• Non ci sono risultati.

Cross section of the reaction 18O(p, γ)19Fat astrophysical energies: The 90 keV resonance and the direct capture component

N/A
N/A
Protected

Academic year: 2021

Condividi "Cross section of the reaction 18O(p, γ)19Fat astrophysical energies: The 90 keV resonance and the direct capture component"

Copied!
6
0
0

Testo completo

(1)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Cross

section

of

the

reaction

18

O

(

p

,

γ

)

19

F at

astrophysical

energies:

The

90

keV

resonance

and

the

direct

capture

component

A. Best

d

,

e

,

,

F.R. Pantaleo

f

,

g

,

A. Boeltzig

a

,

b

,

c

,

1

, G. Imbriani

d

,

e

,

M. Aliotta

h

,

J. Balibrea-Correa

d

,

e

,

D. Bemmerer

i

,

C. Broggini

k

, C.G. Bruno

h

,

R. Buompane

e

,

j

,

A. Caciolli

l

,

k

,

F. Cavanna

m

,

T. Chillery

h

,

G.F. Ciani

a

,

c

, P. Corvisiero

n

,

m

,

L. Csedreki

c

,

a

,

T. Davinson

h

,

R.J. deBoer

b

,

R. Depalo

l

,

k

,

A. Di Leva

d

,

e

, Z. Elekes

o

,

F. Ferraro

n

,

m

,

E.M. Fiore

f

,

g

,

A. Formicola

c

,

Zs. Fülöp

o

,

G. Gervino

p

,

q

, A. Guglielmetti

r

,

s

,

C. Gustavino

t

,

Gy. Gyürky

o

,

M. Junker

c

,

a

,

I. Kochanek

c

,

M. Lugaro

u

, P. Marigo

k

,

l

,

R. Menegazzo

k

,

V. Mossa

f

,

g

,

V. Paticchio

g

,

R. Perrino

g

,

1

,

D. Piatti

l

,

k

, P. Prati

n

,

m

,

L. Schiavulli

f

,

g

,

K. Stöckel

i

,

v

,

O. Straniero

w

,

c

,

F. Strieder

x

,

T. Szücs

i

, M.P. Takács

i

,

v

,

2

,

D. Trezzi

r

,

s

,

M. Wiescher

b

,

S. Zavatarelli

m

aGranSassoScienceInstitute,VialeF.Crispi7,67100L’Aquila,Italy

bTheJointInstituteforNuclearAstrophysics,DepartmentofPhysics,UniversityofNotreDame,NotreDame,IN 46556,USA cIstitutoNazionalediFisicaNucleare,LaboratoriNazionalidelGranSasso(LNGS),ViaG.Acitelli22,67100Assergi,Italy dUniversitàdegliStudidiNapoli“FedericoII”,DipartimentodiFisica“E.Pancini”,ViaCintia21,80126Napoli,Italy eIstitutoNazionalediFisicaNucleare,SezionediNapoli,ViaCintia21,80126Napoli,Italy

fUniversitàdegliStudidiBari,DipartimentoInterateneodiFisica,ViaG.Amendola173,70126Bari,Italy gIstitutoNazionalediFisicaNucleare,SezionediBari,ViaE.Orabona4,70125Bari,Italy

hSchoolofPhysicsandAstronomy,UniversityofEdinburgh,PeterGuthrieTaitRoad,EH93FDEdinburgh,UnitedKingdom iHelmholtz-ZentrumDresden-Rossendorf,BautznerLandstraße400,01328Dresden,Germany

jUniversitàdegliStudidellaCampania“L.Vanvitelli”,DipartimentodiMatematicaeFisica,VialeLincoln5,81100Caserta,Italy kIstitutoNazionalediFisicaNucleare,SezionediPadova,ViaF.Marzolo8,35131Padova,Italy

lUniversitàdegliStudidiPadova,ViaF.Marzolo8,35131Padova,Italy

mIstitutoNazionalediFisicaNucleare,SezionediGenova,ViaDodecaneso33,16146Genova,Italy nUniversitàdegliStudidiGenova,ViaDodecaneso33,16146Genova,Italy

oInstituteforNuclearResearchoftheHungarianAcademyofSciences(MTAAtomki),POBox51,4001Debrecen,Hungary pUniversitàdegliStudidiTorino,ViaP.Giuria1,10125Torino,Italy

qIstitutoNazionalediFisicaNucleare,SezionediTorino,ViaP.Giuria1,10125Torino,Italy rUniversitàdegliStudidiMilano,ViaG.Celoria16,20133Milano,Italy

