• Non ci sono risultati.

Gaseous mediators in resolution of inflammation

N/A
N/A
Protected

Academic year: 2021

Condividi "Gaseous mediators in resolution of inflammation"

Copied!
7
0
0

Testo completo

(1)

ContentslistsavailableatScienceDirect

Seminars

in

Immunology

jo u r n al h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e / y s m i m

Review

Gaseous

mediators

in

resolution

of

inflammation

John

L.

Wallace

a,∗

,

Angela

Ianaro

b

,

Kyle

L.

Flannigan

c

,

Giuseppe

Cirino

b

aDepartmentofPhysiology&Pharmacology,UniversityofCalgary,Calgary,Alberta,Canada bDepartmentofExperimentalPharmacology,UniversityofNaples,Naples,Italy

cInstituteforBiomedicalSciences,GeorgiaStateUniversity,Atlanta,GA,USA

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received31March2015 Accepted1May2015 Keywords: Hydrogensulfide Nitricoxide Carbonmonoxide Anti-inflammatory Cytoprotection

a

b

s

t

r

a

c

t

Therearenumerousgaseoussubstancesthatcanactassignalingmolecules,butthebestcharacterized ofthesearenitricoxide,hydrogensulfideandcarbonmonoxide.Eachhasbeenshowntoplay impor-tantrolesinmanyphysiologicalandpathophysiologicalprocesses.Thisarticleisfocusedontheeffects ofthesegasotransmittersinthecontextofinflammation.Thereisconsiderableoverlapintheactions ofnitricoxide,hydrogensulfideandcarbonmonoxidewithrespecttoinflammation,andthese medi-atorsappeartoactprimarilyasanti-inflammatorysubstances,promotingresolutionofinflammatory processes.Theyalsohaveprotectiveandpro-healingeffectsinsometissues,suchasthegastrointestinal tractandlung.Overthepasttwodecades,significantprogresshasbeenmadeinthedevelopmentofnovel anti-inflammatoryandcytoprotectivedrugsthatreleaseofoneormoreofthesegaseousmediators.

©2015ElsevierLtd.Allrightsreserved.

1. Introduction

Sincetheidentificationofnitricoxide(NO) asthesubstance accountingfortheactionspreviouslyattributedto ‘endothelium-derivedrelaxingfactor’[1],therehasbeenaburstofresearchinto severalgaseousmediators.NO,hydrogensulfide(H2S)andcarbon

monoxide(CO)havebeenthemoststudiedgaseousmediatorsover thepastthreedecades,andattemptshavebeenmadetodevelop novelanti-inflammatorydrugsbasedondeliveryofoneormore ofthesegaseousmediators[2].Allthreeofthesemediatorshave verylowmolecularweights,shorthalf-lives,andcanfreelydiffuse acrossmembranes.Theydonothavespecificreceptors,perse,but caninteractwitharangeofproteinsandgenestoproduceawide rangeofeffects.ParticularlyinthecaseofNOandH2S,suppression

ofsynthesiscanprofoundlyaltercellandtissuefunction.

Thepotentialfortheactionsofthesemediatorstobeexploited inthedesignoftherapeuticsisconsiderable.Ofcourse,drugsthat release NOhavebeenin useforover a century(e.g., nitroglyc-erin).Developmentofdrugsbasedonstimulationorsuppression ofH2SorCOproductionhasoccurredmainlyinthepastdecade.

Inthisarticle,wereviewsomeofthekeyactionsofthesegaseous mediatorswithrespecttotheirimpactoninflammatoryprocesses.

∗ Correspondingauthorat:15PrinceArthurAvenue,Toronto,OntarioM5R1B2, Canada.Tel.:+19055156132.

E-mailaddress:altapharm@hotmail.com(J.L.Wallace).

Wealsoreviewsomeofthedrugsindevelopmentthatareaimto exploittheanti-inflammatoryactionsofthesemediators.

2. Nitricoxide

2.1. Theimportanceofl-arginine-nitricoxidepathway

Theacuteinflammatoryresponseisaself-limitingprocessthat normallyresultsin restorationof tissuehomeostasis. Persistent inflammatorystimuliorderegulationofmechanismsofthe resolu-tionphaseresultsinchronicinflammation,recognizedtobeakey underlyingfactorintheprogressionofarangeofdiseases, includ-ingatherosclerosis,arthritis,cancerandchronicneurodegenerative diseases.AlterationsinNOsynthesisbyendogenoussystemscan influencetheseinflammatoryprocesses.

The inorganic free radical, NO was first identified as an endothelium-derivedendogenousmessengerresponsibleforthe regulationofvasculartone[3,4].However,sincethenithasbecome clear that NO is the signalingmolecule responsible for several diversephysiologicalandpathophysiologicalprocesses.NOis pro-ducedbythreedifferentformsofNOS,namelynNOS(NOS1),eNOS (NOS3),andiNOS(NOS2)[5].

Arathersimple,notfullycorrectbuttraditionallyuseful classifi-cationdiscriminatesinducibleversusconstitutivelyexpressedNOS isoforms,whichapproximateslowversushighproductionrates ofendogenouslygeneratedNO[5,6].Thus,it hasbeengenerally assumed thatnNOSand eNOSarecriticalfor anormal physiol-ogy,whereas iNOS is associated with injury. NOSisoformsnot http://dx.doi.org/10.1016/j.smim.2015.05.004

(2)

onlyproduceNO,theprimaryreactionproduct,butalsoa num-berofspecies resultingfromoxidation,reduction, oradduction ofNOin physiological milieus,thereby generatingvarious clin-icalspeciessuchas,S-nitrosothiols,peroxynitrite(ONOO ), and transitionmetaladducts[7].TheclassicalpathwaybywhichNO exertsmanyofitsactionsisviaactivationoftheenzymesoluble guanylatecyclase(sGC)[8]andresultantconversionofguanosine 5-triphosphate(GTP)tothesecondmessenger3,5-cyclic guano-sinemonophosphate(cGMP)[9].However,severalstudieshave establishedthatNOcanalsoactviacGMP-independentpathways invarioussystems,particularlyduringtheinhibitionofplatelet aggregationandregulationofinflammatorycellapoptosis[10–13]. Inaddition,NOmodulatestranscription/translationindirectlyby affectingsignalingpathways,suchasmitogenactivatedprotein kinases,G-proteins,theRaspathway,glyceraldehyde dehydroge-naseorphosphatidylinositol-3kinase(PI3K)[14].

2.2. NOapoptosisandresolutionofinflammation

Progressionofinflammatoryconditionsdependsnotonlyupon the recruitment and activation of inflammatory cells but also upon their subsequent removal from the inflammatory milieu. Apoptosis, or programmed cell death, can be considered as a “removal”mechanism,leadingtoresolutionofinflammation, char-acterizedbya seriesofmorphologicalandbiochemical features [15].Ininflammation-baseddiseasesapoptosisisafundamental processregulatinginflammatory cellsurvival and it iscritically involvedinensuringthesuccessfulresolutionofaninflammatory response[15].Dysregulationof apoptosisand phagocytic clear-ancemechanismscanhavedrasticconsequencesonresolutionof inflammatoryprocesses.Hence,apoptosisrepresentsamechanism toremovepotentiallydamagingpro-inflammatorycellsfromthe siteofinflammationandisthereforecriticaltothesuccessful reso-lutionofinflammation.Duringthisprocess,activatedinflammatory cellsgeneratereactiveoxygenandnitrogenspecies,includingNO. InthiscontextitisofparticularinteresttheabilityofNOtoregulate apoptosisofinflammatorycells[16].Whatmakescomplexto eval-uatetheinvolvementofNOintheresolutionphaseisthatNOhas bothpro-apoptoticandanti-apoptoticproperties[17–19]. How-ever,itisknownthatlowerconcentrationsofNOproducedbythe eNOSandnNOSarecytoprotective,whilstsupraphysiological con-centrationsproducedbytheiNOStriggercelldeath.Theseapparent oppositeeffectsareexplained,atleastinpart,bythefreeradical natureofNOandhenceitschemicalinteractionwithotherradicals presentinthemilieutoformvariousNO-relatedspeciesinvivo. Thepro-oranti-apoptoticeffectsofNOmaythusbecritically gov-ernedbythespecificNO-relatedspeciesgenerated.Anexampleis representedbytheONOO speciesthatcouldaccountforthe apop-toticresolvingprocess[20].However,thepreciseroleofONOO ininflammatorycellapoptosisisstillnotclearlydefined.Thus,it isintuitivethattheabilityofNOtoinduceapoptosisis particu-larlyrelevantduringtheresolutionphaseofinflammation.Several studieshavedemonstratedthatactivatedmacrophages infiltrat-ingmurinetumorsinduceapoptosisviaaNO-dependentpathway inbothactivatedanti-tumorTcellsandinthetumorcells them-selves[21,22].Thus,itappearsthatmacrophagesinduceapoptosis ofnearbycellsthroughNOthatinturnenhancestheclearanceof apoptoticcellstherebypromotingtheresolutionphaseof inflam-mation.

