepfner,35D. Klingebiel,35P. Kreuzer,35C. Magass,35M. Merschmeyer,35A. Meyer,35 M. Olschewski,35P. Papacz,35H. Pieta,35H. Reithler,35S. A. Schmitz,35L. Sonnenschein,35J. Steggemann,35 D. Teyssier,35M. Weber,35M. Bontenackels,36V. Cherepanov,36G. Flu¨gge,36H. Geenen,36M. Geisler,36 W. Haj Ahmad,36F. Hoehle,36B. Kargoll,36T. Kress,36Y. Kuessel,36A. Nowack,36L. Perchalla,36O. Pooth,36

P. Sauerland,36A. Stahl,36M. Aldaya Martin,37J. Behr,37W. Behrenhoff,37U. Behrens,37M. Bergholz,37,r A. Bethani,37K. Borras,37A. Burgmeier,37A. Cakir,37L. Calligaris,37A. Campbell,37E. Castro,37F. Costanza,37

D. Dammann,37C. Diez Pardos,37G. Eckerlin,37D. Eckstein,37G. Flucke,37A. Geiser,37I. Glushkov,37 P. Gunnellini,37S. Habib,37J. Hauk,37G. Hellwig,37H. Jung,37M. Kasemann,37P. Katsas,37C. Kleinwort,37 H. Kluge,37A. Knutsson,37M. Kra¨mer,37D. Kru¨cker,37E. Kuznetsova,37W. Lange,37W. Lohmann,37,rB. Lutz,37

R. Mankel,37I. Marfin,37M. Marienfeld,37I.-A. Melzer-Pellmann,37A. B. Meyer,37J. Mnich,37A. Mussgiller,37 S. Naumann-Emme,37J. Olzem,37H. Perrey,37A. Petrukhin,37D. Pitzl,37A. Raspereza,37P. M. Ribeiro Cipriano,37

(7)

C. Riedl,37E. Ron,37M. Rosin,37J. Salfeld-Nebgen,37R. Schmidt,37,rT. Schoerner-Sadenius,37N. Sen,37 A. Spiridonov,37M. Stein,37R. Walsh,37C. Wissing,37C. Autermann,38V. Blobel,38J. Draeger,38H. Enderle,38

J. Erfle,38U. Gebbert,38M. Go¨rner,38T. Hermanns,38R. S. Ho¨ing,38K. Kaschube,38G. Kaussen,38 H. Kirschenmann,38R. Klanner,38J. Lange,38B. Mura,38F. Nowak,38T. Peiffer,38N. Pietsch,38D. Rathjens,38 C. Sander,38H. Schettler,38P. Schleper,38E. Schlieckau,38A. Schmidt,38M. Schro¨der,38T. Schum,38M. Seidel,38

V. Sola,38H. Stadie,38G. Steinbru¨ck,38J. Thomsen,38L. Vanelderen,38C. Barth,39J. Berger,39C. Bo¨ser,39 T. Chwalek,39W. De Boer,39A. Descroix,39A. Dierlamm,39M. Feindt,39M. Guthoff,39,fC. Hackstein,39

F. Hartmann,39T. Hauth,39,fM. Heinrich,39H. Held,39K. H. Hoffmann,39S. Honc,39I. Katkov,39,q J. R. Komaragiri,39P. Lobelle Pardo,39D. Martschei,39S. Mueller,39Th. Mu¨ller,39M. Niegel,39A. Nu¨rnberg,39

O. Oberst,39A. Oehler,39J. Ott,39G. Quast,39K. Rabbertz,39F. Ratnikov,39N. Ratnikova,39S. Ro¨cker,39 A. Scheurer,39F.-P. Schilling,39G. Schott,39H. J. Simonis,39F. M. Stober,39D. Troendle,39R. Ulrich,39 J. Wagner-Kuhr,39S. Wayand,39T. Weiler,39M. Zeise,39G. Daskalakis,40T. Geralis,40S. Kesisoglou,40 A. Kyriakis,40D. Loukas,40I. Manolakos,40A. Markou,40C. Markou,40C. Mavrommatis,40E. Ntomari,40 L. Gouskos,41T. J. Mertzimekis,41A. Panagiotou,41N. Saoulidou,41I. Evangelou,42C. Foudas,42,fP. Kokkas,42

N. Manthos,42I. Papadopoulos,42V. Patras,42G. Bencze,43C. Hajdu,43,fP. Hidas,43D. Horvath,43,sF. Sikler,43 V. Veszpremi,43G. Vesztergombi,43,tA. Zsigmond,43N. Beni,44S. Czellar,44J. Molnar,44J. Palinkas,44Z. Szillasi,44

J. Karancsi,45P. Raics,45Z. L. Trocsanyi,45B. Ujvari,45S. B. Beri,46V. Bhatnagar,46N. Dhingra,46R. Gupta,46 M. Jindal,46M. Kaur,46M. Z. Mehta,46N. Nishu,46L. K. Saini,46A. Sharma,46J. Singh,46Ashok Kumar,47 Arun Kumar,47S. Ahuja,47A. Bhardwaj,47B. C. Choudhary,47S. Malhotra,47M. Naimuddin,47K. Ranjan,47 V. Sharma,47R. K. Shivpuri,47S. Banerjee,48S. Bhattacharya,48S. Dutta,48B. Gomber,48Sa. Jain,48Sh. Jain,48 R. Khurana,48S. Sarkar,48M. Sharan,48A. Abdulsalam,49R. K. Choudhury,49D. Dutta,49S. Kailas,49V. Kumar,49

P. Mehta,49A. K. Mohanty,49,fL. M. Pant,49P. Shukla,49T. Aziz,50S. Ganguly,50M. Guchait,50,uM. Maity,50,v G. Majumder,50K. Mazumdar,50G. B. Mohanty,50B. Parida,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51

S. Dugad,51H. Arfaei,52H. Bakhshiansohi,52,wS. M. Etesami,52,xA. Fahim,52,wM. Hashemi,52H. Hesari,52 A. Jafari,52,wM. Khakzad,52M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52,y M. Zeinali,52,xM. Abbrescia,53a,53bL. Barbone,53a,53bC. Calabria,53a,53b,fS. S. Chhibra,53a,53bA. Colaleo,53a