sIstitutoNazionalediFisicaNucleare,SezionediMilano,ViaG.Celoria16,20133Milano,Italy tIstitutoNazionalediFisicaNucleare,SezionediRoma,PiazzaleA.Moro2,00185Roma,Italy

uKonkolyObservatory,ResearchCentreforAstronomyandEarthSciences,HungarianAcademyofSciences,1121Budapest,Hungary vTechnischeUniversitätDresden,InstitutfürKern- undTeilchenphysik,ZellescherWeg19,01069Dresden,Germany

wINAFOsservatorioAstronomicod’Abruzzo,ViaMentoreMaggini,64100Teramo,Italy

xDepartmentofPhysics,SouthDakotaSchoolofMinesandTechnology,501EStJosephStreet,RapidCity,SD 57701,USA

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received3July2019

Receivedinrevisedform26August2019 Accepted27August2019

Availableonline30August2019 Editor:W.Haxton

The observation ofoxygen isotopes ingiant stars sheds lightonmixing processesoperating intheir interiors.Dueto theverystrong correlationbetweennuclearburning andmixingprocessesit isvery important toreduce theuncertainty on thecross sections ofthe nuclearreactions that are involved. Inthispaper wefocus ourattentiononthereaction18O(p,

γ

)19F.Whilethe 18O(p,

α

)15N channel is

thought to be dominant, the (p,

γ

) channel can still be an important component in stellar burning in giants, depending onthe low energycross section.So far onlyextrapolations from higher-energy

*

Correspondingauthorat:UniversitàdegliStudidiNapoli“FedericoII”,DipartimentodiFisica“E.Pancini”,ViaCintia21,80126Napoli,Italy. E-mailaddress:best@na.infn.it(A. Best).

1 Permanentaddress:IstitutoNazionalediFisicaNucleare,SezionediLecce,ViaArnesano,73100Lecce,Italy. 2 Currentaddress:Physikalisch-TechnischeBundesanstalt,Bundesallee100,38116Braunschweig,Germany.

https://doi.org/10.1016/j.physletb.2019.134900

0370-2693/©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

Keywords:

Experimentalnuclearastrophysics Undergroundnuclearphysics Hydrogenburning Stellarevolution

measurementsexistandrecentestimatesvarybyordersofmagnitude.Theselargeuncertaintiescallfor anexperimentalreinvestigationofthisreaction.Wepresent adirectmeasurementofthe18O(p,

γ

)19F

cross section using a high-efficiency 4

π

BGO summing detector at the Laboratory for Underground Nuclear Astrophysics (LUNA). The reaction cross section has been directly determined for the first time from140 keVdown to85 keV and the differentcross sectioncomponents have beenobtained individually.Thepreviouslyhighlyuncertainstrengthofthe90 keVresonancewasfoundtobe0.53± 0.07neV,threeordersofmagnitudelowerthananindirectestimatebasedonnuclearpropertiesofthe resonantstateandafactorof20lowerthanarecentlyestablishedupperlimit,excludingthepossibility thatthe90keVresonancecancontributesignificantlytothestellarreactionrate.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

Theobservationofoxygen isotopesin evolvedgiant stars pro-videsuniqueinformationonvariousmixingprocessesoperatingin stellar interiors, among them those induced by convection, rota-tionandmagneticfields[1–6].Oxygenisotopicratioscanbeused todeterminetheefficiencyofthesemixingprocesses.Forinstance, inthe innermost portionof theH-rich envelope ofa star climb-ing the red giant branch (RGB) or the asymptotic giant branch (AGB),wherethetemperatureexceeds

20 MK,18Oisefficiently destroyed by protoncaptures(see figure 5 in[7]). Ifsome insta-bilityinducing a mixingprocess extends downto thisregion, an increaseofthe16O/18Oratioshouldbeobservedatthestellar sur-face(seefigures6and7in[7]).Theobservedratioisparticularly sensitiveto themaximumtemperatureattainedby theinstability responsible for the mixing. However, the effective application of thischemicalproberequiresapreciseevaluationofthelow-energy rates of the two 18O proton-capture channels, i.e., the reactions 18O

(

p

,

α

)

15N and18O

(

p

,

γ

)

19F.