Itiswidelyacceptedthatinflammationdrivesdevelopmentof somecancersthatadapttoandusetheoxidant-rich microenvi-ronment[23,24].This latter phenomenonprovides a persistent andself-perpetuatingoxidativestresscomposedofbothreactive nitrogenspeciesandreactiveoxygenspecies[25].Amongthe crit-icaloxidantsourcesNOplaysamajorroleinoxidativestressin melanomaandothercancers[25–29].

AlsoincancertheeffectofNOisdependentuponthe concen-trationsince it hasbeenshownthat angiogenesis,proliferation and metastasis can normally be stimulated by lower levels of NO(<100nM),whilehigherconcentrationsofNO(>400–500nM) promotecytotoxicityandcellapoptosis[30,31].Thus,NOdonors havebeenproposedasanoveltherapytovariouscancers[32,33]. The mostinteresting results have beenobtainedby the useof nitricoxide-releasingnon-steroidalanti-inflammatorydrugs (NO-NSAIDs).Infact,severalstudieshavefoundalinkbetweenNSAIDs useanddecreasedriskofcolorectalcancer[34–36],suggestinga possiblechemopreventiverole.NO-NSAIDshavebeenshowntobe moreeffectiveintheinhibitionofcancercellgrowthandmetastasis thantheparentdrugalone[33,37].

Atherosclerosisisanotherdiseaseswheretheconceptof reso-lutionofinflammationcanbeappliedwithregardtoNO.Itisnow widelyrecognizedthattheinflammatorycomponentof atheroscle-rosiscontributestoplaqueformation[38–40].Plaquegrowthand developmentaredrivenbyinflammatorycells,inparticular mono-cytes and macrophages, representing the major driving force. Becauseapoptoticcellsareingestedbyphagocyteswithout initiat-inganyfurtherpro-inflammatoryresponse,ithasbeensuggested thatapoptosismayrepresentamechanismtoregresstheplaque. ThereforethisprocesstriggeredbyNOcontributestoresolutionof inflammation[41,42].

InconclusionNOplaysaroleintheresolutionofinflammation butitsactivitydependsupontheconcentrationofNOinthelocal environment,thetimingofadministrationortherouteof admin-istration,aswellastheNOSisoformtargeted[43,44].

3. Hydrogensulfide

3.1. H2Sasamediatorofinflammation

Kimuraandcolleagueswerethefirsttoidentifyphysiological roles for H2S through their studies of its actions in the

ner-vous system[45,46]. Severalyears, later, Wangand colleagues demonstratedtheH2Swasapotentendogenousvasorelaxant[47].

Together,thesestudiesstimulatedaburstofresearchintotherole ofthisgaseousmediatorinmanycellsandorgansystems[47,48]. Zanardoet al. provided keyevidence suggesting a rolefor H2S

animportantendogenous anti-inflammatoryandpro-resolution mediator[49].TheyreportedthatH2Sexertedpotentinhibitory

effectsonleukocyteadherencetothevascularendothelium.Using intravital microscopy to examine the mesenteric microcircula-tioninrats,theydemonstratedthatadministrationofH2S(using

donors suchas Na2S, NaHS and Lawesson’s reagent) markedly

andpotentlysuppressedleukocyteadherenceofleukocytestothe vascularendotheliumandpreventedextravasationofleukocytes [49].They alsoobservedthattheinhibition of endogenousH2S

synthesisresultedinaveryfastinductionofleukocyteadhesion tothevascular endothelium.In modelsof carrageenan-induced sub-dermal inflammation, H2S donors were found to suppress

leukocyteinfiltrationandedemaformation[49,50].Inhibitionof leukocyte-endothelialadhesionbyH2Sisaconsequenceof

sup-pressionoftheexpressionofcelladhesionmoleculesonboththe endothelium(e.g.,intercellularadhesionmolecule(ICAM)-1and P-selectin)andontheleukocyte(lymphocytefunction-associated antigen (LFA)-1) [49]. Severalother groups have also reported inhibitory effects of H2S onthese adhesionmolecules [51–54].

ConsistentwiththefindingsofZanardoetal.[49],micethatare heterozygous for the gene for cystathionine ␤-synthase (CBS), oneofthemajorenzymesforsynthesis ofH2S, exhibitreduced

leukocyte-rolling velocity, increased vascular permeability, and increasednumbersofadherentleukocytesinmesentericvenules [55].

(3)

InadditiontoH2Spotentlyinhibitingleukocyteadhesiontothe

vascularendothelium,numerousstudieshaveshownthatH2Scan

directlyinfluenceawiderangeofleukocytefunctions.For exam-ple,arecentstudydemonstratedthatH2Sinhibitstheactivityofthe

granulocyteenzymemyeloperoxidase(MPO),whichhadbeen iso-latedfromhumansandrats[56].MPOcatalyzestheconversionof hydrogenperoxidetohypochlorousacid.Thelatterhaspowerful bactericidaleffects,butalsohasthecapacitytocausesignificant damagetohosttissue.H2Shasbeenshowntobeanavid

scav-engerothergranulocyte-derivedcytotoxicsubstances,including peroxynitrite[57],superoxideanion[58],hypochlorousacid[59] andhydrogenperoxide[60].

Two of the most critical processes in resolution of inflam-mationareinductionofneutrophilapoptosisandstimulationof macrophages tophagocytoseapoptotic neutrophils(i.e.,driving macrophagestoa“M2”phenotype)[61].Aninabilitytoclear neu-trophilscontributes significantlytothedevelopmentofchronic inflammation. H2S promotes neutrophil apoptosis [62]. Dufton

et al. [61] demonstrated that application of H2S to human or

murinemacrophagesincreasedchemotaxsisofmacrophagesand therate of phagocytosis of thebacteriumEscherichia coli.Both arestimulated byH2S, resulting in a reductionof the

accumu-lationofinflammatorycells[61].ExposuretoH2Salsorendered

macrophageshyporesponsivetoinflammatorystimulisuchas bac-terialendotoxinorTNF-␣.

Some anti-inflammatory actions of H2S are mediated by

annexin-A1,anotherpro-resolutionmediator [52].Treatmentof isolatedhumanneutrophilswithanH2S-releasingagent(NaHS)

resultedin translocationof annexin-A1fromthecytosoltothe plasmamembrane.Thisisaneventthatisrequiredforthe initi-ationofannexin-A1signaling.Instudiesinmice,treatmentwith anH2SdonorinhibitedIL-1-stimulatedgranulocyteadhesionand

extravasationinmesentericvenules,aswellasdown-regulating endotoxin-inducedexpressionofCOX-2andinducibleNOsynthase inmacrophages[52].Whensimilarexperimentswereperformed inannexin-A1-deficientmice,bothoftheseeffectswereabsent. Moreover,in theannexin-1deficient micethere wasincreased expressionofCBSand cystathionine␥-lyase(CSE)ina rangeof tissues,furtherdemonstratingalinkbetweenannexin-A1andH2S

inpromotingresolutionofinflammation[52].