D. Creanza,53a,53cN. De Filippis,53a,53c,fM. De Palma,53a,53bL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53b G. Maggi,53a,53cM. Maggi,53aB. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bA. Pompili,53a,53b

G. Pugliese,53a,53cG. Selvaggi,53a,53bL. Silvestris,53aG. Singh,53a,53bR. Venditti,53aG. Zito,53aG. Abbiendi,54a A. C. Benvenuti,54aD. Bonacorsi,54a,54bS. Braibant-Giacomelli,54a,54bL. Brigliadori,54a,54bP. Capiluppi,54a,54b

A. Castro,54a,54bF. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54aF. Fabbri,54aA. Fanfani,54a,54b D. Fasanella,54a,54b,fP. Giacomelli,54aC. Grandi,54aL. Guiducci,54a,54bS. Marcellini,54aG. Masetti,54a M. Meneghelli,54a,54b,fA. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a,54b A. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55b

M. Chiorboli,55a,55bS. Costa,55a,55bR. Potenza,55a,55bA. Tricomi,55a,55bC. Tuve,55a,55bG. Barbagli,56a V. Ciulli,56a,56bC. Civinini,56aR. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aS. Gonzi,56a,56b

M. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,fL. Benussi,57S. Bianco,57S. Colafranceschi,57,z F. Fabbri,57D. Piccolo,57P. Fabbricatore,58aR. Musenich,58aS. Tosi,58aA. Benaglia,59a,59b,fF. De Guio,59a,59b

L. Di Matteo,59a,59b,fS. Fiorendi,59a,59bS. Gennai,59a,fA. Ghezzi,59a,59bS. Malvezzi,59aR. A. Manzoni,59a,59b A. Martelli,59a,59bA. Massironi,59a,59b,fD. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59a S. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59aT. Tabarelli de Fatis,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60a

N. Cavallo,60a,aaA. De Cosa,60a,60b,fO. Dogangun,60a,60bF. Fabozzi,60a,aaA. O. M. Iorio,60aL. Lista,60a S. Meola,60a,bbM. Merola,60a,60bP. Paolucci,60a,fP. Azzi,61aN. Bacchetta,61a,fM. Biasotto,61a,ccD. Bisello,61a,61b A. Branca,61a,fP. Checchia,61aT. Dorigo,61aF. Gasparini,61a,61bF. Gonella,61aA. Gozzelino,61aM. Gulmini,61a,cc

K. Kanishchev,61a,61cS. Lacaprara,61aI. Lazzizzera,61a,61cM. Margoni,61a,61bG. Maron,61a,cc

A. T. Meneguzzo,61a,61bF. Montecassiano,61aJ. Pazzini,61aN. Pozzobon,61a,61bP. Ronchese,61a,61bE. Torassa,61a M. Tosi,61a,61b,fS. Vanini,61a,61bM. Gabusi,62a,62bS. P. Ratti,62a,62bC. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62b

M. Biasini,63a,63bG. M. Bilei,63aL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,fG. Mantovani,63a,63b M. Menichelli,63aA. Nappi,63a,63bF. Romeo,63a,63bA. Saha,63aA. Santocchia,63a,63bA. Spiezia,63a,63b

S. Taroni,63a,63b,fP. Azzurri,64a,64cG. Bagliesi,64aT. Boccali,64aG. Broccolo,64a,64cR. Castaldi,64a R. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64b,fL. Foa`,64a,64cA. Giassi,64aA. Kraan,64aF. Ligabue,64a,64c

(8)

T. Lomtadze,64aL. Martini,64a,ddA. Messineo,64a,64bF. Palla,64aA. Rizzi,64a,64bA. T. Serban,64a,eeP. Spagnolo,64a P. Squillacioti,64a,fR. Tenchini,64aG. Tonelli,64a,64b,fA. Venturi,64a,fP. G. Verdini,64aL. Barone,65a,65bF. Cavallari,65a D. Del Re,65a,65b,fM. Diemoz,65aC. Fanelli,65aM. Grassi,65a,65b,fE. Longo,65a,65bP. Meridiani,65a,fF. Micheli,65a,65b

S. Nourbakhsh,65a,65bG. Organtini,65a,65bR. Paramatti,65aS. Rahatlou,65a,65bM. Sigamani,65aL. Soffi,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aN. Cartiglia,66a M. Costa,66a,66bN. Demaria,66aC. Mariotti,66a,fS. Maselli,66aE. Migliore,66a,66bV. Monaco,66a,66bM. Musich,66a,f

M. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66aA. Potenza,66a,66bA. Romero,66a,66bR. Sacchi,66a,66b A. Solano,66a,66bA. Staiano,66aP. P. Trapani,66a,66bA. Vilela Pereira,66aS. Belforte,67aV. Candelise,67a,67b

F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aM. Marone,67a,67b,fD. Montanino,67a,67b,fA. Penzo,67a A. Schizzi,67a,67bS. G. Heo,68T. Y. Kim,68S. K. Nam,68S. Chang,69D. H. Kim,69G. N. Kim,69D. J. Kong,69 H. Park,69S. R. Ro,69D. C. Son,69T. Son,69J. Y. Kim,70Zero J. Kim,70S. Song,70S. Choi,71D. Gyun,71B. Hong,71

M. Jo,71H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71S. K. Park,71M. Choi,72J. H. Kim,72C. Park,72 I. C. Park,72S. Park,72G. Ryu,72Y. Cho,73Y. Choi,73Y. K. Choi,73J. Goh,73M. S. Kim,73E. Kwon,73B. Lee,73

J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74I. Grigelionis,74M. Janulis,74A. Juodagalvis,74 H. Castilla-Valdez,75E. De La Cruz-Burelo,75I. Heredia-de La Cruz,75R. Lopez-Fernandez,75R. Magan˜a Villalba,75

J. Martı´nez-Ortega,75A. Sa´nchez-Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

D. Krofcheck,79A. J. Bell,80P. H. Butler,80R. Doesburg,80S. Reucroft,80H. Silverwood,80M. Ahmad,81 M. I. Asghar,81H. R. Hoorani,81S. Khalid,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. A. Shah,81M. Shoaib,81