Thesetworeactionsarealsoimportantinthelong-standing de-bate about the origin of galactic fluorine (see, e.g. [8]). Fluorine

enhancements are commonlyobserved in thermally pulsingAGB

stars[9,10],butthecorrespondingnucleosynthesisscenarioisstill largely uncertain(see, e.g.[11,12]).The main productionchannel shouldbe 15N

(

α

,

γ

)

19F,operatingintheHe-burningregionofan AGBstar. Inthiscasethemain issueisthe amountof15N avail-ableforthefluorine production.Accordingtoan earlysuggestion by [13], 15N is produced by the 18O

(

p

,

α

)

15N reaction.3 An al-ternative path could be the direct production of fluorine in the H-burningzonethroughthe 18O

(

p

,

γ

)

19F reaction.Current nucle-osynthesis models find that this fluorine source is prevented by the competing18O

(

p

,

α

)

15N reaction andthat fluorine isinstead depletedinthe H-burningzone, mainlythrough the19F

(

p

,

α

)

16O reaction.Sincethereaction18O

(

p

,

α

)

15N dominatesovertheentire energyrangeofastrophysical interest (the ((pp,,γα)) rateratioranges from

100to10000,dependingonthetemperature)onlyastrong increaseofthe(p,

γ

)channel crosssection couldchangethis oc-currence.

Motivatedbythisastrophysicalcontext,westartedadeep un-dergroundstudyofthetwo18Oproton-capturechannels. The re-sultsofourrecentmeasurementof18O

(

p

,

α

)

15N isdiscussedina separatepaper[14].Herewepresentourstudyofthe18O

(

p

,

γ

)

19F channel.

The most important low energy contributions are the direct capture (DC)cross section, the tail ofthe strong ER

=

143 keV4 andthe previouslyunmeasuredER

=

90 keVresonance.Thestate in 19F corresponding to the latter resonance ( J π

=

3

2 +

, Ex

=

(

8084

±

3

)

keV) has been studied recently, yielding inconclusive

3 Accordingtothisscenario,partofthe15NisproducedintheH-burningshell

andtherestintheHeburningregion,whenthes-processnucleosynthesistakes placeandfreshprotonsarereleasedbythe14N(n,p)13C reaction.

4 Allenergiesinthisletteraregiveninthecenter-of-massreferenceframe,unless

explicitlystatedotherwise.

results.Buckneretal.performedadirectmeasurementofthelow energy 18O

(

p

,

γ

)

19F cross section [15], resulting in both a much lowerDCcrosssectionthanmeasuredbyWiescheretal.[16] and in an upper limit of the resonance strength of

ωγ

<

7

.

8 neV, too low to contribute significantly to the cross section. Shortly thereafter Fortune [17] calculated a resonant cross section based on known nuclear propertiesofthe state. Using literature values of the competing

(

p

,

α

)

channel strength and calculated proton widths, this publication arrived at a much higher recommended value for the resonance strength of

ωγ

= (

0

.

7

±

0

.

28

)

μeV. In this case, the90 keVresonancewould providea significant con-tribution to the total reaction ratefor temperatures between 30 and80MK.Theresultingratecouldbeup toafactor100higher than that currently adopted in stellar andnucleosynthesis mod-els. Major effects are expected in the case ofmassive AGB stars

undergoing Hot Bottom Burning (HBB) at temperature of about

40-50MK.Inthisway,asolutionforsomepuzzling astrophysical cases maybe obtained. Forinstance, manySC stars5 are fluorine rich, and some of them, such as WZ Cas, show the typical fea-turesofamoderateHBB,i.e.,substantialLienhancementtogether witharatherlowCisotopicratio(12C/13C

4

5;see[10]). How-ever,theFenrichmentappearsincompatiblewithHBB,unlessthe branching ratio

<

18O

(

p

,

γ

)

19F

> /

<

18O

(

p

,

α

)

15N

>

is substan-tiallylarger thanusuallyadopted,asitwouldbe inthecaseofa strength of the 90keV resonance closeto the value reported by Fortune.

Inordertoresolvethisambiguitythe18O

(

p

,

γ

)

19F lowenergy cross section, covering the energy region of the 143 keV reso-nance and below, has been directly measured at the Laboratory for Underground Nuclear Astrophysics (LUNA) [19] at the Gran Sasso National Laboratory in Italy. The measurements discussed

herewere performedwitha largesegmentedbismuthgermanate

(BGO) detector surrounding the target in an almost 4

π

geome-try(asdetailedin[20]).Thedetectorwassurroundedonallsides by at least 10 cm of lead, reducing the low-energy background componentbyaboutanorderofmagnitude.ThesixBGOdetector segments were read out and time-tagged individually and coin-cident sum spectra were constructed offline. This has the effect

of summing up gamma-rays that are emitted in a cascade

de-excitation of the resonant state to a single signal at the energy Q value (7993.6 keV [21]) plus the c.m. energy (here between 80 and 150keV) of the reacting particles. A major advantage of this technique isthe shiftingof thesignal out ofthe low-energy partofthegamma-rayspectrumthatisdominatedbynatural ra-dioactivity inthe laboratory environment intothe higher energy

region where the prevalent background stems from cosmic-ray

interactions with the detector. At LUNA this high-energy back-groundcomponentis reducedby overthreeorders ofmagnitude with respect to Earth’s surface. The BGO campaign was part of