Many key mediatorsof inflammationare regulatedto some degreebyH2S.ThisrepresentsanothermeansthroughwhichH2S

regulatesprocessessuchasleukocyteadhesionandemigration.In theGItract,forexample,H2Shasbeenshowntoplayacrucialrolein

promotingtheconstitutiveexpressionofcyclooxygenase(COX)-2 andofprostaglandinsynthesis[63,64].Thisisimportantfor main-tenanceofmucosalintegrity,butalsoforrapidresponsestoinjury. Inthiscontext,H2Sactstomaintainphysiologicalexpressionof

COX-2.However,inothercircumstances,suchaswhen thereis chronicinflammationofthetissue,H2Scandampen

inflammation-associatedup-regulationofCOX-2expressionandofanumberof otherpro-inflammatorycytokines,therebycontributingto reso-lution ofinflammation [65].For example, H2Shasbeen shown

todown-regulatetheexpressionofarangeofpro-inflammatory cytokines (e.g., IL-1␤, tumor necrosis factor (TNF)␣, interferon (IFN)␥,IL-12,IL-23,etc.).Incontrast,H2Sdoesnotsuppress,and

insomecircumstanceselevates,theexpressionofIL-10,a power-fulanti-inflammatorycytokine[65,66].TheabilityofH2Stoaffect

theexpressionofsomany pro-inflammatorycytokinesis likely duetoitsmodulatingeffectsonnuclearfactor kappa-light-chain-enhancerofactivatedBcells(NF-␬B)activity[67].Asdescribed inmore detail below,IL-10alsoplaysan importantrole inthe regulationofH2Ssynthesis[68].

In addition to its role in inflammation, COX-2-derived prostaglandin synthesis is an essential element of GI mucosal defence and repair [63], and its modulation by H2S is very

important. For example, if healthy rats are treated with phar-macological inhibitors of H2S synthesis, there is a significant

reduction of the expression of COX-2, a concomitant decrease in mucosalprostaglandinE2 synthesis,and thedevelopmentof

mucosalinflammationintheabsenceofanydetectabletissueinjury [69,70].Ontheotherhand,administrationofanH2Sdonor(diallyl

disulfide)resultedinamarked,dose-dependentelevationofCOX activityinthesmallintestine,aswellasareductioninmucosal inflammation[71].

3.2. H2Sinpromotionofrepair

Inadditiontoitsanti-inflammatoryeffects,thereisconsiderable evidencethatH2Scontributessignificantlytopromotingrepairto

tissueinjuryandrestorationoftissuefunction.Someofthe earli-eststudiesoftheroleofH2Sinresolutionoftissueinjuryutilized

modelsofinflammationandinjuryintheGItract[70,72,73].For example,administrationofH2Sdonorsorwithl-cysteine

(precur-sorforH2Ssynthesis)markedlyaccelerated healingofulcersin

thestomachofrats,whilesuppressionofH2Ssynthesisresulted

inamarkeddelayinhealing[73].EndogenousH2Ssynthesiswas

markedlyelevated,aswastheexpressionoftwoofthekeyenzymes forH2SsynthesisCSEandCBS,particularlyalongtheulcer

mar-gin,wherere-epithelializationismostactive[73].Thisisconsistent withthepowerfulangiogeniceffectsofH2S[74].Interestingly,

non-steroidalinflammatorydrugs(NSAIDs)areknowtoimpairgastric ulcerhealing,buttreatmentofmicethathadgastriculcerswith anH2S-releasingNSAID(ATB-346)resultedinamarked

accelera-tionofhealing[75].Thisoccurreddespitethecompoundmarkedly suppressinggastricprostaglandinsynthesis,whichisbelievedto beresponsibleforCOX-2-drivenangiogenesisandrepair.Thus,H2S

appearstohaveadditionalpro-healingmechanismstothose medi-atedviainductionofCOX-2expression.

3.3. RapidH2Sresponsetoinjury

H2Sactsasa‘rescuemolecule’inmanycircumstances,helping

topreservetissueintegrityandfunctionwhilerepairoccurs.It addi-tiontotherapidup-regulationoftheenzymesthatproduceH2S

froml-cysteine,whichdrivetissuerepair,H2Scanmarkedlyreduce

tissueinjuryassociatedwithhypoxia/anoxiabypreserving mito-chondrialfunction.H2Scan‘drive’mitochondrialrespiration,and

thegenerationofadenosinetriphosphate,particularlyin circum-stanceswhereoxygenlevelsareverylow,suchasduringischemia [76–78].ThereissubstantialevidencefromstudiesoftheGItract demonstratingthis‘rescue’roleofH2S.Indeed,theepithelialcells

oftheGItracthavebeenreportedtobethemostefficientatusing H2StodrivemitochondrialATPproduction[76–78].

Asmentionedbove,whencolonicinflammationisinducedin animalmodels,thereisaveryrapidandprofoundincreaseinH2S

synthesis,andup-regulationofthekeyenzymesforH2S

synthe-sis[70].TheseincreasesinH2Ssynthesisandenzymeexpression

occurspecificallyatthesitesoftissueinjury–thereisnochangein theimmediatelyadjacentinflamed,butnotdamagedtissue[79]. Moreover,thereisadown-regulationofoxidationofH2Satthese

samesitesofdamage[79].Ofcourse,thenetresultoftheelevated synthesisanddecreaseddegradationofH2Swouldbegreaterlocal

concentrationsofthismediator,whichdrivestissuerepair. Admin-istrationofinhibitorsofH2Ssynthesisinmodelsofcolitisresults

inadramaticincreaseintheseverityofdisease;indeed,insome studies,colonicperforationanddeathoccurred[70].Suppression of H2Ssynthesis inratswithcolitis wasalsoassociated witha

markedthickeningofthewallofthecolon,mainlyattributedto hyperplasiaofthelayersofmuscle.AdministrationofH2S-releasing

drugs,suchasNaHSorLawesson’sreagent,promotesresolutionof colitis[66,70].Thesedrugsalsoreducedthethickeningofcolonic

(4)

muscle,andreducedthelevelsofTNF␣incolonictissue[70]. Sim-ilarresultshavealsobeendemonstratedinamodelofintestinal ulceration[71],furtherhighlightingtheabilityofH2Stopromote

tissuerepair.

AnotherdemonstrationofaclinicallyrelevantroleforH2Sin

drivingresolutionofinjuryandinflammationinthedigestivetract involvedtheinductionofhyperhomocysteinemia,inducedby feed-ingavitaminB-deficientdiettorats[68].Approximatelyone-third ofpatientswithinflammatory boweldisease(IBD) exhibit vita-minBdeficiency,whichcanleadtohyperhomocysteinemia,and thereis clearevidencethatthis conditionsignificantlyworsens theseverityofIBD[80–82].Inratswithdiet-induced hyperhomo-cysteinemia,weobservedthattherewassignificantimpairment ofcolonicH2Ssynthesis,andanabsenceoftheup-regulationof

CSEexpression typically seen in thecolon when it is inflamed [70].Thesechanges wereobservedinthree differentmodelsof experimentalcolitis.Moreovertreatmentwithdiallyldisulfide,an H2S-donatingmolecule, normalized levelsofH2Ssynthesis and

significantlyreducedthediseaseseverityintheratswith hyper-homocysteinemia[68].