H. Bialkowska,82B. Boimska,82T. Frueboes,82R. Gokieli,82M. Go´rski,82M. Kazana,82K. Nawrocki,82 K. Romanowska-Rybinska,82M. Szleper,82G. Wrochna,82P. Zalewski,82G. Brona,83K. Bunkowski,83M. Cwiok,83

W. Dominik,83K. Doroba,83A. Kalinowski,83M. Konecki,83J. Krolikowski,83N. Almeida,84P. Bargassa,84 A. David,84P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84J. Seixas,84J. Varela,84P. Vischia,84 S. Afanasiev,85I. Belotelov,85P. Bunin,85M. Gavrilenko,85I. Golutvin,85A. Kamenev,85V. Karjavin,85G. Kozlov,85 A. Lanev,85A. Malakhov,85P. Moisenz,85V. Palichik,85V. Perelygin,85S. Shmatov,85V. Smirnov,85A. Volodko,85 A. Zarubin,85S. Evstyukhin,86V. Golovtsov,86Y. Ivanov,86V. Kim,86P. Levchenko,86V. Murzin,86V. Oreshkin,86

I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86An. Vorobyev,86Yu. Andreev,87 A. Dermenev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87

D. Tlisov,87A. Toropin,87V. Epshteyn,88M. Erofeeva,88V. Gavrilov,88M. Kossov,88,fN. Lychkovskaya,88 V. Popov,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88A. Belyaev,89E. Boos,89A. Ershov,89

A. Gribushin,89V. Klyukhin,89O. Kodolova,89V. Korotkikh,89I. Lokhtin,89A. Markina,89S. Obraztsov,89 M. Perfilov,89S. Petrushanko,89A. Popov,89L. Sarycheva,89,aV. Savrin,89A. Snigirev,89I. Vardanyan,89 V. Andreev,90M. Azarkin,90I. Dremin,90M. Kirakosyan,90A. Leonidov,90G. Mesyats,90S. V. Rusakov,90 A. Vinogradov,90I. Azhgirey,91I. Bayshev,91S. Bitioukov,91V. Grishin,91,fV. Kachanov,91D. Konstantinov,91 A. Korablev,91V. Krychkine,91V. Petrov,91R. Ryutin,91A. Sobol,91L. Tourtchanovitch,91S. Troshin,91N. Tyurin,91

A. Uzunian,91A. Volkov,91P. Adzic,92,ffM. Djordjevic,92M. Ekmedzic,92D. Krpic,92,ffJ. Milosevic,92 M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cerrada,93 M. Chamizo Llatas,93N. Colino,93B. De La Cruz,93A. Delgado Peris,93D. Domı´nguez Va´zquez,93 C. Fernandez Bedoya,93J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93

O. Gonzalez Lopez,93S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93J. Puerta Pelayo,93 A. Quintario Olmeda,93I. Redondo,93L. Romero,93J. Santaolalla,93M. S. Soares,93C. Willmott,93C. Albajar,94

G. Codispoti,94J. F. de Troco´niz,94H. Brun,95J. Cuevas,95J. Fernandez Menendez,95S. Folgueras,95 I. Gonzalez Caballero,95L. Lloret Iglesias,95J. Piedra Gomez,95J. A. Brochero Cifuentes,96I. J. Cabrillo,96

A. Calderon,96S. H. Chuang,96J. Duarte Campderros,96M. Felcini,96,ggM. Fernandez,96G. Gomez,96 J. Gonzalez Sanchez,96A. Graziano,96C. Jorda,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96 F. Matorras,96F. J. Munoz Sanchez,96T. Rodrigo,96A. Y. Rodrı´guez-Marrero,96A. Ruiz-Jimeno,96L. Scodellaro,96 M. Sobron Sanudo,96I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97P. Baillon,97 A. H. Ball,97D. Barney,97J. F. Benitez,97C. Bernet,97,gG. Bianchi,97P. Bloch,97A. Bocci,97A. Bonato,97C. Botta,97

H. Breuker,97T. Camporesi,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97D. D’Enterria,97 A. Dabrowski,97A. De Roeck,97S. Di Guida,97M. Dobson,97N. Dupont-Sagorin,97A. Elliott-Peisert,97B. Frisch,97

W. Funk,97G. Georgiou,97M. Giffels,97D. Gigi,97K. Gill,97D. Giordano,97M. Giunta,97F. Glege,97

(9)

R. Gomez-Reino Garrido,97P. Govoni,97S. Gowdy,97R. Guida,97M. Hansen,97P. Harris,97C. Hartl,97J. Harvey,97 B. Hegner,97A. Hinzmann,97V. Innocente,97P. Janot,97K. Kaadze,97E. Karavakis,97K. Kousouris,97P. Lecoq,97

Y.-J. Lee,97P. Lenzi,97C. Lourenc¸o,97T. Ma¨ki,97M. Malberti,97L. Malgeri,97M. Mannelli,97L. Masetti,97 F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97P. Musella,97E. Nesvold,97 T. Orimoto,97L. Orsini,97E. Palencia Cortezon,97E. Perez,97L. Perrozzi,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97

M. Pimia¨,97D. Piparo,97G. Polese,97L. Quertenmont,97A. Racz,97W. Reece,97J. Rodrigues Antunes,97 G. Rolandi,97,hhT. Rommerskirchen,97C. Rovelli,97,iiM. Rovere,97H. Sakulin,97F. Santanastasio,97C. Scha¨fer,97 C. Schwick,97I. Segoni,97S. Sekmen,97A. Sharma,97P. Siegrist,97P. Silva,97M. Simon,97P. Sphicas,97,jjD. Spiga,97 A. Tsirou,97G. I. Veres,97,tJ. R. Vlimant,97H. K. Wo¨hri,97S. D. Worm,97,kkW. D. Zeuner,97W. Bertl,98K. Deiters,98

W. Erdmann,98K. Gabathuler,98R. Horisberger,98Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98 U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98J. Sibille,98,llL. Ba¨ni,99P. Bortignon,99M. A. Buchmann,99