(3)

awider-ranging investigation ofthe18O

(

p

,

γ

)

19F reaction, where thehigher-energyresonancesanddirectcapturecrosssection(up

to 400 keV) were also measured with a high purity germanium

(HPGe) setup that could be inserted in the same lead shield as

the one used for the BGO. The HPGe measurements, including

a much more detailed determination of the decay branchingsof several resonances, will be presented in a forthcoming publica-tion.

Themeasurements presented inthisletterwere performed at thesolidtargetstationoftheLUNAfacility,usinganodizedTa2O5 targetsthat were produced withwaterenriched to 99% 18O. An-odizationoftantalumisastandardmethodthatisknownto pro-duce homogeneous targetsthat can withstand highprotonbeam currentsforextendedperiods[22,23].Targetswiththicknesses(in termsofprotonenergylossat100keV)ofapprox.6 keVand14 keV,respectively,wereemployedovertheexperimentalcampaign. Thethinnertargetswereusedforoff-resonancemeasurementsand thethickeronesaround theregionofthe90keVresonance. Pro-tonbeamsofupto 200μAwere deliveredonto thewater-cooled target and changes in target thickness were regularly monitored byrepeatedmeasurementsoftheyieldprofileofthe143keV res-onance. Targets were exchanged withfresh ones before reaching adecrease by 10% in maximumyield andthickness. A liquid ni-trogen cooled copper pipe extended to the face of the target to reduce carbondeposition on the target.A suppression voltageof -300 V was applied to the copper pipe in order to reflect back

sputtered electrons from the target during beam bombardment,

eliminatingapossiblesystematicoverestimationofthebeam cur-rent.

The efficiency of the BGO detector, when used in summing

mode, is not a simple function of the photon energy. Instead, all possible decay paths from the resonant state to the ground state have to be taken into account with the respective ener-gies and branching ratios of the gamma rays involved. For the setupusedherethishasbeendonewithaGeant4[24] simulation thatincludes allknowndeexcitationpaths oftheresonant decay. Thissimulationhasbeenemployedsuccessfullyforpast measure-ments at LUNA [25,20] and was revalidated during the current campaignusingcalibratedsources andwell-known resonancesin 27Al

(

p

,

γ

)

28Si and 14N

(

p

,

γ

)

15O. In general, an agreement with the calibrationdata within a few % was found, butit should be stressed that the efficiency and its uncertainty depends on the knowledgeofthebranchingsofthereactionunderstudy.Thiswill bediscussedforthespecificcaseofthepresentmeasurement be-low.

The excitation function ofthe 18O

(

p

,

γ

)

19F cross section was measured in steps smaller than the target thicknesses between 85and150keV.Total depositedcharges rangedfroma few mil-licoulomb at the highest energies to

40 C at 85 keV. Beam-induced backgroundwas checkedusing an inert target produced withnaturalH2O.The countrateintheregionofinterestaround 8 MeV was found to be consistent withthe naturalbackground (4

×

10−5 s−1 or 4 counts per day). A summed spectrum of all runs taken inside the 90 keV resonance region (the sum of the runs done in the energy range between 90 and 96 keV) is dis-playedinFig.1,showingclearsignalsatthesumenergyforboth theresonantenergyandbelow.6

The datain the full energyrange studied hereare comprised of three components: the contributions of the 143 and 90 keV

6 Thespectraarenormalized bymeasurementtimetoallowcomparisonwith

theroombackground.Forbothin-beammeasurements similarcurrentswereused, sotheratioofthetwospectraapproximatelyrepresentstheyieldratio.Thetotal numberofcountsintheregionofinterestfortheoff-resonancedatais85,ofwhich 21areexpectedbackgroundcounts.

Fig. 1. BGOsumspectraintheon-resonanceenergyregion(black),belowthe90 keVresonance(red)and aroombackgroundspectrum(green).Thetwovertical linesdelimittheregionofinteresttocalculatetheexperimentalyields.

resonances and the direct capture component. The contribution from tails of higher-energy resonances (the closest significantly strong one beingat 316 keV) was calculated to be negligible. In order to disentangle the three components from each other the datawere fit usingan incoherentsumoftwo Breit-Wigner reso-nantshapesandaconstant“Sfactor”modelingthedirectcapture (DC) cross section. The S factor is related to the cross section

σ

through

σ

(

E

)

=

1ES

(

E

)

e−2π η , with the Sommerfeld parameter

η

=



μ

2EZ0Z1e 2.TheZ

0,1e are thechargesofthereactionpartners and

μ

isthereducedmass.