Further mechanisms that may contribute to the beneficial effectsofH2SinpromotingGImucosalintegrityandrepairinclude

therecentlydemonstratedstimulatoryeffectsofthismediatoron gastricbicarbonatesecretion[83],andonmucussecretion[84].The lattercanpromoteastrongerbarrierfunctionoftheGImucosa, therebylimitingexposuretoluminalbacteria[84].Suppressionof colonicH2Ssynthesisinmicewithcolitismarkedlyreducedmucus

granuleformationinthecolon,inparallelwithanexacerbation ofthedisease.H2Shasalsobeenshowntohavedirectinhibitory

effectsonthegrowthofdifferentbacterialstrainsin thelumen ofthegut[84].Togetherthese effectsof H2Slimit exposureof

inflamedsitesintheGItracttoluminalbacteriaandmayinpart explainthepro-resolutioneffectsofH2S.

3.4. H2S-basedanti-inflammatorytherapeutics

AswasthecaseforNO,soonafterreportsofthephysiological importanceofH2Shadbeenreported,severalgroupsbegantotry

todevelopnoveltherapeuticsbasedonreleaseofH2Sorinhibition

ofitssynthesis[85–88].Belowisasummaryofsomeofthedrugs designedtotargetinflammatoryprocesses.

3.4.1. Inflammatoryboweldisease

TheincidenceofIBDhasbeenincreasingsteadilyoverthepast 5decades,andthepathogenesisofthisgroupofdisorders(which includes Crohn’s disease and ulcerative colitis) remains poorly understood.BiologicaltherapiestargetingcytokinessuchasTNF␣a havebeenverycommerciallysuccessfuloverthepast20years,but theyareexpensive,cantriggersignificantadverseeventsandhave ahighfailurerate.Thus,thereisstillaneedforsafe,affordable med-icationsforreducinginflammationandpromotingrepairoftissue injury.Mesalamine(5-aminosalicylicacid)isthefirst-linetherapy forIBD.Itistheactivecomponentofsulfasalazine,whichwas devel-opedfortreatmentofarthritis,thenfoundtobeeffectiveinpatients withIBD.Mesalamineisarelativelyweakanti-inflammatorydrug, sohighdoseshavetobeadministered,andtypicallyin formula-tionsthatpreventabsorptionintheupperGItract.Ontheother hand,mesalamineisverysafe,withaverylowincidenceoflargely mileadverse effects.While sometimesreferredtoasanNSAID, mesalamineactuallyhasveryweakinhibitoryactivityonCOX,and thatactivityisveryunlikelytocontributetoitsbeneficialeffectsin patientswithIBD.Itsanti-oxidantactionshavebeensuggestedto accountformosttoitsbeneficialeffects[89].

AdrugdevelopedbyAntibeTherapeutics,ATB-429,isa deriva-tive of mesalamine that releases H2S. It exhibits significantly

enhanced anti-inflammatory, pro-resolution and pro-healing

effectsinrodentmodelsofcolitis[66].Ithasbeenshowntobevery effectivewhengivenorallyorintrarectally,withnegligible absorp-tionofthedrugitself,orofmesalamineliberatedfromthedrug.The lowlevelofabsorptionofATB-429raisesthepossibilityofitbeing usedtotreatinflammatoryconditionsthroughouttheGItract,with noneedforthetypesofformulationsthathavebeenemployedin commercialpreparationsofmesalaminetopreventitsabsorption. Independentofthebenefitsassociatedwithreducedabsorption, ATB-429 hasbeen shown to besignificantly more potent than mesalamineatreducingGIinflammationinratandmouse mod-elsofcolitis[66].Moreover,ATB-429producedanti-inflammatory actionsnotseenwithequimolardosesofmesalamine,including inhibitionoftissueexpressionofanumberofpro-inflammatory cytokinesand chemokines(IL-1,IL-8,IL-12,TNF␣,RANTES),but sparingoftheexpressionofIL-10[66].Unlikemesalamine, ATB-429alsoexhibitedsignificantanti-nociceptiveeffectsinaratmodel ofvisceralpain[90].

3.4.2. Acuteandchronicpain

AmongthemostcommonlyusedclassesofdrugsareNSAIDs: nonsteroidalanti-inflammatorydrugs.Theyareusedonachronic basis by hundreds of millions of people suffering from disor-derssuchas osteoarthritis,rheumatoid arthritis andankylosing spondylitis.Theyarewidelyusedanacutebasisfortreatmentofa rangeofdisorderscharacterizedbyseverepain(e.g.,sportsinjuries, dentalpain,gout,dysmenorrhea,post-surgicaltrauma,etc.).The greatestlimitationtotheuseofthisclassofdrugsistheir propen-sitytocauseulcerationandbleedingintheGItract[91].Thiscarries anenormouseconomicburdentohealthcaresystems,particularly whentheinjuryoccursinthedistalsmallintestine,whereitis diffi-culttodetect,andforwhichnopreventativeorcurativetreatments areavailable[92,93].H2S-releasingNSAIDshavebeendeveloped

byanumberofgroups,someofwhicharefocusingprimarilyon theiruseasanti-inflammatoryandanalgesicagents,andsomeof whicharefocusingontheirpotentialutilityaschemopreventative agentsforvarioustypesof cancerand/orforneurodegenerative diseases.ThemajoradvantageoftheH2S-releasingNSAIDsistheir

greatlyreducedpropensitytocauseulcerationandbleedinginthe GItract[50,75,94–97].Extensivepre-clinicalstudiesdemonstrate thatH2S-NSAIDsareatleastaseffectiveandpotentastheparent

NSAIDsinmodelsofinflammation/pain[50,75,94–96].Thesedrugs alsoinhibittheactivityofCOX-1andCOX-2withsimilarpotency astheparentNSAIDs[50,75,94–96].

TheGIsafetyofH2S-NSAIDshasbeenextensivelystudied.In

healthyrats,ATB-346wasfoundtoproducenegligiblehemorrhagic damageinthestomach,whilenaproxencausedextensiveinjury [75].Withrepeateddosingover severaldays, naproxeninduces extensiveulcerationandbleedinginthesmallintestine.However, nodamagewasobservedwhenATB-346wasadministeredinthe samemanneratequimolardoses[75].GreatlyenhancedGIsafety wasalsoobservedinanimalmodelsthatattemptedtomimicthe clinicalscenario,wherepatientswitharthritishaveco-morbities (obesity, diabetes, old age, concomitant useof anti-coagulants, etc.)that substantiallyincreasestheirrisk ofdeveloping signifi-cantGIbleeding.Inallsuchmodels,ATB-346sparedtheanimalof ulcerationandbleeding,whilenaproxencausedsignificantdamage [75,94].

4. Carbonmonoxide

COisproducedviatheenzymehemeoxygenase,whichexists asconstitutive(HO-2)andaninducible(HO-1)isoforms.Thelatter enzymeactsasasensorofcellularstress,andtheCOitgenerates canlimittissueinjury[98].Approachestoexploitthesebeneficial actionsofCOinaclinicalsettingincludetheuseofCOasaninhaled

(5)

gasandofCO-releasingmolecules(oftenreferredtoas“CO-RMs”or “CORMs”),whichcanbeadministeredorally.Therehavealsobeen attemptstodevelopsmallmoleculesthatcanup-regulateHO-1 expression,therebyfacilitatingmoreCOproduction.LikeNOand H2S,COexhibitscellandtissueprotectionthroughanti-apoptotic,

anti-inflammatory,andanti-proliferativeeffects[98].Otherthan theknowninteractionofCOwithtransitionmetals,themolecular targetsofCOarelargelyunknown[2],thoughithasbeensuggested thationchannelsarelikelytargets[99].