B. Casal,99N. Chanon,99A. Deisher,99G. Dissertori,99M. Dittmar,99M. Donega`,99M. Du¨nser,99J. Eugster,99 K. Freudenreich,99C. Grab,99D. Hits,99P. Lecomte,99W. Lustermann,99A. C. Marini,99

P. Martinez Ruiz del Arbol,99N. Mohr,99F. Moortgat,99C. Na¨geli,99,mmP. Nef,99F. Nessi-Tedaldi,99F. Pandolfi,99 L. Pape,99F. Pauss,99M. Peruzzi,99F. J. Ronga,99M. Rossini,99L. Sala,99A. K. Sanchez,99A. Starodumov,99,nn B. Stieger,99M. Takahashi,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99C. Urscheler,99R. Wallny,99

H. A. Weber,99L. Wehrli,99C. Amsler,100V. Chiochia,100S. De Visscher,100C. Favaro,100M. Ivova Rikova,100 B. Millan Mejias,100P. Otiougova,100P. Robmann,100H. Snoek,100S. Tupputi,100M. Verzetti,100Y. H. Chang,101

K. H. Chen,101C. M. Kuo,101S. W. Li,101W. Lin,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101A. P. Singh,101 R. Volpe,101S. S. Yu,101P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102 C. Dietz,102U. Grundler,102W.-S. Hou,102Y. Hsiung,102K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102D. Majumder,102 E. Petrakou,102X. Shi,102J. G. Shiu,102Y. M. Tzeng,102X. Wan,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,oo

S. Cerci,103,ppC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103E. Gurpinar,103I. Hos,103 E. E. Kangal,103T. Karaman,103G. Karapinar,103,qqA. Kayis Topaksu,103G. Onengut,103K. Ozdemir,103 S. Ozturk,103,rrA. Polatoz,103K. Sogut,103,ssD. Sunar Cerci,103,ppB. Tali,103,ppH. Topakli,103,ooL. N. Vergili,103 M. Vergili,103I. V. Akin,104T. Aliev,104B. Bilin,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104 K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104M. Yalvac,104E. Yildirim,104M. Zeyrek,104 E. Gu¨lmez,105B. Isildak,105,ttM. Kaya,105,uuO. Kaya,105,uuS. Ozkorucuklu,105,vvN. Sonmez,105,wwK. Cankocak,106

L. Levchuk,107F. Bostock,108J. J. Brooke,108E. Clement,108D. Cussans,108H. Flacher,108R. Frazier,108 J. Goldstein,108M. Grimes,108G. P. Heath,108H. F. Heath,108L. Kreczko,108S. Metson,108D. M. Newbold,108,kk K. Nirunpong,108A. Poll,108S. Senkin,108V. J. Smith,108T. Williams,108L. Basso,109,xxA. Belyaev,109,xxC. Brew,109 R. M. Brown,109D. J. A. Cockerill,109J. A. Coughlan,109K. Harder,109S. Harper,109J. Jackson,109B. W. Kennedy,109

E. Olaiya,109D. Petyt,109B. C. Radburn-Smith,109C. H. Shepherd-Themistocleous,109I. R. Tomalin,109 W. J. Womersley,109R. Bainbridge,110G. Ball,110R. Beuselinck,110O. Buchmuller,110D. Colling,110N. Cripps,110

M. Cutajar,110P. Dauncey,110G. Davies,110M. Della Negra,110W. Ferguson,110J. Fulcher,110D. Futyan,110 A. Gilbert,110A. Guneratne Bryer,110G. Hall,110Z. Hatherell,110J. Hays,110G. Iles,110M. Jarvis,110 G. Karapostoli,110L. Lyons,110A.-M. Magnan,110J. Marrouche,110B. Mathias,110R. Nandi,110J. Nash,110

A. Nikitenko,110,nnA. Papageorgiou,110J. Pela,110,fM. Pesaresi,110K. Petridis,110M. Pioppi,110,yy

D. M. Raymond,110S. Rogerson,110A. Rose,110M. J. Ryan,110C. Seez,110P. Sharp,110,aA. Sparrow,110M. Stoye,110 A. Tapper,110M. Vazquez Acosta,110T. Virdee,110S. Wakefield,110N. Wardle,110T. Whyntie,110M. Chadwick,111 J. E. Cole,111P. R. Hobson,111A. Khan,111P. Kyberd,111D. Leggat,111D. Leslie,111W. Martin,111I. D. Reid,111

P. Symonds,111L. Teodorescu,111M. Turner,111K. Hatakeyama,112H. Liu,112T. Scarborough,112O. Charaf,113 C. Henderson,113P. Rumerio,113A. Avetisyan,114T. Bose,114C. Fantasia,114A. Heister,114J. St. John,114 P. Lawson,114D. Lazic,114J. Rohlf,114D. Sperka,114L. Sulak,114J. Alimena,115S. Bhattacharya,115D. Cutts,115

A. Ferapontov,115U. Heintz,115S. Jabeen,115G. Kukartsev,115E. Laird,115G. Landsberg,115M. Luk,115 M. Narain,115D. Nguyen,115M. Segala,115T. Sinthuprasith,115T. Speer,115K. V. Tsang,115R. Breedon,116 G. Breto,116M. Calderon De La Barca Sanchez,116S. Chauhan,116M. Chertok,116J. Conway,116R. Conway,116

P. T. Cox,116J. Dolen,116R. Erbacher,116M. Gardner,116R. Houtz,116W. Ko,116A. Kopecky,116R. Lander,116 T. Miceli,116D. Pellett,116F. Ricci-tam,116B. Rutherford,116M. Searle,116J. Smith,116M. Squires,116M. Tripathi,116

R. Vasquez Sierra,116V. Andreev,117D. Cline,117R. Cousins,117J. Duris,117S. Erhan,117P. Everaerts,117 C. Farrell,117J. Hauser,117M. Ignatenko,117C. Jarvis,117C. Plager,117G. Rakness,117P. Schlein,117,aP. Traczyk,117

(10)

V. Valuev,117M. Weber,117J. Babb,118R. Clare,118M. E. Dinardo,118J. Ellison,118J. W. Gary,118F. Giordano,118 G. Hanson,118G. Y. Jeng,118,zzH. Liu,118O. R. Long,118A. Luthra,118H. Nguyen,118S. Paramesvaran,118 J. Sturdy,118S. Sumowidagdo,118R. Wilken,118S. Wimpenny,118W. Andrews,119J. G. Branson,119G. B. Cerati,119