ThestrongresonancewithEr=143keVcanbedescribedusing thestandardsingle-levelBreit-Wignerformula

σ

B W

(

E

)

=

λ

2 4

π

2 J

+

1

(

2 j0

+

1

)(

2 j1

+

1

)

p

(

E

)

γ

(

E

)

(

Er

E

)

2

+ (

E

)

2

/

4

.

(1)

J

,

j

0 and j1 are the spins of the resonant compound state andofthe two reactionpartners, respectively. The statistical fac-torinvolving thedifferentspinsiscommonlyabbreviatedas

ω

=

2 J+1

(2 j0+1)(2 j1+1).

λ

is the de Broglie wavelength and

p,γ are the

channel widths (in this case proton and

γ

) and

is the total width ofthe resonance.The 143 keVresonance is alsoobserved inthe

(

p

,

α

)

channelwithan

α

widthof123 eV[26] that com-pletely dominates the total widthof thestate. It is importantto note that the widths are energydependent andare functions of the Coulomb penetration factors forcharged particles andofthe multipolarityinthecaseofphotons.

Finally,dueto itsrelativeweakness,the90keVresonancehas

been modeled using a simplified Breit-Wigner description with

constant widths and introducing the resonance strength

ωγ

=

ω

p γ

.Inthiscasethecrosssectionbecomes

σ

B W

(

E

)

=

λ

2 4

π

ωγ

(

Er

E

)

2

+

2

/

4

.

(2)

TherelationshipbetweencrosssectionandmeasuredyieldYis

Y

(

E

)

=

E



E−E

η

σ

(

E

)

(

E

)

dE

,

(3)

(4)

where

is the effective stopping power of the target material7

andtheintegrationrangeisdeterminedbythetargetthicknessin termsoftheenergylossoftheprojectilewhiletraversingthe tar-get;

η

isthedetectionefficiencyofthesetup.Alsohereonlyc.m. valuesareusedinthecalculation.When extractingthecross sec-tionsoftheabovementionedthreecomponentsonehastoassume thateach ofthetworesonant statesandtheDCparthave differ-ent

γ

-ray branchings, andasthe detectionefficiencyofthe BGO isafunctionofthebranchingseachcomponentcontributestothe yieldweightedwithitsefficiency

η

i.

Y

(

E

)

=

E



E−E

η

1

σ

B W1

(

E

)

+

η

2

σ

B W2

(

E

)

+

η

3

σ

DC

(

E

)

(

E

)

dE (4)

Onlythebranchingsofthe143keVresonancearewellknown andcouldbedirectlyusedfortheefficiencysimulation.Thereisno branching informationinthe literature on the90keV resonance, and only higher-energy direct capture branchings are available [16]. Forthelow energyresonance we adoptedthemethodology ofBuckneretal.:wecalculatedefficienciesforthedetectionofthe cascadedecayofallstatesin19Fwithknownbranchingratios, re-strictingtheselectiontostateswithEx

>

5500 keVandJ

<

92.The resultingefficiencydistributionwasthenusedfortheanalysis.The efficiencyatEx

=

8083 keV,correspondingtothe90keVresonance

was determined by a linear fit through the data. The maximum

deviationbetweensimulation pointsandthefit(evaluatedatthe resonancestateenergy)wasadoptedastheuncertaintyofthis ef-ficiencydetermination,resultinginanefficiencyof

(

59

±

7

)

%.The efficiency forthe DC component was calculated to be

(

49

±

5

)

% usingtheWiescheretal.branchingsandassumingaconservative uncertaintyof10%.

To calculate the cross sections from the experimental data a least-squares fit was performed in which parameters influencing thedifferentcrosssectioncomponentswereallowedtovaryfreely andthenumericallyintegratedyieldwascomparedtothe experi-mentalone.Thevariedparameterswerethe

ωγ

ofthelow-energy resonance,a scaling factor inthe caseof the 143keV resonance andaconstant Sfactortodescribe theDCcomponent. Thelatter choicecanbejustifiedbytheratherlowrangeinenergybetween the lowest andhighest datapoint andthe fact that the S factor determined overa much larger energyrangein thework of Wi-escheretal.[16] isnotstronglyenergydependent.Theresonance energyof the low-energystate was set to 90.6keV andits total widthto121

±

12 eV[14]. Resultsofthe fitareshowninFig. 2. Thereducedchi-squareis1.22.