CO-RMs have been shown to exert powerful cytoprotective andanti-inflammatoryactions,likelyattributableinparttotheir effectsonmetalcarbonylsthatcaninfluenceoxidativestress,redox signalingandcellularrespiration[98].Thesemoleculeshavebeen showntobeeffectiveinawiderangeofanimalmodels, includ-ingpancreatitis,hepaticischemia-reperfusion,colitis, cutaneous woundhealing,neuropathicpainandosteoarthritis[98].LikeNO and H2S, CO cansuppressleukocyte adherencetothe vascular

endotheliumandreducepro-inflammatorycytokineexpressionby inhibitingNF-␬B [100–103].Alsoinlinewiththeactionsofthe othertwomajorgaseousmediators,COhasbeenshowntoexert particularlypotentprotectiveeffectsintheGItract[104].

InhalationofCOisbeingevaluatedasameanstoreduce inflam-mation. Chiang et al. [105]reported that inhaled CO markedly reducedneutrophilinfiltrationintotheperitoneumofmice,and increasedhemeoxygenaseactivity.Theyalsoshowedadramatic shiftintheproductionofpro-resolvingmediators:increased pro-ductionofresolvinD1 andmaresin1,anddecreasedproduction

of leukotriene B4. The phagocytic activity of macrophages was

also significantly enhanced by treatment with CO. This work wasextendedtoamodelofbacterialpneumoniainbaboonsby Dallietal. [106].Theyobserved thattheplasma and leukocyte lipidmediatorprofilesinbaboonswithpneumoniawere signifi-cantlyshifted,withareductioninthepro-resolutionphenotype. However, this could be partially reversed by inhalation of CO. CO hasshown therapeutic potentialin animal modelsof acute lunginjury,includingthoseinvolvingendotoxinchallenge, oxida-tivelunginjury,ischemia-reperfusioninjury,pulmonaryfibrosis, ventilator-inducedlunginjury,andlungtransplantation[98,107]. InhaledCOispresentlybeingassessedinclinicaltrialsto deter-mineifitcanimprovelungfunctionandsurvivalinacriticalcare setting.

5. Futuredirections

ThediscoverythatagassuchasNOcouldstimulateanenzyme andcontributetothebodyhomeostasistriggeredare-thinkingof manybiologyconcepts.Asdescribedinthisreview,anothertwo gasotransmitters,COandH2S,havebeendiscoveredthatalso

con-tributetoseveralpathophysiologicalprocesses.Inparticular,H2S

hasbeenshowntosharemanyfeatureswithNO.Thesegasescan contributetoseveraldifferentphasesofresolutionofinflammation as summarized in this review of the relevant literature. How-ever,stillthereareseveralissuesthatneedtobeclarifiedthrough moredetailedand focusedstudies.Increasingtheknowledgeof how these gases contribute to the resolution of inflammation and gettingmore insights intothe cross-talkamong them will clarifythemolecularbasisofresolutionindifferent inflammatory-based diseases allowing the development of new therapeutic approaches.

Disclosures

Drs.WallaceandCirinoarefoundersofAntibeTherapeuticsInc., whichisdevelopinghydrogensulfide-releasingdrugs.

References

[1]L.J.Ignarro,G.M.Buga,K.S.Wood,R.E.Byrns,G.Chaudhuri, Endothelium-derivedrelaxingfactorproducedandreleasefromarteryandveinisnitric oxide,Proc.Natl.Acad.Sci.U.S.A.84(1987)9265–9269.

[2]A.Papapetropoulos,R.Foresti,P.Ferdiandy,Pharmacologyofthe ‘gasotrans-mitters’NO,COandH2S:translationalopportunities,Br.J.Pharmacol.172

(2015)1395–1396.

[3]R.F.Furchgott,J.V.Zawadzki,Theobligatoryroleofendothelialcellsinthe relaxationofarterialsmoothmusclebyacetylcholine,Nature288(1980) 373–376.

[4]R.M.Palmer,A.G.Ferrige,etal.,Nitricoxidereleaseaccountsforthebiological activityofendothelium-derivedrelaxingfactor,Nature327(1987)524–526. [5]D.J.Stuehr,J.Santolini,Z.Q.Wang,C.C.Wei,S.Adak,Updateon mecha-nismandcatalyticregulationintheNOsynthases,J.Biol.Chem.279(2004) 36167–36170.

[6]R.Kavya,R.Saluja,S.Singh,M.Dikshit,Nitricoxidesynthaseregulationand diversity:implicationsinParkinson’sdisease,NitricOxide15(2006)280–294. [7]J.S.Stamler,D.J.Singel,J.Loscalzo,Biochemistryofnitricoxideandits

redox-activatedforms,Science258(1992)1898–1902.

[8]S.Moncada,R.M.Palmer,E.A.Higgs,Nitricoxide:physiology, pathophysio-logy,andpharmacology,Pharmacol.Rev.43(1991)109–142.

[9]L.J.Ignarro,G.Cirino,A.Casini,C.Napoli,Nitricoxideasasignalingmolecule inthevascularsystem:anoverview,J.Cardiovasc.Pharmacol.34(1999) 879–886.

[10]M.P.Gordge,J.S.Hothersall,A.A.Noronha-Dutra,Evidenceforacyclic GMP-independentmechanismintheanti-plateletactionofS-nitrosoglutathione, Br.J.Pharmacol.124(1998)141–148.

[11]N.Sogo,K.S.Magid,C.A.Shaw,D.J.Webb,I.L.Megson,Inhibitionofhuman platelet aggregation by nitric oxide donor drugs: relative contribution ofcGMP-independentmechanisms,Biochem.Biophys.Res.Commun.279 (2000)412–419.

[12]C.Ward,T.H.Wong,J.Murray,I.Rahman,C.Haslett,E.R.Chilvers,etal., Induc-tionofhumanneutrophilapoptosisbynitricoxidedonors:evidencefora caspasedependent,cyclic-GMP-independent,mechanism,Biochem. Pharma-col.59(2000)305–314.

[13]M.S.Crane,R.Ollosson,K.P.Moore,A.G.Rossi,I.L.Megson,Novelroleforlow molecularweightplasmathiolsinnitricoxide-mediatedcontrolofplatelet function,J.Biol.Chem.277(2002)46858–46863.

[14]H.E.Marshall,K.Merchant,J.S.Stamler,Nitrosationandoxidationinthe gula-tionofgeneexpression,FASEBJ.14(2000)1889–1900.

[15]M.O.Hengartner,Thebiochemistryofapoptosis,Nature407(2000)770–776. [16]B.Brune,Theintimaterelationbetweennitricoxideandsuperoxidein

apo-ptosisandcellsurvival,Antioxid.RedoxSignal.7(2005)497–507. [17]A.C.Quinn,A.J.Petros,P.Vallance,Nitricoxide:anendogenousgas,Br.J.

Anaesth.74(1995)443–451.

[18]Y.M.Kim,C.A.Bombeck,T.R.Billiar,Nitricoxideasabifunctionalregulatorof apoptosis,Circ.Res.84(1999)253–256.

[19]E.L.Taylor,I.L.Megson,C.Haslett,A.G.Rossi,Nitricoxide:akeyregulatorof myeloidinflammatorycellapoptosis,CellDeathDiffer.10(2003)418–430. [20]J.P.Crow,J.S.Beckman,Reactionsbetweennitricoxide,superoxide,and

per-oxynitrite:footprintsofperoxynitriteinvivo,Adv.Pharmacol.34(1995) 17–43.

[21]M.Saio,S.Radoja, M.Marino,A.B.Frey,Tumor-infiltratingmacrophages induceapoptosisinactivatedCD8(+)Tcellsbyamechanismrequiringcell contactandmediatedbyboththecellassociatedformofTNFandnitricoxide, J.Immunol.167(2001)5583–5593.

[22]S.Chattopadhyay,T.Das,G.Sa,P.K.Ray,ProteinA-activatedmacrophages induceapoptosis inEhrlich’s ascitescarcinoma througha nitric oxide-dependentpathway,Apoptosis7(2002)49–57.

[23]I.Tabas,C.K.Glass,Anti-inflammatorytherapyinchronicdisease:challenges andopportunities,Science339(2013)166–172.