S. Cittolin,119D. Evans,119F. Golf,119A. Holzner,119R. Kelley,119M. Lebourgeois,119J. Letts,119I. Macneill,119 B. Mangano,119S. Padhi,119C. Palmer,119G. Petrucciani,119M. Pieri,119M. Sani,119V. Sharma,119S. Simon,119 E. Sudano,119M. Tadel,119Y. Tu,119A. Vartak,119S. Wasserbaech,119,aaaF. Wu¨rthwein,119A. Yagil,119J. Yoo,119 D. Barge,120R. Bellan,120C. Campagnari,120M. D’Alfonso,120T. Danielson,120K. Flowers,120P. Geffert,120

J. Incandela,120C. Justus,120P. Kalavase,120S. A. Koay,120D. Kovalskyi,120V. Krutelyov,120S. Lowette,120 N. Mccoll,120V. Pavlunin,120F. Rebassoo,120J. Ribnik,120J. Richman,120R. Rossin,120D. Stuart,120W. To,120 C. West,120A. Apresyan,121A. Bornheim,121Y. Chen,121E. Di Marco,121J. Duarte,121M. Gataullin,121Y. Ma,121

A. Mott,121H. B. Newman,121C. Rogan,121M. Spiropulu,121,eV. Timciuc,121J. Veverka,121R. Wilkinson,121 Y. Yang,121R. Y. Zhu,121B. Akgun,122V. Azzolini,122R. Carroll,122T. Ferguson,122Y. Iiyama,122D. W. Jang,122

Y. F. Liu,122M. Paulini,122H. Vogel,122I. Vorobiev,122J. P. Cumalat,123B. R. Drell,123C. J. Edelmaier,123 W. T. Ford,123A. Gaz,123B. Heyburn,123E. Luiggi Lopez,123J. G. Smith,123K. Stenson,123K. A. Ulmer,123

S. R. Wagner,123J. Alexander,124A. Chatterjee,124N. Eggert,124L. K. Gibbons,124B. Heltsley,124 A. Khukhunaishvili,124B. Kreis,124N. Mirman,124G. Nicolas Kaufman,124J. R. Patterson,124A. Ryd,124 E. Salvati,124W. Sun,124W. D. Teo,124J. Thom,124J. Thompson,124J. Tucker,124J. Vaughan,124Y. Weng,124 L. Winstrom,124P. Wittich,124D. Winn,125S. Abdullin,126M. Albrow,126J. Anderson,126L. A. T. Bauerdick,126

A. Beretvas,126J. Berryhill,126P. C. Bhat,126I. Bloch,126K. Burkett,126J. N. Butler,126V. Chetluru,126 H. W. K. Cheung,126F. Chlebana,126V. D. Elvira,126I. Fisk,126J. Freeman,126Y. Gao,126D. Green,126O. Gutsche,126

J. Hanlon,126R. M. Harris,126J. Hirschauer,126B. Hooberman,126S. Jindariani,126M. Johnson,126U. Joshi,126 B. Kilminster,126B. Klima,126S. Kunori,126S. Kwan,126C. Leonidopoulos,126J. Linacre,126D. Lincoln,126 R. Lipton,126J. Lykken,126K. Maeshima,126J. M. Marraffino,126S. Maruyama,126D. Mason,126P. McBride,126

K. Mishra,126S. Mrenna,126Y. Musienko,126,bbbC. Newman-Holmes,126V. O’Dell,126O. Prokofyev,126 E. Sexton-Kennedy,126S. Sharma,126W. J. Spalding,126L. Spiegel,126P. Tan,126L. Taylor,126S. Tkaczyk,126

N. V. Tran,126L. Uplegger,126E. W. Vaandering,126R. Vidal,126J. Whitmore,126W. Wu,126F. Yang,126 F. Yumiceva,126J. C. Yun,126D. Acosta,127P. Avery,127D. Bourilkov,127M. Chen,127T. Cheng,127S. Das,127 M. De Gruttola,127G. P. Di Giovanni,127D. Dobur,127A. Drozdetskiy,127R. D. Field,127M. Fisher,127Y. Fu,127

I. K. Furic,127J. Gartner,127J. Hugon,127B. Kim,127J. Konigsberg,127A. Korytov,127A. Kropivnitskaya,127 T. Kypreos,127J. F. Low,127K. Matchev,127P. Milenovic,127,cccG. Mitselmakher,127L. Muniz,127R. Remington,127

A. Rinkevicius,127P. Sellers,127N. Skhirtladze,127M. Snowball,127J. Yelton,127M. Zakaria,127V. Gaultney,128 S. Hewamanage,128L. M. Lebolo,128S. Linn,128P. Markowitz,128G. Martinez,128J. L. Rodriguez,128T. Adams,129

A. Askew,129J. Bochenek,129J. Chen,129B. Diamond,129S. V. Gleyzer,129J. Haas,129S. Hagopian,129 V. Hagopian,129M. Jenkins,129K. F. Johnson,129H. Prosper,129V. Veeraraghavan,129M. Weinberg,129 M. M. Baarmand,130B. Dorney,130M. Hohlmann,130H. Kalakhety,130I. Vodopiyanov,130M. R. Adams,131 I. M. Anghel,131L. Apanasevich,131Y. Bai,131V. E. Bazterra,131R. R. Betts,131I. Bucinskaite,131J. Callner,131

R. Cavanaugh,131C. Dragoiu,131O. Evdokimov,131L. Gauthier,131C. E. Gerber,131D. J. Hofman,131 S. Khalatyan,131F. Lacroix,131M. Malek,131C. O’Brien,131C. Silkworth,131D. Strom,131N. Varelas,131 U. Akgun,132E. A. Albayrak,132B. Bilki,132,dddW. Clarida,132F. Duru,132S. Griffiths,132J.-P. Merlo,132 H. Mermerkaya,132,eeeA. Mestvirishvili,132A. Moeller,132J. Nachtman,132C. R. Newsom,132E. Norbeck,132 Y. Onel,132F. Ozok,132S. Sen,132E. Tiras,132J. Wetzel,132T. Yetkin,132K. Yi,132B. A. Barnett,133B. Blumenfeld,133