The uncertainties inthe minimization results were calculated asfollows.The low energyresonancewidthwas fixed torandom valuessampledfromaGaussiandistributionwiththemeanvalue andFWHMgivenaboveandforeachvalue alargenumberoffits wereperformed, wheretheexperimental yielddatawereallowed tovaryaccordingtotheir individualstatisticaluncertainties,again sampledfromaGaussiandistribution.Thissamplingwasrepeated manytimes.Thebestvalueforeachcrosssectioncomponentwas determinedasthe meanvalue oftheresulting distributionwhile thecorresponding uncertaintywasadoptedfromtheaverage dis-tancebetweenmeanvalueandthe16thand84thquantilesofthis distribution.

The results and a comparison with the literature are shown inTable 1.The followingfactors were includedinthe systematic

7 SRIM-2013[27] wasusedtocalculatethestoppingpoweroftheTa

2O5targets.

At90.4keV

(Ta18

2O5)=2.81·10−14eV cm2.Thestoppingpowerhasbeenscaled

bythefactormtarget/(mtarget+mbeam).

(a)

(b)

Fig. 2. (a)Experimentalyieldandfittedcrosssectionof18O(p,γ)19F.Thetotalcross

sectionandthedirectandresonantcomponentsareshownaslines.Theleftaxis referstotheyieldpoints,therightonetothecrosssections(lines).Displayedin theinsetisazoomintothelowenergyresonanceregion.(b)Experimentaldatavs. fitresultsinthelow-energyregion.

Table 1

Quantitiesdeterminingthethreecomponentsofthelow-energy18O(p,γ)19F cross

section.

Fit parameter Value Literature

ωγ(143 keV) [meV] 0.88±0.07 (sys.) 0.92±0.06 [28] 1.0±0.1 [16]

ωγ(90 keV) [neV] 0.53±0.07 stat.

0.07 sys.

<8 [15] 0.7+00..5638·103[17]

S0(DC) [keV b] 23.0±22..7 stat7 sys..

7.06 [15] 15.7 [16]

uncertainty:chargeintegration3%and5%fromtheliterature stop-ping power. 3% were assignedtotake into account stoichiometry changes duetotarget degradation,and5% tothethickness deter-mination oftheused targets.Thelattertwowere includedinthe individual datapoints andunderwentthe MonteCarloprocedure described above. The efficiencyfor thedetection ofthe DC com-ponent was assignedasystematicuncertaintyof10%; dueto the much better knownbranchingsofthe 143keVresonancewe as-signed5% ofuncertaintytoitsdetectionefficiency.Thestrengthof the 143 keV resonance is in very good agreement with the lit-erature; the best-fit value of the resonance energy is 143.3 (

±

(5)

Fig. 3. Top:ReactionraterelativetoIliadisetal.[30].Bottom:fractional contribu-tionsoftheindividualcrosssectioncomponentstothetotalrate.

0.3) keV.Our directmeasurement of the strength of the 90keV resonance is in agreement with the Buckner et al. upper limit, which,beingmuch lowerthanthe Fortunecalculation[17],leads toanegligible astrophysicalimportance. TheDCS factorwas de-termined directly forthe first time at very low energy. We find its value to be 23.0 keV b (corresponding to a DC cross section at99.4keVof5.2μb),somewhathigherthan theWiescheretal. extrapolationandmuch higher thanthe three sigmaupper limit givenbyBuckneretal.Itisnotentirelycleariforhowinthe lat-terworkthetailofthe143keVresonancewas consideredinthe determinationof theupper limit, butit doesnot appeara likely candidate to resolve the difference. The experimental cross sec-tionspresentedherewerecorrectedforelectronscreeningeffects [25,29].8

The top part of Fig. 3 shows the low-temperature reaction

rateusing the experimental results of the present work relative to the literature rate from[30].9 Our rate, while overall being a

bit lower, still agrees very well with the literature. The rate in the higher-temperature range is dominated by the 140 keV res-onance. It is lower than the literature due to both the reduced strengthandtheslightlyhigherenergythantheoneusedin[30]. The contribution of the individual components to the total rate is shown in the bottom part of Fig. 3. The main result is that the90 keV resonanceonly contributesat mosta few percent to the reaction rate and does not play an important astrophysical role.

In summary we were able to perform a direct measurement

ofthe verylowenergycrosssection ofthereaction18O

(

p

,

γ

)

19F.