[24]K.E.deVisser,A.Eichten,L.M.Coussens,Paradoxicalrolesoftheimmune systemduringcancerdevelopment,Nat.Rev.Cancer6(2006)24–37. [25]E.A.Grimm,J.Ellerhorst,C.H.Tang,S.Ekmekcioglu,Constitutiveintracellular

productionofiNOSandNOinhumanmelanoma:possibleroleinregulation ofgrowthandresistancetoapoptosis,NitricOxide19(2008)133–137. [26]F.L.MeyskensJr.,S.E.McNulty,J.A.Buckmeier,N.B.Tohidian,T.J.Spillane,R.S.

Kahlon,etal.,Aberrantredoxregulationinhumanmetastaticmelanomacells comparedtonormalmelanocytes,FreeRadic.Biol.Med.31(2001)799–808. [27]S.Ekmekcioglu,J.Ellerhorst,C.M.Smid,V.G.Prieto,M.Munsell,BuzaidAC, etal.,Induciblenitricoxidesynthaseandnitrotyrosineinhumanmetastatic melanomatumorscorrelatewithpoorsurvival,Clin.CancerRes.6(2000) 4768–4775.

[28]S.Ekmekcioglu,J.A.Ellerhorst,V.G.Prieto,M.M.Johnson,L.D.Broemeling,E.A. Grimm,TumoriNOSpredictspoorsurvivalforstageIIImelanomapatients,Int. J.Cancer119(2006)861–866.

[29]A.G.Sikora,A.Gelbard,M.A.Davies,D.Sano,S.Ekmekcioglu,J.Kwon,etal., Tar-getedinhibitionofinduciblenitricoxidesynthaseinhibitsgrowthofhuman melanomainvivoandsynergizeswithchemotherapy,Clin.CancerRes.16 (2010)1834–1844.

[30]L.Ridnour,D.D.Thomas,C.Switzer,W.Flores-Santana,J.S.Isenberg,S.Ambs, etal.,Molecularmechanismsfordiscretenitricoxidelevelsincancer,Nitric Oxide19(2008)73–76.

[31]A.J.Burke,F.J.Sullivan,F.J.Giles,S.A.Glynn,Theyinandyangofnitricoxide incancerprogression,Carcinogenesis34(3)(2013)503–512.

(6)

[32]J.A.Coulter,H.O.McCarthy,J.Xiang,W.Roedl,E.Wagner,T.Robson,etal., Nitricoxide:anoveltherapeuticforcancer,NitricOxide19(2008)192–198. [33]B.Rigas,J.L.Williams,NO-donatingNSAIDsandcancer:anoverviewwitha noteonwhetherNOisrequiredfortheiraction,NitricOxide19(2)(2008) 199–204.

[34]C.Stolfi,V.DeSimone,F.Pallone,G.Monteleone,Mechanismsofactionof non-steroidalanti-inflammatorydrugs(NSAIDs)andmesalazineinthe chemo-preventionofcolorectalcancer,Int.J.Mol.Sci.14(9)(2013)17972–17985. [35]V.Vaish,H.Piplani,C.Rana,K.Vaiphei,S.N.Sanyal,NSAIDsmayregulate

EGR-1-mediatedinductionofreactiveoxygenspeciesandnon-steroidal anti-inflammatorydrug-inducedgene(NAG)-1toinitiateintrinsicpathwayof apoptosisforthechemopreventionofcolorectalcancer,Mol.CellBiochem. 378(2013)47–64.

[36]E.Domingo,D.N.Church,O.Sieber,R.Ramamoorthy,Y.Yanagisawa,E. John-stone,etal.,EvaluationofPIK3CAmutationasapredictorofbenefitfrom nonsteroidalanti-inflammatorydrugtherapyincolorectalcancer,J.Clin. Oncol.31(2013)U4234–U4297.

[37]H. Cheng, M.Y. Mollica, S.H. Lee, L. Wang, C.A. Velazquez-Martinez,S. Wu,Effectsofnitricoxide-releasingnonsteroidalanti-inflammatorydrugs (NONO-NSAIDs)onmelanomacelladhesion,Toxicol.Appl.Pharmacol.264 (2012)161–166.

[38]R.Ross,Atherosclerosisisaninflammatorydisease,Am.HeartJ.138(1999) S419–S420.

[39]R.Ross,Atherosclerosisisaninflammatorydisease,N.Engl.J.Med.340(1999) 115–126.

[40]B. Ludewig, R.M.Zinkernagel,H.Hengartner,Arterialinflammation and atherosclerosis,TrendsCardiovasc.Med.12(2002)154–159.

[41]S.Bjorkerud,B.Bjorkerud,Apoptosisisabundantinhumanatherosclerotic lesions,especiallyininflammatorycells(macrophagesandTcells),andmay contributetotheaccumulationofgruelandplaqueinstability,Am.J.Pathol. 149(1996)367–380.

[42]A.Haunstetter,S.Izumo,Apoptosis:basicmechanismsandimplicationsfor cardiovasculardisease,Circ.Res.82(1998)1111–1129.

[43]B.Y.Wang,H.K.Ho,P.S.Lin,S.P.Schwarzacher,M.J.Pollman,G.H.Gibbons, etal.,Regressionofatherosclerosis:roleofnitricoxideandapoptosis, Circu-lation99(1999)1236–1241.

[44]J.R.Hickok,D.D.Thomas,NitricoxideandcancertherapytheemperorhasNO clothes,Curr.Pharm.Des.16(4)(2010)381–391.

[45]K.Abe,H.Kimura,Thepossibleroleofhydrogensulfideasanendogenous neuromodulator,J.Neurosci.16(1996)1066–1071.

[46]H.Kimura,Hydrogensulfide:itsproduction,releaseandfunctions,Amino Acids41(2011)113–121.

[47]W.Zhao,J.Zhang,Y.Lu,R.Wang,ThevasorelaxanteffectofH2Sasanovel

endogenousgaseousKATPchannelopener,EMBOJ.20(2001)6008–6016.

[48]G.Yang,L.Wu,B.Jiang,W.Yang,J.Qi,K.Cao,etal.,H2Sasaphysiologic

vasorelaxant:hypertensioninmicewithdeletionofcystathionine gamma-lyase,Science322(2008)587–590.

[49]R.C.Zanardo,V.Brancaleone,E.Distrutti,S.Fiorucci,G.Cirino,J.L.Wallace, Hydrogensulfideisanendogenousmodulatorofleukocyte-mediated inflam-mation,FASEBJ.20(2006)2118–2120.

[50]J.L.Wallace,G.Caliendo,V.Santagada,G.Cirino,S.Fiorucci, Gastrointesti-nal safetyandanti-inflammatoryeffectsofahydrogensulfide-releasing diclofenacderivativeintherat,Gastroenterology132(2007)261–271. [51]Q.Guan,X.Wang,L.Gao,J.Chen,Y.Liu,C.Yu,etal.,Hydrogensulfide

sup-presseshighglucose-inducedexpressionofintercellularadhesionmolecule-1 inendothelialcells,J.Cardiovasc.Pharmacol.62(2013)278–284.

[52]V.Brancaleone,E.Mitidieri,R.J.Flower,G.Cirino,M.Perretti,AnnexinA1 mediates hydrogensulfidepropertiesin thecontrolof inflammation,J. Pharmacol.Exp.Ther.351(2014)96–104.

[53]L.L.Pan,X.H.Liu,Q.H.Gong,D.Wu,Y.Z.Zhu,Hydrogensulfideattenuated tumornecrosisfactor-a-inducedinflammatorysignalinganddysfunctionin vascularendothelialcells,PLoSONE6(2011)e19766.

[54]S.Fiorucci,T.Antonelli,E.Distrutti,G.Rizzo,A.Mencarelli,S.Orlandi,etal., Inhibitionofhydrogensulfidegenerationcontributestogastricinjurycaused by anti-inflammatory non-steroidal drugs,Gastroenterology 129 (2005) 1210–1224.