S. Bolognesi,133D. Fehling,133G. Giurgiu,133A. V. Gritsan,133Z. J. Guo,133G. Hu,133P. Maksimovic,133 S. Rappoccio,133M. Swartz,133A. Whitbeck,133P. Baringer,134A. Bean,134G. Benelli,134O. Grachov,134 R. P. Kenny Iii,134M. Murray,134D. Noonan,134S. Sanders,134R. Stringer,134G. Tinti,134J. S. Wood,134 V. Zhukova,134A. F. Barfuss,135T. Bolton,135I. Chakaberia,135A. Ivanov,135S. Khalil,135M. Makouski,135

Y. Maravin,135S. Shrestha,135I. Svintradze,135J. Gronberg,136D. Lange,136D. Wright,136A. Baden,137 M. Boutemeur,137B. Calvert,137S. C. Eno,137J. A. Gomez,137N. J. Hadley,137R. G. Kellogg,137M. Kirn,137

T. Kolberg,137Y. Lu,137M. Marionneau,137A. C. Mignerey,137K. Pedro,137A. Peterman,137A. Skuja,137 J. Temple,137M. B. Tonjes,137S. C. Tonwar,137E. Twedt,137A. Apyan,138G. Bauer,138J. Bendavid,138W. Busza,138

E. Butz,138I. A. Cali,138M. Chan,138V. Dutta,138G. Gomez Ceballos,138M. Goncharov,138K. A. Hahn,138 Y. Kim,138M. Klute,138K. Krajczar,138,fffW. Li,138P. D. Luckey,138T. Ma,138S. Nahn,138C. Paus,138D. Ralph,138

(11)

C. Roland,138G. Roland,138M. Rudolph,138G. S. F. Stephans,138F. Sto¨ckli,138K. Sumorok,138K. Sung,138 D. Velicanu,138E. A. Wenger,138R. Wolf,138B. Wyslouch,138S. Xie,138M. Yang,138Y. Yilmaz,138A. S. Yoon,138

M. Zanetti,138S. I. Cooper,139B. Dahmes,139A. De Benedetti,139G. Franzoni,139A. Gude,139S. C. Kao,139 K. Klapoetke,139Y. Kubota,139J. Mans,139N. Pastika,139R. Rusack,139M. Sasseville,139A. Singovsky,139 N. Tambe,139J. Turkewitz,139L. M. Cremaldi,140R. Kroeger,140L. Perera,140R. Rahmat,140D. A. Sanders,140 E. Avdeeva,141K. Bloom,141S. Bose,141J. Butt,141D. R. Claes,141A. Dominguez,141M. Eads,141J. Keller,141 I. Kravchenko,141J. Lazo-Flores,141H. Malbouisson,141S. Malik,141G. R. Snow,141U. Baur,142A. Godshalk,142

I. Iashvili,142S. Jain,142A. Kharchilava,142A. Kumar,142S. P. Shipkowski,142K. Smith,142G. Alverson,143 E. Barberis,143D. Baumgartel,143M. Chasco,143J. Haley,143D. Nash,143D. Trocino,143D. Wood,143J. Zhang,143

A. Anastassov,144A. Kubik,144N. Mucia,144N. Odell,144R. A. Ofierzynski,144B. Pollack,144A. Pozdnyakov,144 M. Schmitt,144S. Stoynev,144M. Velasco,144S. Won,144L. Antonelli,145D. Berry,145A. Brinkerhoff,145 M. Hildreth,145C. Jessop,145D. J. Karmgard,145J. Kolb,145K. Lannon,145W. Luo,145S. Lynch,145N. Marinelli,145 D. M. Morse,145T. Pearson,145R. Ruchti,145J. Slaunwhite,145N. Valls,145M. Wayne,145M. Wolf,145B. Bylsma,146 L. S. Durkin,146C. Hill,146R. Hughes,146R. Hughes,146K. Kotov,146T. Y. Ling,146D. Puigh,146M. Rodenburg,146 C. Vuosalo,146G. Williams,146B. L. Winer,146N. Adam,147E. Berry,147P. Elmer,147D. Gerbaudo,147V. Halyo,147

P. Hebda,147J. Hegeman,147A. Hunt,147P. Jindal,147D. Lopes Pegna,147P. Lujan,147D. Marlow,147 T. Medvedeva,147M. Mooney,147J. Olsen,147P. Piroue´,147X. Quan,147A. Raval,147B. Safdi,147H. Saka,147 D. Stickland,147C. Tully,147J. S. Werner,147A. Zuranski,147J. G. Acosta,148E. Brownson,148X. T. Huang,148

A. Lopez,148H. Mendez,148S. Oliveros,148J. E. Ramirez Vargas,148A. Zatserklyaniy,148E. Alagoz,149 V. E. Barnes,149D. Benedetti,149G. Bolla,149D. Bortoletto,149M. De Mattia,149A. Everett,149Z. Hu,149M. Jones,149

O. Koybasi,149M. Kress,149A. T. Laasanen,149N. Leonardo,149V. Maroussov,149P. Merkel,149D. H. Miller,149 N. Neumeister,149I. Shipsey,149D. Silvers,149A. Svyatkovskiy,149M. Vidal Marono,149H. D. Yoo,149J. Zablocki,149 Y. Zheng,149S. Guragain,150N. Parashar,150A. Adair,151C. Boulahouache,151K. M. Ecklund,151F. J. M. Geurts,151 B. P. Padley,151R. Redjimi,151J. Roberts,151J. Zabel,151B. Betchart,152A. Bodek,152Y. S. Chung,152R. Covarelli,152

P. de Barbaro,152R. Demina,152Y. Eshaq,152A. Garcia-Bellido,152P. Goldenzweig,152J. Han,152A. Harel,152 D. C. Miner,152D. Vishnevskiy,152M. Zielinski,152A. Bhatti,153R. Ciesielski,153L. Demortier,153K. Goulianos,153