We can exclude a very strong 90 keV resonance, in agreement

with [15], ruling out the possibility that it plays a role in the 19F production in AGB stars, and through the determination of theS factorto below 90keV, whereit is the dominant contrib-utortothetotalcrosssection,we areabletoconfirmthepresent pictureoftheastrophysicalroleof18O

(

p

,

γ

)

19F,improvingthe un-certainty at the lowest energies. The low energy resonance and thestrengthoftheDCcomponentarenowknownwithprecisions ofapprox.20% and15%,respectively.Wehaveconfirmedthatthe stellar reaction ratefor the conditions present inlow mass AGB

stars is dominated by the DC component and the 143 keV

res-8 Ascreeningpotentialof0.66keVwasusedforthecalculation.Resulting

correc-tionsrangebetween∼10%and4%,dependingontheenergy.

9 Thisreferencewaschosenbecauseitappearsthatthe22keVresonancewas

notincludedtoproducetheratetablein[15],leadingtoamuchlowerrateatthe lowesttemperatures.

onance, as the low-energyresonance is too weak to play a role. Thanks to our new results it will be possible to perform more firm nucleosynthesis calculations regarding the origin of oxygen polluters in the universe and mixingprocesses in RGB andAGB stars.

Acknowledgements

This work was supported by the INFN. The authors

acknowl-edgethesupportattheGranSassoNationalLaboratory,andwould liketothankD.CiccottiandL.Roscilliaswell astothe mechani-calworkshopsoftheINFNsectionsofLNGSandNaples.Following authorsacknowledgefundingfromseveralinstitutionsandgrants: Z.E., Z.F.,G.Gy.:NKFIHK120666; C.Bru., M.A.,T.D.: STFCUK;D.B., M.T.,T.S.,K.S.:DFG(BE4100/4-1),HelmholtzAssociation(NAVIand ERC-RA-0016), COST (ChETEC, CA16117); A.B.,J.B., A.D.L., G.I: the UniversityofNaples/CompagniadiSanPaolograntSTAR.

References

[1]D.S.P.Dearborn,Phys.Rep.210(1992)367.

[2]A.I.Boothroyd,I.-J.Sackmann,G.J.Wasserburg,Astrophys.J.Lett.430(1994) L77.

[3]K.M.Nollett,M.Busso,G.J.Wasserburg,Astrophys.J.582(2003)1036,arXiv: astro-ph/0211271.

[4]P.P.Eggleton,D.S.P.Dearborn,J.C.Lattanzio,Astrophys.J.677(2008)581–592, arXiv:0706.2710.

[5]C. Charbonnel, N. Lagarde, Astron. Astrophys. 522(2010) A10, arXiv:1006. 5359.

[6]S.Palmerini,M.LaCognata,S.Cristallo,M.Busso,Astrophys.J.729(2011)3, arXiv:1011.3948.

[7]O.Straniero,C.G.Bruno,M.Aliotta,A.Best,A.Boeltzig,D.Bemmerer,C. Brog-gini, A.Caciolli,F.Cavanna,G.F. Ciani, et al.,Astron. Astrophys.598(2017) A128,arXiv:1611.00632.

[8]H.Jönsson,N.Ryde,G.M.Harper,M.J.Richter,K.H.Hinkle,Astrophys.J.Lett. 789(2014)L41,arXiv:1406.4876.

[9]A.Jorissen,V.V.Smith,D.L.Lambert,Astron.Astrophys.261(1992)164.

[10]C.Abia,K.Cunha,S.Cristallo,P.deLaverny,I.Domínguez,K.Eriksson,L. Gi-alanella,K.Hinkle,G.Imbriani,A.Recio-Blanco,etal.,Astrophys.J.Lett.715 (2010)L94.

[11]M.Lugaro,C.Ugalde,A.I.Karakas,J.Görres,M.Wiescher,J.C.Lattanzio,R.C. Cannon,Astrophys.J.615(2004)934,arXiv:astro-ph/0407551.

[12]S. Cristallo, A.Di Leva, G. Imbriani, L. Piersanti, C. Abia,L. Gialanella, O. Straniero,Astron.Astrophys.570(2014)A46,arXiv:1408.2986.

[13]M.Forestini,S.Goriely,A.Jorissen,M.Arnould,Astron.Astrophys.261(1992) 157.

[14] C. Bruno, M. Aliotta, P. Descouvemont, A. Best, T. Davinson, D. Bem-merer, A. Boeltzig, C. Broggini, A. Caciolli, F. Cavanna, et al., Phys. Lett. B (ISSN 0370-2693) 790 (2019) 237, http://www.sciencedirect.com/science/ article/pii/S0370269319300334.