[55]A.F.Kamath,A.K.Chauhan,J.Kisucka,V.S.Dole,J.Loscalzo,D.E.Handy,etal., Elevatedlevelsofhomocysteinecompromiseblood-brainbarrierintegrityin mice,Blood107(2006)591–593.

[56]Z.Pálinkás,P.G.Furtmüller,A.Nagy,C.Jakopitsch,K.F.Pirker,M.Magierowski, etal.,Interactionsofhydrogensulfidewithmyeloperoxidase,Br.J.Pharmacol. 172(2015)1516–1532.

[57]M.Whiteman,J.S.Armstrong,S.H.Chu,S.Jia-Ling,B.S.Wong,N.S.Cheung, etal.,Thenovelneuromodulatorhydrogensulfide:anendogenous peroxyni-tritescavenger,J.Neurochem.90(2004)765–768.

[58]S.Muzzaffar,N.Shukla,M.Bond,A.C.Newby,G.D.Angelini,A.Sparatore,etal., Exogenoushydrogensulfideinhibitssuperoxideformation,NOX-1 expres-sionandRac1activityinhumanvascularsmoothmusclecells,J.Vasc.Res.45 (2008)521–528.

[59]M.Whiteman,N.S.Cheung,Y.Z.Zhu,S.H.Chu,J.L.Siau,B.S.Wong,etal., Hydrogensulfide:anovelmediatorofhypochlorousacidmediatedoxidative damageinthebrain,Biochem.Biophys.Res.Commun.326(2004)794–798. [60]M.Whiteman,L.Li,P.Rose,C.H.Tan,D.B.Parkinson,P.K.Moore,Theeffect of hydrogensulfide donorsonlipopolysaccharide-induced formationof inflammatorymediatorsinmacrophages,Antioxid.RedoxSignal.12(2010) 1147–1154.

[61]N.Dufton,J.Natividad,E.F.Verdu,J.L.Wallace,Hydrogensulfideand resolu-tionofacuteinflammation:acomparativestudyutilizinganovelfluorescent probe,Sci.Rep.2(2012)499.

[62]M.A. Mariggio, V. Minunno, S. Riccardi, R. Santacroce, P. De Rinaldis, R.Fumarulo,SulfideenhancementofPMNapoptosis,Immunopharmacol. Immunotoxicol.20(1998)399–408.

[63]J.L.Wallace,P.R.Devchand,Emergingrolesforcyclooxygenase-2in gastroin-testinalmucosaldefense,Br.J.Pharmacol.145(2005)275–282.

[64]C.N.Serhan,S.D.Brain,C.D.Buckley,D.W.Gilroy,C.Haslett,L.A.O’Neill,etal., Resolutionofinflammation:stateoftheart,definitionsandterms,FASEBJ. 21(2007)325–332.

[65]L.Li,G.Rossoni,A.Sparatore,L.C.Lee,P.DelSoldato,P.K.Moore, Anti-inflammatoryandgastrointestinaleffectsofanoveldiclofenacderivative, FreeRadic.Biol.Med.42(2007)706–719.

[66]S.Fiorucci,S.Orlandi,A.Mencarelli,G.Caliendo,V.Santagada,E.Distrutti, etal.,Enhancedactivity ofa hydrogensulphide-releasing derivativeof mesalamine(ATB-429)inamousemodelofcolitis,Br.J.Pharmacol.150 (2007)996–1002.

[67]N.Sen,B.D.Paul,M.M.Gadalla,A.K.Mustafa,T.Sen,R.Xu,etal.,Hydrogen sulfide-linkedsulfhydrationofNF-␬Bmediatesitsantiapoptoticactions,Mol. Cell.45(2012)13–24.

[68]K.L.Flannigan,T.A.Agbor,R.W. Blackler,J.K. Beatty,R.W.Blackler,M.L. Workentine,etal.,ImpairedhydrogensulfidesynthesisandIL-10signalling underlie hyperhomocysteinemia-associated exacerbation ofcolitis, Proc. Natl.Acad.Sci.U.S.A.111(2014)13559–13564.

[69]J.L.Wallace,R.W.Blackler,M.V.Chan,G.J.DaSilva,W.Elsheikh,K.L. Flanni-gan,etal.,Anti-Inflammatoryandcytoprotectiveactionsofhydrogensulfide: translationtotherapeutics,Antioxid.RedoxSignal.22(2015)398–410. [70]J.L.Wallace,L.Vong,W.McKnight,M.Dicay,G.R.Martin,Endogenousand

exogenoushydrogensulfidepromotesresolutionofcolitisinrats, Gastroen-terology137(2009)569–578.

[71]R.W.Blackler,J.P.Motta,A.Manko,M.Workentine,P.Bercik,M.G.Surette, etal.,HydrogensulphideprotectsagainstNSAID-enteropathythrough mod-ulationofbileandthemicrobiota,Br.J.Pharmacol.172(2015)992–1004. [72]J.L.Wallace,J.G.P.Ferraz,M.N.Muscara,Hydrogensulfide:anendogenous

mediatorofresolutionofinflammationandinjury,Antioxid.RedoxSignal.17 (2012)58–67.

[73]J.L.Wallace,M.Dicay,W.McKnight,G.R.Martin,Hydrogensulfideenhances ulcerhealinginrats,FASEBJ.21(2007)4070–4076.

[74]A.Papapetropoulos,A.Pyriochou,Z.Altaany,G.Yang,A.Marazioti,Z.Zhou, etal.,Hydrogensulfideisanendogenousstimulatorofangiogenesis,Proc. Natl.Acad.Sci.U.S.A.106(2009)21972–21977.

[75]J.L.Wallace,G.Caliendo,V.Santagada,G.Cirino,Markedlyreduced toxic-ityofahydrogensulfide-releasingderivativeofnaproxen(ATB-346),Br.J. Pharmacol.159(2010)1236–1246.

[76]E.Lagoutte,S.Mimoun,M.Andriamihaja,C.Chaumontet,F.Blachier,F. Bouil-laud,etal.,Oxidationofhydrogensulfideremainsapriorityinmammalian cellsandcausesreverseelectrontransferincolonocytes,Biochim.Biophys. Acta1797(2010)1500–1511.

[77]M.Goubern,M.Andriamihaja,T.Nübel,F.Blachier,F.Bouillaud,Sulfide,the firstinorganicsubstrateforhumancells,FASEBJ.21(2007)1699–1706. [78]S.Mimoun,M.Andriamihaja,C.Chaumontet,C.Atanasiu,R.Benamouzig,J.M.

Blouin,etal.,DetoxificationofH2Sbydifferentiatedcolonicepithelialcells: implicationofthesulfideoxidizingunitandofthecellrespiratorycapacity, Antioxid.RedoxSignal.17(2012)1–10.

[79]K.L.Flannigan,J.G.Ferraz,R.Wang,J.L.Wallace,Enhancedsynthesisand diminisheddegradationofhydrogensulfideinexperimentalcolitis:a site-specificpro-resolutionmechanism,PLOSONE8(2013)e71962.

[80]B.Oldenburg,R.Fijnheer,R.vanderGriend,G.P.vanBerge-Henegouwen, J.C.Koningsberger,Homocysteineininflammatoryboweldisease:arisk factorforthromboemboliccomplications?Am.J.Gastroenterol.95(2000) 2825–2830.

[81]S.Saibeni,M.Cattaneo,M.Vecchi,M.L.Zighetti,A.Lecchi,R.Lombardi,etal., LowvitaminB6plasmalevels,ariskfactorforthrombosis,in

inflamma-toryboweldisease:roleofinflammationandcorrelationwithacutephase reactants,Am.J.Gastroenterol.98(2003)112–117.