G. Lungu,153S. Malik,153C. Mesropian,153S. Arora,154A. Barker,154J. P. Chou,154C. Contreras-Campana,154 E. Contreras-Campana,154D. Duggan,154D. Ferencek,154Y. Gershtein,154R. Gray,154E. Halkiadakis,154 D. Hidas,154A. Lath,154S. Panwalkar,154M. Park,154R. Patel,154V. Rekovic,154J. Robles,154K. Rose,154S. Salur,154

S. Schnetzer,154C. Seitz,154S. Somalwar,154R. Stone,154S. Thomas,154G. Cerizza,155M. Hollingsworth,155 S. Spanier,155Z. C. Yang,155A. York,155R. Eusebi,156W. Flanagan,156J. Gilmore,156T. Kamon,156,ggg V. Khotilovich,156R. Montalvo,156I. Osipenkov,156Y. Pakhotin,156A. Perloff,156J. Roe,156A. Safonov,156

T. Sakuma,156S. Sengupta,156I. Suarez,156A. Tatarinov,156D. Toback,156N. Akchurin,157J. Damgov,157 P. R. Dudero,157C. Jeong,157K. Kovitanggoon,157S. W. Lee,157T. Libeiro,157Y. Roh,157I. Volobouev,157 E. Appelt,158A. G. Delannoy,158C. Florez,158S. Greene,158A. Gurrola,158W. Johns,158C. Johnston,158P. Kurt,158 C. Maguire,158A. Melo,158M. Sharma,158P. Sheldon,158B. Snook,158S. Tuo,158J. Velkovska,158M. W. Arenton,159

M. Balazs,159S. Boutle,159B. Cox,159B. Francis,159J. Goodell,159R. Hirosky,159A. Ledovskoy,159C. Lin,159 C. Neu,159J. Wood,159R. Yohay,159S. Gollapinni,160R. Harr,160P. E. Karchin,160

C. Kottachchi Kankanamge Don,160P. Lamichhane,160A. Sakharov,160M. Anderson,161M. Bachtis,161 D. Belknap,161L. Borrello,161D. Carlsmith,161M. Cepeda,161S. Dasu,161E. Friis,161L. Gray,161K. S. Grogg,161

M. Grothe,161R. Hall-Wilton,161M. Herndon,161A. Herve´,161P. Klabbers,161J. Klukas,161A. Lanaro,161 C. Lazaridis,161J. Leonard,161R. Loveless,161A. Mohapatra,161I. Ojalvo,161F. Palmonari,161G. A. Pierro,161

I. Ross,161A. Savin,161W. H. Smith,161and J. Swanson161 (CMS Collaboration)

1

Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria 3National Centre for Particle and High Energy Physics, Minsk, Belarus

4Universiteit Antwerpen, Antwerpen, Belgium 5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

(12)

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil

13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria 14University of Sofia, Sofia, Bulgaria

15

Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus 22Charles University, Prague, Czech Republic

23Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

24National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 25Department of Physics, University of Helsinki, Helsinki, Finland

26Helsinki Institute of Physics, Helsinki, Finland 27Lappeenranta University of Technology, Lappeenranta, Finland

28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France 30

Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules, CNRS/IN2P3, Villeurbanne, France, Villeurbanne, France

32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France 33Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

34RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 35RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

37Deutsches Elektronen-Synchrotron, Hamburg, Germany 38University of Hamburg, Hamburg, Germany 39Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 40Institute of Nuclear Physics ‘‘Demokritos’’, Aghia Paraskevi, Greece

41University of Athens, Athens, Greece 42University of Ioa´nnina, Ioa´nnina, Greece

43KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 44Institute of Nuclear Research ATOMKI, Debrecen, Hungary

45University of Debrecen, Debrecen, Hungary 46Panjab University, Chandigarh, India

47University of Delhi, Delhi, India 48Saha Institute of Nuclear Physics, Kolkata, India

49Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research—EHEP, Mumbai, India 51

Tata Institute of Fundamental Research—HECR, Mumbai, India 52Institute for Research in Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56a

INFN Sezione di Firenze, Firenze, Italy 56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58aINFN Sezione di Genova, Genova, Italy

58bUniversita` di Genova, Genova, Italy

(13)

59aINFN Sezione di Milano-Bicocca, Milano, Italy 59bUniversita` di Milano-Bicocca, Milano, Italy

60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II’’, Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Padova, Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62b

Universita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza’’, Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66bUniversita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71

Korea University, Seoul, Korea 72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82National Centre for Nuclear Research, Swierk, Poland

83Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland 84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal

85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P.N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94

Universidad Auto´noma de Madrid, Madrid, Spain 95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103

Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106Istanbul Technical University, Istanbul, Turkey

(14)

108University of Bristol, Bristol, United Kingdom 109Rutherford Appleton Laboratory, Didcot, United Kingdom

110Imperial College, London, United Kingdom 111Brunel University, Uxbridge, United Kingdom

112Baylor University, Waco, Texas, USA

113The University of Alabama, Tuscaloosa, Alabama, USA 114Boston University, Boston, Massachusetts, USA 115Brown University, Providence, Rhode Island, USA 116

University of California, Davis, Davis, California, USA 117University of California, Los Angeles, Los Angeles, California, USA

118University of California, Riverside, Riverside, California, USA 119University of California, San Diego, La Jolla, California, USA 120University of California, Santa Barbara, Santa Barbara, California, USA

121California Institute of Technology, Pasadena, California, USA 122Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 123University of Colorado at Boulder, Boulder, Colorado, USA

124Cornell University, Ithaca, New York, USA 125Fairfield University, Fairfield, Connecticut, USA 126Fermi National Accelerator Laboratory, Batavia, Illinois, USA

127University of Florida, Gainesville, Florida, USA 128Florida International University, Miami, Florida, USA

129Florida State University, Tallahassee, Florida, USA 130Florida Institute of Technology, Melbourne, Florida, USA 131University of Illinois at Chicago (UIC), Chicago, Illinois, USA

132

The University of Iowa, Iowa City, Iowa, USA 133Johns Hopkins University, Baltimore, Maryland, USA

134The University of Kansas, Lawrence, Kansas, USA 135Kansas State University, Manhattan, Kansas, USA