[15]M.Q.Buckner,C.Iliadis,J.M.Cesaratto,C.Howard,T.B.Clegg,A.E.Champagne, S.Daigle,Phys.Rev.C86(2012)065804.

[16]M.Wiescher,H.W.Becker,J.Görres,K.-U.Kettner,H.P.Trautvetter,W.E.Kieser, C. Rolfs, R.E.Azuma, K.P. Jackson, J.W. Hammer, Nucl. Phys. A 349 (1980) 165.

[17]H.T.Fortune,Phys.Rev.C88(2013)015801.

[18]C. Abia,I. Domínguez,R. Gallino,M. Busso,O. Straniero, P.deLaverny, G. Wallerstein,Publ.Astron.Soc.Aust.20(2003)314.

[19]H. Costantini,A.Formicola,G.Imbriani,M.Junker, C.Rolfs,F.Strieder,Rep. Prog.Phys.72(2009)086301.

[20] A.Boeltzig,A.Best,G.Imbriani,M.Junker,M.Aliotta,D.Bemmerer,C.Broggini, C.G.Bruno,R.Buompane,A.Caciolli,etal.,J.Phys.G,Nucl.Part.Phys.45(2018) 025203,http://stacks.iop.org/0954-3899/45/i=2/a=025203.

[21]M.Wang,G.Audi,F.Kondev,W.Huang,S.Naimi,X.Xu,Chin.Phys.C41(2017) 030003.

[22]D.Vermilyea,ActaMetall.1(1953)282.

[23]A.Caciolli,D.A.Scott,A.DiLeva,A.Formicola,M.Aliotta,M.Anders,A.Bellini, D.Bemmerer,C.Broggini,M.Campeggio,etal.,Eur.Phys.J.A48(2012)144.

[24]S.Agostinelli,etal.,Nucl.Instrum.MethodsA506(2003)250.

[25] F. Strieder, B. Limata, A. Formicola, G. Imbriani, M. Junker, D. Bem-merer, A. Best, C. Broggini, A. Caciolli, P. Corvisiero, et al., Phys. Lett. B (ISSN 0370-2693)707(2012)60,http://www.sciencedirect.com/science/article/ pii/S0370269311014869.

(6)

[26] C. Iliadis, R. Longland, A. Champagne, A. Coc, in: The 2010 Evalua-tion of Monte Carlo based Thermonuclear Reaction Rates, Nucl. Phys. A (ISSN 0375-9474) 841 (2010) 251, http://www.sciencedirect.com/science/ article/pii/S0375947410004203.

[27] J.Ziegler,Nucl.Instrum.MethodsB219(2004)1027,softwareversion SRIM-2010,http://www.srim.org.

[28] R.B.Vogelaar,T.R.Wang,S.E.Kellogg,R.W.Kavanagh,Phys.Rev.C42(1990) 753,https://link.aps.org/doi/10.1103/PhysRevC.42.753.

[29] H.J.Assenbaum,K.Langanke,C.Rolfs,Z.Phys.A(ISSN 0939-7922)327(1987) 461,https://doi.org/10.1007/BF01289572.

[30] C.Iliadis,R.Longland,A.Champagne,A.Coc,R.Fitzgerald,in:The2010 Eval-uation ofMonte Carlo based Thermonuclear Reaction Rates,Nucl. Phys. A (ISSN 0375-9474)841(2010)31,http://www.sciencedirect.com/science/article/ pii/S0375947410004197.

Riferimenti

Documenti correlati

112 subjects received CBT (consisting of 14 1-hour therapist-assisted ERP sessions), sertraline (mean dose 170 mg/day), CBT and sertraline (mean dose 133 mg/day) or placebo for

In the case when a variation with respect to the scale of the cosmological and Newton’s constants does not take place, there would be a discrepancy between the well established

In this case, the abstraction support level provided by the agent environment is twofold: from the artificial agents point of view, it provides a way to repre- sent, perceive

In order to reproduce the spectra the authors proposed to include the energy dependence of the GDR width in the statistical calculation [43]. They showed that, taking into account

Here, to make up for the relative sparseness of weather and hydrological data, or malfunctioning at the highest altitudes, we complemented ground data using series of remote sensing

For example, if vmPFC is necessary to initiate and maintain mind-wandering endogenously, vmPFC lesions should lead to reduced mind-wandering when no cue is provided or no strong

The specific aims were the isolation and identification of yeasts from high- sugar matrices representative of different regions across Italy, the set-up of a vast

This study reviews demographic data, travel history, clinical and laboratory information, imaging and other diagnostic findings of the largest case series of imported