[82]K.Vagianos,C.N.Bernstein,HomocysteinemiaandBvitaminstatusamong adultpatientswithinflammatoryboweldisease:aone-yearprospective follow-upstudy,Inflamm.BowelDis.18(2012)718–724.

[83]R.W.Blackler,B.Gemici,A.Manko,J.L.Wallace,NSAID-gastroenteropathy: newaspectsofpathogenesisandprevention,Curr.Opin.Pharmacol.19C (2014)11–16.

[84]J.P.Motta,K.L.Flannigan,T.A.Agbor,J.K.Beatty,R.W.Blackler,M.L. Worken-tine,etal.,Hydrogensulfideprotectsfromcolitisandrestoresintestinal microbiotabiofilmandmucusproduction,Inflamm.BowelDis.21(2015) 1006–1017.

[85]C.Szabo´ı,Hydrogensulphideanditstherapeuticpotential,Nat.Rev.Drug Discov.6(2007)917–935.

[86]J.L.Wallace,Hydrogen sulfide-releasinganti-inflammatorydrugs,Trends Pharmacol.Sci.28(2007)501–505.

[87]M.V.Chan, J.L. Wallace, Hydrogen sulfide-based therapeutics and gas-trointestinaldiseases:translatingphysiologytotreatments,Am.J.Physiol. Gastrointest.LiverPhysiol.305(2013)G467–G473.

[88]J.L.Wallace,R. Wang,Hydrogensulfide-basedtherapeutics:exploitinga uniquebyubiquitousgasotransmitter,Nat.Rev.DrugDiscov.14(2015) 329–345.

(7)

[89]A.M.Miles,M.B.Grisham,Antioxidantpropertiesof5-aminosalicylicacid: potentialmechanismforitsprotectiveeffectinulcerativecolitis,Adv.Exp. Med.Biol.371B(1995)1317–1321.

[90]E.Distrutti,L.Sediari,A.Mencarelli,etal.,5-Amino-2-hydroxybenzoicacid 4-(5-thioxo-5H-[1,2]dithiol-3yl)-phenylester(ATB-429),ahydrogen sulfide-releasingderivativeofmesalamine,exertsantinociceptiveeffectsinamodel ofpostinflammatoryhypersensitivity,J.Pharmacol.Exp.Ther.319(2006) 447–458.

[91]J.L.Wallace,Mechanisms,preventionandclinicalimplicationsof nonsteroi-dalanti-inflammatorydrug-enteropathy,WorldJ.Gastroenterol.19(2013) 1861–1876.

[92]A.Lanas,L.A.Garcia-Rodriguez,M.Polo-Tomas,M.Ponce,I.Alonso-Abreu, M.A.Perez-Aisa,etal.,Timetrendsandimpactofupperandlower gastroin-testinalbleedingandperforationinclinicalpractice,Am.J.Gastroenterol.104 (2009)1633–1641.

[93]J.L.Wallace,Polypharmacyofosteoarthritis:theperfectintestinalstorm,Dig. Dis.Sci.58(2013)3088–3093.

[94]R.Blackler,S.Syer,M.Bolla,E.Ongini,J.L.Wallace,Gastrointestinal-sparing effectsofnovelNSAIDsinratswithcompromisedmucosaldefence,PLoSONE 7(2012)e35196.

[95]E.Ekundi-Valentim,K.T.Santos,E.A.Camargo,A.Denadai-Souza,S.A.Teixeira, C.I.Zanoni,etal.,Differingeffectsofexogenousandendogenoushydrogen sul-phideincarrageenan-inducedkneejointsynovitisintherat,Br.J.Pharmacol. 159(2010)1463–1474.

[96]E.Ekundi-Valentim,F.P.Mesquita,K.T.Santos,etal.,Acomparativestudy ontheanti-inflammatoryeffectsofsingleoraldosesofnaproxenandits hydrogensulfideH2S-releasingderivativeATB-346inratswith carrageenan-inducedsynovitis,Med.GasRes.3(2013)24.

[97]G.Caliendo,G.Cirino,V.Santagada,etal.,Synthesisandbiologicaleffectsof hydrogensulfide(H2S):developmentofH2S-releasingdrugsas

pharmaceut-icals,J.Med.Chem.53(2010)6275–6286.

[98]R.Motterlini,R.Foresti,Hemeoxygenase-1asatargetfordrugdiscovery, Antioxid.RedoxSignal.20(2014)1810–1826.

[99]C.Peers,J.P.Boyle,J.L.Scragg,M.L.Dallas,M.M.Al-Owais,N.T.Hettiarachichi, etal.,Diversemechanismsunderlyingtheregulationofionchannelsby car-bonmonoxide,Br.J.Pharmacol.(2014,May),http://dx.doi.org/10.1111/bph. 12760

[100]M.I. Guillen, J. Megias, V. Clerigues, F. Gomar, M.J. Alcaraz, The CO-releasing molecule CORM-2 is a novel regulator of the inflammatory processinosteoarthriticchondrocytes,Rheumatology(Oxford)47(2008) 1323–1328.

[101]J.Megias,J.Busserolles,M.J.Alcaraz,Thecarbonmonoxide-releasingmolecule CORM-2inhibitstheinflammatoryresponseinducedbycytokinesinCaco-2 cells,Br.J.Pharmacol.150(2007)977–986.

[102]J.Megias,M.I.Guillen,A.Bru,F.Gomar,M.J.Alcaraz,Thecarbon monoxidere-leasingmoleculetricarbonyldichlororuthenium(II)dimer protectshuman osteoarthritic chondrocytes and cartilage from the catabolic actionsof interleukin-1beta,J.Pharmacol.Exp.Ther.325(2008)56–61.

[103]P. Urquhart, G. Rosignoli,D. Cooper,R. Motterlini,M. Perretti, Carbon monoxide-releasingmoleculesmodulateleukocyte-endothelialinteractions underflow,J.Pharmacol.Exp.Ther.321(2007)656–662.

[104]N.Chiang,M.Shinohara, J.Dalli,V. Mirakaj,M.Kibi, A.M.Choi,et al., Inhaledcarbonmonoxideacceleratesresolutionofinflammationviaunique proresolvingmediator-hemeoxygenase-1circuits,J.Immunol.190(2013) 6378–6388.

[105]J.Dalli,B.D.Kraft,R.A.Colas,M.Shinohara,L.E.Fredenburgh,D.R.Hess,etal., Proresolvinglipidmediatorprofilesinbaboonpneumoniaareregulatedby inhaledcarbonmonoxide,Am.J.Respir.CellMol.Biol.(2015)(inpress). [106]D.Babu,R.Motterlini,R.Lefebvre,COandCO-releasingmolecules(CO-RMs)in

acutegastrointestinalinflammation,Br.J.Pharmacol.172(2015)1557–1573. [107]S.W.Ryter,A.M.Choi,Gaseoustherapeuticsinacutelunginjury,Compr.

Riferimenti

Documenti correlati

Furthermore, the data given for integration may contain only one entity as well as a collection of entities which are somehow related to each other, such as entity repositories

These results clearly show larger yields for the reactions in ILs with respect to those carried out in conventional reaction media, with the former ranging between 51% and 95% even

Si la autoridad tiene la “responsabilidad de gobierno” y la “responsabilidad en el gobierno”, y su correlativo derecho al comando, el resto de los miembros

L’idea che ho maturato è che tale rigida e discutibile chiusura (sulle cui ragioni trovo ora molto interes- santi anche le considerazioni svolte da Marco Bignami in

Each country had to analyse its own interviews to carry out its national analysis but at the same time, to supply data and information to support work of

Use of all other works requires consent of the right holder (author or publisher) if not exempted from copyright protection by the

Building upon [5], we propose the use of a classic mobile robot to perform a pushing operation (see Fig. 1), by considering the robot’s nonholonomic constraints in the

The horizontal red dotted line shows the tidal disruption radius of the planet (see equation 12). The yellow dotted horizontal lines indicate the planetary radius. The green and