136Lawrence Livermore National Laboratory, Livermore, California, USA 137University of Maryland, College Park, Maryland, USA 138Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

139University of Minnesota, Minneapolis, Minnesota, USA 140University of Mississippi, University, Mississippi, USA 141University of Nebraska-Lincoln, Lincoln, Nebraska, USA 142State University of New York at Buffalo, Buffalo, New York, USA

143Northeastern University, Boston, Massachusetts, USA 144Northwestern University, Evanston, Illinois, USA 145University of Notre Dame, Notre Dame, Indiana, USA

146The Ohio State University, Columbus, Ohio, USA 147Princeton University, Princeton, New Jersey, USA 148University of Puerto Rico, Mayaguez, Puerto Rico, USA

149Purdue University, West Lafayette, Indiana, USA 150Purdue University Calumet, Hammond, Indiana, USA

151Rice University, Houston, Texas, USA 152University of Rochester, Rochester, New York, USA 153The Rockefeller University, New York, New York, USA

154Rutgers, the State University of New Jersey, Piscataway, New Jersey, USA 155

University of Tennessee, Knoxville, Tennessee, USA 156Texas A&M University, College Station, Texas, USA

157Texas Tech University, Lubbock, Texas, USA 158Vanderbilt University, Nashville, Tennessee, USA 159University of Virginia, Charlottesville, Virginia, USA

160Wayne State University, Detroit, Michigan, USA 161University of Wisconsin, Madison, Wisconsin, USA

aDeceased.

bAlso at Vienna University of Technology, Vienna, Austria.

cAlso at National Institute of Chemical Physics and Biophysics, Tallinn, Estonia. dAlso at Universidade Federal do ABC, Santo Andre, Brazil.

eAlso at California Institute of Technology, Pasadena, California, USA.

(15)

fAlso at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

gAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. hAlso at Suez Canal University, Suez, Egypt.

iAlso at Zewail City of Science and Technology, Zewail, Egypt. jAlso at Cairo University, Cairo, Egypt.

kAlso at Fayoum University, El-Fayoum, Egypt. lAlso at British University, Cairo, Egypt. mNow at Ain Shams University, Cairo, Egypt.

nAlso at National Centre for Nuclear Research, Swierk, Poland. oAlso at Universite´ de Haute-Alsace, Mulhouse, France. pNow at Joint Institute for Nuclear Research, Dubna, Russia. qAlso at Moscow State University, Moscow, Russia.

rAlso at Brandenburg University of Technology, Cottbus, Germany. sAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. t

Also at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

uAlso at Tata Institute of Fundamental Research—HECR, Mumbai, India. vAlso at University of Visva-Bharati, Santiniketan, India.

wAlso at Sharif University of Technology, Tehran, Iran. xAlso at Isfahan University of Technology, Isfahan, Iran.

yAlso at Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Teheran, Iran. zAlso at Facolta` Ingegneria Universita` di Roma, Roma, Italy.

aaAlso at Universita` della Basilicata, Potenza, Italy.

bbAlso at Universita` degli Studi Guglielmo Marconi, Roma, Italy. ccAlso at Laboratori Nazionali di Legnaro dell’ INFN, Legnaro, Italy. ddAlso at Universita` degli Studi di Siena, Siena, Italy.

eeAlso at University of Bucharest, Faculty of Physics, Bucuresti-Magurele, Romania. ffAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia.

ggAlso at University of California, Los Angeles, Los Angeles, California, USA. hhAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

ii

Also at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza’’, Roma, Italy.

jjAlso at University of Athens, Athens, Greece.

kkAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. llAlso at The University of Kansas, Lawrence, Kansas, USA. mmAlso at Paul Scherrer Institut, Villigen, Switzerland

nnAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ooAlso at Gaziosmanpasa University, Tokat, Turkey.

ppAlso at Adiyaman University, Adiyaman, Turkey. qqAlso at Izmir Institute of Technology, Izmir, Turkey.

rrAlso at The University of Iowa, Iowa City, Iowa, USA. ssAlso at Mersin University, Mersin, Turkey.

ttAlso at Ozyegin University, Istanbul, Turkey. uuAlso at Kafkas University, Kars, Turkey.

vvAlso at Suleyman Demirel University, Isparta, Turkey. ww

Also at Ege University, Izmir, Turkey.

xxAlso at School of Physics and Astronomy, University of Southampton, Southampton, United Kingdom. yyAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

zzAlso at University of Sydney, Sydney, Australia. aaaAlso at Utah Valley University, Orem, Utah, USA. bbbAlso at Institute for Nuclear Research, Moscow, Russia.

cccAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. dddAlso at Argonne National Laboratory, Argonne, Illinois, USA.

eeeAlso at Erzincan University, Erzincan, Turkey.

fffAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. gggAlso at Kyungpook National University, Daegu, Korea.

Figura

FIG. 1 (color online). Dimuon invariant-mass distributions in PbPb (top) and pp (bottom) data at ffiffiffiffiffiffiffiffips NN ¼ 2:76 TeV

Riferimenti

Documenti correlati

Onchocerca lupi paramyosin (Ol-para, 2,643 bp cDNA) was herein isolated and characterised in adults, both males and females, and microfilariae.. The predicted Ol- PARA protein (i.e.

In 2012, during a conference in Rome about Late Antique plates deco- rated with engravings, I presented a paper about the potentially very useful contribute that the

In both cases, an accurate reflection is needed: archaic texts often present palaeographic characters, writing techniques and linguistic issues that are completely different from

Per esempio, venivano ammessi alla ricollocazione solo i richiedenti appartenenti a nazionalità per le quali la percentuale di decisioni di riconoscimento della

To identify the miRNA targetome, the 560 DE mRNAs and the 6 DE miRNAs were selected for gene target analysis, using an integrated approach of validated and predicted interaction

The ALICE Collaboration acknowledges the following funding agencies for their support in building and run- ning the ALICE detector: State Committee of Science, World Fed- eration

The clotting time was evaluated manually, and the anticoagulant activity at each cell concentration was calculated as the ratio between the clotting time of patient plasma and

Peripheral insulin resistance (IR) promotes increased production of free fatty acids (FFA) direct in the liver, resulting in an imbalance between oxidation/divestiture